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Abstract: Determining the sequence of relocating items (or resources) moved 
by a crane from existing positions to newly assigned locations during a multi-
period planning horizon is a complex combinatorial optimisation problem, 
which exists in power plants, shipyards, and warehouses. Therefore, it is 
essential to develop a good crane route technique to ensure efficient utilisation
of the crane as well as to minimize the cost of operating the crane. This 
problem was defined as the Crane Sequencing Problem (CSP). In this paper, 
three construction and three improvement algorithms are presented for the CSP. 
The first improvement heuristic is a simple Tabu Search (TS) heuristic. The 
second is a probabilistic TS heuristic, and the third adds diversification and 
intensification strategies to the first. The computational experiments show that 
the proposed TS heuristics produce high-quality solutions in reasonable 
computation time. 
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1 Introduction 

In many industrial environments such as power plants, shipyards, and warehouses, 
multiple items (resources) need to be reassigned and moved to new locations. Relocating 
items, especially heavy bulky items, is costly and may represent a significant portion of 
the overall relocation budget. Therefore, it is necessary to develop efficient techniques to 
determine the sequences in which a vehicle (e.g. crane) moves items to their newly 
assigned locations (i.e. destination) during a multi-period planning horizon. More 
importantly, crane routes need to be constructed such that total travel cost of the crane is 
minimised. This problem is defined as the Crane Sequencing Problem (CSP) and was 
presented in McKendall et al. (2006). 

The CSP is related to the well-known Travelling Salesman Problem (TSP) defined in 
Laporte (1992) and other related problems such as the dial-a-ride problem. The dial- 
a-ride problem is a TSP with precedence relation where a vehicle transport a number of 
passengers, and each passenger should be picked up from a specific location and 
delivered to a specific destination (Hunsaker and Savelsbergh, 2002). If a single capacity 
vehicle is considered in the dial-a-ride problem, the resulting problem is known as the 
Stacker Crane Problem (SCP) as mentioned in Hernandez-Perez and Salazar-Gonzalez 
(2004). SCP is a modified TSP which requires that a salesman or a vehicle visits a set of 
ordered pairs of locations (Frederickson et al., 1978). Each pair of locations corresponds 
to a pickup and delivery location. In SCP, the crane may start from an initial position, 
perform a set of moves, and return to a terminal position, and the objective is to find the 
sequence of these moves such that total tour length is minimised. In Frederickson et al. 
(1978), the authors described some practical applications of SCP such as operating a 
crane or a forklift, or driving a pickup and delivery truck. Frederickson and Guan (1992) 
also discussed the pre-emptive case of SCP (P-SCP) where items can be temporarily 
stored at available locations and picked up and delivered to their destination locations 
later. CSP considered in this paper is similar to P-SCP, since the crane starts from an 
initial position and performs a set of moves such that total cost is minimised while 
allowing pre-emption to occur. However, CSP differs from P-SCP because of the 
following. 

1 In CSP, the crane does not return to a terminal position as in P-SCP. 

2 In CSP, a multi-period planning horizon is considered whereas a single period is 
considered in P-SCP. 

3 In CSP, locations have limited capacities. However, the locations have unlimited 
capacity in P-SCP. 
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4 In CSP, the objective is to minimise the total cost which is the sum of the 
loading/unloading costs and tour costs. In P-SCP, the objective is to minimise total 
tour length. 

As a result, CSP is a more general problem than P-SCP. Therefore, CSP is 
computationally intractable and only small-size problems can be solved optimally in 
reasonable computation time. 

As mentioned earlier, CSP was first defined by McKendall et al. (2006) where the 
authors presented a simulated annealing heuristic for their problem. Their problem was 
developed from the problem of relocating resources (items) during outages at electric 
power plants. In other words, items (or resources) need to be relocated from existing 
locations to their newly assigned locations by using a single-capacity overhead crane. 
More specifically, the problem was to determine the sequences (or the orders) in which 
items are to be moved for a single overhead crane, during a multi-period planning 
horizon, such that the total distance travelled by the crane is minimised. However, in this 
paper, the objective is modified to minimise the sum of the crane travel cost as well as the 
loading/unloading costs. 

Besides determining the order in which items are relocated during outages at electric 
power plants, CSP has many potential applications. Another application of CSP occurs in 
the context of warehouse rearrangement. Since the demand of products is dynamic and 
some products may become obsolete, warehouse managers may rearrange the layout of 
their products in warehouses. For example, products with high demand are located close 
to the input/output locations. As a result, the locations of products may change. 
Therefore, CSP can be used to determine the sequence in which a vehicle moves the 
products reassigned to new locations in a warehouse. This problem is called the 
warehouse rearrangement problem and was presented by Christofides and Colloff (1973). 
Also, CSP can be used to determine the order in which a crane removes/loads containers 
from/onto ships. 

In this paper, Tabu Search (TS) heuristics, which include a basic TS, a Probabilistic 
TS (PTS), and a TS with intensification and diversification strategies, are proposed for 
CSP. The contributions of the paper and how it is organised are as follows. Section 2 
gives the definition, assumptions, and solution representation of CSP. Construction 
algorithms, a simple TS, PTS, and TS with intensification and diversification strategies 
are presented in Section 3. In Section 4, the computational results are given, and 
Section 5 provides conclusions and future research directions. 

2 The crane sequencing problem 

2.1 Introduction 

CSP is the problem of determining the sequences in which a single overhead crane moves 
items (or resources) to their newly assigned locations in multiple periods with respect to 
minimising total costs. However, temporary storage locations can be used to store items 
temporarily when the destination location of an item currently being moved is at full 
capacity or cost of crane routes can be reduced if temporary storage space is used. 
Therefore, pre-emption is allowed as discussed earlier. An item stored in temporary 
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storage can be delivered to its destination location or another temporary storage space 
when: 

1 the crane is at its temporary location or 

2 after all the other items have been moved to their assigned locations. 

Other important assumptions of CSP include the single overhead crane can move only 
one item at a time and, without loss of generality, the initial position of the crane at the 
beginning of a period is the last position of the crane in the previous period. 

The inputs for CSP are the assignments of items to locations for multiple periods 
(which is obtained by solving the dynamic space allocation problem presented in 
McKendall et al. (2005)), the distances between locations (i.e. D = [dij], i, j = 1, 2, …, L
where dij is the distance from location i to j, and L is the total number of locations), 
capacities of the locations, initial location of the crane, costs of moving items per distance 
unit, and the costs of loading/unloading items. The outputs of CSP are the crane routes 
for each period and the total cost of the routes. More specifically, the set of sequences of 
items to be moved during a multi-period planning horizon is obtained. Based on these 
sequences of items to be moved, the crane will load an item, move, and unload it at either 
its destination location or a temporary storage. As stated earlier, a temporary location is 
used if its destination location is at full capacity or total cost can be reduced. In other 
words, the actual movements of the crane (e.g. moving items to/from temporary storage 
locations) are determined using a serial method (given the sequences of items to be 
moved). The serial method presented in McKendall et al. (2006) is used to construct the 
crane routes. CSP is difficult due to the large number of possible permutations of items to 
be moved at each period and the large number of possible crane routes that can be 
generated. 

During operation, the crane travels while either moving an item to its destination 
location or moving empty to retrieve an item. Thus, the status of the crane can be defined 
as either loaded or not loaded. Hence, there are two corresponding types of moves: empty 
moves and non-empty moves (see Figure 1). More specifically, an empty move is a move 
where the crane does not carry any items (i.e. crane is not loaded); whereas, a non-empty 
move is a move where the crane carries an item (i.e. crane is loaded). An empty move 
may be necessary for the crane to obtain an item to be moved. For instance, if there is no 
item to be moved at the current location of the crane, the crane needs to perform an 
empty move to arrive at a location of an item which needs to be moved. 

Based on the move types of the crane, the total costs of CSP should include the costs 
related to empty moves and non-empty moves of the crane as well as the cost related to 
loading/unloading items (see Figure 2). The distances the crane travels can be used as a 
criterion to measure costs when the crane moves empty or non-empty. As a result, the 
travel cost of the crane is the product of the distances the crane travels (empty or non-
empty) and the cost per distance unit. In contrast, the loading/unloading cost is 
considered only for non-empty crane moves. That is, the loading/unloading cost of an 
item is the product of the number of non-empty moves for the item and the sum of the 
unloading and loading costs for the item. In other words, the cost of a non-empty move is 
the cost of loading an item onto the crane and the cost of unloading the item once it 
reaches its destination location. This is called the loading/unloading cost. The objective 
of CSP is to minimise the sum of the crane travelling costs and loading/unloading costs. 
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Figure 1 Status of crane and move types 

Figure 2 Costs considered in CSP 

2.2 Crane routes 

Since temporary storage locations may be used, an item may be moved multiple times 
(i.e. item is moved to temporary storage spaces one or more times). Therefore, the 
sequences of items to be moved may not give the crane routes. As discussed previously, 
in order to determine the crane routes (i.e. a set of ordered locations to be visited by the 
crane) for relocating items to be moved, the serial method developed in McKendall et al. 
(2006) is used. In other words, by using the serial method, once the sequence of items to 
be moved is obtained, the crane route and its total cost are generated. 

2.3 Solution representation 

The sequences of items to be moved can be represented as  = { 2,…, T} where each t

in represents an ordered list of items (i.e. a sequence of items) to be moved by the crane 
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at the beginning of each period t (where t = 2,…,T). More specially, t = ( 1t, 2t,…, ntt), 
for t = 2,…,T, where it is the ith item moved by the crane in period t, and ntt is the last 
item to be moved by the crane in period t. Therefore, the entire solution  includes 
multiple permutations of items to be moved for T–1 periods and 

 = { 2,…, T} = {( 12, 22,…, n22), ( 13, 23,…, n33),…,( 1T, 2T,…, nTT)}. Once the 
sequences of items to be moved are obtained, the serial method discussed above is used 
to obtain the crane routes and the total cost of the routes. 

3 Solution techniques 

3.1 Construction algorithms 

In order to obtain diverse solutions for CSP, three construction algorithms are proposed 
in this paper. The first is a very simple algorithm, which lists the items to be moved in 
ascending order for each period. For example, if items 1, 2, 4, and 8 need to be reassigned 
to new locations in period t, then t = {1, 2, 4, 8}. This construction algorithm is called 
CAI.  

The second construction algorithm, called CAII, is a nearest neighbour heuristic. In 
other words, the order in which the items are moved is based on the distances between 
the current location of the crane and the locations of the items to be moved. For instance, 
if items 1, 2, and 4 are reassigned to locations in period t and the distances between the 
current location of the crane and the locations of the items are 3, 2, and 1, respectively, 
then item 4 is assigned to the first position of the move sequence. If a tie exists, the item 
with the least number of items in its destination location is selected (used to reduce the 
use of temporary storage locations). Next, the item assigned to the second position of the 
sequence is the item closest to either the destination location or the temporary storage 
location of item 4. Nevertheless, the item closest to the current location of the crane is 
selected, say for instance item 1. As a result, t = {4, 1, 2}. It is obvious that this heuristic 
attempts to minimise crane travel cost. 

In the third construction algorithm, CAIII, the location of the first item to be moved is 
selected such that the location has the most items to be moved. If a tie exists between one 
or more locations, the location closest to the crane is selected (used to reduce crane travel 
cost). Once this location is determined, the item in this location with the least number of 
items in its destination location is selected first. This process is repeated for all items 
needed to be moved. This heuristic attempts to minimise the use of temporary storage 
locations such that loading/unloading costs are minimised. 

3.2 Tabu Search 

The TS heuristic was first presented by Glover (1986). Also, see Glover (1989, 1990a,b). 
The basic idea of TS is to improve a solution iteratively, using some guiding rules such as 
recency (short-term) memory as well as intensification and diversification strategies to 
obtain good solutions in complex solution spaces. The basic components of the proposed 
TS heuristic are discussed below. 

The TS heuristic uses a steepest descent local search heuristic. The steepest descent 
heuristic starts from an initial solution  and explores its entire neighbourhood, N( ). 
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More specifically, all possible pairwise exchanges between items to be moved are 
considered for each period t, and the best exchange is performed. That is, all the 
neighbouring solutions in the neighbourhood of , N( ), is considered for each period t
and the best neighbour N( ) (i.e. the best move, move* = (t, u, v), which exchange 
the locations of items u and v in period t) is selected such that f( ) < f( ) for 

N( ). The corresponding solution is the current solution at the next iteration (i.e. 
 = ). When a local optimum is obtained (i.e. no  exist such that f( ) < f( ) for 

N( )), the heuristic terminates. Therefore, the heuristic accepts only improved 
solutions and do not accept non-improving solutions as with other simple local search 
techniques such as the first improvement local search heuristic. As a result, the steepest 
descent often converges to a poor local optimum, usually depending on the quality of the 
initial solution . Therefore, components of the TS heuristic (e.g. short-term memory, 
aspiration criterion) are used to overcome these drawbacks of the simple steepest descent 
local search technique in search of the global optimum. 

The proposed TS heuristic uses the steepest descent heuristic with short-term memory 
(or recency based memory) to accept uphill moves. In other words, the steepest descent 
heuristic converges to a local optimum; however, short-term memory is used to forbid the 
recent moves so that the heuristic can climb out of the valley which contains the local 
optimum (i.e. accept non-improving moves) in search of better local optima. In CSP, if 
the best solution in the neighbourhood of the current solution  is  (i.e. f( ) < f( ) for 

N( )) and  is obtained by move* = (t, u, v), which exchanges the locations of 
items u and v in period t, then this move is tabu restricted for a certain duration 
(tabusize), called tabu list size. For CSP, the tabu list size tabusizet are unique for 
different periods. The tabu status and tabu list size of each move are maintained in the 
lower half of the tabu list structure tabu[t][u][v], where u > v. Sometimes a move which is 
tabu restricted may give the best solution found thus far. Therefore, the aspiration 
criterion is used to override the tabu restriction of a move when the move improves the 
best found solution thus far. For example, if at the current iteration (iter), items 2 and 6 
exchange positions in period 3 (i.e. move* = (3, 6, 2)) where  = { 2, 3} = {(1, 4), (1, 2, 
5, 3, 6)}, then  = { 2, 3’} = {(1, 4), (1, 6, 5, 3, 2)} and tabu[3][6][2] = tabusize3 + iter.
Therefore, the move, which considers exchanging items 2 and 6 in period 3, is tabu until 
iter = tabusize3 + iter. In other words, the move, which considers exchanging items 2 and 
6 in period 3, can be performed again when iter = tabusize3 + iter + 1. Also, if move* had 
been performed recently, is tabu restricted, and it improves the best solution found thus 
far, then the aspiration criterion is used to override its tabu restriction. Any move which 
is acceptable (i.e. non-tabu move and tabu move overridden by aspiration criterion) is 
defined as an admissible move. Hence, move* is defined as the best admissible move. A 
simple TS heuristic for CSP is outlined below. 

Step 1: Initialise parameters and counters: 
T is the total number of periods; 
Tabu[][][] is the tabu list structure; 
tabusizet is the tabu tenure length for period t;
iter is iteration number where iter = 0; 
TRT is the Total Running Time before terminating the heuristic; 
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Step 2: Obtain an initial solution  using each of the construction algorithms presented 
above (i.e. CAI, CAII, and CAIII) and determine the objective function value f( )
for each  using the serial method presented in McKendall et al. (2006); then 
perform the following steps for each initial solution .

Step 3: Set * = , where * is the best solution found thus far and set f( *) = f( );

Step 4: Set iter = iter + 1; 
Find the best admissible move move* = (t, u, v) with respect to objective function 
value, which gives ;

Step 5: Set =  and f( ) = f( );
If f( ) < f( *), 
Set * =  and f( *) = f( ) ; 

Step 6: Update tabu list as tabu[t][u][v] = iter + tabusizet;

Step 7: Stopping criteria 
If heuristic running time < TRT, go to Step 4. 
Else, terminate the heuristic and return solution * and total cost f( *);

3.3 Probabilistic Tabu Search 

The PTS heuristic for CSP is an extension of the TS heuristic presented in the previous 
section. Although the TS heuristic accepts uphill moves to escape from poor local 
optima, it is a deterministic heuristic which may not explore a large portion of the 
solution space far away from the initial solutions. Therefore, the PTS heuristic is used to 
add randomness so that diverse solutions may be obtained. The main difference between 
the PTS and the TS heuristic is how move* is selected at each iteration. Before, in the TS 
heuristic, move* is defined as the best admissible move. However, in the PTS heuristic, 
move* is selected randomly among the best G admissible moves. Similarly, move* is 
used to generate the new solution , which becomes the current solution  at the next 
iteration. More specifically, for the PTS heuristic, move* is selected from the best G
admissible moves according to their probabilities. In other words, the best G admissible 
moves are sorted based on their corresponding Objective Function Value (OFV). The 
probability to accept the first (i.e. best) move from the G moves is p. In this research, G is 
set to 10 and p is set to 0.4. If the first move is rejected, the second move is accepted with 
a probability p(1 – p). This process is repeated until a move is selected. However, if no 
move is selected after considering all G moves, the first move will be selected. An 
efficient technique for selecting move* is to use the cumulative probability proposed in 
Chiang and Chiang (1998). More specifically, the cumulative probability table below is 
created using the following equations. 

1

1

0, for or 1,

(1 ) , for ,
( )

( 1) (1 ) , for 2 ,
1, 1

G

i

i G i

p p i G
CP i

AP i p p i G

i
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Then, a random number x between 0 and 1 is generated. If CP(i + 1) < x < CP(i), then the 
ith move out of the G moves is selected as move*. In Table 1 below are the cumulative 
probabilities where G = 10 and p = 0.4. For instance, a random number x, say x = 0.25 is 
generated. Since CP(4) = 0.2099 < x < CP(3) = 0.3539, the third move from the list of G
moves is defined as move*. Therefore, the PTS heuristic contains steps 1–7 of the 
proposed TS heuristic presented earlier. However, move* in step 4 is obtained using the 
cumulative probability table and the equations (i.e. CP(i)) defined above. 

Although the PTS heuristic usually out-performs the basic TS heuristic, only a few 
researchers actually applied the PTS heuristic to solve combinatorial optimisation 
problems in the literature. Chiang and Chiang (1998) applied the PTS heuristic to the 
quadratic assignment problem, and Lim et al. (2004) presented a similar PTS heuristic to 
solve a crane scheduling problem with spatial constraints. 
Table 1 Cumulative probabilities with G = 10 and p = 0.4 

i P AP 

0 0 0 
1 0.4 1 
2 0.24 0.5939 
3 0.144 0.3539 
4 0.086 0.2099 
5 0.0518 0.1235 
6 0.0311 0.0717 
7 0.0186 0.0406 
8 0.0111 0.0219 
9 0.0067 0.0107 
10 0.0040 0.0040 
>10  0 

3.4 Tabu Search with intensification and diversification strategies 

The main idea of the proposed TS and PTS heuristics presented above for CSP is as 
follows. The use of short-term (recency-based) memory to keep track of the most recent 
moves is used to avoid getting trapped at a poor local optimum by allowing uphill (non-
improving) moves. More specifically, the steepest descent heuristic with recency-based 
memory is used to obtain the best admissible move move* in the TS heuristic. In the PTS 
heuristic, the same components are used to obtain the best G admissible moves, as in the 
TS heuristic. However, the admissible move selected, move*, may not be the best move 
but is in the top G admissible moves. More specifically, move* is selected based on 
cumulative probabilities. In short, the proposed TS heuristic is a deterministic heuristic in 
which the solution quality may depend on the quality of the initial solutions. However, 
the PTS heuristic adds randomness to the TS heuristic such that the solution quality does  
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not depend on the quality of the initial solutions provided. Adding cumulative 
probabilities to the basic TS heuristic is a diversification strategy used to better explore 
different areas of the solution space. Other diversification techniques such as dynamic 
tabu list size and frequency-based (long-term) memory may be used to improve the 
performance of the basic TS heuristic. Also, intensification strategies may be used to 
explore promising regions within the solution space more thoroughly. Next, 
diversification and intensification strategies used to improve the basic TS heuristic for 
CSP are presented. 

The diversification strategies (i.e. dynamic tabu list sizes and frequency-based 
memory) presented in Chiang and Kouvelis (1996) are modified for the CSP and used in 
this research. With dynamic tabu list size, the tabu list size tabusizet is not fixed as in the 
basic TS procedure but is dynamic in order to diversify the search. In other words, tabu 
list size tabusizet is dynamic and updated at each iteration. More specifically, the 
tabusizet varies between a Lower Bound LBt and an Upper Bound UBt. To illustrate the 
dynamic tabu list size, first z is obtained to determine if the cost of the solution obtained 
by performing the best admissible move in period t ( ) is an improvement over the cost 
of the current solution  such that 

( )1
( )

f
z

f
.

Then, LBt and UBt are defined as: 

* / 3 1t tLB n T t

* *2 1t tUB n T t

where nt is the total number of items to be moved at each period t and T is the total 
number of periods in CSP. Since nt may change between periods, LBt, UBt and tabusizet

may not be the same for different periods. Initially, the tabu list size tabusizet in period t
is set to LBt. Then, at the end of each iteration, tabu list size tabusizet will be updated as 
follows. 

  if 0

*  if 0
( )

if
3* if 

t

t t
t

t

t

t

tabusize z

UB LB
LB z z

f tabusize
UB z

UB z

where  and  are pre-defined parameters. The graph of this function for z > 0 is shown in 
Figure 3. In short, if the solution obtained in the current iteration is worse than the 
solution obtained in the previous iteration tabusizet remains the same. However, if the 
solution is much better than the solution obtained at the previous iteration (say z > ), 
tabusizet = 3*UBt.
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Figure 3 Dynamic tabu list size tabusizet when z > 0 

Therefore, the basic TS heuristic can be easily modified to consider dynamic tabu list 
sizes by replacing step 6 with the following. 

Step 6: Update tabusizet = f(tabusizet);
Update tabu list as tabu[t][u][v] = iter + tabusizet;

Another diversification technique is to use frequency-based (long-term) memory. 
This diversification strategy is added to the TS heuristic to diversify the search space, 
forcing the search into unexplored regions of the solution space. It is employed only 
when no improving admissible move exists and a penalty is given for each non-
improving move. In order to apply this diversification strategy to the TS heuristic, a long-
term memory structure is needed. Unlike the short-term (recency) memory discussed 
above, where only the recent moves are given, the long-term memory structure keeps 
track of the frequencies of all moves during the search process and shows the distribution 
of each move. For CSP, the long-term memory is used to keep track of the number of 
exchanges between pairs of items in each period. The frequencies of the moves are kept 
in the upper half of the tabu list structure tabu[t][u][v], where u < v. For instance, if items 
u and v exchanged positions in period t (i.e. move* = (t, u, v)), then long-term memory is 
updated as:  

tabu[t][u][v] = tabu[t][u][v] + 1 for u < v;

See a tabu list structure instance in Figure 4 below. The tabu structure shows that in 
period 3, 5 items were relocated (i.e. items 1, 2, 3, 5, and 6) and after several iterations, a 
number of exchanges have been performed. For instance, tabu[3][3][5] = 13, which 
means that items 3 and 5, in period 3, exchanged locations 13 times thus far during the 
execution of the heuristic. 

The long-term memory structure defined above shows the distribution of moves in 
each period and is used in the diversification strategy to penalise non-improving moves 
by giving a larger penalty to the moves with greater frequency counts. Notice, in Step 4 
presented above, the basic TS heuristic selects the best admissible move move* = (t, u, v)
and the corresponding solution  is obtained by considering f( ) < f( ) N( )).
However, if the penalty for non-improving moves is added, then a modified objective 
function is used. Thus, step 4 is modified as follows. 
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Step 4: Set iter = iter + 1; 
Find the best admissible move move* = (t, u, v) which gives  according to a 
revised OFV where the revised OFV is
rf( ) = f( ) + *tabu(t, u, v) (for u < v)

0 if  ( ) ( );
Otherwise;

f f

 is a pre-defined parameter for penalty. For each non-improving move, a penalty is 
given based on the frequency of the move performed thus far. Then, move* = (t, u, v) will 
be selected based on this revised evaluation value for each move.  

Figure 4 A tabu structure for a CSP instance 

Unlike the diversification strategies presented above, the intensification strategy explores 
promising areas of the solution space more thoroughly. In the literature, intensification 
typically operates by restarting from relatively high quality solutions or modifying a 
solution to favour some attributes. In this research, the intensification method described 
in Chiang and Kouvelis (1996) is modified for CSP and integrated into the proposed TS 
heuristic. This intensification strategy is implemented by fixing two items after 
exchanging their locations, if this exchange reduces the total cost of the current best 
solution * by at least , where  is the same value as the parameter used in the 
diversification strategy as used in Chiang and Kouvelis (1996). Also, experimental tests 
were performed which yielded the same results. Similar to the aspiration criterion, a fixed 
item can be freed to exchange its location with other items if the exchange results in an 
improvement better than the best solution found so far. Intensification is employed after a 
certain number ( ) of iterations have been performed, since there are relatively higher 
probabilities of having more solution improvements at earlier iterations.  

The above diversification and intensification strategies are added to the basic TS 
heuristic which yields the so called TS heuristic with strategies (TS/S). The steps for the 
TS/S heuristic are as follows. 

Step 1: Initialise parameters and counters: 
T is the total number of periods; 
Tabu[][][] is the tabu list structure; 
tabusizet is the tabu tenure length for period t;
iter is iteration number where iter = 0; 
TRT is Total Running Time before terminating the heuristic; 
LBt is the Lower Bound for tabusizet;
UBt is the upper bound for tabusizet;
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 is the parameter for diversification and intensification strategy; 
 is the parameter for diversification strategy; 

 is a parameter for penalty 
 is the number of iterations performed before invoking the intensification 

strategy;
F[][] stores all items fixed during the intensification process; 

Step 2: Obtain an initial solution  by using a construction algorithm and determines its 
objective function value f( );

Step 3: Set * = , where * is the best solution found thus far and set f( *) = f( );

Step 4: Set iter = iter + 1; 
Find the best admissible move move* = (t, u, v) which gives  with respect to a 
revised OFV where the revised OFV is 
rf( ) = f( ) + * tabu(t, u, v) (assume u < v) for 

0 if ( ) ( );
Otherwise;

f f

If iter > ,
The items u and v in selected move* cannot belong to the set F (i.e. move(t, u, v)
is not fixed); or 
If either (t, u) or (t, v) belong to the set F,

The move(t, u, v) is selected as the move* only when this move results in a 
new best solution found. 

Step 5: z = 1 – f( )/f( ) and set  = , f( ) = f( );
If f( ) < f( *),  

If iter >  and 1 ( ( ) / ( *))z f f ,
Set ( , ) ( , );F F t u t v
Set * =  and f( *) = f( );

Step 6: Update tabusizet = f(tabusizet) where  

if 0

* if 0
( )

if
3* if

t

t t
t

t

t

t

tabusize z

UB LB
LB z z

f tabusize
UB z

UB z

.

Update tabu list as tabu[t][u][v] = iter + tabusizet for u > v and 
tabu[t][u][v] = tabu[t][u][v] + 1 for u < v; 

Step 7: Stopping criteria: if heuristic running time < TRT, go to Step 4.  
 Else, terminate the heuristic and return solution * and total cost f( *);
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4 Computational results 

Two sets of test problems are used in this paper in order to test the performances of the 
proposed heuristics. In all experiments, a Pentium IV 2.4 GHz PC was used to solve CSP 
instances in data sets I and II using the proposed heuristics. Data set I was generated to 
test a mathematical model developed for CSP, and data set II was taken from McKendall 
et al. (2006). The heuristics were coded using the C++ programming language. In order 
to make fair comparisons, the proposed heuristics ran for the same amount of 
computational time for each CSP problem instance. 

For the basic TS and PTS heuristics, tabusizet is set to nt * T/2. Moreover, p = 0.4 and 
G = 10 are the parameters setting for the PTS heuristic. The intensification strategy 
parameters ,  and the diversification parameters , ,  are set by statistical 
techniques. More specifically, for each CSP problem, a certain numbers of initial 
solutions were generated randomly. Then, for each of these solutions, a steepest descent 
heuristic is used to improve the solution until no further improvement can be found (i.e. 
local optimum is reached). Next, the statistical information for these improved solutions 
are gathered, such as Average Percent Improvement (API) at each iteration, Average 
Iterations (AI) before reaching the local optimum, Average Maximal Percent 
Improvement (AMPI) at each iteration, Average Median Objective Function Value 
(AMOFV), and Average Minimal Objective Function Value (AOFV). Then, the 
parameters  is set to API, is equal to AI,  is set to AMOFV/AOFV and  is set to 
AMPI. In addition, LBt and UBt are defined as: 

* / 3 1and * *2 1t t t tLB n T t UB n T t .

Table 2 shows the results for the first data set obtained from the proposed heuristics (TS, 
PTS, TS/S) and the SA heuristic presented in McKendall et al. (2006). The optimal 
solutions were obtained for all of the test problems in this set and were obtained using a 
mathematical model and the CPLEX solver version 6.6. Also, their computational times 
are listed. All times in the tables are given in minutes. As a result, all of the proposed 
heuristics obtained the optimal solutions for all 24 test problems. Notice the run times for 
the heuristics are much less than the run times for solving the problems using a 
mathematical model and the CPLEX solver. The main reason for using this data set was 
to test the mathematical model and also for testing the heuristics on smaller problems 
where the optimal solutions are obtainable. 

The second data set is used to further verify the speed and robustness of the proposed 
heuristics. Compared to data set I, data set II is much larger and has much larger 
problems, which cannot be solved by using exact methods (i.e. mathematical model and 
CPLEX) in reasonable time. The TS and TS/S heuristics, which are deterministic 
techniques, ran once with each of the three solutions obtained using the construction 
algorithms for each test problem. SA and PTS ran five times with each of the three 
solutions obtained from the construction algorithms. Data set II is divided into four 
groups, each of which has 24 test problems. From group 1 to group 4, the sizes of the test 
problems are increased. The test problems in group 1 are relatively small, groups 2 and 3 
have medium size test problems, and the test problems in group 4 are the largest.  

Table 3 shows the number of best solutions obtained by each of the proposed 
heuristics. For the first group (i.e. test problems 01–24), the test problems have nine 
resources, six locations, and three to five periods, which are the smaller size problems. 
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All proposed heuristics performed well for this group of test problems. More specifically, 
TS obtained the best found solution 22 times, PTS 24 times, TS/S 24 times, and SA 23 
times. 
Table 2 Computational results for data set I 

Optimal solution 
Pb no Final Time SA TS PTS TS/S Heuristic time 

P01 57 0.01 57 57 57 57 0.00 
P02 83 0.05 83 83 83 83 0.00 
P03 62 0.03 62 62 62 62 0.00 
P04 88 0.11 88 88 88 88 0.01 
P05 65 0.08 65 65 65 65 0.01 
P06 119 7.60 119 119 119 119 0.01 
P07 72 0.02 72 72 72 72 0.01 
P08 91 0.23 91 91 91 91 0.02 
P09 121 0.33 121 121 121 121 0.02 
P10 150 19.42 150 150 150 150 0.02 
P11 118 2.02 118 118 118 118 0.02 
P12 150 19.53 150 150 150 150 0.01 
P13 104 0.10 104 104 104 104 0.01 
P14 189 1527.36 189 189 189 189 0.02 
P15 114 0.12 114 114 114 114 0.02 
P16 229 8.48 229 229 229 229 0.02 
P17 145 7.05 145 145 145 145 0.02 
P18 278 1947.32 278 278 278 278 0.02 
P19 157 60.97 157 157 157 157 0.02 
P20 246 1014.73 246 246 246 246 0.03 
P21 169 12.93 169 169 169 169 0.03 
P22 320 2915.87 320 320 320 320 0.04 
P23 197 318.12 197 197 197 197 0.04 
P24 347 2755.59 347 347 347 347 0.03 

Table 3 Computational results (no. of best solutions obtained) for data set II 

No. TS PTS TS/S SA 
P01–P24 22 24 24 23 
P25–P48 5 14 17 15 
P49–P72 1 11 17 3 
P73–P96 0 6 16 4 
Total 28 55 74 45 
Percent 29.2 57.3 77.1 46.9
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However, the proposed heuristics perform differently for the other three groups of test 
problems. In other words, as the problem size increases, the performances of the TS, 
PTS, and SA decrease. More specifically, TS obtained the best found solutions 5, 1, 0 
times, PTS obtained 14, 11, 6 times, TS/S obtained 17, 17, 16 times, and SA obtained 15, 
3 and 4 times. Clearly, TS/S outperformed all other heuristics since it obtained 50 (74) 
best solutions of 72 (96) test problems, which is the most. In other words, TS/S obtained 
the best solution for 74 (77.1%) of the 96 test problems. In contrast, the simple TS 
heuristic only found 28 (29.2%) best solutions overall.  

Based on the previous analyses, it is obvious that both proposed PTS and TS/S 
heuristics outperformed the basic TS heuristic. See the comparisons of TS/S and PTS in 
Figure 5, which shows the percent improvement of TS/S heuristic over the PTS heuristic 
for data set II. More specifically, when comparing the TS/S heuristic with the PTS 
heuristic, TS/S heuristic obtained better solutions than PTS 38 out of 96 test problems, 
and PTS heuristic outperformed TS/S heuristic 13 times. In addition, they obtained the 
same results 45 times, which include all test problems from P01 to P34. Therefore, TS/S 
heuristic performed better than PTS heuristic for medium and large size test problems. 
Also, it is important to note that the PTS heuristic ran 15 times for each test problem (i.e. 
five runs for each of the three solutions obtained from the construction algorithms) and 
TS/S heuristic only ran three times for each problem (i.e. single run for each of three 
solutions generated from the construction algorithms). Therefore, TS/S heuristic total run 
time was 1/5 of the PTS total run time. 

Figure 5 Percentage improvement of TS/S heuristic over PTS heuristic 

Moreover, computational experiments show that the solution qualities of the TS heuristic 
really depend on the qualities of the initial solutions. When comparing the construction 
algorithms, CAI, CAII, and CAIII obtained better solutions 2, 69, 66 times, respectively. 
When only considering the solutions obtained from the basic TS with CAI, CAII, and 
CAIII used to construct the initial solutions, TS/CAI performed best 32 times, TS/CAII 
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76 times, and TS/CAIII 73 times. Because the qualities of the constructed solutions by 
using CAII and CAIII are relatively the same, both of them are much better than the 
solutions constructed by CAI. It is obvious that the initial solution quality affects the 
performance of the TS heuristic. However, the performances of the other TS heuristics 
(i.e. PTS and TS/S) were not dependent on the quality of the initial solutions. It is 
obvious that the performance of the stochastic heuristic (i.e. SA) is not dependent on the 
quality of the initial solutions. Therefore, when applying these improvement heuristics to 
improve the solutions obtained from construction algorithms, more emphasis should be 
place on the improvement heuristics themselves instead of the construction algorithms.

5 Conclusion 

In this paper, three TS heuristics were presented to solve the CSP. The first heuristic  
(i.e. TS heuristic) is a simple TS heuristic which uses static tabu list sizes and multiple 
initial solutions as a diversification strategy. The second heuristic (i.e. PTS heuristic) is a 
PTS heuristic. More specifically, the admissible move is randomly selected from a list of 
the top G moves (to diversify the search), unlike in TS heuristic where the best 
admissible move is selected. The third heuristic (i.e. TS/S) uses an intensification strategy 
and different diversification strategies from TS and PTS. More specifically, it uses 
dynamic tabu list sizes, frequency based memory, and a modification of the 
intensification strategy presented in Chiang and Kouvelis (1996). The proposed heuristics 
performed well on two data sets: data set I (generated in this paper) and data set II 
generated by McKendall et al. (2006). More importantly, two of the three proposed 
heuristics (PTS and TS/S) out-performed the heuristic (SA heuristic) available in the 
literature for CSP. Although the TS/S heuristic performed many more operations per 
iteration than the other heuristics, it obtained the best solution for 77.1% of the problems 
in the larger data set (data set II). In other words, the TS/S heuristic performed less 
iterations and obtained higher quality solutions using the same average run time. 
Therefore, TS/S is much more computationally efficient than the other heuristics. 
However, a tremendous amount of effort was required in setting the heuristic parameters 
for TS/S, since it has many more heuristic parameters. The following recommendations 
are given for future research: 

develop heuristics for CSP which require less heuristic parameters than the proposed 
TS/S heuristic but perform equally as well or better 

develop hybrid heuristics for CSP. 
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