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Abstract: The Integrated Machine Allocation and Layout Problem (IMALP) is 
the problem of assigning a set of machines (including machine replicas) to 
locations while assigning product flows to machines such that Material 
Handling Cost is minimised. A new mathematical formulation, a Tabu Search 
(TS) heuristic, and a Memetic Algorithm (MA) are presented for the IMALP. 
The algorithms were evaluated using a set of test problems available in the 
literature. TS and the MA obtained equal or better solutions for the dataset than 
previous techniques presented in the literature. More specifically, TS obtained 
better solutions in 47% of the instances, and MA improved the best known 
solution in 52.4% of the cases. As a result, MA out-performed TS with respect 
to solution quality and computation time. 
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1 Introduction 

The Integrated Machine Allocation and Layout Problem (IMALP) is the problem of 
assigning a given set of machines, including machine replicas, to locations on the plant 
floor while assigning product flows to machines such that Material Handling Cost (MHC) 
is minimised and product demands are satisfied. The problem of assigning machines to 
locations on the plant floor is defined as the Machine Layout Problem (MLP) which can 
be modelled as a Quadratic Assignment Problem (QAP). The QAP was first introduced 
by Koopmans and Beckmann (1957). The problem of assigning product flows to 
machines is defined as the Minimum Cost Multicommodity Flow Problem (MCMFP). 
Among the first to study multicommodity flow problems is Robacker (1955). As a result, 
the IMALP is the integration of two well-known problems: the QAP and the MCMFP. 
The IMALP was first introduced by Urban, Chiang and Rusell (2000). Following are the 
main assumptions of the IMALP as it was introduced in the literature and as it is treated 
in this research. 

1 The plant floor is represented as an array of equal size grid units, and each grid unit 
represents an available location. 

2 Distances between locations are known in advance. 

3 Only one machine can be assigned to each location; and any machine can be 
assigned to any location without any additional cost. 

4 Product routes, requirements and demands, are known in advance. 

5 Each operation can be performed on only one machine type, and a product visits a 
machine type at most once. 

6 The set of machines (including machine replicas) and their capacities are known in 
advance. 

7 The set of machines equals the number of locations, and the number of machines is 
enough to satisfy all products demands. 

Assumptions (1)–(3) and part of assumption 7 (i.e. the set of machines equals the number 
of locations) are the QAP assumptions. The rest of the assumptions are for the MCMFP. 
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The IMALP is illustrated using a simple example. Tables 1 and 2 and Figure 1 
summarise the information of a small IMALP instance. Notice that the instance involves 
the production of three products. Products and product routes, which indicate the machine 
processing sequence, are shown in the first column of Table 1. Columns 2–5 give the 
machine requirements of each part in time units (e.g. each unit of product three requires 
60 time units at a machine of type 2). Column 6 shows product demands. Row 6 gives 
machine type capacities (i.e. available time per machine). Row 7 gives the number of 
machines of each type that are available. Figure 1 shows the layout of the plant floor 
where there are six available locations to assign machines. Table 2 gives the distances 
between the locations on the plant floor. Assume MHC is $1 per product unit per unit of 
distance for all parts. A possible solution for the IMALP instance is given in Figure 2 
(i.e. machine layout) and Table 3 (i.e. product flows between machines assigned to 
locations). Figure 2 shows that a machine of type 3 is assigned to location 1, a machine 
of type 2 is assigned to location 2 and so on. Notice that the machine layout 
includes replicated machines (i.e. two machines of type 3, one at location 1 and another at 
location 6). In addition, Table 3 shows product flows between machines assigned to 
locations and their respective MHC. For example, second row shows that 20 units of 
product 1 travel from the machine of type 1 assigned to location 3 to the machine of type 
2 at location 2 with a MHC of $20. Similarly, row 8 shows that 23.33 units of product 3 
travel from a the machine of type 1 at location 3 to the machine of type 2 at location 5 
with a MHC of $ 46.67. Finally, the Objective Function Value (OFV), sum of the MHC, 
for the solution is $ 285. 
Table 1 Product information 

Machine requirements [time units] 
Product (route) 1 2 3 4 

Demand 
[units] 

1 (1-2-3-4) 20 50 45 10 20 
2 (1-3-4) 25 – 55 10 35 
3 (1-2-4) 15 60 – 10 40 
Machine capacity [time units]: 2,000 2,000 2,000 2,000 – 
Available machines: 1 2 2 1 – 

Table 2 Plant floor and distances between locations 

 L1 L2 L3 L4 L5 L6 

L1 – 1 2 1 2 3 
L2 1 – 1 2 1 2 
L3 2 1 – 3 2 1 
L4 1 2 3 – 1 2 
L5 2 1 2 1 – 1 
L6 3 2 1 2 1 – 
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Table 3 Product flow solution details 

Product Flow From To MHC 

20 M1 (L3) M2 (L2) $20 
20 M2 (L2) M3 (L1) $20 

1

20 M3 (L1) M4 (L4) $20 
35 M1 (L3) M3 (L6) $35 2
35 M3 (L6) M4 (L4) $70 
16.67 M1 (L3) M2 (L2) $16.67 
23.33 M1 (L3) M2 (L5) $46.67 

3

16.67 M2 (L2) M4 (L4) $33.33 
 23.33 M2 (L5) M4 (L4) $23.33 

Figure 1 Layout of plant floor 

L1 L2 L3 

L4 L5 L6 

Figure 2 Layout of machines (solution) 

L1 

M3

L2 

M2

L3 

M1

L4 

M4

L5 

M2

L6 

M3

As stated previously, the QAP is used to assign machines to locations on the plant floor, 
while the MCMFP assigns product flows between machines such that MHC is 
minimised. More importantly, the IMALP is a generalisation of the QAP. In fact, when 
flows between machines are part of the problem input, the IMALP reduces to the QAP. 
Moreover, since the QAP is NP hard (Sahni and Gozales, 1976) the IMALP is also NP 
hard (Urban, Chiang and Rusell, 2000). In addition, problems integrating layout and 
machine flow decisions are not common in the literature. Besides the IMALP, there are 
two other problems that integrate layout and product flow assignment decisions. These 
problems are the Extended Distance-based Facility Layout problem (EDFL) introduced 
by Castillo and Peters (2003), and the dynamic extended facility layout problem 
presented in Jaramillo and McKendall (2004). Another problem that is related, but 
considers only a single commodity (grain) is the problem of assigning silos to locations 
such that the sum of transportation and investment cost is minimised, which was 
presented by Foulds (2005). A major difference is that only one commodity is 
considered. For a recent review for the problem of assigning departments to locations, see 
Singh and Sharma (2006). 
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Considering that the IMALP is a computationally difficult problem, approximation 
techniques are required to find good solutions for medium and large size problem 
instances. It is important to mention that approximation techniques rely on evaluating a 
good amount of machine layouts. Consequently, for each machine layout, such as the one 
shown in Figure 2, there is a need to solve a corresponding MCMFP in order to find the 
optimal product flows between machines. Also, recall that MCMFP is a linear 
programming problem which can be solved in acceptable computational times by 
well-known techniques (i.e. simplex and interior point methods). In fact, flows shown in 
Table 2 were obtained by solving a MCMFP optimally for the layout shown in Figure 2. 
Moreover, in the MCMFP machines are represented by nodes, and paths between 
machines are represented by arcs. For a detailed description of MCMFP including a 
mathematical formulation, the reader is referred to Kennington (1978). Unfortunately, 
solving a large amount of MCMFP to optimality (i.e. one MCMFP for each possible 
machine layout) requires a large amount of computational time, making approximation 
algorithms for the IMALP computationally expensive. In addition, the number of 
constraints and variables of MCMFP increases rapidly with the size of the problem. 

In order to solve the IMALP, Urban, Chiang and Rusell (2000) presented a Greedy 
Randomised Adapted Search Procedure (GRASP) metaheuristic that solves the problem 
iteratively. First, the algorithm generates an initial set of flows between machines. Then, 
GRASP is used to solve the MLP (QAP) while keeping flows between machines fixed. 
After solving the MLP (i.e. finding a ‘good’ machine layout), the MCMFP is solved 
again in order to find optimal product flows between machines for the ‘good’ machine 
layout. Then, GRASP is used with the new set of product flows. Finally, the procedure is 
repeated until no improvement is obtained when applying GRASP and solving the 
MCMFP consecutively. It is important to mention that Castillo and Peters (2003) applied 
a similar approach for the EDFL which uses simulated annealing instead of GRASP. 

The purpose of this article is to introduce an alternative mathematical formulation, 
and to present a TS heuristic and a MA for the IMALP. The remaining of this work is as 
follows. Section 2 contains a new mixed integer linear programming model for the 
IMALP. Section 3 presents a TS heuristic and a MA. Section 4 discusses the results of 
the proposed heuristics obtained on a set of test problems taken from the literature. 
Finally, Section 5 summarises the findings of this work. 

2 Mathematical formulation 

Following is an alternative formulation for the IMALP. The alternative formulation 
incorporates the information about product routes. Also, the cubic term in the original 
IMALP formulation presented in Urban, Chiang and Rusell (2000) is replaced by a 
quadratic term. Therefore, the number of variables required to linearise the mathematical 
model is reduced. The following include the notation and formulation of the alternative 
mixed integer non-linear programming model for the IMALP. 

Indexes: 

p:  Product, p = 1, , P.

i, j:  Location, i, j = 1, , N.
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m:  Machine type: m = 1, , M.

o:  Operation: o = 1, , Op, where Op is the number of operations required by 
product p.

Parameters: 

dij:  Distance from location i to location j.

Demp:  Demand of product p.

cp:  Cost of moving one unit of product p one distance unit. 

Cm:  Capacity of machine type m (in time units). 

Rm:  Machine type m replicas. 

Tpom: 1 if part p requires machine of type m at operation o. 0 otherwise. 

rpo:  Processing requirements of product p at operation o in time units per product 
unit. 

Variables: 

xp
ij:  Flow from machine at location i to machine at location j of product p.

ymi:  1 if a machine of type m is assigned to location i. 0 otherwise. 

Mathematical model: 

1 1 1

Min
N N P

p
ij p ij

i j p

d c x  (1) 

Subject to: 

1

1
M

mi
m

y i  (2) 

1

N

mi m
i

y R m  (3) 

,1,
1 1 1

Dem
N N M

p
p m ij mi p

i j m

T x y p  (4) 

1

1 1 1 1 1

,
p

p p

ON P P N
p p

po pom ij mi pO pO m ji mi m mi
j p o p j

r T x y r T x y C y i m  (5) 

, 1,
1 1

, , , 2, ,
M M

p p
p o m ij mi pom ij mi p

m m

T x y T x y p i j o O  (6) 
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, 1, , 1,
1 1 1 1

, , 2, , 1
N M N M

p p
p o m ij mi p o m ij mi p

i m i m

T x y T x y p j o O  (7) 

0 ,p
ijx i j  (8) 

[0,1] ,miy m i  (9) 

Objective function (1) minimises total MHC. Constraint set (2) ensures that only one 
machine is assigned to each location. Constraint set (3) ensures that the correct number of 
replicas of each machine type is assigned to the plant floor. Constraint set (4) ensures that 
product demands are met. Constraint set (5) guarantees that machine capacities are not 
exceeded. Constraint set (6) ensures that product flows follows their respective routes. 
Constraint set (7) ensures flow conservation. Constraint sets (8) and (9) restrict the 
decision variables. Notice that the mathematical formulation above is non-linear. 
However, the formulation can be linearised by adding a new variable p

ijmw  that replaces 

the product p
ij mix y  and by including the following constraints: 

Dem 0 , , ,p
ijm p miw y p i j m  (10) 

0 , , ,p p
ijm ijw x p i j m  (11) 

Dem Dem , , ,p p
ij ijm p mi px w y p i j m  (12) 

0 , , ,p
ijmw p i j m  (13) 

Because of the large amount of variables and constraints generated by the above 
mathematical formulation, only small instances can be solved in acceptable 
computational times. Therefore, heuristics need to be developed to find good solutions 
for medium and large size problems. 

3 Metaheuristics 

As mentioned before, two metaheuristics, a TS and a MA, are presented for the IMALP. 
This section is divided in five subsections. Section 3.1 defines a solution representation 
for the IMALP. Section 3.2 introduces a steepest descent pairwise exchange heuristic. 
Construction algorithms are presented in Section 3.3. Sections 3.4 and 3.5 describe a TS 
heuristic and a MA, respectively.  

3.1 Solution representation 

Recall that the IMALP can be viewed as the combination of the QAP and the MCMFP. 
Therefore, the machine layout (i.e. QAP solution) can be represented as a permutation of 
machines or vector S = (s(1), …, s(i), …, s(N)). Each position i in S represents a location, 
s(i) represents a machine type assigned to location i, and N is the total number of 
locations. For example, the layout shown in Figure 2 can be represented as S = (3, 2, 1, 4, 
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2, 3). That is, a machine of type 3 is assigned to location 1 (i.e. s(1) = 3), a machine of 
type 2 is assigned to location 2 (i.e. s(2) = 2), and so on. Once machines have been 
assigned to the plant floor, the OFV, f(S), and flows between machines/locations are 
obtained by solving the corresponding MCMFP optimally. 

3.2 Construction algorithm 

Construction algorithms are used to build initial solutions. Two construction algorithms 
are presented here. The first one, called CA1, assigns machines in order according to its 
type and availability. That is, starting with the set of available machines M = {1, 2, 2, 3, 
3. 4} CA1 assigns one machine of each type from M to the first 4 locations (i.e. s(1) = 1, 
s(2) = 2, s(3) = 3, and s(4) = 4)). Then, the process is repeated for the machines 
remaining in M (i.e. M = {2, 3}) until all machines are assigned (i.e. s(5) = 2 and 
s(6) = 3). Therefore, CA1 will generate the initial solution S = (1, 2, 3, 4, 1, 2). The 
second construction algorithm, CA2, randomly assign the machines in M to locations. An 
example of CA2 is the initial solution S = (3, 2, 3, 1, 4, 2).  

3.3 Steepest descent Local Search technique 

Local Search (LS) techniques have a fundamental role in metaheuristics such as TS and 
simulated annealing. These techniques start with an initial solution (i.e. current solution) 
and explore neighbouring solutions in order to find better solutions (i.e. to improve the 
current solution). The search technique used in this work is a steepest descent pairwise 
exchange LS technique. Consequently, LS explores neighbouring solutions by 
exchanging locations between pairs of machines of different type in the current 
solution S. Each pairwise exchange is called a move. For example, using the solution 
shown in Figure 2 as the current solution S = (3, 2, 1, 4, 2, 3), a move is to exchange 
machine of type 2 in location 2 (i.e. s(2) = 2) with machine of type 1 at location 3 (i.e. 
s(3) = 1). After performing the move, the new solution is S* = (3, 1, 2, 4, 2, 3). Notice 
that exchanging 2 machines of the same type do not generate a new layout (i.e. 
exchanging the machine of type 3 at location 1 with the machine of type 3 at location 6). 
Therefore, exchanging two machines of the same type is not considered as valid move. 
As a consequence there are 13 possible moves for S.

After generating each new solution, it is necessary to obtain f(S*). As it was 
mentioned before, f(S*) can be obtained by solving the corresponding MCMFP. 
However, since at each iteration of the LS, a large amount of neighbouring solutions can 
be generated for large size problems, solving the MCMFP for each one of these layouts is 
computationally expensive. In fact, when problem instances increase in size (i.e. number 
of locations and number of products increases), the size of the MCMFP grows rapidly 
(i.e. number of variables and constraints increases). Alternatively, f(S*) can be estimated 
by fixing flows between machines and updating f(S) after each move accordingly. In fact, 
this alternative method is used in Urban, Chiang and Rusell (2000) and Castillo and 
Peters (2003), and the reader is referenced to these papers for a more detailed 
explanation. It is important to mention that the alternative method reduces the amount of 
computational time required to solve the corresponding MCMFP. On the other hand, 
solutions obtained with the alternative method are not guaranteed to be optimal. That is, 
the estimated OFV can be far from the optimal OFV. Table 4 shows the results obtained 



      

      

   82 J.R. Jaramillo and A.R. McKendall    

      

      

      

for f(S*) using the alternative method and solving the corresponding MCMFP optimally. 
Notice that the alternative method uses the same product flows as the current solution 
Table 4 f(S*) Update comparison 

Alternative Optimal 
Product From To Flow MHC Flow MHC 

M1 (L2) M2 (L3) 20 $20 20 $20 
M2 (L3) M3 (L6) 20 $20 20 $20 

1

M3 (L6) M4 (L4) 20 $40 20 $40 
M1 (L2) M3 (L1) 35 $35 35 $35 2
M3 (L1) M4 (L4) 35 $35 35 $35 
M1 (L2) M2 (L3) 16.67 $16.67 6.67 $6.67 
M1 (L2) M2 (L5) 23.33 $23.33 33.33 $33.33 

3

M2 (L3) M4 (L4) 16.67 $50 6.67 $20 
 M2 (L5) M4 (L4) 23.33 $23.33 33.33 $33.33 

(see Table 3), therefore f(S*) = $263.33. On the other hand, solving the MCMFP 
optimally reassign some of the product flows between machines leading to 
f(S*) = $243.33. Moreover, S* with the optimal set of flows between machines is the 
optimal solution of the simple example presented earlier. That was verified by solving the 
problem instance using the above mathematical formulation for the IMALP. 

Last, LS selects the best neighbouring solution (i.e. S**) and makes it the new current 
solution (i.e. S = S**). Then, the process is repeated until LS is not able to find a 
neighbouring solution that improves S.

3.4 Tabu Search 

TS is a metaheuristic that uses memory to guide LS during the algorithm execution. 
Memory allows TS to escape from local optima and to diversify the search by exploring 
different regions of the solution space. TS was introduced by Glover (1986) and is 
explained in detail in Glover (1989, 1990). In addition, TS have been used for the QAP 
with good results. Among TS for the QAP are the simple TS of Skorin-Kapov (1990), the 
robust TS (Taillard, 1991), the reactive TS (Battiti and Tecchiolli, 1994) and the TS with 
mutation operators for solution diversification (Misevicius, 2005). 

The main components of the TS heuristic are the tabu list (TLIST), the Tenure Length 
(TL), the aspiration criterion, the stopping criterion, and the parameter x. TLIST keeps 
track of the most recent moves. That is, every time a new current solution S is obtained, 
TLIST is updated accordingly to the move leading to S**. Table 5 shows TLIST after 
exchanging machines at locations 2 and 3 in S = (3, 2, 1, 4, 2, 3) that leads to S** = (3, 1,
2, 4, 2, 3). Columns in the list represent locations and rows represent machine types. 
Therefore, according to the list, a machine of type 2 cannot visit location 2 for the next 
TL iterations, and a machine of type 1 cannot visit location 3 for the next TL iterations. 
Therefore, TL is the number of iterations a move is tabu. That is, if a machine of certain 
type left a location, a machine of the same type cannot be assigned to that location for the 
next TL iterations. 
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Table 5 Tabu list example 

 L1 L2 L3 L4 L5 L6 

M1 – – TL – – – 
M2 – TL – – – – 
M3 – – – – – – 
M4 – – – – – – 

The aspiration criterion removes a move from TLIST if the move leads to the best 
solution ever found (i.e. Sbest). The stopping criterion terminates the algorithm after 
certain number of consecutive iterations (ITER) without improvement (STOPITER). 
Finally, the parameter x, is used to decide if f(S*) is obtained by solving the MCMFP 
optimally, or if f(S*) is estimated by fixing flows between machines and updating f(S*) 
accordingly. The main idea behind x is to solve the MCMFP optimally when the search 
reaches promising areas of the solution space. On the contrary, when the search arrives to 
areas with low quality solutions, f(S*) is estimated using the alternative method explained 
above. More exactly, if the difference between f(S) and f(Sbest) is less than x, the MCMFP 
is solved optimally. Otherwise, flows between machines are kept fixed, and f(S*) is 
estimated accordingly. Following is an outline of the TS heuristic for the IMALP 

Step 1. Initialise heuristic parameters: TLIST, TL, x, ITER, STOPITER.  

Step 2. Obtain an initial solution, S0, using one of the construction algorithms given 
above (used CA1). 

Set Sbest = S0, and set f(Sbest) = f(S0).

Set S = S0, and set f(S) = f(S0). 

Step 3. Evaluate all possible pairwise exchanges for solution S.

If f(S) – f(Sbest) x

Fix product flows between machines and estimate f(S*) for each neighbouring 
solution as explained above. 

Else 

Solve MCMFP optimally to find f(S*) for each move.  

Select best admissible move (defined as move*), and perform move* on solution S to 
obtain new solution S**. Best admissible move is defined as the best non-tabu move or 
the tabu move that overrides tabu restriction. 

Set S = S**, and set f(S) = f(S**). 

If f(S**) < f(Sbest)

Update f(Sbest) = f(S**), and set Sbest = S*. 

Set ITER = 0 

Else 

ITER = ITER + 1 

Step 4. Update TLIST as explained above. 
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Step 5. If ITER  STOPITER. 
Go to step 3. 

Else 

Terminate the search. 

3.5 Memetic Algorithm 

Memetic Algorithms (MA) can be defined as evolutionary algorithms combined with one 
or more LS techniques. (Krasnogor and Smith, 2005). MA was presented first by Norman 
and Moscato (1989). Moreover, MA combines the diversification strengths of Genetic 
Algorithms (GA) with the effectiveness of LS techniques. Recently, Drezner (2007) 
presented a MA for the QAP that combines GA with TS. Drezner (2007) reported having 
obtained the best results known in 99.4% of a set of difficult problem instances from the 
QAP literature.  

The GA component of MA presented in this research is based on Mendes, Goncalves 
and Resende (2008), and the LS technique is the same TS heuristic described in 
Section 3.4. The main components of GA are the population P, the evolution mechanism 
and the stopping criterion. P consists of a group of chromosomes. Each chromosome 
represents a solution Sk, and each solution Sk is composed of genes. Each gene is denoted 
as s(i) where i represents a location in Sk, and s(i) represents the type of machine assigned 
to location i. An example of a chromosome is S = (1, 3, 3, 4, 2, 2), and s(5) = 2 is an 
example of a gene (i.e. a machine of type 2 is assigned to location 5). Finally, the 
evolution mechanism is responsible for the evolution of P towards a more fit population. 

First, MA starts by generating an initial P = {S1, ..., Sp}. Each chromosome in P is 
generated using CA2. Moreover, each chromosome is improved using TS before entering 
the population P. In other words, each member of P is an improved chromosome. Once 
an initial P is obtained, the evolution mechanism is applied to P in order to generate a 
new population P*. The evolution mechanism consists of three components. These 
components are Elitism, Breeding and Mutation. Elitism passes the best chromosome in 
P (i.e. Sk with the lowest f(Sk)) to P*. Elitism keeps the fittest chromosomes in the 
population, making their genes available to future offsprings. Breeding generates a 
predefined number of children (i.e. offspring size). Breeding is a modification of the 
parameterised uniform crossover strategy introduced by Spears and Dejong (1991). 
Breeding generates one offspring at a time. Table 6 gives an example of breeding. First, 
two different chromosomes are selected randomly from P (i.e. Sr and St). Second, genes 
from the first parent, Sr, are passed to the offspring according to a certain probability 
(i.e. passprob). More specifically, a random number between 0 and 1 is generated for 
each gene of parent Sr. If the random number < passprob for a gene, then the gene is 
passed to the offspring. Notice that s(1) = 1, s(2) = 2, s(3) = 4, s(5) = 2 are passed to the 
offspring S*. That is, so far S* = (1, 2, 4, _, 2, _). Third, the remaining genes (i.e. genes 
that were not inherited by the offspring from Sr) are passed from St or randomly assigned 
from the unassigned machines (i.e. M – S*), such that infeasible solutions are not 
generated, which is often the drawback of GAs. Notice that s(4) from parent 2 cannot be 
assigned to the offspring, since there is only one machine of type 4 in M = {1, 2, 2, 3, 
3, 4}. On the other hand, the offspring can inherit s(6) = 3 from St. Since, there is one 
unassigned location (i.e. s(4)) and only one unassigned machine in M (i.e. a machine of 
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type 3), then that machine is assigned to the location (i.e. s(4) = 3).The final offspring is 
S* = (1, 2, 4, 3, 2, 3). The last step is to improve S* with TS before adding it to P*. 
Table 6 Breeding example 

Machine set: M = {1, 2, 2, 3, 3, 4} 

Parent 1 Chromosome (Sr) 1 2 4 3 2 3 
Parent 2 Chromosome (St) 2 1 3 4 2 3 
Random number (0, 1)  0.67 0.34 0.15 0.86 0.45 0.81 
Probability < 0.7 = passprob Yes Yes Yes No Yes No 
Offspring chromosome S* 1 2 4 3 2 3 

Mutation generates a certain number of chromosomes (i.e. Mutated) using CA2. Each 
one of the Mutated chromosomes is improved using TS before being added to the new 
population P*. Mutation brings mutated chromosomes that are hopefully not related to 
the ones in P. These mutated chromosomes contribute to keeping the population from 
converging to a restricted area of the solution space too soon. In addition, the application 
of TS minimises the impact of small changes in existing chromosomes (i.e. traditional 
mutation strategies). In fact, changing one or two genes of a chromosome would generate 
a solution that belongs to the chromosome’s neighbourhood. Moreover, since TS is 
previously applied to the chromosome, the chromosome neighbourhood has already been 
explored. When a new population P* is generated, P* becomes P and the evolution 
mechanism is applied again until the stopping criterion is reached. The MA stopping 
criterion is to run the heuristic for a certain amount of computational time (stoptime). 
Following is an outline of the MA heuristic for the IMALP. 
Step 1. Initialise parameters: passprob, ClockTime, StopTime, Elite, OffspringSize, 

Mutated. 
Set PopulationSize = Elite + OffspringSize + Mutated.  

Step 2. Generate an initial population P.
Generate PopulationSize chromosomes using CA2.  
Apply above TS to each chromosome.  
Add chromosomes to P.

Step 3. Apply evolution mechanism. 
Select the best Elite chromosomes (chromosomes with lowest f(S)).
Add the Elite chromosomes to P*. 
Generate OffspringSize Offsprings as follows: 

Select Sr and St randomly from P such that Sr St.
Generate S* using the modified parameterised uniform crossover strategy. 
Apply TS to S*. 
Add S* to P*. 

Generate mutated chromosomes using CA2. 
Apply TS to mutated chromosomes. 
Add mutated chromosomes to P*. 
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Set P = P*. 
Step 4. If ClockTime < StopTime. 

Go to step 3. 
Else 

Terminate the algorithm. 

4 Computational results 

The metaheuristics described above were evaluated with the dataset generated in Urban, 
Chiang and Rusell (2000). The dataset consists of 21 test problems. These problem 
instances were designed using layouts from Nugent, Vollman and Ruml (1968) with 6, 8, 
9, 12, 15, 20 and 30 locations. In addition, levels of 3, 6 and 9 different products were 
considered for each layout size. 

The algorithms were coded in Visual Basic 2005, and were evaluated in a computer 
equipped with a 2.2 MHz AMD Turion 64 processor with 1 GB of memory and 
windows XP. The solver used for the MCMFP linear programme was lp_solve (version 
5.5.0.10). lp_solve is an open source (mixed integer) linear programming system which 
was developed by Berkelaar, Eikland and Notebaert (2007). Finally, optimal solutions for 
small size problem instances were obtained using the IMALP formulation presented 
above and the CPLEX solver version 6.6. 

TS initial solutions were provided using CA1. TS heuristic parameter settings were 
obtained through experimentation and they were set as follows. TL was set as 0.05* 
machine types* locations. ITER was set as machine types* locations. The parameter x
was set in such a way that MCMFP was solved optimally for approximately 50% of the 
visited solutions, for the other 50% f(S*) was estimated keeping product flows fixed. 
Similarly, MA parameters were obtained through experimentation and were set as 
follows. P = 10, Elite = 1, OffspringSize = 6, Mutated = 3, probbreed = 0.5. In addition, 
the parameters of the TS heuristic embedded within the MA were set as before with the 
exception of ITER, which was set as ITER = locations. MA stopping criterion was set as 
one-third of the time used by TS. That is, 3 runs of MA used the same computational 
time as 1 run of TS so that a fair comparison is made between the performances of the 
proposed heuristics.  

Table 7 summarises the results obtained. The first column is the problem 
identification. The second column corresponds to the best OFV obtained by the GRASP 
heuristics presented in Urban, Chiang and Rusell (2000). The third column is the 
computational time used by one run of the TS heuristic and three runs of MA combined. 
The fourth column gives the results obtained using the proposed TS heuristic and the last 
3 columns correspond to the OFV obtained for each one of the three different runs using 
the MA. Notice that values in bold represent best found solutions. Also, values with 
asterisk represent OFV of optimal solutions obtained with the IMALP formulation 
presented above. Comparing TS with GRASP, it can be seen that TS performed better in 
9 instances, equal in 10 instances and worse in 1 instance. Similarly, when comparing 
MA with GRASP, MA obtained same solutions for 10 problems and better solutions in 
the remaining 11. Also, when comparing MA with TS, it can be seen that MA obtained 
better results in three instances and same results in the remaining 18 instances. Moreover, 
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MA obtained the best solutions in all the runs with the exception of the first run of 
instance 19. This is an indication that the size problems in the dataset is relatively small. 
Table 7 Heuristics results 

Inst GRASP Time TS MA

1 243.33* 0.01 243.33* 243.33* 243.33* 243.33* 
2 1,317.2* 0.01 1,317.20* 1,317.20* 1,317.20* 1,317.20* 
3 320.00* 0.01 320.00* 320.00* 320.00* 320.00* 
4 357.50* 0.01 357.50* 357.50* 357.50* 357.50* 
5 6,708.33* 0.01 6,708.33* 6,708.33* 6,708.33* 6,708.33* 
6 558.00* 0.02 558.00* 558.00* 558.00* 558.00* 
7 241 0.02 239.29* 239.29* 239.29* 239.29* 
8 110.67 0.03 107.45* 107.45* 107.45* 107.45* 
9 3,298.00* 0.03 3,298.00* 3,298.00* 3,298.00* 3,298.00* 
10 55.09* 0.06 55.09* 55.09* 55.09* 55.09* 
11 1,008.00 0.12 966 966 966 966 
12 6,051.38 0.34 6,051.38 6,051.38 6,051.38 6,051.38 
13 5,590.00 0.17 5,590.00 5,590.00 5,590.00 5,590.00 
14 2,193.63 0.59 2,186.96 2,184.96 2,184.96 2,184.96 
15 623.08 0.95 619.11 613.1 613.1 613.1 
16 1,245.80 0.9 1,232.28 1,232.28 1,232.28 1,232.28 
17 425.7 3.18 422.32 422.32 422.32 422.32 
18 13,100.00 3.24 13,100.00 13,100.00 13,100.00 13,100.00 
19 13,157.98 14.63 12,871.08 12,900.76 12,871.08 12,871.08 
20 2,111.00 32.78 2,163.25 2055 2055 2055 
21 1,373.52 103.58 1,350.31 1,350.31 1,350.31 1,350.31 

Finally, notice that TS and MA improved the best-known results in 52.4% of the 
instances and equaled the best-known results in the remaining 47.6% of the cases. These 
results suggest that solving the IMALP iteratively (i.e. solving MLP while keeping flows 
between machines fixed) restricts the search leaving promising areas of the solution space 
unexplored. Also it is important to mention that solving the MCMFP for all machine 
layouts is computationally expensive, leading to impractical algorithms. Therefore, the 
parameter x added to TS has an important role in the speed of the algorithm. Recall, if 
the cost of a solution is within x of the best found solution, the actual costs of the 
neighbouring solutions are obtained. Otherwise, the costs of the neighbouring solutions 
are estimated. More generally, the heuristic allows exploring promising areas of the 
solution space with detail and to leave non-promising areas of the solution space more 
quickly. In Addition, the strong performance of MA is explained by the combination of 
the diversification strengths of GA with the search ability of TS. That is, GA provides 
many different initial solutions (i.e. machine layouts) and TS search the neighbourhood 
of each one of these solutions effectively. Notice that each new solution (i.e. offspring) 
provided by GA represents a promising area of the solution space, since it is generated by 
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combining two good solutions (i.e. well fit parents). Also, since GA generates one 
mutated solution at each iteration, MA is prevented from converging to local optima to 
soon. 

5 Conclusions 

In this article, a mathematical formulation, a TS and a MA heuristics are presented for the 
IMALP. Both heuristics showed superior performance than the GRASP heuristic 
presented in Urban, Chiang and Rusell (2000). Also the MA algorithm performed better 
than the TS heuristic. For future research, it is recommended to develop a more extensive 
data set that considers layouts with a larger number of locations and product routes that 
resemble job shops and machine/part families. In addition, relax some of the problem 
assumptions such as determine the number of machine types and replicas instead of the 
number and type of machines given as an input. Also, maximise profits such that demand 
is not met. 
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