
Faculty & Staff Scholarship

2010

Metaheuristics for the Integrated Machine Allocation and Layout Metaheuristics for the Integrated Machine Allocation and Layout

Problem Problem

Juan Jaramillo

Alan McKendall

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages

 74 Int. J. Operational Research, Vol. 7, No. 1, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

Metaheuristics for the Integrated Machine
Allocation and Layout Problem

Juan R. Jaramillo*
Department of Business Administration,
Albany State University,
504 College Drive, Albany, GA 31705, USA
Fax: +229 430 5119
E-mail: juan.jaramillo@asurams.edu
*Corresponding author

Alan R. McKendall
Department of Industrial and
Management Systems Engineering,
West Virginia University,
325A Mineral Resources Building,
Morgantown, WV 26505, USA
Fax: +304 293 4970
E-mail: alan.mckendall@mail.wvu.edu

Abstract: The Integrated Machine Allocation and Layout Problem (IMALP) is
the problem of assigning a set of machines (including machine replicas) to
locations while assigning product flows to machines such that Material
Handling Cost is minimised. A new mathematical formulation, a Tabu Search
(TS) heuristic, and a Memetic Algorithm (MA) are presented for the IMALP.
The algorithms were evaluated using a set of test problems available in the
literature. TS and the MA obtained equal or better solutions for the dataset than
previous techniques presented in the literature. More specifically, TS obtained
better solutions in 47% of the instances, and MA improved the best known
solution in 52.4% of the cases. As a result, MA out-performed TS with respect
to solution quality and computation time.

Keywords: Integrated Machine Allocation and Layout Problem; IMALP;
Memetic Algorithms; MA; metaheuristics; multicommodity flow problem;
quadratic assignment problem; Tabu Search; TS.

Reference to this paper should be made as follows: Jaramillo, J.R. and
McKendall, A.R. (2010) ‘Metaheuristics for the Integrated Machine Allocation
and Layout Problem’, Int. J. Operational Research, Vol. 7, No. 1, pp.74–89.

Biographical notes: Juan R. Jaramillo is an Assistant Professor in the
Department of Business Administration at Albany State University. He
received his PhD in Industrial Engineering, and his MS in Industrial
Engineering at the West Virginia University. He received his BS in Civil
Engineering and his BS in Geological Engineering at Escuela de Ingeniería de
Antioquia in Colombia. His research is in developing efficient solution
techniques in the area of logistics and supply chain. He has published in
Computers and Operations Research and presented in the Institute of
Operations Research (INFORMS) and the Institute of Industrial Engineers (IIE)
annual conferences.

 Metaheuristics for the IMALP 75

Alan R. McKendall is an Associate Professor in the Department of Industrial
and Management Systems Engineering at the West Virginia University. He
received his PhD in Industrial Engineering, MS in Industrial Engineering and
MS in Applied Mathematics from the University of Missouri in Columbia. He
received his BS degree in Mathematics from Southern University in New
Orleans. His main research interest is in developing efficient algorithms in the
areas of logistics and scheduling. He has published in journals such as
Computers and Operations Research, Information Sciences, Int. J. Industrial
Engineering, Int. J.Operational Research and Int. J. Production Research.
Currently, he is on the Editorial Board of the Open Operational Research
Journal and Int. J. Mathematics in Operational Research.

1 Introduction

The Integrated Machine Allocation and Layout Problem (IMALP) is the problem of
assigning a given set of machines, including machine replicas, to locations on the plant
floor while assigning product flows to machines such that Material Handling Cost (MHC)
is minimised and product demands are satisfied. The problem of assigning machines to
locations on the plant floor is defined as the Machine Layout Problem (MLP) which can
be modelled as a Quadratic Assignment Problem (QAP). The QAP was first introduced
by Koopmans and Beckmann (1957). The problem of assigning product flows to
machines is defined as the Minimum Cost Multicommodity Flow Problem (MCMFP).
Among the first to study multicommodity flow problems is Robacker (1955). As a result,
the IMALP is the integration of two well-known problems: the QAP and the MCMFP.
The IMALP was first introduced by Urban, Chiang and Rusell (2000). Following are the
main assumptions of the IMALP as it was introduced in the literature and as it is treated
in this research.

1 The plant floor is represented as an array of equal size grid units, and each grid unit
represents an available location.

2 Distances between locations are known in advance.

3 Only one machine can be assigned to each location; and any machine can be
assigned to any location without any additional cost.

4 Product routes, requirements and demands, are known in advance.

5 Each operation can be performed on only one machine type, and a product visits a
machine type at most once.

6 The set of machines (including machine replicas) and their capacities are known in
advance.

7 The set of machines equals the number of locations, and the number of machines is
enough to satisfy all products demands.

Assumptions (1)–(3) and part of assumption 7 (i.e. the set of machines equals the number
of locations) are the QAP assumptions. The rest of the assumptions are for the MCMFP.

 76 J.R. Jaramillo and A.R. McKendall

The IMALP is illustrated using a simple example. Tables 1 and 2 and Figure 1
summarise the information of a small IMALP instance. Notice that the instance involves
the production of three products. Products and product routes, which indicate the machine
processing sequence, are shown in the first column of Table 1. Columns 2–5 give the
machine requirements of each part in time units (e.g. each unit of product three requires
60 time units at a machine of type 2). Column 6 shows product demands. Row 6 gives
machine type capacities (i.e. available time per machine). Row 7 gives the number of
machines of each type that are available. Figure 1 shows the layout of the plant floor
where there are six available locations to assign machines. Table 2 gives the distances
between the locations on the plant floor. Assume MHC is $1 per product unit per unit of
distance for all parts. A possible solution for the IMALP instance is given in Figure 2
(i.e. machine layout) and Table 3 (i.e. product flows between machines assigned to
locations). Figure 2 shows that a machine of type 3 is assigned to location 1, a machine
of type 2 is assigned to location 2 and so on. Notice that the machine layout
includes replicated machines (i.e. two machines of type 3, one at location 1 and another at
location 6). In addition, Table 3 shows product flows between machines assigned to
locations and their respective MHC. For example, second row shows that 20 units of
product 1 travel from the machine of type 1 assigned to location 3 to the machine of type
2 at location 2 with a MHC of $20. Similarly, row 8 shows that 23.33 units of product 3
travel from a the machine of type 1 at location 3 to the machine of type 2 at location 5
with a MHC of $ 46.67. Finally, the Objective Function Value (OFV), sum of the MHC,
for the solution is $ 285.
Table 1 Product information

Machine requirements [time units]
Product (route) 1 2 3 4

Demand
[units]

1 (1-2-3-4) 20 50 45 10 20
2 (1-3-4) 25 – 55 10 35
3 (1-2-4) 15 60 – 10 40
Machine capacity [time units]: 2,000 2,000 2,000 2,000 –
Available machines: 1 2 2 1 –

Table 2 Plant floor and distances between locations

 L1 L2 L3 L4 L5 L6

L1 – 1 2 1 2 3
L2 1 – 1 2 1 2
L3 2 1 – 3 2 1
L4 1 2 3 – 1 2
L5 2 1 2 1 – 1
L6 3 2 1 2 1 –

 Metaheuristics for the IMALP 77

Table 3 Product flow solution details

Product Flow From To MHC

20 M1 (L3) M2 (L2) $20
20 M2 (L2) M3 (L1) $20

1

20 M3 (L1) M4 (L4) $20
35 M1 (L3) M3 (L6) $35 2
35 M3 (L6) M4 (L4) $70
16.67 M1 (L3) M2 (L2) $16.67
23.33 M1 (L3) M2 (L5) $46.67

3

16.67 M2 (L2) M4 (L4) $33.33
 23.33 M2 (L5) M4 (L4) $23.33

Figure 1 Layout of plant floor

L1 L2 L3

L4 L5 L6

Figure 2 Layout of machines (solution)

L1

M3

L2

M2

L3

M1

L4

M4

L5

M2

L6

M3

As stated previously, the QAP is used to assign machines to locations on the plant floor,
while the MCMFP assigns product flows between machines such that MHC is
minimised. More importantly, the IMALP is a generalisation of the QAP. In fact, when
flows between machines are part of the problem input, the IMALP reduces to the QAP.
Moreover, since the QAP is NP hard (Sahni and Gozales, 1976) the IMALP is also NP
hard (Urban, Chiang and Rusell, 2000). In addition, problems integrating layout and
machine flow decisions are not common in the literature. Besides the IMALP, there are
two other problems that integrate layout and product flow assignment decisions. These
problems are the Extended Distance-based Facility Layout problem (EDFL) introduced
by Castillo and Peters (2003), and the dynamic extended facility layout problem
presented in Jaramillo and McKendall (2004). Another problem that is related, but
considers only a single commodity (grain) is the problem of assigning silos to locations
such that the sum of transportation and investment cost is minimised, which was
presented by Foulds (2005). A major difference is that only one commodity is
considered. For a recent review for the problem of assigning departments to locations, see
Singh and Sharma (2006).

 78 J.R. Jaramillo and A.R. McKendall

Considering that the IMALP is a computationally difficult problem, approximation
techniques are required to find good solutions for medium and large size problem
instances. It is important to mention that approximation techniques rely on evaluating a
good amount of machine layouts. Consequently, for each machine layout, such as the one
shown in Figure 2, there is a need to solve a corresponding MCMFP in order to find the
optimal product flows between machines. Also, recall that MCMFP is a linear
programming problem which can be solved in acceptable computational times by
well-known techniques (i.e. simplex and interior point methods). In fact, flows shown in
Table 2 were obtained by solving a MCMFP optimally for the layout shown in Figure 2.
Moreover, in the MCMFP machines are represented by nodes, and paths between
machines are represented by arcs. For a detailed description of MCMFP including a
mathematical formulation, the reader is referred to Kennington (1978). Unfortunately,
solving a large amount of MCMFP to optimality (i.e. one MCMFP for each possible
machine layout) requires a large amount of computational time, making approximation
algorithms for the IMALP computationally expensive. In addition, the number of
constraints and variables of MCMFP increases rapidly with the size of the problem.

In order to solve the IMALP, Urban, Chiang and Rusell (2000) presented a Greedy
Randomised Adapted Search Procedure (GRASP) metaheuristic that solves the problem
iteratively. First, the algorithm generates an initial set of flows between machines. Then,
GRASP is used to solve the MLP (QAP) while keeping flows between machines fixed.
After solving the MLP (i.e. finding a ‘good’ machine layout), the MCMFP is solved
again in order to find optimal product flows between machines for the ‘good’ machine
layout. Then, GRASP is used with the new set of product flows. Finally, the procedure is
repeated until no improvement is obtained when applying GRASP and solving the
MCMFP consecutively. It is important to mention that Castillo and Peters (2003) applied
a similar approach for the EDFL which uses simulated annealing instead of GRASP.

The purpose of this article is to introduce an alternative mathematical formulation,
and to present a TS heuristic and a MA for the IMALP. The remaining of this work is as
follows. Section 2 contains a new mixed integer linear programming model for the
IMALP. Section 3 presents a TS heuristic and a MA. Section 4 discusses the results of
the proposed heuristics obtained on a set of test problems taken from the literature.
Finally, Section 5 summarises the findings of this work.

2 Mathematical formulation

Following is an alternative formulation for the IMALP. The alternative formulation
incorporates the information about product routes. Also, the cubic term in the original
IMALP formulation presented in Urban, Chiang and Rusell (2000) is replaced by a
quadratic term. Therefore, the number of variables required to linearise the mathematical
model is reduced. The following include the notation and formulation of the alternative
mixed integer non-linear programming model for the IMALP.

Indexes:

p: Product, p = 1, , P.

i, j: Location, i, j = 1, , N.

 Metaheuristics for the IMALP 79

m: Machine type: m = 1, , M.

o: Operation: o = 1, , Op, where Op is the number of operations required by
product p.

Parameters:

dij: Distance from location i to location j.

Demp: Demand of product p.

cp: Cost of moving one unit of product p one distance unit.

Cm: Capacity of machine type m (in time units).

Rm: Machine type m replicas.

Tpom: 1 if part p requires machine of type m at operation o. 0 otherwise.

rpo: Processing requirements of product p at operation o in time units per product
unit.

Variables:

xp
ij: Flow from machine at location i to machine at location j of product p.

ymi: 1 if a machine of type m is assigned to location i. 0 otherwise.

Mathematical model:

1 1 1

Min
N N P

p
ij p ij

i j p

d c x (1)

Subject to:

1

1
M

mi
m

y i (2)

1

N

mi m
i

y R m (3)

,1,
1 1 1

Dem
N N M

p
p m ij mi p

i j m

T x y p (4)

1

1 1 1 1 1

,
p

p p

ON P P N
p p

po pom ij mi pO pO m ji mi m mi
j p o p j

r T x y r T x y C y i m (5)

, 1,
1 1

, , , 2, ,
M M

p p
p o m ij mi pom ij mi p

m m

T x y T x y p i j o O (6)

 80 J.R. Jaramillo and A.R. McKendall

, 1, , 1,
1 1 1 1

, , 2, , 1
N M N M

p p
p o m ij mi p o m ij mi p

i m i m

T x y T x y p j o O (7)

0 ,p
ijx i j (8)

[0,1] ,miy m i (9)

Objective function (1) minimises total MHC. Constraint set (2) ensures that only one
machine is assigned to each location. Constraint set (3) ensures that the correct number of
replicas of each machine type is assigned to the plant floor. Constraint set (4) ensures that
product demands are met. Constraint set (5) guarantees that machine capacities are not
exceeded. Constraint set (6) ensures that product flows follows their respective routes.
Constraint set (7) ensures flow conservation. Constraint sets (8) and (9) restrict the
decision variables. Notice that the mathematical formulation above is non-linear.
However, the formulation can be linearised by adding a new variable p

ijmw that replaces

the product p
ij mix y and by including the following constraints:

Dem 0 , , ,p
ijm p miw y p i j m (10)

0 , , ,p p
ijm ijw x p i j m (11)

Dem Dem , , ,p p
ij ijm p mi px w y p i j m (12)

0 , , ,p
ijmw p i j m (13)

Because of the large amount of variables and constraints generated by the above
mathematical formulation, only small instances can be solved in acceptable
computational times. Therefore, heuristics need to be developed to find good solutions
for medium and large size problems.

3 Metaheuristics

As mentioned before, two metaheuristics, a TS and a MA, are presented for the IMALP.
This section is divided in five subsections. Section 3.1 defines a solution representation
for the IMALP. Section 3.2 introduces a steepest descent pairwise exchange heuristic.
Construction algorithms are presented in Section 3.3. Sections 3.4 and 3.5 describe a TS
heuristic and a MA, respectively.

3.1 Solution representation

Recall that the IMALP can be viewed as the combination of the QAP and the MCMFP.
Therefore, the machine layout (i.e. QAP solution) can be represented as a permutation of
machines or vector S = (s(1), …, s(i), …, s(N)). Each position i in S represents a location,
s(i) represents a machine type assigned to location i, and N is the total number of
locations. For example, the layout shown in Figure 2 can be represented as S = (3, 2, 1, 4,

 Metaheuristics for the IMALP 81

2, 3). That is, a machine of type 3 is assigned to location 1 (i.e. s(1) = 3), a machine of
type 2 is assigned to location 2 (i.e. s(2) = 2), and so on. Once machines have been
assigned to the plant floor, the OFV, f(S), and flows between machines/locations are
obtained by solving the corresponding MCMFP optimally.

3.2 Construction algorithm

Construction algorithms are used to build initial solutions. Two construction algorithms
are presented here. The first one, called CA1, assigns machines in order according to its
type and availability. That is, starting with the set of available machines M = {1, 2, 2, 3,
3. 4} CA1 assigns one machine of each type from M to the first 4 locations (i.e. s(1) = 1,
s(2) = 2, s(3) = 3, and s(4) = 4)). Then, the process is repeated for the machines
remaining in M (i.e. M = {2, 3}) until all machines are assigned (i.e. s(5) = 2 and
s(6) = 3). Therefore, CA1 will generate the initial solution S = (1, 2, 3, 4, 1, 2). The
second construction algorithm, CA2, randomly assign the machines in M to locations. An
example of CA2 is the initial solution S = (3, 2, 3, 1, 4, 2).

3.3 Steepest descent Local Search technique

Local Search (LS) techniques have a fundamental role in metaheuristics such as TS and
simulated annealing. These techniques start with an initial solution (i.e. current solution)
and explore neighbouring solutions in order to find better solutions (i.e. to improve the
current solution). The search technique used in this work is a steepest descent pairwise
exchange LS technique. Consequently, LS explores neighbouring solutions by
exchanging locations between pairs of machines of different type in the current
solution S. Each pairwise exchange is called a move. For example, using the solution
shown in Figure 2 as the current solution S = (3, 2, 1, 4, 2, 3), a move is to exchange
machine of type 2 in location 2 (i.e. s(2) = 2) with machine of type 1 at location 3 (i.e.
s(3) = 1). After performing the move, the new solution is S* = (3, 1, 2, 4, 2, 3). Notice
that exchanging 2 machines of the same type do not generate a new layout (i.e.
exchanging the machine of type 3 at location 1 with the machine of type 3 at location 6).
Therefore, exchanging two machines of the same type is not considered as valid move.
As a consequence there are 13 possible moves for S.

After generating each new solution, it is necessary to obtain f(S*). As it was
mentioned before, f(S*) can be obtained by solving the corresponding MCMFP.
However, since at each iteration of the LS, a large amount of neighbouring solutions can
be generated for large size problems, solving the MCMFP for each one of these layouts is
computationally expensive. In fact, when problem instances increase in size (i.e. number
of locations and number of products increases), the size of the MCMFP grows rapidly
(i.e. number of variables and constraints increases). Alternatively, f(S*) can be estimated
by fixing flows between machines and updating f(S) after each move accordingly. In fact,
this alternative method is used in Urban, Chiang and Rusell (2000) and Castillo and
Peters (2003), and the reader is referenced to these papers for a more detailed
explanation. It is important to mention that the alternative method reduces the amount of
computational time required to solve the corresponding MCMFP. On the other hand,
solutions obtained with the alternative method are not guaranteed to be optimal. That is,
the estimated OFV can be far from the optimal OFV. Table 4 shows the results obtained

 82 J.R. Jaramillo and A.R. McKendall

for f(S*) using the alternative method and solving the corresponding MCMFP optimally.
Notice that the alternative method uses the same product flows as the current solution
Table 4 f(S*) Update comparison

Alternative Optimal
Product From To Flow MHC Flow MHC

M1 (L2) M2 (L3) 20 $20 20 $20
M2 (L3) M3 (L6) 20 $20 20 $20

1

M3 (L6) M4 (L4) 20 $40 20 $40
M1 (L2) M3 (L1) 35 $35 35 $35 2
M3 (L1) M4 (L4) 35 $35 35 $35
M1 (L2) M2 (L3) 16.67 $16.67 6.67 $6.67
M1 (L2) M2 (L5) 23.33 $23.33 33.33 $33.33

3

M2 (L3) M4 (L4) 16.67 $50 6.67 $20
 M2 (L5) M4 (L4) 23.33 $23.33 33.33 $33.33

(see Table 3), therefore f(S*) = $263.33. On the other hand, solving the MCMFP
optimally reassign some of the product flows between machines leading to
f(S*) = $243.33. Moreover, S* with the optimal set of flows between machines is the
optimal solution of the simple example presented earlier. That was verified by solving the
problem instance using the above mathematical formulation for the IMALP.

Last, LS selects the best neighbouring solution (i.e. S**) and makes it the new current
solution (i.e. S = S**). Then, the process is repeated until LS is not able to find a
neighbouring solution that improves S.

3.4 Tabu Search

TS is a metaheuristic that uses memory to guide LS during the algorithm execution.
Memory allows TS to escape from local optima and to diversify the search by exploring
different regions of the solution space. TS was introduced by Glover (1986) and is
explained in detail in Glover (1989, 1990). In addition, TS have been used for the QAP
with good results. Among TS for the QAP are the simple TS of Skorin-Kapov (1990), the
robust TS (Taillard, 1991), the reactive TS (Battiti and Tecchiolli, 1994) and the TS with
mutation operators for solution diversification (Misevicius, 2005).

The main components of the TS heuristic are the tabu list (TLIST), the Tenure Length
(TL), the aspiration criterion, the stopping criterion, and the parameter x. TLIST keeps
track of the most recent moves. That is, every time a new current solution S is obtained,
TLIST is updated accordingly to the move leading to S**. Table 5 shows TLIST after
exchanging machines at locations 2 and 3 in S = (3, 2, 1, 4, 2, 3) that leads to S** = (3, 1,
2, 4, 2, 3). Columns in the list represent locations and rows represent machine types.
Therefore, according to the list, a machine of type 2 cannot visit location 2 for the next
TL iterations, and a machine of type 1 cannot visit location 3 for the next TL iterations.
Therefore, TL is the number of iterations a move is tabu. That is, if a machine of certain
type left a location, a machine of the same type cannot be assigned to that location for the
next TL iterations.

 Metaheuristics for the IMALP 83

Table 5 Tabu list example

 L1 L2 L3 L4 L5 L6

M1 – – TL – – –
M2 – TL – – – –
M3 – – – – – –
M4 – – – – – –

The aspiration criterion removes a move from TLIST if the move leads to the best
solution ever found (i.e. Sbest). The stopping criterion terminates the algorithm after
certain number of consecutive iterations (ITER) without improvement (STOPITER).
Finally, the parameter x, is used to decide if f(S*) is obtained by solving the MCMFP
optimally, or if f(S*) is estimated by fixing flows between machines and updating f(S*)
accordingly. The main idea behind x is to solve the MCMFP optimally when the search
reaches promising areas of the solution space. On the contrary, when the search arrives to
areas with low quality solutions, f(S*) is estimated using the alternative method explained
above. More exactly, if the difference between f(S) and f(Sbest) is less than x, the MCMFP
is solved optimally. Otherwise, flows between machines are kept fixed, and f(S*) is
estimated accordingly. Following is an outline of the TS heuristic for the IMALP

Step 1. Initialise heuristic parameters: TLIST, TL, x, ITER, STOPITER.

Step 2. Obtain an initial solution, S0, using one of the construction algorithms given
above (used CA1).

Set Sbest = S0, and set f(Sbest) = f(S0).

Set S = S0, and set f(S) = f(S0).

Step 3. Evaluate all possible pairwise exchanges for solution S.

If f(S) – f(Sbest) x

Fix product flows between machines and estimate f(S*) for each neighbouring
solution as explained above.

Else

Solve MCMFP optimally to find f(S*) for each move.

Select best admissible move (defined as move*), and perform move* on solution S to
obtain new solution S**. Best admissible move is defined as the best non-tabu move or
the tabu move that overrides tabu restriction.

Set S = S**, and set f(S) = f(S**).

If f(S**) < f(Sbest)

Update f(Sbest) = f(S**), and set Sbest = S*.

Set ITER = 0

Else

ITER = ITER + 1

Step 4. Update TLIST as explained above.

 84 J.R. Jaramillo and A.R. McKendall

Step 5. If ITER STOPITER.
Go to step 3.

Else

Terminate the search.

3.5 Memetic Algorithm

Memetic Algorithms (MA) can be defined as evolutionary algorithms combined with one
or more LS techniques. (Krasnogor and Smith, 2005). MA was presented first by Norman
and Moscato (1989). Moreover, MA combines the diversification strengths of Genetic
Algorithms (GA) with the effectiveness of LS techniques. Recently, Drezner (2007)
presented a MA for the QAP that combines GA with TS. Drezner (2007) reported having
obtained the best results known in 99.4% of a set of difficult problem instances from the
QAP literature.

The GA component of MA presented in this research is based on Mendes, Goncalves
and Resende (2008), and the LS technique is the same TS heuristic described in
Section 3.4. The main components of GA are the population P, the evolution mechanism
and the stopping criterion. P consists of a group of chromosomes. Each chromosome
represents a solution Sk, and each solution Sk is composed of genes. Each gene is denoted
as s(i) where i represents a location in Sk, and s(i) represents the type of machine assigned
to location i. An example of a chromosome is S = (1, 3, 3, 4, 2, 2), and s(5) = 2 is an
example of a gene (i.e. a machine of type 2 is assigned to location 5). Finally, the
evolution mechanism is responsible for the evolution of P towards a more fit population.

First, MA starts by generating an initial P = {S1, ..., Sp}. Each chromosome in P is
generated using CA2. Moreover, each chromosome is improved using TS before entering
the population P. In other words, each member of P is an improved chromosome. Once
an initial P is obtained, the evolution mechanism is applied to P in order to generate a
new population P*. The evolution mechanism consists of three components. These
components are Elitism, Breeding and Mutation. Elitism passes the best chromosome in
P (i.e. Sk with the lowest f(Sk)) to P*. Elitism keeps the fittest chromosomes in the
population, making their genes available to future offsprings. Breeding generates a
predefined number of children (i.e. offspring size). Breeding is a modification of the
parameterised uniform crossover strategy introduced by Spears and Dejong (1991).
Breeding generates one offspring at a time. Table 6 gives an example of breeding. First,
two different chromosomes are selected randomly from P (i.e. Sr and St). Second, genes
from the first parent, Sr, are passed to the offspring according to a certain probability
(i.e. passprob). More specifically, a random number between 0 and 1 is generated for
each gene of parent Sr. If the random number < passprob for a gene, then the gene is
passed to the offspring. Notice that s(1) = 1, s(2) = 2, s(3) = 4, s(5) = 2 are passed to the
offspring S*. That is, so far S* = (1, 2, 4, _, 2, _). Third, the remaining genes (i.e. genes
that were not inherited by the offspring from Sr) are passed from St or randomly assigned
from the unassigned machines (i.e. M – S*), such that infeasible solutions are not
generated, which is often the drawback of GAs. Notice that s(4) from parent 2 cannot be
assigned to the offspring, since there is only one machine of type 4 in M = {1, 2, 2, 3,
3, 4}. On the other hand, the offspring can inherit s(6) = 3 from St. Since, there is one
unassigned location (i.e. s(4)) and only one unassigned machine in M (i.e. a machine of

 Metaheuristics for the IMALP 85

type 3), then that machine is assigned to the location (i.e. s(4) = 3).The final offspring is
S* = (1, 2, 4, 3, 2, 3). The last step is to improve S* with TS before adding it to P*.
Table 6 Breeding example

Machine set: M = {1, 2, 2, 3, 3, 4}

Parent 1 Chromosome (Sr) 1 2 4 3 2 3
Parent 2 Chromosome (St) 2 1 3 4 2 3
Random number (0, 1) 0.67 0.34 0.15 0.86 0.45 0.81
Probability < 0.7 = passprob Yes Yes Yes No Yes No
Offspring chromosome S* 1 2 4 3 2 3

Mutation generates a certain number of chromosomes (i.e. Mutated) using CA2. Each
one of the Mutated chromosomes is improved using TS before being added to the new
population P*. Mutation brings mutated chromosomes that are hopefully not related to
the ones in P. These mutated chromosomes contribute to keeping the population from
converging to a restricted area of the solution space too soon. In addition, the application
of TS minimises the impact of small changes in existing chromosomes (i.e. traditional
mutation strategies). In fact, changing one or two genes of a chromosome would generate
a solution that belongs to the chromosome’s neighbourhood. Moreover, since TS is
previously applied to the chromosome, the chromosome neighbourhood has already been
explored. When a new population P* is generated, P* becomes P and the evolution
mechanism is applied again until the stopping criterion is reached. The MA stopping
criterion is to run the heuristic for a certain amount of computational time (stoptime).
Following is an outline of the MA heuristic for the IMALP.
Step 1. Initialise parameters: passprob, ClockTime, StopTime, Elite, OffspringSize,

Mutated.
Set PopulationSize = Elite + OffspringSize + Mutated.

Step 2. Generate an initial population P.
Generate PopulationSize chromosomes using CA2.
Apply above TS to each chromosome.
Add chromosomes to P.

Step 3. Apply evolution mechanism.
Select the best Elite chromosomes (chromosomes with lowest f(S)).
Add the Elite chromosomes to P*.
Generate OffspringSize Offsprings as follows:

Select Sr and St randomly from P such that Sr St.
Generate S* using the modified parameterised uniform crossover strategy.
Apply TS to S*.
Add S* to P*.

Generate mutated chromosomes using CA2.
Apply TS to mutated chromosomes.
Add mutated chromosomes to P*.

 86 J.R. Jaramillo and A.R. McKendall

Set P = P*.
Step 4. If ClockTime < StopTime.

Go to step 3.
Else

Terminate the algorithm.

4 Computational results

The metaheuristics described above were evaluated with the dataset generated in Urban,
Chiang and Rusell (2000). The dataset consists of 21 test problems. These problem
instances were designed using layouts from Nugent, Vollman and Ruml (1968) with 6, 8,
9, 12, 15, 20 and 30 locations. In addition, levels of 3, 6 and 9 different products were
considered for each layout size.

The algorithms were coded in Visual Basic 2005, and were evaluated in a computer
equipped with a 2.2 MHz AMD Turion 64 processor with 1 GB of memory and
windows XP. The solver used for the MCMFP linear programme was lp_solve (version
5.5.0.10). lp_solve is an open source (mixed integer) linear programming system which
was developed by Berkelaar, Eikland and Notebaert (2007). Finally, optimal solutions for
small size problem instances were obtained using the IMALP formulation presented
above and the CPLEX solver version 6.6.

TS initial solutions were provided using CA1. TS heuristic parameter settings were
obtained through experimentation and they were set as follows. TL was set as 0.05*
machine types* locations. ITER was set as machine types* locations. The parameter x
was set in such a way that MCMFP was solved optimally for approximately 50% of the
visited solutions, for the other 50% f(S*) was estimated keeping product flows fixed.
Similarly, MA parameters were obtained through experimentation and were set as
follows. P = 10, Elite = 1, OffspringSize = 6, Mutated = 3, probbreed = 0.5. In addition,
the parameters of the TS heuristic embedded within the MA were set as before with the
exception of ITER, which was set as ITER = locations. MA stopping criterion was set as
one-third of the time used by TS. That is, 3 runs of MA used the same computational
time as 1 run of TS so that a fair comparison is made between the performances of the
proposed heuristics.

Table 7 summarises the results obtained. The first column is the problem
identification. The second column corresponds to the best OFV obtained by the GRASP
heuristics presented in Urban, Chiang and Rusell (2000). The third column is the
computational time used by one run of the TS heuristic and three runs of MA combined.
The fourth column gives the results obtained using the proposed TS heuristic and the last
3 columns correspond to the OFV obtained for each one of the three different runs using
the MA. Notice that values in bold represent best found solutions. Also, values with
asterisk represent OFV of optimal solutions obtained with the IMALP formulation
presented above. Comparing TS with GRASP, it can be seen that TS performed better in
9 instances, equal in 10 instances and worse in 1 instance. Similarly, when comparing
MA with GRASP, MA obtained same solutions for 10 problems and better solutions in
the remaining 11. Also, when comparing MA with TS, it can be seen that MA obtained
better results in three instances and same results in the remaining 18 instances. Moreover,

 Metaheuristics for the IMALP 87

MA obtained the best solutions in all the runs with the exception of the first run of
instance 19. This is an indication that the size problems in the dataset is relatively small.
Table 7 Heuristics results

Inst GRASP Time TS MA

1 243.33* 0.01 243.33* 243.33* 243.33* 243.33*
2 1,317.2* 0.01 1,317.20* 1,317.20* 1,317.20* 1,317.20*
3 320.00* 0.01 320.00* 320.00* 320.00* 320.00*
4 357.50* 0.01 357.50* 357.50* 357.50* 357.50*
5 6,708.33* 0.01 6,708.33* 6,708.33* 6,708.33* 6,708.33*
6 558.00* 0.02 558.00* 558.00* 558.00* 558.00*
7 241 0.02 239.29* 239.29* 239.29* 239.29*
8 110.67 0.03 107.45* 107.45* 107.45* 107.45*
9 3,298.00* 0.03 3,298.00* 3,298.00* 3,298.00* 3,298.00*
10 55.09* 0.06 55.09* 55.09* 55.09* 55.09*
11 1,008.00 0.12 966 966 966 966
12 6,051.38 0.34 6,051.38 6,051.38 6,051.38 6,051.38
13 5,590.00 0.17 5,590.00 5,590.00 5,590.00 5,590.00
14 2,193.63 0.59 2,186.96 2,184.96 2,184.96 2,184.96
15 623.08 0.95 619.11 613.1 613.1 613.1
16 1,245.80 0.9 1,232.28 1,232.28 1,232.28 1,232.28
17 425.7 3.18 422.32 422.32 422.32 422.32
18 13,100.00 3.24 13,100.00 13,100.00 13,100.00 13,100.00
19 13,157.98 14.63 12,871.08 12,900.76 12,871.08 12,871.08
20 2,111.00 32.78 2,163.25 2055 2055 2055
21 1,373.52 103.58 1,350.31 1,350.31 1,350.31 1,350.31

Finally, notice that TS and MA improved the best-known results in 52.4% of the
instances and equaled the best-known results in the remaining 47.6% of the cases. These
results suggest that solving the IMALP iteratively (i.e. solving MLP while keeping flows
between machines fixed) restricts the search leaving promising areas of the solution space
unexplored. Also it is important to mention that solving the MCMFP for all machine
layouts is computationally expensive, leading to impractical algorithms. Therefore, the
parameter x added to TS has an important role in the speed of the algorithm. Recall, if
the cost of a solution is within x of the best found solution, the actual costs of the
neighbouring solutions are obtained. Otherwise, the costs of the neighbouring solutions
are estimated. More generally, the heuristic allows exploring promising areas of the
solution space with detail and to leave non-promising areas of the solution space more
quickly. In Addition, the strong performance of MA is explained by the combination of
the diversification strengths of GA with the search ability of TS. That is, GA provides
many different initial solutions (i.e. machine layouts) and TS search the neighbourhood
of each one of these solutions effectively. Notice that each new solution (i.e. offspring)
provided by GA represents a promising area of the solution space, since it is generated by

 88 J.R. Jaramillo and A.R. McKendall

combining two good solutions (i.e. well fit parents). Also, since GA generates one
mutated solution at each iteration, MA is prevented from converging to local optima to
soon.

5 Conclusions

In this article, a mathematical formulation, a TS and a MA heuristics are presented for the
IMALP. Both heuristics showed superior performance than the GRASP heuristic
presented in Urban, Chiang and Rusell (2000). Also the MA algorithm performed better
than the TS heuristic. For future research, it is recommended to develop a more extensive
data set that considers layouts with a larger number of locations and product routes that
resemble job shops and machine/part families. In addition, relax some of the problem
assumptions such as determine the number of machine types and replicas instead of the
number and type of machines given as an input. Also, maximise profits such that demand
is not met.

Acknowledgements

The authors express sincere thanks to Dr. Timothy Urban for providing the IMALP
dataset. Also, the authors especially thank the anonymous reviewers for their valuable
suggestions.

References
Battiti, T. and Tecchiolli, G. (1994) ‘The reactive tabu search’, ORSA Journal of Computing,

Vol. 6, pp.126–140.
Berkelaar, M., Eikland, K. and Notebaert, P. (2007) lp_solve website [online]. [Accessed April

30th, 2008]. Available at: http://www.geocities.com/lpsolve.
Castillo, I. and Peters, B. (2003) ‘An extended distance based facility layout problem’,

Int. J. Production Research, Vol. 41, pp.2451–2479.
Drezner, Z. (2007) ‘Extensive experiments with hybrid genetic algorithms for the solution of the

quadratic assignment problem’, Computers and Operations Research, Vol. 35, pp.717–736.
Foulds, L.R. (2005) ‘Dynamic network flow models of sustainable grain silo locations’,

Int. J. Operational Research, Vol. 1, pp.74–88.
Glover, F. (1986) ‘Future paths for integer programming and links to artificial intelligence’,

Computers and Operations Research, Vol. 13, pp.533–549.
Glover, F. (1989) ‘Tabu search – Part I’, ORSA Journal on Computing, Vol. 1, pp.190–206.
Glover, F. (1990) ‘Tabu search – Part II’, ORSA Journal on Computing, Vol. 2, pp.4–32.
Jaramillo, J.R. and McKendall, A.R. (2004) ‘Dynamic extended facility layout problem’, IRC

Annual Conference, Houston, TX.
Kennington, J.L. (1978) ‘A survey of linear cost multicommodity network flows’, Operations

Research, Vol. 26, pp.209–236.
Koopmans, T.C. and Beckmann, M.J. (1957) ‘Assignment problems and the location on economic

activities’, Econometrica, Vol. 25, pp.53–76.

 Metaheuristics for the IMALP 89

Krasnogor, N. and Smith, J.E. (2005) ‘A tutorial for competent memetic algorithms: model,
taxonomy and design issues’, IEEE transactions on Evolutionary Computation, Vol. 9,
pp.474–488.

Mendes, J.J., Goncalves, J.F. and Resende, M.G. (2008) ‘A genetic algorithm for the resource
constrained multi-project scheduling problems’, European Journal of Operational Research,
Vol. 189, pp.1171–1190.

Misevicius, A. (2005) ‘A tabu search algorithm for the quadratic assignment problem’,
Computational Optimization and Applications, Vol. 30, pp.95–111.

Norman, M.G. and Moscato, P. (1989) ‘A competitive and cooperative approach to complex
combinatorial search’, Caltech Concurrent Computation Program: Report 826. Pasadena, CA.

Nugent, C.E., Vollman, T.E. and Ruml, J. (1968) ‘An experimental comparison of techniques for
the assignment of facilities to locations’, Operations Research, Vol. 16, pp.150–173.

Robacker, J.T. (1955) ‘On network theory’, The RAND Corporation: Report RM 1498. Santa
Monica, CA.

Sahni, S. and Gonzales, T. (1976) ‘P complete approximation problems’, Journal of the Association
of Computing Machinery, Vol. 23, pp.555–565.

Singh, S.S. and Sharma, R.R. (2006) ‘A review of different approaches to the facility layout
problems’, Int. J. Advanced Manufacturing, Vol. 30, pp.425–433.

Skorin-Kapov, J. (1990) ‘Tabu search applied to the quadratic assignment problem’, ORSA Journal
of Computing, Vol. 2, pp.33–45.

Spears, W.M. and Dejong, K.A. (1991) ‘On the virtues of parameterised uniform crossover’, Paper
presented in the Proceedings of the 4th International Conference on Genetic Algorithms,
pp.230–236.

Taillard, E. (1991) ‘Robust tabu search for the quadratic assignment problem’, Parallel Computing,
Vol. 17, pp.443–455.

Urban, T.L., Chiang, W-C. and Rusell, T. (2000) ‘The integrated machine allocation and layout
problem’, Int. J. Production Research, Vol. 38, pp.2911–2930.

	Metaheuristics for the Integrated Machine Allocation and Layout Problem
	05_Jaramillo.pdf

