
Faculty & Staff Scholarship

2008

Tabu Search Heuristics for the Crane Sequencing Problem Tabu Search Heuristics for the Crane Sequencing Problem

Alan McKendall

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3067&utm_medium=PDF&utm_campaign=PDFCoverPages

 412 Int. J. Operational Research, Vol. 3, No. 4, 2008

 Copyright © 2008 Inderscience Enterprises Ltd.

Tabu Search Heuristics for the Crane
Sequencing Problem

Alan R. McKendall Jr.*
Department of Industrial and Management Systems Engineering,
West Virginia University,
325A Mineral Resources Building,
PO BOX 6070,
Morgantown, WV 26506, USA
E-mail: armckendall@mail.wvu.edu
*Corresponding author

Jin Shang
Quality Planning Corporation,
388 Market Street, Suite 750,
San Francisco, CA 94111, USA
E-mail: jshang@qualityplanning.com

Abstract: Determining the sequence of relocating items (or resources) moved
by a crane from existing positions to newly assigned locations during a multi-
period planning horizon is a complex combinatorial optimisation problem,
which exists in power plants, shipyards, and warehouses. Therefore, it is
essential to develop a good crane route technique to ensure efficient utilisation
of the crane as well as to minimize the cost of operating the crane. This
problem was defined as the Crane Sequencing Problem (CSP). In this paper,
three construction and three improvement algorithms are presented for the CSP.
The first improvement heuristic is a simple Tabu Search (TS) heuristic. The
second is a probabilistic TS heuristic, and the third adds diversification and
intensification strategies to the first. The computational experiments show that
the proposed TS heuristics produce high-quality solutions in reasonable
computation time.

Keywords: Crane Sequencing Problem; diversification; heuristic;
intensification; Tabu Search.

Reference to this paper should be made as follows: McKendall, A.R. and
Shang, J. (xxxx) ‘Tabu Search Heuristics for the Crane Sequencing Problem’,
Int. J. Operational Research, Vol. 3, No. 4, pp.412–429.

Biographical notes: Alan McKendall Jr. is an Associate Professor in the
Department of Industrial and Management Systems Engineering at West
Virginia University. He received his PhD degree in Industrial Engineering from
the University of Missouri in Columbia, MO, USA. His main research interest
is in developing efficient algorithms for Logistics and Scheduling Systems. He
has published in journals such as Computers & Operations Research,
Information Sciences, International Journal of Industrial Engineering, and
International Journal of Production Research.

 Tabu Search Heuristics for the Crane Sequencing Problem 413

Jin Shang is a Software Engineer at Quality Planning Corporation in San
Francisco, CA, USA. He earned his PhD and MS degrees in Industrial
Engineering from West Virginia University. Currently he conducts research on
the use of algorithms in database keyword search. Also he has an experience in
using different heuristics to solve real industrial problems such as the dynamic
facility layout and Crane Sequencing Problems. His research interests are
developing heuristics for various combinatorial problems.

1 Introduction

In many industrial environments such as power plants, shipyards, and warehouses,
multiple items (resources) need to be reassigned and moved to new locations. Relocating
items, especially heavy bulky items, is costly and may represent a significant portion of
the overall relocation budget. Therefore, it is necessary to develop efficient techniques to
determine the sequences in which a vehicle (e.g. crane) moves items to their newly
assigned locations (i.e. destination) during a multi-period planning horizon. More
importantly, crane routes need to be constructed such that total travel cost of the crane is
minimised. This problem is defined as the Crane Sequencing Problem (CSP) and was
presented in McKendall et al. (2006).

The CSP is related to the well-known Travelling Salesman Problem (TSP) defined in
Laporte (1992) and other related problems such as the dial-a-ride problem. The dial-
a-ride problem is a TSP with precedence relation where a vehicle transport a number of
passengers, and each passenger should be picked up from a specific location and
delivered to a specific destination (Hunsaker and Savelsbergh, 2002). If a single capacity
vehicle is considered in the dial-a-ride problem, the resulting problem is known as the
Stacker Crane Problem (SCP) as mentioned in Hernandez-Perez and Salazar-Gonzalez
(2004). SCP is a modified TSP which requires that a salesman or a vehicle visits a set of
ordered pairs of locations (Frederickson et al., 1978). Each pair of locations corresponds
to a pickup and delivery location. In SCP, the crane may start from an initial position,
perform a set of moves, and return to a terminal position, and the objective is to find the
sequence of these moves such that total tour length is minimised. In Frederickson et al.
(1978), the authors described some practical applications of SCP such as operating a
crane or a forklift, or driving a pickup and delivery truck. Frederickson and Guan (1992)
also discussed the pre-emptive case of SCP (P-SCP) where items can be temporarily
stored at available locations and picked up and delivered to their destination locations
later. CSP considered in this paper is similar to P-SCP, since the crane starts from an
initial position and performs a set of moves such that total cost is minimised while
allowing pre-emption to occur. However, CSP differs from P-SCP because of the
following.

1 In CSP, the crane does not return to a terminal position as in P-SCP.

2 In CSP, a multi-period planning horizon is considered whereas a single period is
considered in P-SCP.

3 In CSP, locations have limited capacities. However, the locations have unlimited
capacity in P-SCP.

 414 A.R. McKendall and J. Shang

4 In CSP, the objective is to minimise the total cost which is the sum of the
loading/unloading costs and tour costs. In P-SCP, the objective is to minimise total
tour length.

As a result, CSP is a more general problem than P-SCP. Therefore, CSP is
computationally intractable and only small-size problems can be solved optimally in
reasonable computation time.

As mentioned earlier, CSP was first defined by McKendall et al. (2006) where the
authors presented a simulated annealing heuristic for their problem. Their problem was
developed from the problem of relocating resources (items) during outages at electric
power plants. In other words, items (or resources) need to be relocated from existing
locations to their newly assigned locations by using a single-capacity overhead crane.
More specifically, the problem was to determine the sequences (or the orders) in which
items are to be moved for a single overhead crane, during a multi-period planning
horizon, such that the total distance travelled by the crane is minimised. However, in this
paper, the objective is modified to minimise the sum of the crane travel cost as well as the
loading/unloading costs.

Besides determining the order in which items are relocated during outages at electric
power plants, CSP has many potential applications. Another application of CSP occurs in
the context of warehouse rearrangement. Since the demand of products is dynamic and
some products may become obsolete, warehouse managers may rearrange the layout of
their products in warehouses. For example, products with high demand are located close
to the input/output locations. As a result, the locations of products may change.
Therefore, CSP can be used to determine the sequence in which a vehicle moves the
products reassigned to new locations in a warehouse. This problem is called the
warehouse rearrangement problem and was presented by Christofides and Colloff (1973).
Also, CSP can be used to determine the order in which a crane removes/loads containers
from/onto ships.

In this paper, Tabu Search (TS) heuristics, which include a basic TS, a Probabilistic
TS (PTS), and a TS with intensification and diversification strategies, are proposed for
CSP. The contributions of the paper and how it is organised are as follows. Section 2
gives the definition, assumptions, and solution representation of CSP. Construction
algorithms, a simple TS, PTS, and TS with intensification and diversification strategies
are presented in Section 3. In Section 4, the computational results are given, and
Section 5 provides conclusions and future research directions.

2 The crane sequencing problem

2.1 Introduction

CSP is the problem of determining the sequences in which a single overhead crane moves
items (or resources) to their newly assigned locations in multiple periods with respect to
minimising total costs. However, temporary storage locations can be used to store items
temporarily when the destination location of an item currently being moved is at full
capacity or cost of crane routes can be reduced if temporary storage space is used.
Therefore, pre-emption is allowed as discussed earlier. An item stored in temporary

 Tabu Search Heuristics for the Crane Sequencing Problem 415

storage can be delivered to its destination location or another temporary storage space
when:

1 the crane is at its temporary location or

2 after all the other items have been moved to their assigned locations.

Other important assumptions of CSP include the single overhead crane can move only
one item at a time and, without loss of generality, the initial position of the crane at the
beginning of a period is the last position of the crane in the previous period.

The inputs for CSP are the assignments of items to locations for multiple periods
(which is obtained by solving the dynamic space allocation problem presented in
McKendall et al. (2005)), the distances between locations (i.e. D = [dij], i, j = 1, 2, …, L
where dij is the distance from location i to j, and L is the total number of locations),
capacities of the locations, initial location of the crane, costs of moving items per distance
unit, and the costs of loading/unloading items. The outputs of CSP are the crane routes
for each period and the total cost of the routes. More specifically, the set of sequences of
items to be moved during a multi-period planning horizon is obtained. Based on these
sequences of items to be moved, the crane will load an item, move, and unload it at either
its destination location or a temporary storage. As stated earlier, a temporary location is
used if its destination location is at full capacity or total cost can be reduced. In other
words, the actual movements of the crane (e.g. moving items to/from temporary storage
locations) are determined using a serial method (given the sequences of items to be
moved). The serial method presented in McKendall et al. (2006) is used to construct the
crane routes. CSP is difficult due to the large number of possible permutations of items to
be moved at each period and the large number of possible crane routes that can be
generated.

During operation, the crane travels while either moving an item to its destination
location or moving empty to retrieve an item. Thus, the status of the crane can be defined
as either loaded or not loaded. Hence, there are two corresponding types of moves: empty
moves and non-empty moves (see Figure 1). More specifically, an empty move is a move
where the crane does not carry any items (i.e. crane is not loaded); whereas, a non-empty
move is a move where the crane carries an item (i.e. crane is loaded). An empty move
may be necessary for the crane to obtain an item to be moved. For instance, if there is no
item to be moved at the current location of the crane, the crane needs to perform an
empty move to arrive at a location of an item which needs to be moved.

Based on the move types of the crane, the total costs of CSP should include the costs
related to empty moves and non-empty moves of the crane as well as the cost related to
loading/unloading items (see Figure 2). The distances the crane travels can be used as a
criterion to measure costs when the crane moves empty or non-empty. As a result, the
travel cost of the crane is the product of the distances the crane travels (empty or non-
empty) and the cost per distance unit. In contrast, the loading/unloading cost is
considered only for non-empty crane moves. That is, the loading/unloading cost of an
item is the product of the number of non-empty moves for the item and the sum of the
unloading and loading costs for the item. In other words, the cost of a non-empty move is
the cost of loading an item onto the crane and the cost of unloading the item once it
reaches its destination location. This is called the loading/unloading cost. The objective
of CSP is to minimise the sum of the crane travelling costs and loading/unloading costs.

 416 A.R. McKendall and J. Shang

Figure 1 Status of crane and move types

Figure 2 Costs considered in CSP

2.2 Crane routes

Since temporary storage locations may be used, an item may be moved multiple times
(i.e. item is moved to temporary storage spaces one or more times). Therefore, the
sequences of items to be moved may not give the crane routes. As discussed previously,
in order to determine the crane routes (i.e. a set of ordered locations to be visited by the
crane) for relocating items to be moved, the serial method developed in McKendall et al.
(2006) is used. In other words, by using the serial method, once the sequence of items to
be moved is obtained, the crane route and its total cost are generated.

2.3 Solution representation

The sequences of items to be moved can be represented as = { 2,…, T} where each t

in represents an ordered list of items (i.e. a sequence of items) to be moved by the crane

 Tabu Search Heuristics for the Crane Sequencing Problem 417

at the beginning of each period t (where t = 2,…,T). More specially, t = (1t, 2t,…, ntt),
for t = 2,…,T, where it is the ith item moved by the crane in period t, and ntt is the last
item to be moved by the crane in period t. Therefore, the entire solution includes
multiple permutations of items to be moved for T–1 periods and

 = { 2,…, T} = {(12, 22,…, n22), (13, 23,…, n33),…,(1T, 2T,…, nTT)}. Once the
sequences of items to be moved are obtained, the serial method discussed above is used
to obtain the crane routes and the total cost of the routes.

3 Solution techniques

3.1 Construction algorithms

In order to obtain diverse solutions for CSP, three construction algorithms are proposed
in this paper. The first is a very simple algorithm, which lists the items to be moved in
ascending order for each period. For example, if items 1, 2, 4, and 8 need to be reassigned
to new locations in period t, then t = {1, 2, 4, 8}. This construction algorithm is called
CAI.

The second construction algorithm, called CAII, is a nearest neighbour heuristic. In
other words, the order in which the items are moved is based on the distances between
the current location of the crane and the locations of the items to be moved. For instance,
if items 1, 2, and 4 are reassigned to locations in period t and the distances between the
current location of the crane and the locations of the items are 3, 2, and 1, respectively,
then item 4 is assigned to the first position of the move sequence. If a tie exists, the item
with the least number of items in its destination location is selected (used to reduce the
use of temporary storage locations). Next, the item assigned to the second position of the
sequence is the item closest to either the destination location or the temporary storage
location of item 4. Nevertheless, the item closest to the current location of the crane is
selected, say for instance item 1. As a result, t = {4, 1, 2}. It is obvious that this heuristic
attempts to minimise crane travel cost.

In the third construction algorithm, CAIII, the location of the first item to be moved is
selected such that the location has the most items to be moved. If a tie exists between one
or more locations, the location closest to the crane is selected (used to reduce crane travel
cost). Once this location is determined, the item in this location with the least number of
items in its destination location is selected first. This process is repeated for all items
needed to be moved. This heuristic attempts to minimise the use of temporary storage
locations such that loading/unloading costs are minimised.

3.2 Tabu Search

The TS heuristic was first presented by Glover (1986). Also, see Glover (1989, 1990a,b).
The basic idea of TS is to improve a solution iteratively, using some guiding rules such as
recency (short-term) memory as well as intensification and diversification strategies to
obtain good solutions in complex solution spaces. The basic components of the proposed
TS heuristic are discussed below.

The TS heuristic uses a steepest descent local search heuristic. The steepest descent
heuristic starts from an initial solution and explores its entire neighbourhood, N().

 418 A.R. McKendall and J. Shang

More specifically, all possible pairwise exchanges between items to be moved are
considered for each period t, and the best exchange is performed. That is, all the
neighbouring solutions in the neighbourhood of , N(), is considered for each period t
and the best neighbour N() (i.e. the best move, move* = (t, u, v), which exchange
the locations of items u and v in period t) is selected such that f() < f() for

N(). The corresponding solution is the current solution at the next iteration (i.e.
 =). When a local optimum is obtained (i.e. no exist such that f() < f() for

N()), the heuristic terminates. Therefore, the heuristic accepts only improved
solutions and do not accept non-improving solutions as with other simple local search
techniques such as the first improvement local search heuristic. As a result, the steepest
descent often converges to a poor local optimum, usually depending on the quality of the
initial solution . Therefore, components of the TS heuristic (e.g. short-term memory,
aspiration criterion) are used to overcome these drawbacks of the simple steepest descent
local search technique in search of the global optimum.

The proposed TS heuristic uses the steepest descent heuristic with short-term memory
(or recency based memory) to accept uphill moves. In other words, the steepest descent
heuristic converges to a local optimum; however, short-term memory is used to forbid the
recent moves so that the heuristic can climb out of the valley which contains the local
optimum (i.e. accept non-improving moves) in search of better local optima. In CSP, if
the best solution in the neighbourhood of the current solution is (i.e. f() < f() for

N()) and is obtained by move* = (t, u, v), which exchanges the locations of
items u and v in period t, then this move is tabu restricted for a certain duration
(tabusize), called tabu list size. For CSP, the tabu list size tabusizet are unique for
different periods. The tabu status and tabu list size of each move are maintained in the
lower half of the tabu list structure tabu[t][u][v], where u > v. Sometimes a move which is
tabu restricted may give the best solution found thus far. Therefore, the aspiration
criterion is used to override the tabu restriction of a move when the move improves the
best found solution thus far. For example, if at the current iteration (iter), items 2 and 6
exchange positions in period 3 (i.e. move* = (3, 6, 2)) where = { 2, 3} = {(1, 4), (1, 2,
5, 3, 6)}, then = { 2, 3’} = {(1, 4), (1, 6, 5, 3, 2)} and tabu[3][6][2] = tabusize3 + iter.
Therefore, the move, which considers exchanging items 2 and 6 in period 3, is tabu until
iter = tabusize3 + iter. In other words, the move, which considers exchanging items 2 and
6 in period 3, can be performed again when iter = tabusize3 + iter + 1. Also, if move* had
been performed recently, is tabu restricted, and it improves the best solution found thus
far, then the aspiration criterion is used to override its tabu restriction. Any move which
is acceptable (i.e. non-tabu move and tabu move overridden by aspiration criterion) is
defined as an admissible move. Hence, move* is defined as the best admissible move. A
simple TS heuristic for CSP is outlined below.

Step 1: Initialise parameters and counters:
T is the total number of periods;
Tabu[][][] is the tabu list structure;
tabusizet is the tabu tenure length for period t;
iter is iteration number where iter = 0;
TRT is the Total Running Time before terminating the heuristic;

 Tabu Search Heuristics for the Crane Sequencing Problem 419

Step 2: Obtain an initial solution using each of the construction algorithms presented
above (i.e. CAI, CAII, and CAIII) and determine the objective function value f()
for each using the serial method presented in McKendall et al. (2006); then
perform the following steps for each initial solution .

Step 3: Set * = , where * is the best solution found thus far and set f(*) = f();

Step 4: Set iter = iter + 1;
Find the best admissible move move* = (t, u, v) with respect to objective function
value, which gives ;

Step 5: Set = and f() = f();
If f() < f(*),
Set * = and f(*) = f() ;

Step 6: Update tabu list as tabu[t][u][v] = iter + tabusizet;

Step 7: Stopping criteria
If heuristic running time < TRT, go to Step 4.
Else, terminate the heuristic and return solution * and total cost f(*);

3.3 Probabilistic Tabu Search

The PTS heuristic for CSP is an extension of the TS heuristic presented in the previous
section. Although the TS heuristic accepts uphill moves to escape from poor local
optima, it is a deterministic heuristic which may not explore a large portion of the
solution space far away from the initial solutions. Therefore, the PTS heuristic is used to
add randomness so that diverse solutions may be obtained. The main difference between
the PTS and the TS heuristic is how move* is selected at each iteration. Before, in the TS
heuristic, move* is defined as the best admissible move. However, in the PTS heuristic,
move* is selected randomly among the best G admissible moves. Similarly, move* is
used to generate the new solution , which becomes the current solution at the next
iteration. More specifically, for the PTS heuristic, move* is selected from the best G
admissible moves according to their probabilities. In other words, the best G admissible
moves are sorted based on their corresponding Objective Function Value (OFV). The
probability to accept the first (i.e. best) move from the G moves is p. In this research, G is
set to 10 and p is set to 0.4. If the first move is rejected, the second move is accepted with
a probability p(1 – p). This process is repeated until a move is selected. However, if no
move is selected after considering all G moves, the first move will be selected. An
efficient technique for selecting move* is to use the cumulative probability proposed in
Chiang and Chiang (1998). More specifically, the cumulative probability table below is
created using the following equations.

1

1

0, for or 1,

(1) , for ,
()

(1) (1) , for 2 ,
1, 1

G

i

i G i

p p i G
CP i

AP i p p i G

i

 420 A.R. McKendall and J. Shang

Then, a random number x between 0 and 1 is generated. If CP(i + 1) < x < CP(i), then the
ith move out of the G moves is selected as move*. In Table 1 below are the cumulative
probabilities where G = 10 and p = 0.4. For instance, a random number x, say x = 0.25 is
generated. Since CP(4) = 0.2099 < x < CP(3) = 0.3539, the third move from the list of G
moves is defined as move*. Therefore, the PTS heuristic contains steps 1–7 of the
proposed TS heuristic presented earlier. However, move* in step 4 is obtained using the
cumulative probability table and the equations (i.e. CP(i)) defined above.

Although the PTS heuristic usually out-performs the basic TS heuristic, only a few
researchers actually applied the PTS heuristic to solve combinatorial optimisation
problems in the literature. Chiang and Chiang (1998) applied the PTS heuristic to the
quadratic assignment problem, and Lim et al. (2004) presented a similar PTS heuristic to
solve a crane scheduling problem with spatial constraints.
Table 1 Cumulative probabilities with G = 10 and p = 0.4

i P AP

0 0 0
1 0.4 1
2 0.24 0.5939
3 0.144 0.3539
4 0.086 0.2099
5 0.0518 0.1235
6 0.0311 0.0717
7 0.0186 0.0406
8 0.0111 0.0219
9 0.0067 0.0107
10 0.0040 0.0040
>10 0

3.4 Tabu Search with intensification and diversification strategies

The main idea of the proposed TS and PTS heuristics presented above for CSP is as
follows. The use of short-term (recency-based) memory to keep track of the most recent
moves is used to avoid getting trapped at a poor local optimum by allowing uphill (non-
improving) moves. More specifically, the steepest descent heuristic with recency-based
memory is used to obtain the best admissible move move* in the TS heuristic. In the PTS
heuristic, the same components are used to obtain the best G admissible moves, as in the
TS heuristic. However, the admissible move selected, move*, may not be the best move
but is in the top G admissible moves. More specifically, move* is selected based on
cumulative probabilities. In short, the proposed TS heuristic is a deterministic heuristic in
which the solution quality may depend on the quality of the initial solutions. However,
the PTS heuristic adds randomness to the TS heuristic such that the solution quality does

 Tabu Search Heuristics for the Crane Sequencing Problem 421

not depend on the quality of the initial solutions provided. Adding cumulative
probabilities to the basic TS heuristic is a diversification strategy used to better explore
different areas of the solution space. Other diversification techniques such as dynamic
tabu list size and frequency-based (long-term) memory may be used to improve the
performance of the basic TS heuristic. Also, intensification strategies may be used to
explore promising regions within the solution space more thoroughly. Next,
diversification and intensification strategies used to improve the basic TS heuristic for
CSP are presented.

The diversification strategies (i.e. dynamic tabu list sizes and frequency-based
memory) presented in Chiang and Kouvelis (1996) are modified for the CSP and used in
this research. With dynamic tabu list size, the tabu list size tabusizet is not fixed as in the
basic TS procedure but is dynamic in order to diversify the search. In other words, tabu
list size tabusizet is dynamic and updated at each iteration. More specifically, the
tabusizet varies between a Lower Bound LBt and an Upper Bound UBt. To illustrate the
dynamic tabu list size, first z is obtained to determine if the cost of the solution obtained
by performing the best admissible move in period t () is an improvement over the cost
of the current solution such that

()1
()

f
z

f
.

Then, LBt and UBt are defined as:

* / 3 1t tLB n T t

* *2 1t tUB n T t

where nt is the total number of items to be moved at each period t and T is the total
number of periods in CSP. Since nt may change between periods, LBt, UBt and tabusizet

may not be the same for different periods. Initially, the tabu list size tabusizet in period t
is set to LBt. Then, at the end of each iteration, tabu list size tabusizet will be updated as
follows.

 if 0

* if 0
()

if
3* if

t

t t
t

t

t

t

tabusize z

UB LB
LB z z

f tabusize
UB z

UB z

where and are pre-defined parameters. The graph of this function for z > 0 is shown in
Figure 3. In short, if the solution obtained in the current iteration is worse than the
solution obtained in the previous iteration tabusizet remains the same. However, if the
solution is much better than the solution obtained at the previous iteration (say z >),
tabusizet = 3*UBt.

 422 A.R. McKendall and J. Shang

Figure 3 Dynamic tabu list size tabusizet when z > 0

Therefore, the basic TS heuristic can be easily modified to consider dynamic tabu list
sizes by replacing step 6 with the following.

Step 6: Update tabusizet = f(tabusizet);
Update tabu list as tabu[t][u][v] = iter + tabusizet;

Another diversification technique is to use frequency-based (long-term) memory.
This diversification strategy is added to the TS heuristic to diversify the search space,
forcing the search into unexplored regions of the solution space. It is employed only
when no improving admissible move exists and a penalty is given for each non-
improving move. In order to apply this diversification strategy to the TS heuristic, a long-
term memory structure is needed. Unlike the short-term (recency) memory discussed
above, where only the recent moves are given, the long-term memory structure keeps
track of the frequencies of all moves during the search process and shows the distribution
of each move. For CSP, the long-term memory is used to keep track of the number of
exchanges between pairs of items in each period. The frequencies of the moves are kept
in the upper half of the tabu list structure tabu[t][u][v], where u < v. For instance, if items
u and v exchanged positions in period t (i.e. move* = (t, u, v)), then long-term memory is
updated as:

tabu[t][u][v] = tabu[t][u][v] + 1 for u < v;

See a tabu list structure instance in Figure 4 below. The tabu structure shows that in
period 3, 5 items were relocated (i.e. items 1, 2, 3, 5, and 6) and after several iterations, a
number of exchanges have been performed. For instance, tabu[3][3][5] = 13, which
means that items 3 and 5, in period 3, exchanged locations 13 times thus far during the
execution of the heuristic.

The long-term memory structure defined above shows the distribution of moves in
each period and is used in the diversification strategy to penalise non-improving moves
by giving a larger penalty to the moves with greater frequency counts. Notice, in Step 4
presented above, the basic TS heuristic selects the best admissible move move* = (t, u, v)
and the corresponding solution is obtained by considering f() < f() N()).
However, if the penalty for non-improving moves is added, then a modified objective
function is used. Thus, step 4 is modified as follows.

 Tabu Search Heuristics for the Crane Sequencing Problem 423

Step 4: Set iter = iter + 1;
Find the best admissible move move* = (t, u, v) which gives according to a
revised OFV where the revised OFV is
rf() = f() + *tabu(t, u, v) (for u < v)

0 if () ();
Otherwise;

f f

 is a pre-defined parameter for penalty. For each non-improving move, a penalty is
given based on the frequency of the move performed thus far. Then, move* = (t, u, v) will
be selected based on this revised evaluation value for each move.

Figure 4 A tabu structure for a CSP instance

Unlike the diversification strategies presented above, the intensification strategy explores
promising areas of the solution space more thoroughly. In the literature, intensification
typically operates by restarting from relatively high quality solutions or modifying a
solution to favour some attributes. In this research, the intensification method described
in Chiang and Kouvelis (1996) is modified for CSP and integrated into the proposed TS
heuristic. This intensification strategy is implemented by fixing two items after
exchanging their locations, if this exchange reduces the total cost of the current best
solution * by at least , where is the same value as the parameter used in the
diversification strategy as used in Chiang and Kouvelis (1996). Also, experimental tests
were performed which yielded the same results. Similar to the aspiration criterion, a fixed
item can be freed to exchange its location with other items if the exchange results in an
improvement better than the best solution found so far. Intensification is employed after a
certain number () of iterations have been performed, since there are relatively higher
probabilities of having more solution improvements at earlier iterations.

The above diversification and intensification strategies are added to the basic TS
heuristic which yields the so called TS heuristic with strategies (TS/S). The steps for the
TS/S heuristic are as follows.

Step 1: Initialise parameters and counters:
T is the total number of periods;
Tabu[][][] is the tabu list structure;
tabusizet is the tabu tenure length for period t;
iter is iteration number where iter = 0;
TRT is Total Running Time before terminating the heuristic;
LBt is the Lower Bound for tabusizet;
UBt is the upper bound for tabusizet;

 424 A.R. McKendall and J. Shang

 is the parameter for diversification and intensification strategy;
 is the parameter for diversification strategy;

 is a parameter for penalty
 is the number of iterations performed before invoking the intensification

strategy;
F[][] stores all items fixed during the intensification process;

Step 2: Obtain an initial solution by using a construction algorithm and determines its
objective function value f();

Step 3: Set * = , where * is the best solution found thus far and set f(*) = f();

Step 4: Set iter = iter + 1;
Find the best admissible move move* = (t, u, v) which gives with respect to a
revised OFV where the revised OFV is
rf() = f() + * tabu(t, u, v) (assume u < v) for

0 if () ();
Otherwise;

f f

If iter > ,
The items u and v in selected move* cannot belong to the set F (i.e. move(t, u, v)
is not fixed); or
If either (t, u) or (t, v) belong to the set F,

The move(t, u, v) is selected as the move* only when this move results in a
new best solution found.

Step 5: z = 1 – f()/f() and set = , f() = f();
If f() < f(*),

If iter > and 1 (() / (*))z f f ,
Set (,) (,);F F t u t v
Set * = and f(*) = f();

Step 6: Update tabusizet = f(tabusizet) where

if 0

* if 0
()

if
3* if

t

t t
t

t

t

t

tabusize z

UB LB
LB z z

f tabusize
UB z

UB z

.

Update tabu list as tabu[t][u][v] = iter + tabusizet for u > v and
tabu[t][u][v] = tabu[t][u][v] + 1 for u < v;

Step 7: Stopping criteria: if heuristic running time < TRT, go to Step 4.
 Else, terminate the heuristic and return solution * and total cost f(*);

 Tabu Search Heuristics for the Crane Sequencing Problem 425

4 Computational results

Two sets of test problems are used in this paper in order to test the performances of the
proposed heuristics. In all experiments, a Pentium IV 2.4 GHz PC was used to solve CSP
instances in data sets I and II using the proposed heuristics. Data set I was generated to
test a mathematical model developed for CSP, and data set II was taken from McKendall
et al. (2006). The heuristics were coded using the C++ programming language. In order
to make fair comparisons, the proposed heuristics ran for the same amount of
computational time for each CSP problem instance.

For the basic TS and PTS heuristics, tabusizet is set to nt * T/2. Moreover, p = 0.4 and
G = 10 are the parameters setting for the PTS heuristic. The intensification strategy
parameters , and the diversification parameters , , are set by statistical
techniques. More specifically, for each CSP problem, a certain numbers of initial
solutions were generated randomly. Then, for each of these solutions, a steepest descent
heuristic is used to improve the solution until no further improvement can be found (i.e.
local optimum is reached). Next, the statistical information for these improved solutions
are gathered, such as Average Percent Improvement (API) at each iteration, Average
Iterations (AI) before reaching the local optimum, Average Maximal Percent
Improvement (AMPI) at each iteration, Average Median Objective Function Value
(AMOFV), and Average Minimal Objective Function Value (AOFV). Then, the
parameters is set to API, is equal to AI, is set to AMOFV/AOFV and is set to
AMPI. In addition, LBt and UBt are defined as:

* / 3 1and * *2 1t t t tLB n T t UB n T t .

Table 2 shows the results for the first data set obtained from the proposed heuristics (TS,
PTS, TS/S) and the SA heuristic presented in McKendall et al. (2006). The optimal
solutions were obtained for all of the test problems in this set and were obtained using a
mathematical model and the CPLEX solver version 6.6. Also, their computational times
are listed. All times in the tables are given in minutes. As a result, all of the proposed
heuristics obtained the optimal solutions for all 24 test problems. Notice the run times for
the heuristics are much less than the run times for solving the problems using a
mathematical model and the CPLEX solver. The main reason for using this data set was
to test the mathematical model and also for testing the heuristics on smaller problems
where the optimal solutions are obtainable.

The second data set is used to further verify the speed and robustness of the proposed
heuristics. Compared to data set I, data set II is much larger and has much larger
problems, which cannot be solved by using exact methods (i.e. mathematical model and
CPLEX) in reasonable time. The TS and TS/S heuristics, which are deterministic
techniques, ran once with each of the three solutions obtained using the construction
algorithms for each test problem. SA and PTS ran five times with each of the three
solutions obtained from the construction algorithms. Data set II is divided into four
groups, each of which has 24 test problems. From group 1 to group 4, the sizes of the test
problems are increased. The test problems in group 1 are relatively small, groups 2 and 3
have medium size test problems, and the test problems in group 4 are the largest.

Table 3 shows the number of best solutions obtained by each of the proposed
heuristics. For the first group (i.e. test problems 01–24), the test problems have nine
resources, six locations, and three to five periods, which are the smaller size problems.

 426 A.R. McKendall and J. Shang

All proposed heuristics performed well for this group of test problems. More specifically,
TS obtained the best found solution 22 times, PTS 24 times, TS/S 24 times, and SA 23
times.
Table 2 Computational results for data set I

Optimal solution
Pb no Final Time SA TS PTS TS/S Heuristic time

P01 57 0.01 57 57 57 57 0.00
P02 83 0.05 83 83 83 83 0.00
P03 62 0.03 62 62 62 62 0.00
P04 88 0.11 88 88 88 88 0.01
P05 65 0.08 65 65 65 65 0.01
P06 119 7.60 119 119 119 119 0.01
P07 72 0.02 72 72 72 72 0.01
P08 91 0.23 91 91 91 91 0.02
P09 121 0.33 121 121 121 121 0.02
P10 150 19.42 150 150 150 150 0.02
P11 118 2.02 118 118 118 118 0.02
P12 150 19.53 150 150 150 150 0.01
P13 104 0.10 104 104 104 104 0.01
P14 189 1527.36 189 189 189 189 0.02
P15 114 0.12 114 114 114 114 0.02
P16 229 8.48 229 229 229 229 0.02
P17 145 7.05 145 145 145 145 0.02
P18 278 1947.32 278 278 278 278 0.02
P19 157 60.97 157 157 157 157 0.02
P20 246 1014.73 246 246 246 246 0.03
P21 169 12.93 169 169 169 169 0.03
P22 320 2915.87 320 320 320 320 0.04
P23 197 318.12 197 197 197 197 0.04
P24 347 2755.59 347 347 347 347 0.03

Table 3 Computational results (no. of best solutions obtained) for data set II

No. TS PTS TS/S SA
P01–P24 22 24 24 23
P25–P48 5 14 17 15
P49–P72 1 11 17 3
P73–P96 0 6 16 4
Total 28 55 74 45
Percent 29.2 57.3 77.1 46.9

 Tabu Search Heuristics for the Crane Sequencing Problem 427

However, the proposed heuristics perform differently for the other three groups of test
problems. In other words, as the problem size increases, the performances of the TS,
PTS, and SA decrease. More specifically, TS obtained the best found solutions 5, 1, 0
times, PTS obtained 14, 11, 6 times, TS/S obtained 17, 17, 16 times, and SA obtained 15,
3 and 4 times. Clearly, TS/S outperformed all other heuristics since it obtained 50 (74)
best solutions of 72 (96) test problems, which is the most. In other words, TS/S obtained
the best solution for 74 (77.1%) of the 96 test problems. In contrast, the simple TS
heuristic only found 28 (29.2%) best solutions overall.

Based on the previous analyses, it is obvious that both proposed PTS and TS/S
heuristics outperformed the basic TS heuristic. See the comparisons of TS/S and PTS in
Figure 5, which shows the percent improvement of TS/S heuristic over the PTS heuristic
for data set II. More specifically, when comparing the TS/S heuristic with the PTS
heuristic, TS/S heuristic obtained better solutions than PTS 38 out of 96 test problems,
and PTS heuristic outperformed TS/S heuristic 13 times. In addition, they obtained the
same results 45 times, which include all test problems from P01 to P34. Therefore, TS/S
heuristic performed better than PTS heuristic for medium and large size test problems.
Also, it is important to note that the PTS heuristic ran 15 times for each test problem (i.e.
five runs for each of the three solutions obtained from the construction algorithms) and
TS/S heuristic only ran three times for each problem (i.e. single run for each of three
solutions generated from the construction algorithms). Therefore, TS/S heuristic total run
time was 1/5 of the PTS total run time.

Figure 5 Percentage improvement of TS/S heuristic over PTS heuristic

Moreover, computational experiments show that the solution qualities of the TS heuristic
really depend on the qualities of the initial solutions. When comparing the construction
algorithms, CAI, CAII, and CAIII obtained better solutions 2, 69, 66 times, respectively.
When only considering the solutions obtained from the basic TS with CAI, CAII, and
CAIII used to construct the initial solutions, TS/CAI performed best 32 times, TS/CAII

 428 A.R. McKendall and J. Shang

76 times, and TS/CAIII 73 times. Because the qualities of the constructed solutions by
using CAII and CAIII are relatively the same, both of them are much better than the
solutions constructed by CAI. It is obvious that the initial solution quality affects the
performance of the TS heuristic. However, the performances of the other TS heuristics
(i.e. PTS and TS/S) were not dependent on the quality of the initial solutions. It is
obvious that the performance of the stochastic heuristic (i.e. SA) is not dependent on the
quality of the initial solutions. Therefore, when applying these improvement heuristics to
improve the solutions obtained from construction algorithms, more emphasis should be
place on the improvement heuristics themselves instead of the construction algorithms.

5 Conclusion

In this paper, three TS heuristics were presented to solve the CSP. The first heuristic
(i.e. TS heuristic) is a simple TS heuristic which uses static tabu list sizes and multiple
initial solutions as a diversification strategy. The second heuristic (i.e. PTS heuristic) is a
PTS heuristic. More specifically, the admissible move is randomly selected from a list of
the top G moves (to diversify the search), unlike in TS heuristic where the best
admissible move is selected. The third heuristic (i.e. TS/S) uses an intensification strategy
and different diversification strategies from TS and PTS. More specifically, it uses
dynamic tabu list sizes, frequency based memory, and a modification of the
intensification strategy presented in Chiang and Kouvelis (1996). The proposed heuristics
performed well on two data sets: data set I (generated in this paper) and data set II
generated by McKendall et al. (2006). More importantly, two of the three proposed
heuristics (PTS and TS/S) out-performed the heuristic (SA heuristic) available in the
literature for CSP. Although the TS/S heuristic performed many more operations per
iteration than the other heuristics, it obtained the best solution for 77.1% of the problems
in the larger data set (data set II). In other words, the TS/S heuristic performed less
iterations and obtained higher quality solutions using the same average run time.
Therefore, TS/S is much more computationally efficient than the other heuristics.
However, a tremendous amount of effort was required in setting the heuristic parameters
for TS/S, since it has many more heuristic parameters. The following recommendations
are given for future research:

develop heuristics for CSP which require less heuristic parameters than the proposed
TS/S heuristic but perform equally as well or better

develop hybrid heuristics for CSP.

References
Chiang, W-C. and Chiang, C. (1998) ‘Intelligent local search strategies for solving facility layout

problems with the quadratic assignment problem formulation’, European Journal of
Operational Research, Vol. 106, pp.457–488.

Chiang, W-C. and Kouvelis, P. (1996) ‘An improved tabu search heuristic for solving facility
layout design problems’, Int. J. Production Research, Vol. 34, pp.2565–2585.

Christofides, N. and Colloff, I. (1973) ‘The rearrangement of items in a warehouse’, Operations
Research, Vol. 21, pp.577–589.

 Tabu Search Heuristics for the Crane Sequencing Problem 429

Frederickson, G.N. and Guan, D.J. (1992) ‘Preemptive ensemble motion planning on a tree’, SIAM
Journal on Computing, Vol. 21, pp.1130–1152.

Frederickson, G.N., Hecht, M.S. and Kim, C.E. (1978) ‘Approximation algorithms for some
routing problems’, SIAM Journal on Computing, Vol. 7, pp.178–193.

Glover, F. (1986) ‘Future paths for integer programming and links to artificial intelligence’,
Computers & Operations Research, Vol. 13, pp.533–549.

Glover, F. (1989) ‘Tabu search Part I’, ORSA Journal on Computing, Vol. 1, pp.1900–2006.
Glover, F. (1990a) ‘Tabu search Part II’, ORSA Journal on Computing, Vol. 2, pp.4–32.
Glover, F. (1990b) ‘Tabu search: A tutorial’, Interfaces, Vol. 20, pp.74–94.
Hernandez-Perez, H. and Salazar-Gonzalez, J-J. (2004) ‘Heuristics for the one-commodity pickup-

and-delivery traveling salesman problem’, Transportation Science, Vol. 38, pp.245–255.
Hunsaker, B. and Savelsbergh, M. (2002) ‘Efficient feasibility testing for dial-a-ride problems’,

Operations Research Letters, Vol. 30, pp.169–173.
Laporte, G. (1992) ‘The traveling salesman problem: an overview of exact and approximate

algorithms’, European Journal of Operational Research, Vol. 59, pp.231–247.
Lim, A., Rodrigues, B., Xiao, F. and Zhu, Y. (2004) ‘Crane scheduling with spatial constraints’,

Naval Research Logistics, Vol. 51, pp.386–406.
McKendall Jr. A.R., Noble, J.S. and Klein, C.M. (2005) ‘Simulated annealing heuristics for

managing resources during planned outages at electric power plants’, Computers &
Operations Research, Vol. 32, pp.107–125.

McKendall Jr. A.R., Shang, J., Noble, J.S. and Klein, C.M. (2006) ‘A simulated annealing heuristic
for a crane sequencing problem’, Int. J. Industrial Engineering, Vol. 13, pp.90–98.

	Tabu Search Heuristics for the Crane Sequencing Problem
	04_McKendell.pdf

