Generation of Regional Input-Output Tables for the Northern Territory GRIT II

G. R. West
Department of Economics, University of Queensland, St. Lucia. Q. 4067
J. T. Wilkinson
Department of Economics, University of Queensland, St. Lucia. Q. 4067
R. C. Jensen
Department of Economics, University of Queensland, St. Lucia. Q. 4067

Follow this and additional works at: https://researchrepository.wvu.edu/rri_iotheorymethods

Recommended Citation

West, G. R.; Wilkinson, J. T.; and Jensen, R. C., "Generation of Regional Input-Output Tables for the Northern Territory GRIT II" (1980). Theory and Methods. 18.
https://researchrepository.wvu.edu/rri_iotheorymethods/18

REGIONAL RESEARCH INSTITUTE

GENERATION OF REGIONAL INPUT-OUTPUT TABLES FOR THE NGRTHERN TERRITORY

GRIT II

Report to the Northern Territary
Department of the Chief Minister

by

G.R. West, J.T. Wilkinson, and R.C. Jensen

Department of Economics, University of Queensland, ST. LUCIA. Q. 4067.

This book is copyright. Apart from fair dealing for the pirposes of private study, research, criticism, or revies, as permitted under the Copyright Act, no part may be reproduced by any process without written permission.

Inquiries should be made to the putlisher,

ERRATA

Rlease substitute revised
pages 169 and 175

TABLE X-1 THWERSE MATRIX, 11-SECTGR OPEGM MODEL: MARUIM REEION

Isectan	1	2	3	4	5	6	7	d	,	18	11
1	1.4H68	5.5018	5.0386	4.6837	3. 4890	9. 5 H86	9.15848	2.8541	8. \% $^{\text {a }}$	¢. 5 E14	\%.
2	9. 5165	1.5128	0.1054	4. 0.326	0.005	9. 5 584		C.068:	3.1898	9.8088	3.08511
13	. 3.893	. 6.5045	1.1774	- $0^{2} 228$	9.9892	0.5846	¢.0482	3. 3 805	9.1051	8.61813	0.5984!
14	C. 6134	0.2385	\%.1958	1.1417	0.4891	0.1771	5.1088	9.1197		0.0354	9.1321
5	5.4599	S. 8889	-. 1186	0.1143	1.8575	0.5841	. .6055	-.6139	C. 8158	0.8573	0. 11911
6	6. 0196		$0.6{ }^{63}$	0. 0125	0.0235	1.4826	¢.8153	5.6286	0.52\%3	8.2532	9.8265:
171	6. 6457	. 6657	©. 1134	0.1171	6.1846	2.1219	1.8686	\%. 1278	¢. 0352	4.3388	5. 11861
f	. 3878	8.5119	S.0587	0.1276	8.5859	0.1141	. 61.103	1.1273	$4.85{ }^{5} 9$	-1269	4. 1331
19	- .0122	5.5434	¢.6新 4	- . $0^{\text {ang }}$	0.3087	6.8566	0.0356	1.6843	1.8265	0. 8472	-.69531
111	¢. 2851	\$.2055	-5.500		3.4E98	0.154	- ${ }^{\text {cin }}$	(.68519		1.1394	9.60381
111	[.3191	3.9018	1.6921	-. 513	-.0187	9.4083	5, 0129		0.0192	0.9262	1.68511

TABLE X-2 ENUERSE MATRIX, II-SECTOR OPEM MOBELz TOP EEAD REGIAH

13 CctaR	1	2	3	4	5	6	7	-	,	14	111
1	1.tant	- 5 E14	- 8801	0.6554	-. 5180	- 0.658	\%. 5 ¢1\% 1		8.51063	-6.649	5.80811
121	¢. ${ }^{-153}$	1.3546	5. 0889	\$. 5816	9. $\frac{3159}{}$	1.0892	8. 0^{818}	2.8559	A.65et	0.6438	9.3E日 11
131	9.9189	5.0369	1.1418	P. 1422	\#. 0112	C. 2258	C.f1514	1.1027		\$. 38.71	0. $\mathbf{4} 2218$
141	¢. 115	0.3875	S. 5203	1.1863	+.1889	-.1825	0.8111	-.8218	1. 1.354	4.0598	0.0159
151	. 1.1548	\$.5496	-31465	5.5142	1.1569	5.1842	$0.616{ }^{4}$	1.8839	0.8135	$9.956{ }^{\text {9, }}$	- 5193
161	6. 214	6.1179	-.1455	. 1.168	¢. 1274	1.5841	9.6161	5.8298	-.1254	0.2512	8.82771
17 :	6. $6^{\text {¢ } 735}$. 5.5799	\$.1858	0.5498	0.8109	1.1874	1.1175	5. 5520	0.0515	\$.8561	0.04181
181	5. 51376	¢. 5122	¢. 5146	1.5225	9.6451	3.8131	\$. 815	1.0269	1.1499	0.8263	8.01034:
91	-. 1939	1.1433	. 5 ER ${ }^{\text {d }}$	5.1843	7.3588	3.8577	2.8372	\%.353\%	1. 2254	8.8478	3.85891
1151	6.1817	f. 195	-. 1858	-.1189	¢.	c. ${ }^{\text {cax }}$	s. 5851		3.8501	1.1389	5.5018:
1111	C. 1113	9.th29	9. $0^{1} 26$	6.80\%7	4.8185	-	¢. 2131 1		5.6196	1. 1261	1. 1856

185		1	34	28	3	铭	4	46	485	4	5	6	7	－	\dagger	11	t1
1	1	1．		－． Patab 2	－．cost	¢．0218		－${ }^{\text {P }}$		0．01 11	©．${ }^{\text {¢ }}$（1）	0．915	©． 6151	3．1956	－	6． 0013	－08581
124	，	0.1167	1.0175	－		C． 1144	9．1超	0．0396	（ ${ }^{\text {B }}$	6．${ }^{\text {cen }}$	－． 0.85	－． 5.88			－ 6.785		
$1{ }^{1}$	1	－． 515	0．tels	1． 5 ［ ${ }^{\text {P }}$	8． 0 \％ 1	9．8111	1．軲教	6． ¢ $_{\text {ctis }}$	－． 18	－ Pefs $^{\text {c }}$	－	－${ }^{\text {¢ }}$（5）	－． 5 518	5． 5 ［19	8． 1586	－0．083	E．gesti
13	1	－ 0.311	4.0481	0.1112	1.6742		0.3 387	－．0385	0.6312	． .1372	－． 0.892	9．${ }^{1155}$	－ 51812	¢． 3054	1． 1911	． 1885	9．98848
1 4	\％	0.0334	9．${ }^{\text {（1）}}$	0．3185	9．${ }^{\text {dest }}$	1．0231	0．09105	6．ates	¢．530	¢． 0.1025				－ 0 808	6． 658	f．ases	¢．09491
14	1	1．ces3	6． ¢1 $^{\text {en }}$	0．0334	1． 8.12		1．1156	0.0811	9．3186	－．3114	0．1583	0． 512	5.0812	3． 3884	\％． 088	． 1933	－－${ }^{\text {¢ }}$ ¢ 191
145	1	9． 3081		． .8553	6．1239	C．0184	1．85152	1． 1838	－．3142	0.814	E． 1119		－ 1 ¢12	＋． 1957	9．8162	4．8123	－ .8831
1 4EE	1	－ 2035	4．3016	－+1081	0.9389	0.8315	6．0269	\％．5589	1.1772	0.1265	－ 0.5183	1．1664		4．0185	C． 5336	． 1.442	－． 5 ¢881
14	1	－． 1819	＊．${ }^{\text {clu }}$	0.1453	¢． 0.5474	4.01813	0．5318	E．0898	¢．1．436	1.1171	0．1864	S．8514	－．1823	0.1620	－．9184		1．8｜ct1
15	t	0.1087	5． 3841	－ －132 $^{\text {d }}$	0.8185		9， 3 \％45	－ 0.359	\％． 17	0.1125	1.9975	－． 6 3 42	6．	8． 815	8．115	1．8573	3．${ }^{3} 7918$
16	1	1．0196	1.1886	0.0554	－6．829	1． 1115	\％． 1483	6．1551	6． 0135	1．1122	0． 5295	1．1527	0.5153	6． 8286	1.1283	0.2532	． 32551
17	1	－ 0.8144	4．14鞔	0.1682	－． 0127	6.1176	5． 3.28	1.8112	©． 1167	4.3181	F．1846	－． 8219	1.8686	－6． 279	\％． $3^{55} 2$	C． 3388	2．${ }^{\text {cisti }}$
18	1	1.8577	－． 0183	－ 0.0983	0.8474	9．5189	0.1127	4.1874	4． 0334		－．1185	6.8147	6．1503	1.1272	0．1195	－ 4.827	
19	1	¢． 0019	0.516	¢．0448	1．514\％	－${ }^{\text {genz }}$	¢． 8.539	0.8032	0．8553	9．0186	0.1897	4．${ }^{2} 965$	6．035	－ $8.8{ }^{8} 4$	1． 2265	\＄．8472	6．ts339
111	1	－．1128	9．0185	6．1857	4．${ }^{\text {beges }}$	－ 6 ．${ }^{\text {cte }}$	8．5993	－． 193 ？	9．888	－ 0.84	5．019	－．		－ 50.93	5．${ }^{\text {暑等1 }}$	1.1394	
If1	1	\％． 1181	－ 0282	6．9815	9．4321	． 5 5384	9．0132	4．3801	¢． 183	－ 5.5180	8． 8857	4．313	0．5929	\％．9160	6． 1182	0.8262	1．4851：

TABLE XII－2 SNUERSE WATEIX，16－SECTOR OPEN WONEL TOP END REBJOM

PREFACE

In 1976 a research group at the University of Queensland were comissioned to produce input-output tables for the state and regions of Queensland. The ensuing report, which is now known as the GRIT Report (Generation of Regional Input-Output Tables) was produced for the Queensland Coordinator General's Department and the Queensland Department of Commercial and Industrial Development.

GRIT is a variable-interference non-survey based system, producing "hybrid" input-output tables. It is based on a combination of survey and non-survey methods but allows interference in the mechanical application of these methods at the discretion of the analyst.

Considerable interest in the GRIT method was evidenced on its appearance, and enthusiasm for developing GRIT type \&ables for oner areas of Australia emerged.

During early 1979 the Governments of the Northern Territory and South Australia commissioned the authors to produce input-output tables at a regional and territory-state level. Since its emergence major modifications have been made to the original GRIT procedure and the new system has been entitled GRIT II. This Report is the Northern Territory section of twin reports and contains input-output tables for the Northern Territory and its regions.

The GRIT II system is a further attempt to promote regional input-output analysis from the status of simply a research technique to that of an operational planning technique.

GRIT II provides a methodology for developing regional input-output tables at relatively low cost, but free of substantial error.

ACKMOWLEDGEMENTS

The completion of this project was made possible only with a considerable amount of assistance from many sources in terms of the provision of data, expert advice relating to the adjustment of prototype tables and material support.

Representatives of the following organisations provided valuade assistance and sound advice:
Department of the Chief Minister
Australian Bureau of Statistics
Department of Mines and Energy
Department of Primary Production
Northern Territory Development Corporation
Treasury Department
Department of Transport and Works
Northern Territory Electricity Commission.

Particular thanks are due to Mr. K. Willett for his organisational assistance and to his staff who gave freely of their time and energy, to Mr. W. Price for his assistance with the survey data, to Mr. W. Mirchell for his willing assistance with difficult data problems and to Mr. K. Willett and Mr. W. Price for their valuable comments relating to the adjustment of the prototype cables. This project was funded by the Department of the Chief Minister, and the Department of Economics at the University of Queensland provided material assistance.

Thanks are due to Mr. J. Morison, Miss M. Cowan, Mrs. C. Tves Mrs. N. Wolgast for their willing assistance in the production of this report.

[^0]
TABLE OF CONTENTS

Preface(i)
Acknowledgements(ii)
Table of Contents(iii)
List of Tables (v)
Map of Northern Territory Regions 22

1. INTRODUCTION 1
1.1 Background of the Study 1
1.2 Objectives of the Study 2
1.3 Outline of the Report 4
2. INPUT-OUTPUT TABLES AND MULTIPLIERS 5
2.1 The Input-Output Transactions Table 5
2.2 The Mathematical Structure of Input-Output 8
2.3 Input-Output Multipliers 11
2.3.1 The Structure of Input-Output Multipliers 11
2.3.2 Type 1 and Type II Multipliers 17
3. THE NORTHERN TERRITORY AND ITS REGIONS 18
3.1 Considerations in the Definition of Region 18
3.2 The Regional Boundaries 19
4. THE GRIT SYSTEM
4.1 Introduction 23
4.2 The GRIT Methodological Sequence 26
4.2.1 Phase I Adjustments to the National Table 27
4.2.2 Phase II Adjustments for Regional Imports 28
4.2.3 Phase III Definition of Regional Sectors 30
4.2.4 Phase IV Derivation of Prototype Transactions Tables 31
4.2.5 Phase V Derivation of Final Transactions Tables 34
5. GRIT II 37
5.1 Modification to the Simple Location Quotient 37
5.2 Accuracy Optimization 40
5.2.1 The Concept of Accuracy 41
5.2.2 Coefficient Errors and Their Effects on Mutlipliers 42
5.3 Modification to the Aggregation Scheme 48

6. APPLICATION OF GRIT II TO THE STATE AND REGIONS OF THE NORTHERN TERRITORY

6.1 Eleven-sector tables for the Regions of the
Northern Territory 53
6.2 A Northern Territory State Table 62
6.3 Regional Input-Output Multipliers 6.3
6.4 Summary 78

APPENDICES

APPENDIX I National Input-Output Classification in
terms of ASIC
APPENDIX II Sector Classification 83
APPENDIX III Technical Appendix 88Australian input-Output TableSuperior Data Collection
APPENDIX IV Some Reflections on Input-Output Multipliers, a paper prepared by G.R. West and R.C. Jensen 109
APPENDIX V A Procedure for Accuracy Optimization in Input-Output Coefficients, Paper prepared by G.R. West 125
APPENDIX VI Non-Uniform (16-sector) Transactions Tables 155
APPENDIX VII Multipliers: Non-Uniform Tables 158
APPENDIX VIII Matrices of Direct Coefficients, 11-sector Tables 164
APPENDIX IX Matrices of Direct Cocfficients, Non-Uniform Tables 167
APPENDIX X Inverse Matrices for 11-sector Tables (Open Model) 169
APPENDIX XI Inverse Matrices for 11-sector Tables (Closed Mode1) 172
APPENDIX XII Inverse Matrices, Non-Uniform Tables (Open Model) 175
APPENDIX XIII Inverse Matrices, Non-Uniform Tables (Closed Model) 177

(v)

IIST OF TABLES

2.1 Highly Aggregated Transaction Table, Queensland, 1973-4 6
2.2 Direct Coefficients Matrix, Oueensland, 1973-4 10
$2.32=(I-A)^{-1}$, Queensland, $1973-4 \quad 10$
2.4 Matrix of Direct Coefficients, Closed with Respect
to Households, Queensland, 1973.4
$2.5 \quad Z^{*}=(I-A)^{-1}$, Queensland, $1973-411$
2.6 First Round Income Effects, queensland, 1973-4 13
$\begin{array}{ll}2.7 & \text { Calculation of Industrial Support Output and Income } \\ & \text { Effects, Sector 1, Nueensland, 1973-4 }\end{array}$
Output and Income Effects of an Increase in Sales
to Final Demand
2.9 Sector Output Multipliers by Four Categories of Effect,
Queensland, $1973-4$
2.10 Disaggregated Output Multipliers by Four Categories
of Effect, Sector 1 , Queensland, $1973-4$
2.11 Sector Income Multipliers by Four Categories of Effect,
Queensland, $1973-4$

Disaggregated Income Multipliers by Four Categories
of Effect, Queensland, $1973-4$
2.13 Type I and II Income Multipliers, Queensland, 1973-4 17
$\begin{array}{ll}5.1 \text { Optimal Ranking: Proportional Coefficient Error - } \\ & \text { Average Multiplier Exror, Northern Territory }\end{array}$
6.1 Summary of Types of GRIT II Tables 51
6.2 List and Location of GRIT II Input-Output Results
for the Northern Territory
6.3 Eleven-sector Transactions Table, Darwin Region, 1976-7 54
6.4 Eleven-sector Transactions Table, Top Find Region, 1976-7 75
6.5 Eleven-sector Transactions Tables, Katherine-Barkly Region,
$\quad 1976-7$
6.6 Eleven-sector Transactions Table, Alice Springs Region,
$1976-7$

Eleven-sector Transactions Table, Northern Territory,
$1976-7$
6.8 Eleven-sector Output Multipliers, Darwin Region 65

VII-6	Income Multipliers, 16-sector Table, Northern Territory	161
VII-7	Employment Multipliers, 15 -sector Tathe, Darwin Region	162
VII-8	Employment Wultipliers, 16-sector Table, Top End Region	162
VII-9	Employment Multipliers, 16-sector Table, Northern Territory	163
APPENDIX VIII	Matrices of Direct Coefficients, 11-Sector Tables	
VIII-1	Direct Coefficients, 11-sector Table, Darwin Region	164
VIII-2	Direct Coefficients, 11-sector Table, Top End Region	164
V1II-3	Direct Coefficients, 11-sector Table, KatherineBarkly Region	165
VIII-4	Direct Coefficients, 11-sector Table, Alice Springs Region	165
VIII-5	Direct Coefficients, 11-sector Table, Northern Territory	160
APPENDIX IX	Matrices of Direct Coefficients, Non-Uniform Tables	
IX-1	Direct Coefficients, 16-sector Table, Darwin Region	167
IX-2	Direct Coefficients, 16-sector Table, Top End Region	167
IX-3	Direct Coefficients, 16-sector Table, Northern Territory	168
APPENDIX X	Inverse Matrices foz 11-Sector Tables (Open Model)	
$x-1$	Inverse Matrix, 11-sector Open Model, Darwin Region	169
$\mathrm{X}-2$	Inverse Matrix, 11-sector Open Model, Top End Region	169
X-3	Inverse Matrix, 11-sector Open Model, KatherineBarkly Region	170
X-4	Inverse Matrix, 11-sector Open Mode1, Alice Springs Region	170
$x-5$	Inverse Matrix, 11-sector Open Mode1, Northern Territory	171

APPENDIX XI	Inverse Matrices for 11-Sector Tables (Closed Model)	
XI-1	Inverse Matrix, 11-sector Closed Modes, Darwin Region	172
XI-2	Inverse Matrix, 11-sector Closed Model, Top End Region	172
XI-3	Inverse Matrix, 11-sector Closed Mode1, KatherineBarkly Region	173
XI-4	Inverse Matrix, 11-sector Closed Mode1, Alice Springs Region	173
XI-5	Inverse Matrix, 11-sector Closed Mode1, Northern Territory	174
APPENDIX XII	Inverse Matrices, Non-Uniform Tables (Open Model)	
XII-1	Inverse Matrix, 16-sector Open Model, Darwin Region	175
XII-2	Inverse Matrix, 16-sector Open Model, Top End Region	175
XII-3	Inverse Matrix, 16-sector Open Model, Northerm Territory	176
APPENDIX XIII	Inverse Matrices, Non-Uniform Tabies (Closed Mode1)	
XIII-1	Inverse Matrix, 16-sector Ciosed Model, Darwin Region	177
XIII-2	Inverse Matrix, 16-sector Closed Model, Top End Region	177
XIII-3	Inverse Matrix, 16 sector Closed Model, Northern Territory	178
BIBLIOGRAPHY		179

1.1 Eackgrourd of the study

In 1976, foliowing discussions betwen represutatives ai the Queensland Co-crdinator Gereral's Repartment and a research group at the Hadversity of Queensland, it was agreed that, the research grotp would produce input-cutput tables and multipliets for the state and regions of Quensland. The projece, funded both by that donerthent and fhe Queensiand Department of Comercial and Industriat Doveloment, resulted in December 1977 in the repurt now known as the CRIT report.

The researoh group faced the major prob? we tist the fethocis in current use to assomble regional input-output tubles were for sbvious reasons, msuitable for the project. The most widely used method, the survey nethod, ideally involved sample sumveys of firms in each industry in each region, of consuners, govemments and so on. Such a casik was prohibitively expensive, not only in cams of funds, but in terms of timo. Tables of this nature frequenty involve several man-vears; the tablas are Exequanty outated by the time they aro pablishot. The altomativas to the survey appraach wore a rumbor of 'non-surver' sproaches when attented to produce regional tables from national tables by ampiying 'single-sheet' conversion technigues of vartous tymes; the non-survoy tables which resulted from these procedures wha of dubione rento, and genarally accepted as of insufficient accuracy.

1. Jenson, R.C., Mandevibie, T.D, and Karumacatre, H.D. (1977, Generation of Regional mpur-Outpat Tables for buensland. Feport to the Co-ordinator Generat's Department and the bapartment of Commercial and Industrial Development, Denartment of Economics, Miversity of Quensland. Published (lyy) as kegionat Economic Plaming: Generation of Regional Irput-Output Anaiysis, Croon Helm.

Ie was ciear that a new procedure for boducing regional inputcutput tables was necessary. This procedure shoub produce tables of an acceptable degrea of accuracy in relativoly short per of of time and at relatively low cost. Following a period of theoretical ruseach, Frocedure temed the Generation of Regional inputwotput (GRT) procedure was evolved. This procedure smployed a number of mechomeal means to produce first estimates of regional input-output tables from national input-output tables, and allowed facilitics Cor operetot interference to introduce survey-based or other superion estimotes jnto the rables, according to the preferences of the analyst ${ }^{2}$

Since the emergence of the elf report, these further developnents associated with the GRIT procedure hnug occurus. Onc deveropmont has been the use of the proceduxe for toroloning and wisg GRit input-output tables for impact studies. 3 Another has been the thterest showt in evaluation and improvement of the GRET procedure. A thind developnent has been an active interost in the develomment of GRIT-type tables for ather areas of Australia. It is with the last two of these trat this report is concerned.

1.2 Objectives of the Study

During early 1979 , diswssimen took place between the atthors of this report and the governments of the Mortherre Terstory ard South Australia. Both of these govemments contssioned the authoss to produce input-output tables at a regional and rearitory-stare levei. These tables are contained in twin-reports, of which this report refers to the regions
2. The procedure is discussed in more detail in Chapter 3.
3. Mandevilie, T.D. and Jensen, R.C. (1978), The Imact of Major Development Projects on the Giadstone/Calliope, Fitzroy, Gueensland, and Australian Economies: An Aulfeation of laput-output finalysis.
Report to the Deparment of Comerchal ad Industral bevelopment and Comalco Limited, Department of Econontcs Miversity of peensiand.
and territory of the Northem Temitory. The main objentiva of this roport is therefore the portrayal of the econom of the Northen Secritory and its regions in input-output tables which aro doened to be froo of substantial error.

A second objective of this study is of some faporatace, and relates to the nature of the original GRIT methocology. This methodology consists of a number of procedural steps, each of which was considered to contribute to the ultimate accuracy and realism of the final input-output tables. Some of these shep have been the sobject of cricicism in the Literature, and were doservitg of closer attention in order to improve the accuracy of the calculation procedures. Petaas more important, howcer were some of the conclusions reached relating to the accaracy of the Grt tables. The GRIT report took a praynatic approach to the question of accuracy, suggesting that a holistic concept of accuracy was appropriate and that such accuracy could be attained by concentrating moxe effort on the larger coefficients which exert a greater influence on the sizf of the multipliers, and less on the smaller coefficients which ars, aparently, operationally irrelevans. ${ }^{4}$ Thus the GRIT report impliod a rough concept of accuracy optimisation. This report is much more emplicit with respect to this concept, and attempts accuracy optinisation as an explicit additional part of the technique. The remart provides some theorecical discussion on the aspect, and some fllustrative examples. The anthers feel that this major modification to the GRIT procebure, with the semeral minor modifucations mentioned later in the text, require this version of Gry to be distinpuished from the original predecessor, and we have attached the tithe GRT If to the procedure which actively incorporates the accuracy ontimisation procedure.

[^1]
1.3 Mutline of the Report

The prine coject of this rpoxt is the prapawtom of input-output
 are reported in Chapter 5 and in the vaxious amantioss. Two oher anpects of this report require, however, description at some length. One of wese aspects is the revisca definition of the components of input-output. multipliers used in this study. This revised deftrition will remace the conventional definitions used in the past, in all further invot-autpu work by this research tean. It is described in sone detail in hapter 2 ; a copy of a paper written by G.R. West and R.C Jensen on this tome is included in this report as Appendix $1 V$.

The second aspect requiring description at some length is the revised GRIT system. The system, as publishod in the original GRI roport is described brienty in Chapter 4. Sone sigificant chates to the original formulation are described in Chapter 5 ; those are sufficiertly significant to warrant an identifying title to the now computationai package ised in this study and the term GaIT II has boon amined.

A brief discussion of the selection of regional boudaries is provided in Chapter 3.

The report is designed so that readinlity is improved by placing the mass of techical detail in amendices.

Input-output tables and analysts have been part of the iliecature of economic analysis for some time, and it is probably not necessay in a report of this nature to include another simple outine of the techneque. A number of useful texts ${ }^{2}$ provide introductions to the technique, and these are recommended for further insights anto the power and flexibility of imput-output. This chapter pronides only a brief summary of input-output, by reference to a highly aggregated 3-sector table of the Queanisand economy.

This sumary is included primarily to demonstrate the multiplier structure and terminology used in the empirical sections of this report. The authors have been dissatisfied for sone tine with the conventional input-output multipliers and the inconsistencies in interpronation of these multipliers. They have developed a revised structars and terminology for input-output multipliers; this stmeture is considered to be sinpler: to interpret and to avoid inconsistencies in intorpretation. An outline of these inconsistencies in comventomal multiplets and of the revised multiplier format is provided in mate detand in Apendix IV.
2.1 The Input-Output Transactions Tabie

An input-output table represants an econony in texts of aggregated industrial or comodity groups, or sectors. The table traces out the value of transactions, in dollar terms, between these sectors for a yiven year. Sectors seli goods and soxvices to other sactors and to final users or final demand, and buy their inputs from other soctors and sources of primary

1. The early pages of this chopter drat heavily fiom the original GRIT report.
2. See, for cxample (a) Miemyk. W.h. (1965), Bleants of Input-Dutput Aralysis, Rewdom Howe; (b) Genexy, IVE. G Clatk, Pit. (1962), Interincustry Eccnomics, Wisey; and (c) bitiondson, H.W. (1972),

inputs. The transactions table sumanises the incersectoral flows for a given period and is conventionaly preanted in meris, fom. A highlyaggregated 3 -sector transactions table for the qumenstand econony is shown as Table 2.1. Each row indicates the saies flows from the sector to another and to final demand. From Table 2.1, Sector 1 sells $\$ 129.1$ of its output (of $\$ 1519.9 \mathrm{n}$) to fitns in the same sector, 870.5 to firm in Sector 2, \$20.6n to firms in Sector 3 , \$102.4m to household consuners as final users and $\$ 864.3$ n to other final demand sources. The colums show the purchasing patterns of the sectors. For examm, Sector 2 purchases $\$ 703.5 \mathrm{~m}$ from firms in Sector $1, \$ 78.5 \mathrm{~m}$ from fims in the same sector, $\$ 503.2 \mathrm{~m}$ fron firms in Sector 3, $\$ 946$. On from primary inputs in the firms of household labour (via wages, salaries ctc, and 4107.6π in whe form of other primary inputs.

TABLE 2.1: HIGHLY AGGREGATED TRASACTIONS TABLE, QUENGLAND, 1973-4 (Em
Intermediate Sectors

It is usual to define four quadrants (ouadranes 1 to IV) in an input-output table. Quadrant I is temed the 'intormediate" or the 'processing' quadrant. It shows the flows of transactions betwen the industrial sectors defined for the study, and, as later described, provides the analytical core of the input-output technque, quadrant II indicates sales by each sector to final demand. This quaramt in most input-ouput.

 not parchases from local inumanal soctors. it ruptesents mary yalue-added in probuction Nommaly inclucter in this quadrant fats mots

 With direct allocation ot inmorts. the buste fabo of imporece gools consmed by houscholders; this is often melatively significut entry in input-output models of small or rurd? aconomios.

The number of soctors shom in a partioubar teble is detemmed manly by tho avalability of datia and the objectives of the stuty. Al endogenous sectors of the economy are incluted within the Entomediate quadrant of the table and all exogenoms soctors in ofor quadramts. Endogenous sectors are thoss which ane assumes to te influermed ly tho intexnal structure of the conomy, whtion oxogenous sectors are those assumed to be governed by extemal infuences. Thus exports, capitat expondithre and government sponding are usually treatod as exogenous sinct finge are influonced primaxily by factors oxtena! to the repional economy poramai consumption expenditure is breated as bxogenous in rate typo of inpat output thele, the standard or "open" moter, het as 6ndusthom in the "ciosed" ur induced consumption model.

The transactions thifermabes a concise, descriptre smhenot of a pardicular economy at animt in time. It is aso a misatgregated and consistent accounting system fon an ecmomy The fint donamd components are considered to indicato the maivalont of what oft of

GRF (Gross Regional product) measures on the expenditure side, and primary inputs are the same as the receipts side liowever sirce hap or GRP accounting seeks to avoid the double-comting invorved in all the transactions leading up to final demand, it contains only part of the information represented in an input-output tade. In the vegional policy and planning context, the transactions table fives both a general understanding of the economy of a particular regior, ard inpotant information on particular aspects of the region's economy

Before discussing the output, income and employment multipliexs in some detail, it is necessary tu dustingush hotween the rrearmeat of the houschold sector in 'open' and "closed" input-output models. In open input-output models, household personal consumption is located in the final demand portion of the table, and its accompanying row comprising wages, salaries and other household income is inciuded with primary inputs. Alternatively, the input-output table may be closed aith respect to households by inserting the household row and columa into the endogenous matrix. The implications of these alternatives will become clear in the discussion on multipliers in Section 2.2.
2.2 The Mathematical Structure of Input-Output

Once the transaction tabie has been compiled, simple mathematical procedures can be applied to derive ontput, income and employment multipliers for each sector in the concmy. These procedures are illustrated briefly with accompanying connont. . The transactions table may be represented by a series of equations thus:

$$
\begin{array}{r}
x_{1}=x_{11}+x_{12}+\ldots \ldots+x_{1 n}+y_{1} \\
x_{2}=x_{21}+x_{22}+\ldots \ldots+x_{2 n}+y_{2} \\
\vdots \\
\vdots \\
x_{n}=x_{n 1}+x_{n 2}+\ldots \ldots+x_{n n}+y_{n}
\end{array}
$$

where
$x_{i}=$ Total ontput of internediate sector i (row rotals)
$x_{i j}=$ Output of sector i parchased by sector ; (elements of
$y_{i}=$ Tocessing sector) firal demand for the output of sector i

It is possible, by dividing the elewents af the colums of the transactions table by the respective colum totals to derive copthenenes which represent more chearly the murchasing pattern of eath sector. These coefficients, variously termed 'direct' or 'input-output" coefficients or less appropriately 'techmeal coeffeients', ire nomally notated as the $u_{i j}$, and represent the direct or first round requirement from the output of each sector following an increase in output of any sector.

In equation tems the model becones:

$$
\begin{gathered}
x_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots+a_{1 n} n_{n}+Y_{1} \\
x_{2}=a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots+a_{2 n} x_{n}+Y_{2} \\
\vdots \\
\vdots \\
x_{n}=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots \ldots+a_{n n} x_{n}+Y_{n}
\end{gathered}
$$

where $a_{i j}-x_{i j} / x_{j}$, when $a_{i j}$ is the input-output coefficient.

This may be represented in matrix terms:

$$
X=A X+Y
$$

where $A=\left[a_{i j}\right]$, the matrix of input-output coefficients.
The A matrix of direct coefficients for che Queensiand exampe is given as Table 2.2 .

	1	2	3
1	. 071	.174	. 005
2	. 133	. 193	. 089
3	. 123	.125	.133
Total			
Intemmediate	. 327	. 492	. 227
Houscholds	. 105	. 234	. 413
Other Primary			
Inputs	. 568	. 274	. 350
Total	1.000	1.000	1.000

Equation (1) can be extended to:

$$
\begin{gathered}
X(I-A)=Y \quad \text { where } I-A \text { is termed the Leontief matrix } \\
\text { or } X=(I-A)^{-1} Y \quad \begin{array}{l}
\text { where }(I-A)^{-1} \text { is temed the 'general solution' } \\
\text { (or simply the inverse of the open model). }
\end{array}
\end{gathered}
$$

Let this general solution be represented by:

$$
Z=(I-A)^{-1}=\left[z_{i j}\right]
$$

This open inverse is given for the Queensland example by
Table 2.3.

The input-output table can be "closed" with respect to certain elements of the table. Closure involves the transfer of an item from the exogenous portions of the table (exclusively Quadrants II, III and IV) to
inclusion in the endogenous section of the tabie (obatrant i); clesmer implies that the anaiyst considers that the toans ierred item is relatsu more to the level of local enonomic activity thon to external influences. Closure of input-output tables with respect to housent? is common: this is illustrated for the Queensland table in Table 2.4.

TABLE 2.4: MATRIX OF DIRECT DOLFETCIENTS, LOSED WTTH RESLCT TO HOUSBHOLS, OUEENGLAD

	1	2	3	Houscholds
1	.071	.174	.005	.036
2	.133	.193	.089	.273
3	.123	.125	.133	.52
Households	.105	.234	.43	-

We refer to the 'closed' or 'augmented' matrix as A "; the inverse of the Leontief matrix formed from A^{*} is given by $Z^{*}:\left(1-A^{*}\right)^{-1}$, and is provided for this example in Table 2.5 .

TABLE 2.5: $Z^{*}=\left(1-A^{*}\right)^{-1}$, QUEENSLAND, $1973-4$

	1	2	3	Households
1	1.165	.332	.138	.204
2	.378	1.604	.505	.710
3	.456	.689	1.752	1.102
(Total)	(1.999)	(2.625)	(2.395)	
Households	.399	.695	.856	1.64 .3

2.3 Input-Ontput Multipliers

2.3.1 The Structure of Input-Output Mirtipliers

This section avoids the use of the conventional terms "direct" and "indirect" because of the confusion of meaning artracted to these terms, as outlined in Appendix $1 \mathrm{~V}, 3^{3}$

A multiplier is essentially a measurement of response to an economic stimulus. In the care of input-output mitipliers the stimulus
3. This section draws heayily from the paper reproduced in Appendix IV.
is normally assumed to be an increase of one dollar in sales to finat. demand by a sector, and we are jotemed in the major categories of response in terms of output and income inreanes. These major catcgories of effect/response are listed below. They are:
(i) The Initias Effect. This Eferio tho asmumed dollit increase in sales; it is the stimulus. It is the unity base for the output multiplier and provides the identity matrix of the Legntuf motrix. Associsted disectly with this dollat increase in output is an own-sector increase in household (1H) income in wages, salaries etc. used in the procuction of that dollar of output. This is the household coefficient h_{i} i $\$ 0.105$ for Sector 1). Associated also will be an own-sector increase in employment, determined by the size of the employment coefficient.
(ii) The First-Round Effect. This refers to the effect of the first-round of purchases by the sector providing the additionat dollar of output. Clearly in the case of the output multipliex this is shown in the elements of the direct coefficients matrix (Table 2.2). For example, the direct effect of an increase of one dollar in the output of Sector 1 is $\$ 0.071$ on Sector 1 , $\$ 0.133$ on Sector 2 , and $\$ 0.123$ on Sector 3 (these are termed the disaggrogated direct effects) or a total of $\$ 0.327$ on all intermediate sectors of the economy. The disaggregated effects are given by the individual $A_{i f}$, and the total first-round effects by the $\sum_{i} a_{i j}$.

First-round income effects are calculated by multiplying the first-round output effects by the appropriate lli incone coefficients, as shown in Table 2.6. The total first-round income effect is given by $\sum_{i} a_{i j} h_{i}$, in this case $\$ 0.039$, and

TABLE 2.6: FIRST-ROUND INCOST EFRECTS, SBCTOR 1, QUIENSLAND, 1973-4

Sector	$a_{i!}$	h_{i}	$a_{i 1} h_{i}$
1	.071	.105	.007
2	.133	.234	.031
3	.123	.413	.051
	First-Round Income Effect	$=$.089

the disaggregated income effects, or the extent to which 101 income increases in each sector due to the first-round output effects, is given by the individual $a_{i j}{ }_{i}$, i.e. in this case $\$ 0.007$ in Sector $1, \$ 0.031$ in Sector 2 and $\$ 0.051$ in Sector 3.
(iii) Industrial Support Effects. This term is applicd here to "second and subsequent round" effects, as successive waves of output increases occur in the conomy to provide industrial support as a response to the dollar increase in output per se. The term excludes any increases caused by increased household consumption. Output effects are calculated from the open Z inverse (Table 2.3), as a measure of industrial response to the first-round effects. The industrial support output requirements must be calculated as the clements of the colunms of the Z inverse, less the intial dollar stimulus and the first-round effects, as shown in fable 2.7. This tuble shows that the industrial support effects of an increase of one dollar in the

TABLE 2.7: CALCULATION OF INDUSTRTAL SUPPORT OUTPIT NNI INCOME FEFFECTS, SECTOR 1, QUEENSLAND, 1973-4

Sector	z	Initial	First-	$1 \mathrm{l} \mid$	Industrial Sunport Effects	
	column	Stimulus	Round $\overline{E f f e c t}$	goefficient	Output ${ }^{(a)}$	Income $^{(b)}$
	(1)	(2)	(3)	(4)	(5)	(6)
1	1.116	1.000	. 071	. 19.5	. 045	. 10 ?
2	. 205	-	. 133	. 33.1	. 072	.01"
3	. 188	-	. 123	. 113	. 065	.02\%
	1.509	1.000	. 327		. 182	. 049
(a)	Column (1) less columns (\therefore) \& (3)Column (5) by colum (4)					
(b)						

sales of Sector 1 to final demand are $\$ 0.045$ on Sector 1 , $\$ 0.072$ on Sector $2, \$ 0.065$ on Secter 3 , or a total of $\sum_{i} z_{i j}-1-\Sigma a_{i j}$ over all sectors of $\$ 0.182$. The industrial support income effects for each sector will be defined consistently with the output effects as column (5) of Table 2.7 multiplied by the H income coefficients i.e. individually in disaggregated income effects as $\mathbf{z}_{i j}{ }^{h_{i}}-h_{i}-\mathbf{a}_{i j} h_{i}$, or as total industrial support income effects as $\sum_{i}{ }^{z}{ }_{i j} h_{i}{ }^{-h_{i}}{ }^{-a_{i j}} h_{i}$.

The first-round and industrial support affects are together termed the production-induced effect.
(iv) Consumption-induced Effects. The consumption-induced effect is defined in a manner similar to that used in conventional input-output multipliers, namely as that induced by increased HH income associated with the original dollar stimulus in output. The consumption-induced output effects are calcuiated in disaggregated form as the difference between the corresponding elements of the open and closed inverse i.e. $z_{i j}^{*}-z_{i j}$, and in total as $\underset{i}{ }\left(z_{i j}^{*}-z_{i j}\right)$. The consumption-induced incone effects are simply these output effects multiplied by the household coefficients, i.e. $z_{i j}^{*} h_{i}-z_{i j} h_{i}$ for each disaggregated effect and $\sum_{i}\left(z_{i j}^{*} h_{i} \cdots z_{i j} h_{i}\right)$ for the total consumption-induced income effect.

The four effects are summarised in Table 2.8. It shouid be noted that employment multipliers are calculated by substituting the employment coefficient e_{i} for the household coefficient h_{i} in Table 2.8.

TABLE 2.8: OUTPUT AND INCGME EFFECTS OF AN INCREASE IN SALES TO FINAL DEMMND

	Output Multipliers		Income Multipliers	
	General Case	Example	General Case	Example
(i) Initial Effect	1	1	h_{i}	. 105
(ii) First Round Effect	$\sum_{i}{ }^{\text {a }}$ ij	. 327	$\sum_{i} a_{i j} h_{i}$. 089
(iii) Industrial Support Effect		. 182	$\sum_{i} b_{i j} h_{i}-h_{i}-a_{i j} h_{i}$. 049
(iv) Induced Effect	$\sum_{i} b_{i j}^{*}{ }_{i}^{-E} b_{i j}$. 490	$\sum_{i} b_{i j}^{*} h_{i}-\Sigma b_{i j} h_{i}$. 155
Total	$\sum_{i} b_{i j}^{*}$	1.999	$\sum_{i} b_{i j}^{*} h_{i}$. 393

Output multipliers for the Queensland example are shown in Tables 2.9 and 2.10, and revised income multipliers of consistent definition in Tables 2.11 and 2.12. These multipliers indicate for example that a dollar increase in sales of sector 1 to final demand results in:
(i) an initial income increase to the workers/staff/owners in Sector 1 of $\$ 0.105$.
(ii) first-round output effect on all sectors of $\$ 0.327$ ($\$ 0.071$ in Sector 1, $\$ 0.133$ in Sector 2, and $\$ 0.123$ in Sector 3), accompanied by a first-round income increase of $\$ 0.089$, being $\$ 0.007, \$ 0.031$, and $\$ 0.051$ in each sector.
(iii) industrial support output effects of $\$ 0.182$ (being $\$ 0.045$, $\$ 0.072$ and $\$ 0.065$ in the three sectors), which in turn are accompanied by income increases of $\$ 0.049$, being $\$ 0.005$, $\$ 0.017$ and $\$ 0.027$ respectively.
(iv) consumption-induced output effects of $\$ 0.490$ 〔 $\$ 0.049, \$ 0.173$ and $\$ 0.268$ respectively in the sectors) and accomanying consumptioninduced income increases of $\$ 0.156$, being in each sector $\$ 0.005, \$ 0.040$, and $\$ 0.110$ respectively.

TABLE 2.9: SECTOR OUTPUT MULTIPLIERS BY FOUR CATEGORIES OF EFFECT QUEENSLAND, 1973-4

Sector	Initial	First Round ${ }^{(a)}$	$\frac{\text { Industrial }}{\text { Surport }}^{\text {(b) }}$	$\underline{\text { Induced }}^{(\mathrm{c})}$	$\operatorname{Tota1}^{(d)}$
1	1.000	. 327	. 182	. 490	1.999
2	1.000	. 492	. 280	. 853	2.625
3	1.000	. 227	. 119	1.049	2.395

(a) from Table 2.2
(b) from Table $2.2 \& 2.3$, using formula (iii) of Table 2.8.
(c) from formula (iv) of Table 2.8.
(d) from Table 2.5 .

TABLE 2.10: DISAGGREGATED OUTPUT MULTIPLIERS, BY FOUR CATEGORIES OF EFFECT, SECTOR 1, QUEENSLAND, 1973-4

Sector	Initial	First Round ${ }^{(a)}$	$\frac{\text { Industria1 }}{\text { Support }}$	Induced ${ }^{(c)}$	$\operatorname{Tota1}^{(d)}$
1	1.000	. 071	. 045	. 049	1.165
2	-	. 133	. 072	. 173	. 378
3	-	. 123	. 065	. 268	. 456
	1.000	. 327	. 182	. 490	1.999
	(a) from	le 2.2.			
	(b) from	ble 2.7			
	(c) from	ction (iv) of tex			
	(d) from	1e 2.5.			

TABLE 2.11: SECTOR INCOME MULTIPLIERS BY FOUR CATEGORIES OF EFFECT, QUEENSLAND, $1973-4$

Sector	Initial ${ }^{(a)}$	First Round ${ }^{\text {(b) }}$	$\frac{\text { Industrial }}{\text { Support }}^{\text {(c) }}$	Induced ${ }^{(d)}$	Total ${ }^{(c)}$
1	. 105	. 089	. 049	. 156	. 399
2	. 234	. 115	. 074	. 272	. 695
3	. 413	. 077	. 032	. 335	. 857

(a) from Table 2.2.
(b) from Table 2.6 \& similar calculations.
(c) from Table 2.7 g similar calculations.
(d) from section (iv) of text.
(e) from Table 2.5 .

TABLE 2.12: DISAGGREGATED INCOME MULTIFLIERS BY FOUR CATEGORIES OF EFFECT, SECTOR 1, QUEENSLAND, 1973 -4

Sector	$\underline{\text { Initial }}^{(\mathrm{a})}$	First Round ${ }^{\text {(b) }}$	$\frac{\text { Industrial }}{\text { Support }} \text { (c) }$	$\underline{\text { Induced }}^{(d)}$	Total
1	. 105	. 007	. 005	. 005	. 122
2	-	. 031	. 017	. 040	. 088
3	-	. 051	. 027	. 110	. 183
	. 105	. 089	. 049	. 155	. 398

(a) from Table 2.2.
(c) from Table 2.7.
(b) from Table 2.6.
(d) from section (iv) of text.

2.3.2 Type I and Type II Multipliers

The output multipliers are calculated on a 'per unit of initial effect' basis - i.e. output responses to a dollar change in output. Income multipliers as described above refer to changes in income per dollar initial change in output. Incone multipliers are conventionally converted to a 'per unit' measurement by the calculation of Type I and II multipliers as:

Type IA Income Multiplier $=\frac{\text { Initial }+ \text { First Round cffects (IF) }}{\text { Initial effects (T) }}$
Type IB Income Multiplier $=\frac{\text { Initial }+ \text { Production-induced effects (IP) }}{\text { Initial effects (I) }}$
Type II Income Multiplier = Initial + Production-induced * ConsumptionInitial effects (I)

The Type I and II income multipliers for the Queensland example are given in Table 2.13. The Type IA multiplier illustrates, for example that for each dollar of initial income effect (as a result of increased outpur) in sector 1 , associated first-round effects will be $\$ 0.85$; when industrial support effects are included (Type IB), associated incone effects will be $\$ 1.31$, and when consumption-induced effects are included (Type II), associated income will be $\$ 2.80$.

TABLE 2.13: TYPE I AND II INCOME MULTIPLIERS, QUEENSLAND, 1973-4

3.1 Considerations in the Definition of Region

Consideration of what constitutes a region and of how the nrtion/ state may be subdivided into a system of regions is a prerequisite for any economic analysis at the regional level. The choice and definition of a region is constrained by the number of regions to be considered, and this number depends on the form and nature of the analysis. The approximate number of regions to be considered has to be predetermined before regional delimitation can be attempted.

One approach to the definition of a region is based on the notion that separate spatial units which exhibit particular common characteristics may be linked together to form an homogeneous region. Such characteristics might include similar production structures or consumption patterns, the prevalence of a dominant natural resource or even non-economic variables such as similar typography or climate. However, some areas which can be linked on the basis of some particular characteristics will at the same time exhibit other characteristics which enable them to be linked to a different (or neighbouring) region. This makes the task of deciding appropriate boundaries more difficult.

Differences in oconomic phenomena will generally be evident in any one region. For example, most regions will contain both urban and rural areas. Moreover, large areas are likely to exhibit an tneven distribution of population with greater numbers clustered in urban centres and fewer people scattered over rural parts. The economic significance of such features is that it becomes difficult to consider such regions as uniformly homogeneous since "large urban centres always introduce heterogeneity". 1

1. E. Ullman p. 16 quoted in Gajda, R.T. (1964) "Methods of Economic Rational ization", Geographica Polonica 4 (185), reproduced in Richardson, H.W., Regional Economics (1972), Weidenfeld and Nicolson.

There is a functional interdependence between the internal components of a region, and also between the region itself and its neighbouring regions. Internally, functional linkages, may be derived from service connections within the region, while externally, transportation networks, trade links, production links, comnunication networks, migration flows, and flows of raw materials and manufactured goods etc. link a particular region with a wider spatial framework. Thus, emphasis on one type of region rather than another may depend on the structure of the regional system considered as a whole.

If there are a number of areas with clearly defined economic structures, then the division of the national/state economy into a number of regions is made easier. However, where clearly marked geographic areas of economic specialization are not evident the choice of regional boundaries becomes more difficult and arbitrary. Therefore the choice of an ideal region is constrained by the purpose for which delimitation of a set of regions is required and by the overall structure and degree os integration of the system as a whole.

3.2 The Regional Boundaries

Since many input-output studies are commissioned by regional or national government agencies, existing administrative units often form the basis of regional boundaries. However, ideally the "regions" of an inputoutput analysis should exhibit reasonably stable interregional trade coefficients and conform to a production or supply area which preserves intact local economic structures.

The Northern Territory has a smaller range of regions in terms of economic complexity than do the other states of Australia. The more isolated regions of Katherine and Barkly exhibit a simple economic structure with one or two primary industries providing the export base,
very restricted local manufacturing (e.g. bakeries, light engineering) and the importation of most consumer goods. Ifowever, the more heavily popuiated Darwin Region exhibits many of the complexities of a modern city region.

In order to encompass the different levels of complexity of the individual regions, the study team, together with representatives of the various government departments decided to separate the metropolitan region from the other types of regions. The administrative unit which formed the basis for delineation of the regional boundaries was the Statistical Division. ${ }^{1}$

The Darwin region represented the only metropolitan region in the Territory and was considered to exhibit a sufficiently diverse economy to warrant attention in its own right. The administrative unit which formed the Darwin Region was Vernon Statistical Division. ${ }^{2}$

A number of regions were defined under the general heading of provincial regions. These generally contained a significant urban area with some manufacturing activity but where primary activities were relatively diverse.

These provincial regions included the following. ${ }^{3}$
(i) Top End Region
(ii) Katherine-Barkly Region
(iii) Alice Springs Region

The Top End Region comprises the Statistical Divisions of Daly, Vernon, Alligator and East Arnhem. The Katherine-Barkly Region comprises Victorian River, Elsey, Gulf Tableland and Tennant Creek Statistical Divisions. The Alice Springs Region comprises the Statistical Divisions of Tanami, Sandover and Petermann.

1. Statistical Division as defined by the Australian Bureau of Statistics.
2. See Map 1.
3. See Map 1.

Finally, a region encompassing the State as a whole facilitated the preservation of statistical consistency as well as allowing interstate comparisons to be made.

Sumarising the above, the Regional Soundaries for the Northern Territory are shown below.

Regions of the Northern Terrifory

CHAPTER 4

THE GRIT SYSTEM

This chapter provides a summary of the original GRIT procedure (Jensen, Mandeville and Karunaratne (1979)). The objective of this study was the development of techniques to provide an empirical base for regional economic planning, and to apply these techniques to the state of Queensland. It was intended to devise a system which facilitated the examination both of the economic structure of individual regions in reasonable detail, and of the regional structure of the state economy. It was considered that such a requirement could be met only by the development of a series of input-output tables relating to the state and its constituent regions. It was further recognised that the development of such a system of input-output tables would be feasible only if suitable techniques could be developed, or existing techniques modified, to derive the series of regional tables largely from national input-output tables.

Input-output analysis is potentially an excellent descriptive device and powerful analytical technique. In practice, the time and expense required to complete survey-based tables has restricted the application of the technique to 'research' rather than operational applications. Certainly input-output techniques appear to have played no significant part in most regional planning decisions made by governments, due at least partly to the inability of analysts to produce input-output tables by conventional means within the time span in which most decisions must be made.

Recent input-output literature describes attempts to produce input-output tables by non-survey, or largely mechanical means. These methods have the advantage of relative speed and low cost, but have attracted criticism for an apparently lower degree of reliability. The
current 'state-of-the-art' appeared to offer a choice between the more expensive and professionally-respected survey-based tabies and the chearer less-respected non-survey tables. The only further alternative was the so-called 'hybrid' table, which supplements mechanically produced elements of the table with insertions of survey-based data to improve the acceptability of the resulting table.

This study was the result of efforts by the authors to move input-output analysis from the category of a 'research" technique to one of operational application for regional planing and analysis. A system was developed, termed the Generation of Regional Input-Output Tables (or GRIT) system which produced variable-interference non-survey based tables, essentially hybrid in nature. GRIT relied on a series of mechanical steps to produce regional coefficients, but provided the opportumity at three stages for the insertion of 'superior data'.

The system is 'variable-interference' to the extent that the analyst is able to determine the extent to which he interferes with the mechanically-produced tables by insertion of this superior data at various stages in the development of the tables. In this way, the judgement of the analyst is incorporated into the tables. It is argued that such a system incorporates the advantages of both surveymbased and non-survey tables, and avoids the cost extravagances of the former. The GRIT system allows the calculation of tables to the degrea of accuracy which we would simply claim as 'free from significant error', rather than accuracy in detail. The implication here is one of a concept of holistic accuracy, that the table as a whole is substantially representative of the regional economy in question. It is argued also that since the smaller coefficients in an input-output table have an insignificent effect

1. The term 'superior data' refers specifically to data considered by the analyst to be "more reliable" than that produced by the mechanical process. Such data could originate from surveys, primary or secondary data sources, or simply from "well-informed sources".
on the analytical uses of the tables, the method of calculation of these coefficients is operationally irrelevant. The more significant coefficients in the tables warrant more attention, and may be corrected by the insertion of superior data. It is, therefore, probable that the analytical reliability of GRIT tables would be similar to that of surveybased tables.

The crucial question becomes then the extent of interference in the mechanical process or the extent to which superiox data is sought for insertion into the mechanically-produced table. It is tempting to conclude that this interference should be maximised subject to the resources available for the study and this would be an appropriate conclusion. An altemative approach, and one adopted in this study was to ensure that the characteristics of major or dominant industries were faithfully represented, and to search the prototype tables for any anomalies apparent to those familiar with the economic structure of the individual regions.

The GRIT system was designed to incorporate the following

features:

(a) that imput-output tables and their atcendant multipliers could be calculated for any region for which certain minimum levels of data are available, from local gevemnent areas, to 'planning' regions, to any ad hoc region devised for a specific purpose:
(b) that the regional tables be consistent with the table developed for the econony as a whole.
(c) that, although the basic GRIT methodology for producing both state and regional tables is a combination of procedures for converting national tables to regional tables, sufficient flexibility exists to allow the insertion of other data at the discretion of the analyst.
(d) that the system be capable of updating with minimum effort, as new data sources become available.
(e) that the input-output tables and multipliers derived for the state and for each region be directly comparable, both conceptually and by sector definition, and internally consistent within the system.
(f) that the application of the systam in an empirical context involve a minimum of expense and time, consistent with a reasonable degree of accuracy.
(g) that the application of the system be sufficiently uncomplicated to encourage adoption by analysts without at high level of expertise in 'conventional' approaches in the preparation of input-output tables.
(h) that the system be designed as a series of modular components, each of which might be modified by the analyst.

4.2 The GRIT Methodological Sequence

The GRIT methodological system is basically a combination and adaptation of non-survey methods in the literature, reinforced by now approaches formulated by the authors into an overall framework for application to individual regions. For each sector in the tables the objective was to convert the national input structure (cost coefficients) into the regional input structure. The national sector will differ from the regional one by three main factors: (a) imports (the main, difference arising from the greater "openness" of regional economies); (b) industrial mix, and (c) production functions. The GRIT methodology accounts for these differences and has been expressed in a sequence of firceen steps which are arranged in five phases; a brief description of the sequence follows.
4.2.1 Phase I Adjustments to the National Table

Phase I provided tor selection of an appropesate version of the rational table which provided the basic input into GRTT, and for necessary adjustments to this table to develop the most appropriate form for the subsequent calculation of regional tables. Step 1 identified the chosen version of the national tables; this was the 1968-69 109-sector table in basic values with direct allocation of all imports. Step 2, provided for adjustiment for price levels and updating, was inserted as an optional step. Procedures for these adjustments are available, and could be incorporated at the discretion of the analyst; int this application to develop regional tables for the state of Queensland, Step 2 was omitted. This decision was taken in the knowledge that updated tabies could be substituted for the 1968-69 tables if they became available. The implementation of updating and price adjustment procedures at the 109 -sector level were, in any case, beyond the resources avallable for the study.

The extent to which a nation and any of its constituent regions trade with the 'rest of the world' differs significantly, both in terms of the relative importance of trade, and the trading pattern of the various sectors. Thus Step 3 provided for adjustments to the national table for international trade, to produce a table representing a national closed economy, i.e. that the imports originally shown in the national tables were assumed to be domestically produced. This was achieved by allocating imports over the intermediate entries in the column of the national table.

Examination of the national tables indicated that the bulk of imports were of inputs to, or finished products of, secondary industries. This invited the suggestion that accuracy would be served more by restricting the reallocation of the import coefficient in each colum to those coefficients representing purchases from secondary industries within that column. This was adopted as a standard
reallocation procedure. However, it was recognised that this procedure could produce serious distortions in some sectors where it was known that naticnal imports to the sector were not primarily of secondary commodicies. A procedure was therefore implemented to allow interference in the general reallocation procedure to allow the operator to reallocate imports over any combination of the three groups i.e. primary, secondacy and tertiary sectors.

4.2.2 Phase II Adjustment for Regional Immorts

Phase I provided the reference base for that part of the GRIT system which is mechanical in nature, and from which the calculation of any number of tables referring to regions within the nation could be initiated. Phase II and subsequent phases were required with respect 0 each regional table. Phase II attempted the conversion of national trade coefficients to the first approximations of regional trade coefficients. We begin with the 109-sector matrix of national coefficientis adjusted for intemational trade, and seek to produce a matrix of regional coefficients: by applying two adjustment procedures.

The conversion of national coefficients to regional coefficients is usually stated simply in terms of decomposing the national technical coefficient $a_{i j}$ (from the national coefficient A matrin) into a regional input coefficient $r_{i j}$ and a regional import coefficient $\boldsymbol{n}_{\mathbf{i j}}$. The process of decomposition is usually based on the assumption that national and regional technical coefficients are identical, and that the decomposition will provide estimates of regional input-output coefficients $\vec{m}_{i j}$ ard inports $m_{i j}$ which are closer to survey-based coefficients than to national coefficients. We argued that since national tables are derived, in Australia at least, from transactions or flows rather than physical quantities, it is inappropriate to suggest that these national coefficients are technical coefficients in any real sense. The process of
regionalisation of national coefficients should then be seen as adjusting national flow or trade coefficients to coefficients which represent regional flows.

Step 4 involved the application of a procedurs similar to that proposed by Smith and Morrison (1974) ${ }^{2}$. Where data from the Australian Bureau of Statistics indicated the absence in the region of sither firms or employment in any nationaliy defined sector, the a associated with that classification from the 'regional' A matrix was sitored as a regional import. Following this, Sten 5 provides for dowward anjustment of some of the remaining coefficients in the national A matrix, to remove to the imports row that portion of purchases ascribed to these sectors in the national table, but which become imports at the regional level.

The various methods which have been adopted for this conversion in Step 5 have been discussed at length in the literature. The selertion of a technique for decomposing the national coefficient has received mure attention in the iiterature than other aspects of developing yegional non-survey tables; in fact, apart from the work of Smith and Morrison $(1974)^{2}$ and Schaffer $(1976)^{3}$ it has been regarded by mest previous matysts as the sole method of developing non-survey tables. Certainly the selection of a procedure is important to the ultimate accuracy of the regional tables. It has been suggested by Smith and Morrison (1974) and Czamanski and Malizia (1969) ${ }^{4}$ that the simple location quatient (LO) would produce regional tables closer to survey-based tables than the aitemative location quotient and commodity balance procedures. These analysts
2. Smith, P.S. and Morrison, W.I. (1974), Simulating the Urban Economy, Pion, London.
3. Schaffer, W.A. (1976), On the Use of Input-Output Models for Regional Planning, Studies in Applied Regional Science, Martinus Nijhoff, Leiven.
4. Czamanski, S. and Malizia, E. (1969), "Applicability and Limitations in the Use of National Input-Output Tables for Regional Studies", Papers and Proceedings of the Regional Science Association, $23: 65-77$.
measured the 'closeness' of the survey-based and derived non-survey tables, in terms of the distance between coefficients of the two tables. The location quotient was thus chosen as the appropriate precodure for the GRIT system. An important criticisa of the location quotient rests on the implicit assumption of uniformity in demand and consumption patterns throughout the state. This assumption was inevitable in the absence of studies of consumption on a spatial basis. This problern was overcome to some extent by allowing the analyst the freedom to insert more appropriate consumption data for any region, should this be available. The location quotient in the GRIT sequence was applied as follows:
(i) Calculation of location quotients on employment data for the 109 sectors of the national tables.
(ii) Isolation of those sectors where $L_{i} \& 1$, and the application of the location quotient across the rows of the appropriate sectors to decompose the national trade coefficient into the regional trade coefficient and the regional import coefficients, the latter to be collected in the import row for each column.

4.2.3 Phase III Definition of Regional Sectors

Step 6 provided for the insextion of "disaggregated superior data" ${ }^{11}$ i.e. estimates which the analyst considers superior to those produced by the mechanical operations of Phases I and II, and which were available at the disaggregated level. In Step 7, sectors were aggregated to form smaller tables which were more commensurate with the simpler economic structure of the regions. Two sets of regional tables were produced, one set at different levels of aggregation to accommodate the variety in regional economic complexity, and one set at a uniform level of aggregation to allow direct comparisons between
regions, and between regions and the state, for ail sectors.
The mechanics of sector aggregation in Step ? proceed by aggregation of coefficients weighted by mployment data. Shen (1960) ${ }^{5}$ produced evidence that sone form of weighting of national coefficients by regional data, would be more likely to produce coefficients closer to 'true' regional coefficients by accomting for region-unique andustrial mix and production functions. While Shen used the weighting eechnique as a 'one-shot' method to produce regional from national tables, GRTT uses the weighting technique as a marginal inprovement to already estimated 'regional' coefficients. It was recognized that other weights, in particular value-added or output, would be more acceptable weights to incorporate in the aggregation process. Neither value-added nor output data were ayailable at the 109 -sector level for any regions and this fact preciuded the use of these as weights.

Step 8 provided an opportunity for the insertion into coefficient matrices of superior data which is available cnly in a more aggregated form consistent with the sector definitions adopted. Together with Step 6, this facility maximised the potential use of the various forms of superior data, some of which were available on a detailed 103 -sector basis, and some of which were available at a regional level only with respect to combinations of industries.
4.2.4 Phase IV Derivation of Prototype Transactions Tables

The aim of Phase IV was the conversion of regional coefficient tables into prototype transactions tables for each region. These prototype tables were 'next-to-final' regional transactions tables, to be subjected to the detailed scrutiny of the analyst in Phase V of
5. Shen, T.Y. (1960), "An Input-Output Table with Regional Weights", Papers and Proceedings of the Regional Science Association, $6: 113-119$.
the GRIT sequence. The development of the prototype tables and their multipliers was essentially the production of the "interim rosults' of the caIt system. Two steps were required for expansion of these matrices into conventional transactions tables, namely the conversion of the coefficients to transactions and the completion of the final demand quadrants. Step 9 provide for the former, and Step 10 for the latter. Step 9 simply involved multiplying the elements of each colum by estimates of output for each sector to corvert the coefficients to first estimates of transactions. The tables produced were termed initial transactions tables, and as suggested above, referred to intermediate and primary inputs quadrants only. The derivation of output levels for the implementation of Step 9 presented some problems. Official statistics of output were available for several sectors at the regional level. For those sectors for which these output statistics were not available, estimates were derived from other input-output studies or by the use of indirect methods of calculation.

Step 10 produced, from the initial transactions tables (detailing the intermediate and primary inputs quadrants only), the prototype transactions table, detailing the four quadrants of each table, by calculation of estimates for the elements of final demand quadrants for all regional tables. Conventionally the components of final domand in a regional input-output table include household consumption, exports, public authority net current expenditure, inventory accumulation and capital formation. The derivation of estimates, by region of these components, was in effect, the estimation of their spatial distribution within the state - these are aspects of economic activity in which there is almost a complete lack of useful data in Australia.

Two questions were considered at this stage: (i) the choice of a level of aggregation in final demand sectors which will be consistent.
with the probable ultimate uses of the regional tables, and
(ii) the choice of technique for the estimation of the final wonard sectors chosen in (i).

It is necessary for the ultimate production of multipliers, for the regional tables to contain estimates of household consuretion. It was considered a necessary and achievable object of the study for regional exports to be included in the tables. Beyond these two components, no further components of final demand were considered individually measurable for individual regions, and these were therefore aggregated under the heading 'Other Final Demand'.

Two approaches to the estimation of final demand in the regional tables were considered. First, it was possible to use aggregate final demand as a residual item to achieve the necessary row and column consistency within each table. Secondly, it was possible to incorporate independent estimates of final demand. Such a procedure would almost certainly produce inconsistent tables, i.e. column and row totals of intermediate sectors which were not equal, and it would be necessary to enforce consistency using an appropriate mathenatical technique.

The decision between these two alternatives nust depend on the availability and reliability of data relating to regional final demand. If reliable data relating to final demand was not available for each region, as was the case in the GRIT application to the regions of Queensland, the use of aggregate final demand as a residual item seems the obvious solution; the GRIT tables were derived on this basis.

However, circumstances might exist where analysts are able to develop estimates of final demand for regions, and have an equai or higher degree of confidence in these estimates, compared to those produced by earlier phases in the GRIT sequence. In this case it would be important for these estimates to be entered in the regional transactions tables and
some operations undertaken to ensure consistency within these tables, These operations might be carried out manually, or by the use of some iterative constrained-matrix techique (such as the RAS).

Step 11 provided for further aggregation if uniform tables were required. In this application, the 16 -sector prototype tablas of the state and the metropolitan region were further aggregated to 11-sector tables. Step 12 simply derived inverses and multipliers fox the prototype tables using conventional techniques for multiplier calculation.
4.2.5 Phase V Derivation of Final Transactions Tables

It is useful to sumarise briefly the total effect of
Steps 1-12 in producing regional input-output tables. The basic component of GRIT is a multi-stage mechanical sequence for adjusting the national table, calculation of regional imports and weighted aggregation of sectors. Important modifications to this mechanical procedure ensured that where any data, other than that generated by the mechanical processes, was available, this could be incorporated to improve the general level of accuracy. The prototype tables represented therefore the 'best' tables which could be produced by the variable-interference mechanical processes. Phase V, the final stage in the GRIT sequence shifted the responsibility for adjustment from modified mechanical procedures to the analyst. At this stage, the analysts were faced with a series of non-uniform tables (and probably a uniform series) which must be examined in detaid, with a view to implementing Step 13, the final superior data insertions and other adjustments.

In most sectors, there could be a reasonable expectation that the estimates generated in Phases 1 -IV were free of substantial error. Those cases would include sectors which did not differ substantially in seructure between regions, for example certain categories of manufacturing, service
industries and the like. The identification of such sectors by the andyst should be possible as an exercise of his professional judgement. Howevor, the analyst cannot be absolved of the responsibility, either in the use of the GRJT system or in the developmert of any input output tabie, to exerise his professional judgement in the detection of inappropriate entries in the table. Whichever method of table construction is emploved. the ultimate respon bility for assessment and final adjustment must bo accepted by the analyst, and there should be no refuge in inechanically produced figures. To take such refuge is to abdicate fromprofessional responsibility.

The experience of the GRTT team was that inspection of the final tabies showed that few adjustments were requirat, fowever, some of these adjustments were signifeaht, and the tables would have been inadequate representations of these conomies if this exanination had been avoided. The GRIT team drew on the axtengive knowledge of other input-output workers, govemment officers skilled ill ecoromic interpretation of the various facets of the regional and stare panomies, and other useful sources of opinion. From this consultation energed a series of tables which were accepted as conforming with the original main criterion of GRIT, namely as "free of significant error".

The number of 'major' adjustrents to the prototype tables was restricted to sectors which showed either unique regional characteristics, or which had been 'submerged' by dominant national industries outside the region through their effect on the national coefficients. Most. entries in the prototype tables were acceptable and conformed to expected magnitudes. Examination of the multipliers of the prototype tables, and comparison of these multipliers with those from other studies assisted it highlighting potential 'problem areas'.

Step 14 provided for the derivation of the firal transactions table, and Step 15 for the calculation of inverses and multipliers for each of the regional tablos and for the state table.

```
GRIT II
```

This chapter sets out the major aifferences between the original GRIT system and the GRIT II system used in this study. Three major modifications were introduced: (i) the location quotient technique used to obtain the basic regional table was modified; (ii) a technique to isolate the critical celis of the prototype table to allow a more cost-effective approach to table accuracy was incorporated; and (iii) changes in the aggregation system were introcuced to allow better compatability between tables. There were, of course, numerous other minor modifications of an operational nature incorporated to make the procedure more efficient. for example, the GRIT computer program has been largely modified and is now split into two parts. Part A derives the initial transacticas tables, and Part B is a standalone package which allows the operator to update, impact, aggregate, RAS, etc, the derived tables. The resultant package allows the operator extreme flexibility in the manipulation and use of the tabies.

5.1 Modifications to the Simple Location guotient

The location quotient (LQ) is a measure which compares the relative importance of an industry in a region to its relative importance in the nation.

$$
\text { i.e. } \quad L Q_{i}=\left(x_{i}^{r} / x^{r}\right) /\left(x_{i}^{n} / x^{n}\right)
$$

where X represents output or employment and the superscripts x and n denote region and nation respectively. The LQ is used to estimate regional imports, on the assumption that the regional trade coefficients differ from the national technical coefficients only by the magnitude of the regional import coefficient. Thus

$$
a_{i j}=r_{i j}+\operatorname{ll}_{i j}
$$

where $a_{i j}$ is the national technical coefficient, $r_{i j}$ is the rogional trade coefficient, and $m_{i j}\left(0 \leqslant m_{i j} \leqslant a_{i j}\right)$ is a rogional import coefficient. Operationalyy, the regional coefficients for row i are estimated by multiplying the national cocfficient by L_{i} and approportioning the difference to imports.

$$
\text { i.e. } \quad r_{i j}=a_{i j} L Q_{i} \text { where } L Q_{i} \leqslant 1
$$

This means that the region produces less than its share of national output in industry i, and imports are therefore required. Alternatively, if $L Q_{i}>1$, the region is deened to produce more than its fair share of output of industry i, and the balance is exported.

There are a number of deficiencies in the simple k, however.
They tend to overestimate intraregional interdependence and ignore cross-hauling, Also they assume uniformity in production and denand/ consumption patterns throughout the nation. Thus large regional industries that conform to the national 'average' would be fairly well represented, but the more unique a regional industry is in terms of different production function and demand/supply characteristics, the less appropriate is the simple LQ. Identification of these industries and the addition of superior transactions data into the table is a characteristic of the GRIT methodology. The system is enhanced, however, if some of these abommalities can be takon account of at the LQ stage of the procedure.

The simple LQ used in GRIT uses employment data, as this is the only reliable data available at the 109 national sector level. Thus

$$
L Q_{i}^{E}=\frac{E_{i}^{r} / E^{r}}{E_{i}^{n} / E^{n}}
$$

The first modification introduced was to adjust the nationat employment figures. If national production levers of industry include a signjficant
export component, then E_{i}^{n} is an inappropriate base for estimosion of the LQ for industry i in a region, since $\mathrm{E}_{\mathrm{i}}^{\mathrm{a}}$ implicitly represents national employment in industry i for domestic conguption. Therefore the th were adjusted to represent narional employment in the production of intustry i for domestic use. Similar adjustments were carried out for industries Which comprised substential import components.

The second modification at mpts to take account of labour productivity differences between corresponding regionat and national industries and between the region and tho nation, where data were available. The only measure of productivity whech we could hope to obtain fairly comprehensive data on was lahour output ratios. The protuctivity ratio of the region relative to the nation is thus

$$
\theta=\left(E^{r} / X^{r}\right) /\left(E^{n} / x^{n}\right)
$$

where X refers to output, and the productivity ratio ricy tho corresponding industries is

$$
{ }_{i}{ }_{i}=\left(E_{i}^{r} / X_{i}^{r}\right) /\left(E_{i}^{n} / X_{i}^{r i}\right)
$$

The simple employment $L Q$ was thus modified to become

$$
\cdot Q_{i}^{X}=L Q_{i}^{E} \cdot \frac{\theta}{\theta}
$$

If labour output ratios were not available for sone industries. the IO automatically reverted back to the simple employment $L Q$.

Thirdy, in an attempt to take account of denand and consumption pattem differences throughout the nation, astinates of personal consumption were derived where possible and consumption ratios were obtained for the region relative to the nation and also between corresponding regional and national sectors. Thus
and $\begin{aligned} C & =C^{r} / C^{n} \\ c_{i} & =C_{i}^{r} / C_{i}^{n}\end{aligned}$
where C_{i} refers to the per capita consumption levels of sigmificant commodities or groups of comodities. Where prossible, price differentials were taken into account in deriving C_{i}. The nodifiel la thus becones

$$
\begin{aligned}
L_{i}^{C X} & =L Q_{i}^{X} \cdot \frac{C}{C_{i}} \\
& =L Q_{i}^{E} \cdot \frac{\theta}{\theta_{i}} \cdot \frac{C}{C_{i}}
\end{aligned}
$$

Therefore if the local per capita consumption for comodity is hagher than the corresponding national per capita consumption, the LQ_{i} will be lower resulting in relatively higher imports and/or lower exports of commodity i. Again, if the relevant data were not available, $L \mathbb{C X}$ automatically reverted back to $L Q^{X}$ or $L Q^{E}$.

It appears that the above modified LQ gives a more accurate neasure of regional trade coefficients in regions which are relatively more distant from the national 'average'. The greater the difference between the region and the nation, the less satisfactory is the simple LQ. Empirical testing of the various LQ's to the Northem Territory regional economies showed that the modified $1 Q$ above produced more realistic coefficients than the other less modified LQ's.
5.2 Accuracy Optimization

The completion of regional input-output tables within any reasonable budget/time constraint makes it virtually impossible for close scrutiny to be given, and superior data obtained for all the coefficients in the prototype table. In addition it would be very difficult to justify such a procedure in terms of cost-benefit considerations. Analysts would agree that some sections of the table are more 'critical' than others. Thus first priority of those limited resources should go to ensuring that

1. This section draws heavily Exom the poper reproduced in Appendix v.
the 'critical' areas are relatively accurate; less attention can be given to the 'non-critical' areas.

The problem has been detemining whioh coothcients are 'critical'. Up to now there have been onfy vague rules of thumb in this rogard, the majority of which have been derived from shocking and simuston techniques. Some of these ruies of thumb were implicit in hRil, but lackedmathematical backing. Recent developments have shown that theye is a simple mathematical relationship between errors in coefficients and errors in inpui-output multipliers. This relationship js cxplicitly included in this stuoy,

5.2.1 The Concept of Accuracy ${ }^{2}$

Accuracy in input-output can be bisected into two broad

categories:

(i) Accuracy of the transactions table, which rofers to the exactness with which the input-outpht table represents the 'true' table for the economy. This is the accountrig intrepretation of the input-outfut table epitonised by those concerned with the preparation of the national tables, where the exercise is seen simply and appropriatcly as an extension of the national accounts. This interpretation sequires cell-by-cell accuracy in the statistical sense, on the assumption that if each cell of the table is an accurate record of the 'true' transaction, the table as a whole will reflect the 'true' table with a high degree of accuracy. This interpretation can be called partitive accuracy.
(ii) Model accuracy, which refers to the exactness with which the input-output model reflects the roalism of the operation of the regional economy. This emphasises the 'snapshot' interpretation of the economy. This interpretation relies, not on accuracy in each cell of the table, but
2. For a full discussion on the concept of accuracy in regional input-output see Jensen (1979).
with the accuracy with which the table ropresents the main features of the economy in a descriptive sense and nreservos the importance of these features in an analytical sense. This interuretation of accuracy can be called holistic accuracy, whic partitive accuracy represents the accounting accuracy of the table, holistic accuracy ropresents the operational accuracy of the table.

Once we move from the world of the more rellable "hard' data and technical imput-output teams at the nationel level to the world of inadequate and often unceliable data and limited research resources at the regional level, the distinction between these two interpretations becomes more important, Input-output literature casts doubt on our abilty to achieve partitive accuracy with texisting data sources and research resources; that although partitive accuracy is possible in some portions of the table, it is not appropriate as a general approach to regional input-output tables.

This therefore means that we require some technique for isolating those portions of the table where partitive accuracy can be strived for The following section outlines che procedure for isolating the relatively more important cells of the table, and ranking them in the order of their relative importance.

5.2.2 Coefficient Errors and their Effects on hulupliers

Suppose wo have an initial estimate of an input-output direct coefficient matrix, A. It is likely that all, or sme, of the direct coefficients, $a_{i j}$ contain errors, $d_{i j}$. These errors coutd be expressed either in absolute or proportional tems. If the errors are absolute errors, we in fact have initial estimates of $\left(a_{i j}+d_{i j}\right)$. On the other hand, the errors may be proportional, in which case $d_{i j}=a_{i j} p_{i j}$.

This section shows what affects, if any, coefficient errors have on the various input-output muldpiers, abd then explatns houthis can be used to maximize the accuracy of the final twasactions tatie in the light of limited buaget resources. The and?ysis that follows is based on the assumption that the initial coefficient error is proportional, but this does not restrict the analysis in any way. The assuaption of absolute coefficient errors is more restrictive, and the thoory can easily be converted from one system to the other. In the empirical sense, there is little to suggest either error format is more likely to occur, and one can find arguments in favour of both propositions. Given that a decision had to be made, however, the research team wore inctined tovards the proportional error theory, primarily on the basis that one would axpect, ceteris paribus, larger coefficients to contain inger erroys.

All the input-output multipliers are calcuiated from the leontief inverse $B=(I \sim A)^{-1}$. Therefore we need to know how the error natrix $D=\left[d_{i j}\right]=\left[a_{i j} P_{i j}\right]$ affects B. If we apply the usual theory to the initial matrix A we obtain $B \neq(I-A-D)^{-1}$. Therefore we need to know how $(I-A-D)^{-1}$ is related to B.

It can be shown that

$$
\begin{aligned}
(I-A-D)^{-1} & =B+(B D) B+(B D)^{2} B+(B D)^{3} B+\ldots \\
& =B+E 1+E 2+E 3+\cdots \\
& =B+F
\end{aligned}
$$

where $E=E 1+E 2+E 3+\ldots$ is the error induced into B in response to an initial error D introduced into A.

Consider the error component El first. The (i,j) th elemont of E1 is $\sum_{\ell} \sum_{k} b_{i k} a_{k \ell} p_{k \ell} b_{\ell j}$, and thus the error int the jth output multipiler is

$$
\varepsilon l\left(o m_{j}\right)=\sum_{\ell} \sum_{k} o m_{k} a_{k 2} P_{k 2} b_{\ell j}
$$

where om k denotes the kth output multiplior.

We now have to make an additional decision; what criteria do we want to use to measure the effects of the initial coefficient errors D? The answer to this lies in the primary use to which the tables afe intended to be put. The majority of current input-output impacts concentrate on multiplier analysis, and therefore the primary aim should be to minimize the error in the multipliers. Which multipliers? This is not a simple answer and will again depend on the intended impact projects; obviously income and employment multipliers are more important than sutput multipliers, and in this study the final decision was left to the forthern Territory Government. The following discussion, for the sake of simplicity, will be in terms of the output multiplier; the analysis, however, is equally applicable to income or employment multiplicrs. The final question to be answered is how should the error in the output multipiiers be measured? Again there are several alternatives such as total absolute multiplier error or average proportional multiplier error. Absolute multiplier errox does not take into account the magnitude of the multipliers, and it was decided that average proportional multiplier error was the more appropriate measure, bearing in mind the model can be used with various other criteria. The average proportional output multiplier error is:

$$
\frac{1}{n} \sum_{j}\left(\frac{\varepsilon 1\left(o m_{j}\right)}{o m_{j}}\right)=\frac{1}{n} \sum_{\ell k} \sum_{k} \operatorname{ann}_{k} a_{k} p_{k_{k}} \sum_{j}\left(\frac{b_{i}^{n} j}{o n_{j}}\right)
$$

where $\frac{b_{l}}{O_{j}}$ is the proportion of the column total which lies in cell $(1, j)$ of B, and n is the number of intermediate sectors.

The average proportional multiplier error can thus be expressed as a sumnation of terms, and can be rewritten as:
where the terms in the series [] can be rewritten in sequential order from high to low. wo then have a sequential list of cells which contribute, in order of importance, to the average proportional matriplicu error. In terms of relative efficiency, therofore, we should conentrate firstly on reducing the error in the coefficient $a_{k l}$. ${ }^{\prime}$. secondly in the coefficient a,2.22, and so on.

In the operational sense, we need to make the broad assumption that the proportional error in each coefficiont is roughly of the same magnitude. We need not specify a particular value. In situations where more detailed knowledge of the local econony is ayailable, one may be able to obtain rough ratios of these errors e.g. one may be led to believe that the error in one particular coefficient is approximately twice as large as in other coefficients. Remenber tho procedure does not aim to tell us what the erross are (although in some circumstances it can provide a rough estimate). It only gives us a pointex which indicates which cells we should be concentrating on, in the light of all the prior available information.

The above analysis can be extended to include the crror components E2, E3, etc., and, in general, we find the (j)th tem in the series is (under the assumption $p=1$):

$$
\begin{aligned}
& \left.+\ldots) a_{j i}\left[\frac{b_{i k}}{\frac{b_{k}}{k}}\right)+\ldots\right]
\end{aligned}
$$

46.

In empirical tests it was found that the ranking of the coefficients did not alter past the crror components 11 * E2, although all rankings in this study were taken to $\mathrm{H} 1+\mathrm{E} 2+\mathrm{F} 3$. If we are interested primarily, in the rankings, El + E2 appears to be sufficient. An example of the ranking of the first 25 cofficients for the proto type Northern Territorytable, using three criteria, output naltipliers, income multipliers and employment multipliers, is given in Table 5.1.

The above analysis can be extended into a cost optimization model by deriving an error function which relates the average proportional multiplier error remaining after say X cells have been re-estimated. By assigning a cost, implicit or othorwise, to the possibility of a 100% proportional multiplier error occuring, the total cost funciion of re-estimation and remaining multiplier error can be minimized to find the optimal value of X. However this extension of the model was not explicitly included in this study. A full explanation of the procedures, with an example, is given in Appendix V.

PROPORTIONAL COEFFICSENT EKROR－PROPORTIUNAL NULTIFLIES ERROR

DUTPUT WULIPLEEAS

1：	．डडぶ（ 8，ठ）	2：	． 1207	（ 8．1t）
6：	． 1268 （ 4．4）	$7:$	． 1187	（4．8）
11：	． 8576 （12．11）	12：	． 1775	1－3，
Pá：	． 8356 （ 8，6）	17：	． 135	（1）． 4
こ！	． 0572 （12，7）	22：	． 7334	［．］

3：	． 2164	（11．15）	48	－302－3）	5：	－ 35 （15．7）
\％：	． 1965	112．12）	？	． 85.2 （ 8．7）	19：	－4 483 － 8.9
13：	． 6687	（12，2）	14：	． 3589 （12． 1	15	，1596 1！
18：	． 8424	（12，13）	19：	， 4.25112 .4	23：	－9682 9 ＋ 4.
23：	． 6570	112． 3	24：	．029 311．15	25：	． 6543 （ 7.3

income hultipliexg

（ANE	：ydRECT		－n＊	ES
1：	．1557（8，8）	2 ：		\： 5 4
$0:$	． 0951 （12，12）	\％	． 2154	（11．15）
11：	． 9883 （8．83	12：	． 527	（13，8）
16：	． 2775 （ 1．5）	17：	． 055	（12，1：
21：	．031（11．12）	22：	－ 05	113．4）

3：	． 1200 （ 4，4）
9：	．236（5．3）
13：	
18：	． 83.72 （ E． 7 ）
27 ：	．0356－8． 3

	：
7：	． 0362 （14．12！
：	3
10：	， 0543 － 7.3
24：	－ 6

EMFIOYAENT ABITIFLIESG

FAdy	DEEST STEFECIENT	C00RDI＊ATES		
1：	－ 45 （ 8． 31	2：	．234	（il．tis
$6:$		\bigcirc	－ 9 \％s	（12．12）
11：	－52？\％j 0）	12：	，哣3＂	（12，\％）
¢ ${ }^{\text {¢ }}$ ：	－6235（1，19 ${ }^{\text {¢ }}$	\％\％	.8425	
21：		22：	． 8044	（ \＃\％${ }^{\text {a }}$

3	． 2.36
E：	
13：	． 0576 ［12．11．
18：	－424 1［2， 3
$33:$	

	\％
？	1．4．？
14：	.2543 ？
17：	． 375 （14．15
24：	－493 E．

The original GRIT system employed a twonter weighting ageregetion scheme to obtain the non-uniform and uniform transactions tables. The non-uniform tables are derived using an employnent weightod aggregation scheme, by necessity, as reliable output data are mot avaliable at the 109 sector regional level. The uniform tables were thon derived from the non-uniform tables by an output weighted aggregation schome.

This two-tier system thus creates problems. if che non-uniform tables are not of the same dimension, then the rabies are not diracty comparable, as weignts have been applied to different munbexe of sectors. This is particularly true at the unifom table level, as different weighting systems have been applied over difforent sectors. Thus, even though all the uniform tables are of the same dimension and contain the same sectors, an indjvidual transaction in one table cannot be compared with the corresponding transaction in another table. Although each individual table is representative of that region, comparisons across regins, or with the state, are not possible, and this is funthet complotert by regional imports and exports.

To overcome the aggregation problem, several alternative schenes were hypothesised and empirically rested. The problem arises that there is no simple benchmark for comparison between differanty derived tables for a given region. It was finally decided, in the interests of consistency and ease of manipulation, to contimut the aggregation from the non-uniform stage to the uniform tables using employment weights. The study tean felt that the output weighting system is marginally superior, but were concerfed with the possibility that users of the tables could become disconserted by the inevitable across table inconsistencies, despice the fact that across table comparisons of any input-output tables requires extrene caution.
49.

The present GRIT II system may still produce some minor inconsistencies, but to a lesser extent. Whaly mechandoally produced tables should not be inconsistent, but the GRit system depends on operator manipulation at various reages of the frocecure with the jrserion of superior data, etc. Very often superior estimstes are availabie for a particular industry at a regioial level but not at the state level, or vice versa, or the two estimates are inconsistent but cimot be verified, It is virtually impossible to verify transactions across tables in any case, as each regional transaction boween irdustries contains an element of imports and/or exports. It 5 maintained, however, that every effort is taken to ensure obvious inconsistencies are minmized.

CHAPTER 6

EMPIRICAL APPLICATION OF TUE GRIT SYSTEM

Previous chapters have outlined relevant regional input-output economics, the objectives of the GRIT II system, and have described in detail the GRIT II methodology. This chapter provides some of the empricial results of the application of the GRIT II system to the regions of the Northern Territory.

With the metropolitan and ruxal regions categorized as in Chapter 3, the aggregation system as shown in Appendix II combines the national sectors listed in the right hand column to sectors defined for the metropolitan region. The aggregation procedure for the metropolitan region ceases at this stage, defining 16 sectors for the Darwin region table. For the non-metropolitan regions the aggregation continues until 11 sectors have been formed for the rural regions. This method was designed to cater for the detail required for the different economy types and also to produce comparability of definition of the sectors between regions of different types. The latter is achieved by the fact that sectors in the smaller tables are aggregates of identifiable sectors in the larger tables, as indicated by the alpha-nuneric sector identification system in Appendix It.

The GRIT II computer program allows for the aggregation procedure to be continued to produce uniform tables as required by the analyst. The uniform tables are aggregations of adjusted tables.

The aggregation system described above produced the following variety of tables.

TABLE 6. 1 SUMMARY OF TYPES OF GRIT II TABLES IN THTS REPORT

Input-Cutput Tables of:	Non-uniform Tables	$\begin{aligned} & \text { Uniform } \\ & \text { Tables } \\ & \hline \end{aligned}$
Northern Territory	15-5ector	11-ssector
Darwin region	16-sector	11-sector
Top End region	16-sector	11-sector
Katherine-Barkly region		11-sector
Alice Springs region		11-sector

Two sets of transactions tables with accompanying tables of coefficients and multipliers were produced. A sexies of 11 -sector tables, termed uniform tables, was produced for the region economies. Secondly, a series of non-uniform tables was produced, namely 16 -sector tables for the Darwin and Top End regions and the Northerm Territory. The presentation of the tables of transactions, coefficients and multipliers required the preparation of approximately sixty tables. The disposition of these tables throughout this report is itenised in Table 5.2 to assist the reader with ready reference to the results of the study.

These tables contain an enomous amount of information relating to the economic structure of the regions of the Northerr Territory. The sheer volume of the information prevents comment in detail on each table. This chapter therefore is restricted to general comment on the 11-sector uniform transactions tables and associated multipliers. Non-uniform transactions tables and multipliers, and all coefficient tables have been presented in appendices. However, the genexal comment on the uniform tables in this chapter is relevant also to the non-unifom tables which should, of course, be considered simply as providing more detail relating to those sectors which are shown in a more disaggregated foxm.

TABLE 6.2 LIST AND LOCATION OF GRIT 11 INPUT-OUTPUT RESULTS FOR THE REGTONS OF TME NORTHERN TERRTTORY
$\left.\begin{array}{|l|c|c|}\hline \text { Form of Results } & \begin{array}{c}\text { Uniform Tables } \\ \text { (VI-Sector Tables) }\end{array} & \begin{array}{c}\text { Non-Uniform Tables } \\ \text { (16-Sector Tables for } \\ \text { the Northern Territory } \\ \text { and Metropolitan }\end{array} \\ \text { Regions) }\end{array}\right\}$

In both the uniform and non-uniform transactions and cofficient tables, sectors aro represented by numbers in the interests of space. These numbers represent sactors as defined in Appendix 11. It will be noted that the same sector number is rotaimed throughout uniform and non-uniform tables, the numbering is modified to denote disaggregation for non-untform tables. For example Sector 4 in the uniform tables refers to the Manufacturing sector; in the 16-sector tables, Sector 5 is disaggragated to Sectors 4A-4F,

For conveniance in the reading of this chapter the sector citles for the eleven-sector tables are provided below:

Sector No.
1
2

3

4
5
6
9
8
9
10
11

Title
Animal Industries
Other primary industries
Mining
Manufacturing
Electricity, gas and water
Puilding and construction
Trade
Tansport and comunication
Pinance
Puolic Administration and defence
Comenity sexvices and ontertainments recreation

8.1 Eleven-Sector Tablos for the Regions of the Nerthern Territory The discussion is now focussed on the uniform transactions

 tables for the regions of the Northerm Territory. These are presented as tables 6.3 to 6.7 for the five regions of the territory.TABLE 6.3 11-gector transactions tamle baruin region, 1976-77 (9-AB)

1 SECTOR	1	2	3	4	5	6	7	8	9	13	11	H-H	D.F.D.	EXPORTS:	TOTAL :	
111	1	1	\leqslant	181	\bigcirc	-	5	1	\bigcirc	184	1	5	\%	2411	6068	
121	16	2	\checkmark	126	\bigcirc	5	1	1	-	97	61	186	.	23561	87341	
131	9	-	302	1149	-	185	2	4	-	5	81	5	0	28931	44!3:	
141	3	1785	695	6813	57	26297	455	623	26	585	5591	1133	13179	49841	56404!	
151	5	41	28	684	119	257	695	177	534	7917	1432 :	1193	3519	01	165171	
161	11	2	5	538	461	-	1776	1476	698	36488	19668	1743	12574	71	171556:	
171	22	494	35	714	57	2999	8455	1336	1192	4143	11301	19578	95075	$1!$	135229:	
181	4	44	183	126	86	1582	1186	1399	315	313	1821	1185	35054	92991	546591	
191	-	341	11	20.	6	857	4375	163	931	6268	3221	6424	15467	2658i	36015:	
1151	-	42	-	5	0	-	\%	5	4	21254	$8!$	882	151437	$43202:$	1656511	
1111	6	9	7	-	11	16	317	314	369	3682	3831	5976	53184	13339:	775321	
1 H-H\|	66	2998	1135	15706	4492	5455	19392	23191	14862	67196	441271	θ	6	11	2476181	
10.0 .0 .1	288	1712	835	5932	9568	22772	45563	9112	13831	3082	112881	-	0	6	1237731	
\|1MPORTS		193	1279	1277	23345	1651	81991	52913	16873	5253	13166	16137:	55313	-	¢!	248283i
1 TOTML	688	8734	4483	56484	16517	171516	135229	54559	38415	165611	77532:	93233	442575	638581	01	

TABLE 6.4 11-SECTOR TRAMSACTIONS TABLE\& TOP END REGIOM, 1976-77 (TOEA)

1 SECTO*	1	2	3	4	5	6	7	8	9	18	11 :	$\mathrm{H}-\mathrm{H}$	0.F.D.	EXPORTS:	TOTAL
111	\%	-	-	317	-	-	-	-	-	117	11	\%	8	2931	1637:
121	25	2	0	144	-	1	,	1	-	131	18:	209	9	9468:	9990:
131	\%		17331	11935	E	657	2	5	-	5	181	-	1	113527:	143466:
141	8	2578	1269	17323	63	29129	813	729	34	637	694i	1363	51118	75621	113312:
151	6	46	29	1388	139	298	631	181	592	18657	1482:	1318	2976	0:	196441
161	32	3	5867	892	527	-	1782	1618	750	48577	$2882 i$	1989	126381	74:	198354:
17	182	575	172	3991	147	1177	13818	2479	1757	5576	27541	21983	63448	7040:	135573:
10	18	51	45%	1985	88	1645	1191	1461	317	4213	193:	269	38567	6180:	58368!
191	1	388	14	222	5	872	4388	169	942	8427	336 !	12562	1289	581:	48996:
111	E	48	-	,	-	-	0	-	4	27263	\%!	733	135824	699651	224837:
111	18	11	316	7	9	18	319	316	374	4957	4311	6595	2021	46158:	79769!
: Ho-n \|	186	3484	2782	25984	$3{ }^{3} 53$	61776	19454	24886	15981	51266	481751	f	-	61	298923i
: O.U.A.1	758	1947	875	13871	11798	25445	45879	9517	14924	3878	11354:	-	-	$1!$	1397961
	491	86	114552	35333	1823	59743	47497	16969	532.	19337	12499:	55850	5	01	3711861
- total	1837	999	143466	113312	19644	193354	135573	5836\%	40996	224837	79771	114682	45586	2516371	8

TABLE 6.5 11-SECTOR TRANSACTIONS TABLE: KATHERINE-BARKL.Y REGIOH, 1976-77 (\% 000)

(SECTOR	1	2	3	4	5	6	7	8	9	15	11	H-H	O.F.P.	XPORTS:	TOTAL :	
11 :	1	-	1	213	.	\leqslant	-	-	\%	73	11	-	6	14241:	14527 :	
12 1	84	1	\%	4	1	\%	-		\%	6	11	28	0	1676:	1889	
13 :	S	.	4729	91	4	46	,	0	0	1	$1:$	\%		67219:	72884:	
141	63	131	575	112	6	968	38	21	1	19	691	366	1752	858:	4953:	
151	93	5	,	54	6	61	141	27	95	844	534:	186	2671	18:	1723:	
161	297	1	-	46	54	-	229	227	52	3848	$481:$	93	16796	$18:$	221421	
171	526	65	1	97	15	574	1974	184	116	442	385	1367	15548	691	283731	
181	87	7		76	27	176	96	68	26	334	4:	862	4568	123:	64871	
191	3	-	1	2	1	48	15	2	27	668	251	876	1956	9:	37711	
111	1	6	35	.	-	.	-	1	-	2160	1	195	15567	461	17913:	
1 111	159	2	.	E	2	2	45	24	25	393	551	989	10154	48641	18694:	
\| H-H		1671	554	4166	1262	1173	7281	2933	285	1519	7162	10826:	\%	\%	91	18598:
10.V.A.	6734	369	7	477	3186	2936	6745	1295	1356	313	23891	-	0	-	255311	
IIPPORTSI	481	664	62579	2531	138	10865	8912	1879	557	1652	2776:	8417	0	01	105288:	
- Toral	14527	1799	72884	4953	4723	22142	29372	6487	3771	17913	166941	13269	69995	89129 :	:	

TAELE 6.6. 11-SECTOR TRAMSACTIONS TABLEE ALICE SPRIMGS REGION, 1976-77 (\$ 8RO)

1 Sector	1	2	3	4	5	6	7	8	9	1.	11 :	$\mathrm{H}-\mathrm{H}$	O.F.D. EXPORTS: TOTAL:		
111	1	-	\%	39	\%	\%	!	\%	-	75	!	*	\leqslant	8883:	8797:
1 21	121	1	-	3	\$	-	1	0	d	2	11	3		$2 ;$	1291
13 :	-	b	4877	268	t	15.	3	2	+	5	13:	8	\%	6796 :	11219:
141	42	\%	310	931	8	3934	317	231	13	39	$508:$	354	2881	13661	10934:
15	39	1	1	91	25	89	599	42	429	868	1391:	417	1352	$4!$	5330:
161	173	1	-	188	151	1	1327	40]	343	3958	1544:	675	2884	39:	37501:
171	511	7	12	443	33	2957	975	920	1883	454	1957:	6193	76998	3131	10063:
1 1	73	1	17	293	38	438	644	392	151	343	285:	1652	13715	1745:	197071
191	3	.	,	15	1	181	3288	7	488	687	112!	4896	15935	171:	24711
: 11	5		1	\%	-	\%	\%	1	2	2221	1:	204	9334	64891	18251:
: 11 !	112	-	15	-	3	4	278	191	214	484	434i	1880	4 44 ¢	249561	68921
: H-H:	1116	33	249	2919	1349	12189	14197	7798	9789	7524	42263:	\checkmark	0	01	99626:
: O.V.A.:	4972	69	2	1163	3275	4983	33989	359	8984	401	9444:	,	${ }^{2}$!	69898:
[1MPORTS	2647	24	4535	4727	497	13499	36628	6133	3214	1275	11648:	1331	0	81	98938:
- tatal	8797	129	11219	18934	533	375	103631	19747	24781	18251	68921	29488	189497	59474	1

TABLE 6.7 11-SECTMR TRANSACTIONS TABLE: NORTHERN TERRITORY, 1976-77 (\$109)

- SECTOR	1	2	3	4	5	6	7	8	9	1 1	11 :	H-H	O.F.D. E	XPGRTS:	TOIAL :
111	E	\%	*	1080	\%	\%	!	\%	-	1568	81		墻	22817	249811
121	356	7	6	159	-	-	\%	1	\%	141	241	289	d	18945!	11919:
3 3 1	1	-	28569	12292	6	889	5	7	0	6	241	1	*	184982:	226769!
141	141	2864	273	18129	76	34787	1386	1015	56	76	13691	2819	58498	49921	129199
151	138	58	5	1767	29	495	1537	293	1278	12392	3762:	1913	5874	01	296971
181	518	5	7937	18973	898	-	3372	2278	1195	56487	4275:	2754	169286	149:	249999
171	1469	482	298	4537	195	144*	24652	3582	2955	6484	59887:	35253	156759	2311	256576:
\% 81	283	81	1152	3112	173	2834	2852	2383	518	4899	4481	1617	54034	15279!	84.534:
191	9	457	14	234	7	1835	7756	178	1448	9799	195:	22744	25193	!	661609:
1118		57	36	-	1	-	5	-	6	3178	E!	1043	228158	7554:	2695978
1111	287	14	376	\%	14	21	841	561	614	5764	$921:$	9445	115959	35554	165393 ?
\% H - ${ }^{\text {\% }}$	267	$4{ }^{4} 47$	7191	316	7375	$8{ }^{2} 246$	36881	35535	27288	14.855	1署364i	*	\%	1	437146:
10.U.A.:	11554	2303	1227	15224	18054	33351	86372	14326	25265	1586	22814:	-	5	61	235167% $554629:$
[11PPORTS:	7416	1324	176991	41128	2795	81837	91199	24395	8816	21966	2586:	7362	-	61	554829:
TOTAL 1	24981	11917	226769	12719	27687	249999	2.56376	84554	6946	26181	1653831	187439	814833	264833:	69

The tables summarise the interindustry transactions ${ }^{1}$ in dollar terms at basic values for 1976-77 for the regions of the terriroty. The first eleven entries in each row indicate the sales from that sector to other sectors in the same region; the last three entries in each row indicate the sales from that sector to households, other final users in the region and to markets outside the region. For example the sales of the Animal Industries sectors in all tables are virtually restricted to the Manufacturing sector (including rural processing factories), the government sector, and to exports. The proportion of the output of this sector exported reflects the importance of this activity in the region. Over ninety percent of the total output of this sector is exported from the Northern Territory, with the majority coming from the Katherine-Barkly and Alice Springs regions.

A more detailed study of the rows of the regional tables draws attention to some important characteristics of the Northern Territory regions. As noted previously, the Territory is divided into three broad bands, top, middle and bottom, and in this context some interesting comparisons can be made. Firstly, the service type sectors are mainly concentrated in the top, and to a lesser extent the bottom, regions. Public Administration, Community Services, Tourism, Building and Construction and Trade are particularly important in the Top End, and are also dominant ill the Alice Springs region. These appear to be the two main centres of government and tourist activity, whilst Trade is a relatively important sector in all three regions. Building and Construction is particularly important in the Top End region. This is largely a reflection of the large scale construction by the Mining industry, and also building and construction within the Darwin region.

1. Other terms used in the literature for these tables include 'gross flows tables' or 'interindustry flows'.

Secondly, mining activity is particularly important in the top half of the territory. Mining is dominant in both the Top End and Katherine-Barkly regions, although overall much more concentrated in the Top End. This is due to the large scale mining activity in the Alligator and Arnhem Land areas, with mining becoming less important as we proceed southward.

Thirdly, the agricultural industries (animal industries)
are mainly centred in the middle to bottom regions, with the main cattle production being in the Katherine-Barkly Tableland areas. Relatively little cattle production occurs in the Top End region. Fourthly, the majority of manufacturing occurs in the Top End region, half of that in the Darwin area. Most of the manufacturing outside the Darwin region would be associated with the mining industries.

The first eleven entries in each column show the purchases which each sector makes from other intermediate sectors in the same region; the remaining three entries show the purchases of labour (in the households row), the imports of that sector, and the components of other value added (depreciation, indirect taxes, interest, profits etc.). In general terms, the relative size of the entries in the intermediate and primary inputs quadrants indicates the extent to which each sector obtains its inputs from other local sectors.

The column structure of the regional tables is important. Since the columns show the pattern of purchases of each sector, they are the basis for the calculation of tables of coefficients for the analytical application of the table described in the next section. An examination of the columns of the transactions tables is an important prerequisite to the analytical stage, and highlights some important points with respect to the Northern Territory regions.

Firstly, the column shows, within the household row, the sources by sector of the wages, salaries and supplements paid within the region, and indirectly the importance of each sector as a source of local employment. It shows, for exmule, the dominance of the service sectors as the source of employment in most regions, particularly the Commanity seryices and entertainment sector, Txansport and communications, Public Administration and Finance Sectors. One the other hand the income component of the Mining Sector is low reflecting the proportion of the total wages and salaries paid to mining personnel that is actually spent within the region. Secondly, the colums show the importance of imports by sector for the regions of the state. Almost inevitably (except the Darwin region), the highest level of imports for each region is shown by the Mining sector, to the extent of over eightly percent of total inputs in the Top End and Katherinc-Barkly regions. Other very high import sectors are Manufacturing, Building and Construction and Trade. The lowest importing sectors are, of course, the service sectors

Each cell entry in the transactions table represents, of course, the sum of the eransactions between two sectors for the time period under study. Consequently each cell entry is important, as it indicates whether the economic linkages between the sectors concerned are strong or weak, i.e. the extent to which a change in the level of output of one sector is likely to affect the other. While it is important to identify weaker linkages, it is the stronger intersectoral linkages which are more important in identifying those characteristics of an economy which determine its response to changing economic circumstances. The relative size of each cell entry, the distribution of these relative sizes over the table, and the tendency for larger entries to appear in particular sectors are therefore important in understanding the nature of each regional economy and the variation between regional economies.

The tables of the regions of the Northem Territory demonstrate the importance of these linkages. All the non-metropolitan tables are relatively dominated by the Animal industries, Mining or Service sectors. This is particulaxly noticeable in the Top End Region where there are strong intrasectoral linkages between the Mining, Manufacturing and Building and Construction sectors. For example the Building and Construction sector purchases a large proportion of its inputs from the Manufacturing sector. Similarly the cell Mining to Mining reflects the large purchases from the services to mining industry by the Mining companies. As wel! as the large intersectoral linkage of the Public Administrative sector, the governnent purchases large amounts from the Eiectricity and Building and construction sectors.

The important distinction between the regional tables lies in the number of 'significant' cell entries; few significant entries denotes a regional econony dominated by one or two sectors, several significant entries describe a more highly developed and complex economy with a high degree of intersectoral interaction. The Top End region provides a constrast to the tables of the other regions. A nuch larger proportion of the cell entries are relatively large in magnitude, since the table covers the large metropolitan Darwin region as well as the major mining areas. On the other hand, the Katherine-Barkly region would be the best developed of the regional economies.
6. 2 The Northern Territory Tables

An eleven-sector transactions table for theNorthern Territory is provided in Table 6.7, and a 16-sector table in Table VI-3.

Table 6.7 is in effect a sumation of Tables 6.3 to 6.6 , in terms of sector output levels and some non-trade conponents of primary inputs and final demand. Many items which comprise interregional trade in the regional tables were not components of trade at the territory level
and adjustments were made for these items. Those items which comprised overseas or interstate trade at the regional level were retained in the territory table, and appear as territory imports or exports in Table 6.7.

The Northern rerritory table is typical of input-output tables describing advanced economies; it shows the many significant linkages expected in a faixly diversified economy. In the same way as regional tables illustrated the facets of the regional economies, Table 6.6 demonstrates the feature of the Northern Territory economy in terms of sources of inputs of each sector and the sales pattem of these sectors for the territory as a whole.

The choice between the use of the territory table or regional tables for an analyst will be influenced by the problem he faces and the point of view from which the study must be carried out. If the analyst is concemed with the repercussions of an event or policy on the terretory as a whole, Table 6.7 provides the appropriate analytical base; if the question of interest concerns the spatial incidence of the effects of an event, one or more of the regional tables will provide the appropriate base.

6.3 Regional input Output Tultipliers

Chapter 2 outlined the procedures adopted in this study for the calculation of input-output multipliers, and briefly discussed the intexpretation of these multipliers. Mutput, income and employment multipliers were calculated; these appar in Tables 6.8 to 6.22. The tables of direct coefficients, and the inverses of both open and closed versions of the miform tables are presented in Appendices VIIl, X, and $X I$ respectively.

This section provides only a brief discussion of the multipliers derived by the GRIT II procedure for the Northern Territory and its regions. The tables of multipliers provide a large volume of information with respect to output, income and employment characteristics; such information has only been available previously in Australia for the Dueensland and South Australian economies and their constituent regions. The input-output tables and multipliers provide a sufficient empirical base for a detailed study of the spatial structure of the Northern Territory economy, and this would be a useful topic for future research. However, this section has more modest aims, namely the identification from the multipliers of the most significant features or regularities; detailed comment is not provided in this report.

Output Multipliers

Three types of multiplier effects were calculated:
(i) First Round Effects (the effect of the first round of purchases by the sector providing the additional dollar of output). This is shown in the elements of the direct coefficients matrix. For example, for the Darwin region (Table VIII-1) the direct effect of a $\$ 1$ change in the output of Sector 1 is $\$ 0.0165$ on Sector $2, \$ 0.0050$ on Sector 4 , and a total of $\$ 0.1007$ on all intermed:ate sectors of the economy (Table 6.8).
(ii) Industrial Support Effects

This measures the "second and subsequent round" affects, as successive waves of output increases occur in the economy to provide industrial support as a response to the $\$ 1$ increase in output. This does not include any increases caused by increased household consumption. Output effects are calculated from the Open z inverse (Table $X-1$), as a measure of industrial

TABLE 6.8 TOTAL SECTOR OUTPUT MULTIPLIERS DARNIN REGION: $11-S E C T O R ~ T A B L E ~$ *

SECTOR	INITIAL IHPACT	FIRST ROUND	INDUSTRIAL SUPPORT	PROI'N IMDUCE	COHSA INDUCED	rotal
1	1.8980	8. 1097	6.1193	6.1199	\%.8768	1.1967
2		C.3954	\%. 8682	0.3836	2.2411	1.6240
3	1.0908	¢.2864	9.1718	- 3972	6.1898	1.5389
4	$1.000^{\text {c }}$	0.2843	- 1456	0.2497	\%.1877	1.4376
5	1.080 c	- 4.482		- 3572	- 0.553	1.2128
6	1. Bres $^{\text {c }}$	\%.1888	4.8433	0.2321	6.2064	1.4388
7		6.1285	6. 8189	¢.1474	6.6978	1.2452
8		*.1865	0.1168	0.1173	5.2474	1.3667
9	1.080	0.1676	\$. 1147	\%.1219	0.239	1.3519
16	1.0058	\%. 4972	. 1457	\%.6429	\%8.3352	1.9758
11		1. 9772	- 1122	6. 084	0.3187	1.4891

TABLE 6.9 TOTAL SECTOR IHCOME HULTIPLIERS DARWTN REGION: I1-SECTOR TABLE

SEcTar	IHITIAL IMPACT	FIRST ROUND	IHDUSTRIAL SUPPORT	$\begin{aligned} & \text { PRODY } \\ & \text { IMDUCED } \end{aligned}$	COHS'H Induced	107AL	TYPE RA	TYPE 18	TYFE II
1	$\int .1689$	- 29.8	0.055	- 334	\%. 21216	0.1596	1.2639	1.3126	1.51\%
2	f. 3433	1. 0862	0.0195	1.1057	0.0679	- . 5159	1.2512	1.3006	1.595%
3	2.2339	- 8824	- 2203	0.1027	0.0589	0.3876	1.3522	1.9389	1.6587
4	P. 2789	1.8579	.0135	1.1716	1.0529	B. 4623	1.2881	1.2548	1.4547
5	. 2721	0. 8151	\%. 0^{1625}	0.1876	0.8438	-. 3335	1.4553	1.0646	1.1257
6	0.3199	- 0521	¢.0123	\%. 8644	¢. 1582	8.4425	1.1628	1.2672	1.3936
7	0.1434	- 8334	-. 8853	1.1387	1.6276	0.265]	1.2332	1.2700	1.4621
8	0.4243	0.8315	-. 814	0.8363	0.8997	0.532	1.8543	1.2085	1.249?
,	0.3918	9.8334	- 6042	0.1372	0.064E	- 1938	¢.8843	1. 1959	1.26 (09
18	1.4058	9.1727	-.8456	\$. 2182	0.4844	¢. 7184	1.4258	1.5379	1.7706
11	6.5091	\$. 0227	. 6034	\%. 1281	0.891	\%.6854	1.1399	1.2459	1.2842

TABLE 6.10 TOTAL EECTOR EMPLOHENT MULTIPLIERS DARWIN REGION: 11-SECTOR TABLE

SECTAR	IHITIAS IfPACT	FIRST ROUND	industrial SUPPORT	PROD N IMOUCED	cong'r I HDUEEB	total	TYPE IA	THE IP	TYPE 11
1	0.6822	7. PV 26	0.4	0. 103	0. 0 ¢ 58		1.0315	1.8369	1.1978
2	(.0281	1.0667		0.6683	\%.0181	d. 8545	1.2384	1.2937	1.9384
3	6.0287	0.1061	\%. 2156		5.0136	- 1419	1.2938	1.3692	2.0261
4	9.1188	0.0184	Q. $0_{10} 10$	\%. 8954	1. ${ }^{\text {B }} 1411$	0.0375	1.2451	1.3111	2.0838
5	9.142	0.8119	1.8592	-6.8013	0. 1117	0.0272	1.2788	8.8921	1.9139
6	©. 2238	-. 0^{1837}	- . 111	C. 8847	1.155	8.844	1.1552	1.1955	1.81858
7	- 2229	8.8034	6.6985	- \%83\%		0.6832	1.1536	1.1751	1.5689
8	0.0332	-. $0^{1} 27$		6. 8 ¢ 81	\$. 0186		1.5882	1.8918	1.6507
9	¢, 8351	-. 6829	1.9104	0.8033	8.1973	0.1557	9. 6837	1.0939	1.5158
11	. 0.0234	0.0125	0.0934	6. 1158	0.1252	0.1644	1.5338	1.8779	2.7554
11	- 1477	-. 1818	9.0933	9.102\%	6. 6244	0.6738	1.0374	1.0435	1.545^{5}

TABLE 6．11 TOTAL SECTOR OUTPUT HULTIPLIERS TOP RND REGION：IJ－SECTOR TABLE

SECTOR	IMIIIAL inpact	FIRST ROUND	INDUSTRIAL SUPPORT	PROD＇綡 IHDUCED	CONG＇\quad K INDUCES	T0TAL
1	1． $1.8{ }^{\text {cte }}$	0．1235	\％． 6313	C． 1548	－ 19 ¢8	1.255
2	1．8108	9．3785	0.1361	． 98.87	－ 3951	1.8118
3		\％．176	－ 8440	0．22t	\％．9364	1.2505
4		\％．3382	4．1936	－．4438	0.2097	1.6445
5		． 5194	－ 1126	－ 5628	\＄． 1812	1.2431
6		－． 2332	5． 8832	． 3164	2．2538	1.5712
7	1．8509	0.1692	0．3339	－2831	＊．1259	1． 3289
6		0.1197	－． 288	\％．1477	（23082	1.4599
8	$1.80{ }^{\text {P }}$	0.1164	． 8212	6．1376	6.2831	1.4267
18		\％．4953	0．1698	暑．6651	0．4088	2.6738
11	1． 163	6．1911	C． 218	8．1226	6.4184	$1.58{ }^{\text {c }}$ ， 4

TABLE 6．12 TOTAL SECTOR INCOME NULTIPLIERS TOP END REGION：II．－SECTOR TABLE

sector	IMITIAL IHPACT	FIRST ROUND	industrial Support	PROE＇H IHDUCES	CONS＇H IHDUCEO	TOTAL	TYPE IA	TYPE In	TYPE II
1	\％．1136	－ 3121	6． 067	9． 3 39	1． 292	8.1819	1.2322	1.3435	
2	4.3183	1.8887	6． 8248	C．1135	1.1884	C．5512	1.2596	1.3259	1．5795
3	0.1194	0．1199	C．${ }^{3} 67$	6.3268	－． 0^{688}	¢．6548	2.279	2.3735	2.8275
4	5.2293	－ 0569	6． 8177	6． 1745	－$\frac{85}{851}$	－ 3629	1.2488	1.3259	1.9795
5	0.2572	－． 1144	4.8126	0.0171	3． 0525	0.3267	1.4559	1.6662	1.2722
＊	1.3193		$0.815{ }^{6}$	1． 6649	6． 8735	20．45\％	1.1565	1.2933	1.4335
7	C．1435	－． 0392	0.1979	6． 8478	C． 364	\％．227	1.2738	1.327	1．5417
8	－ 3284	－1349	9．086！	1．64 4	5.1892	\％． 5857	1.18797	1.989	1．3032
－	－ 3 308	． 0.337	－． 015	0.1387	C． 882	－．5195	8． 8865	1.8993	1.31896
11		－1766	6． 845	\％． 2161	0.1181	． 7358	$1.425{ }^{\text {E }}$	1.5384	1.8327
11	6．6237	0． 235	． 6847	－．33］	－．1212	－ 7515	1.2431	1.0508	1.2520

TABLE 6.13 TOTAL SEGTOR EMPLGYKENT MULTEPLERS TOP END REGION：11－SECTOR TABLE

sector	IMITIAL IUPACT	FIRST ROUND	InDUSTREAL suppart	$\begin{aligned} & \text { PRODK } \\ & \text { SHOUCED } \end{aligned}$	COMS＇H 1HDUCED	T0TAL	trpe ia	TYPE 1B	TYPE II
1	¢． 8849	\％．8535	－ 8 E8？	5．842	－ 1 （175	\％． 695	1.8416	1.0493	1.1377
2	1．333	0．8104	9.6423	4． 8887	C．1227	0.0614	1.1947	1.2631	1.9498
3	\％． 1869	0.1822		寞．882	6.823	B．012	1.3121	1.4531	1.7284
4	－1127		8．9818	6.8866	6． 8149	©．1342	1.3875	1.5171	2.6898
5	6． 8126	－． 1 er	－3．382	0.114	6.1135	0.6274	8.8094	1.1078	2.1798
6	C． 236	－ 0 教39	1.614	5．6853	¢．1189	3．8477	1.1667	1.2259	2.227
7	5.624	－． 0 －95		\％． 8053	5． 194	5.8387	1.1860	1.22208	1.6097
8	0.0329.		5． 5 ET3 6	6.1838	0． 8229	－． 0.398	1.1978	1.1147	1.8115
？	\＄． 38.39	0.0183	4． 4×5	6． 4838	0.1216	¢． 5 597	1.6952	1.189	1.7132
16	0.1239	0.1126	－． 0 ［136	\＄． 1162	$0.03{ }^{0} 3$	8．8．8375	$1.68{ }^{189}$	8.7765	\％． 2267
11	1． 1667	0． 0624	6． Bin $^{4} 4$	1．8028	6． 311	8．1485	1.0358	1.4423	1.5895

TABLE 6．14 TOTAL SECTOR OUTPUT HULTIPLIERS KATHERINE－BARKLY REGION：

SECTOR	IMITIAL IHPACT	FIRST ROUN2	INDUSTRIAL SUPPORT	PROEP管 IMPUCES	COMS＇M I 1 DUCED	T07al
1	1.01 \％	0．0983	\％．1488	－3989	5．8673	1．1662
2	1．589	0.1179	－． 115	． 133	4．159\％	1.2925
3	1.158	0.8741	－mess		＊．33㽔客	1.1113
4	1．	6．138	筸． 1134	6．153每	－1343	1.2957
5		\％． 8222	－ 642	－${ }^{\text {B }} 242$	－1298	1.145
6	1.5	6．E843	－ 8182		\％．1855	1.280
7	8．894．5	4． 6875		6． 6955		1.1737
6		6． 6851	－．${ }^{\text {ctes }}$		． 21.18	1.3127
9		S． 6981	6． 3568	宩． 8969	0.2025	1.2994
11	1．6E8	\％．4983		－354	6．2847	1.876
11		¢．6911	1． 1865		－2953	\％．3922

TABLE 6.15 TOTAL EECTOR INCONK HULTIPLIERS KATHERINE－BARKLY REGION：

8ECTOR	IUITIAL IMPACI	FIRGT ROUND	INDUSTRIAL SUPPORT	PROD＇H INDUCED	CONS： INDUCEE	TSTAL	TYPE IA	TYP镸 10	PYPE 15
1	－ 115	8．5257	¢． 181	¢ 6277	－ 5234	4．1662	1.2233	1.2412	1．4447
2	4．3579	－． 272	－ 1×32	－\％384	－． 555	－． 3937	1.8883	1.9998	1.2787
3	6． 8577	＊．0366		4．${ }^{\text {1768 }}$	－ 518	6．875	1．164	1.187	1．3519
4	6．2547	5.276	0．	4．331	1． 1467	－．3315	1.1059	1.1181	1.3511
5	－ 24484	S． 8374	－ 1 ¢ 8	6．6679	－ 6.426	． 2982	1． 2296	1.8317	1.2998
6	5.3288	0．6215		6． 6222	T． ¢ $^{5} 75$	8．4185	$1.96{ }^{\text {P }}$	1.6674	1.2424
7	6．144		4．919	－ 1219	． 6272	6．1931	1.1392	1.1524	1.3414
8	－ 1394	－ 0244	6．9019	． 6263	－． 8^{764}	6．542	1．8554	1．5590	1.2335
9	－．4628	4．625	－． 1017	． 6267	－ 3744	\％．4899	1． 8625	1．6663	1.2411
18	6.3998	6．1713	． .1325	． 2038		5．7126	1．4285	1．56\％7	1.7572
11	\％．6016	9． 8246	1．8916	－${ }^{6} 262$	－1526	\％．729		1.0437	1.2148

TABLE 6．16 TOTAL SECTOR EMPLOYAEHT MULTPLIERS KATHERTNE－BARKLY REGION：

8ECTE	IMITIAL IMPACT	FIRST Ravin	IHPUSTAZAL support	PROBA IMDUCE	COMS＇盟 INDUEE	fotal	TYPE SA	TYPE IE	TYPE［1
1	6． 3749				1．6353	6． 8832	1.15336	1．	1．1194
2	． 6467		－ 1685	－6．64\％	6． 131	4． 4627		1.6618	1.3543
3	6． 1669	－ 0.918			5．685	6．8191	1.8885	1.1027	1.4652
4	－． 0186	\％． 685	＊）${ }^{\text {men }} 4$		9．8111	6．0352	1.2783	1.2974	1.8921
5	．${ }^{\text {E }} 1118$	5.8186			¢．${ }_{\text {cemp }}$	6． 217	1．7508	1.8631	1．9886
6	\％． 274	\％．3119	\％．6｜s＇s		－ 113	－6．631	1．8651	1.0779	1.5749
7	¢． 0288	－ 4221		6．593	－． B6 64	2． 2295	1.8995	1．1087	1.418%
8	\％．1399	8．${ }^{\text {B }}$ 2 23		4． 6825	3.98181		1． 1.858	$1.061{ }^{\text {c }}$	1.5142
9	． 3326	4． 821	\％．6322	4． 6 E23	8． 167	8．3816	1.6649	1.6699	1.5814
11	0.9266	－ 6128	－H．${ }^{\text {® }} 26$	－． 0154	－6234	． 6594	1.626 ef	1.7438	2.8331
11	6． 8492	＊． $0^{2} 119$	－ 0 4122		\％． 3243	－8．756	1.0386	1.0419	1.5368

TABLE	6.17	TOTAL SECTOR OUTFUY HULTIPLIERS 			ALICE SPRINGS REGION： 11－SECTOR TABLE	
SECTOR	IMITIAL inpact	FIRST ROUNE	IHDUSTRIAL SUPPORT	PROD＇M IMDUCED	cons＇A INDUCED	TOTAL
1	1．080	8．1207	4．2203	（141\％	6．1196	1.2607
2	1.0009	6． 8.28	0.1136	3． 0.984	－． 2147	1.3111
3	1．0400	0． 3952	0.2374	6．6326	0．7498	1.6734
4	1．1890	0.1999	©． 6512	0.2511	9.2542	1．5853
5	$1.80{ }^{\text {c }}$	8.8392	T．${ }^{\text {\％}}$ \％ 78	\％．7462	0.2197	1．2568
6	1．8088	\％． 1822	6.814	0.2236	9.2779	1．5214
7	1．868	． 16.12	0.8274	8.1876	9．1487	1.3363
8		5.1199	－2201	4．1318	0.3489	1.1719
9		\＄．1989	－6165	\％．1283	－ 34.97	1．467
11		6.4959	6． 1439	\％．6398	\％． 4959	2.1357
11		1． 8695	E． 1145	0.1039	\％．5363	1.61 信

TABLE 6.18 TOTAL SEGTM IMCUHE NULTIPLIERS ALICE SPRINGS REGION：

3EC10R	1HITIAL IMPACT	F1857 ROUNB	industalal SUPP0RT	PRODN INLUEED	Cons＇ INDUCED	IOTAL	TYPE IA	TYPE IS	TVPE If
1	O．1155	\％．311		． 3359	9．036	0.1852	1.2692	1.3168	1.8298
2	－2515	\％．176	6．0832	－ 1202	． 866	0.3377	1.6874	1．985	1． 3.325
3	F． 8221	\％．8171	－ 124	． 6.624	4． 1125	6． 641	1.7796	2.3456	2.895%
4	E． 2679	－6．659	－ 1889	－${ }^{\text {b }}$ 548	6． 8781	0.3799	1.1718	1.2052	1.4978
5	6． 2531	8．6118	0． 1817	6．1135	E． 647	\％．3314	1． 468	1.65 .94	1.3092
6	E．3258	4． 431	\％．9899	－ 6519	9．915	－．4685	1．1323	1.1598	1． 4.415
7	． 1441	\％． 8375	0.0966	－ 4441	9．8457	1．2338	1.268%	1.3560	1.6231
8	－．3957	管． 0310	－ 1948	． 0.657	9．104t	0． 5362	1.783	1.9893	1.3551
9	\％．3963	＊． 0388	6． 1541	A．9359	8．1347	4．5359	1.6778	¢． $68{ }^{\text {a }}$	1． 3522
18	8．4122	． 0.1733		0.2151	\％．1524	\％．7805	1．4293	1.5224	1.8921
11	\％． 6132	6． 1241	最．634		6．1556	8.7864	1． 3974	1．${ }^{4} 45$	1.2987

TABLE 6.19 TOTAL SECTOR EMPLOYMENT MULTIPLIERS ALICE SPRINGS REGION：

SECTOR	TKITAK 1HPACT	FIRST Rouna	IMDUSTRIAL SUPPORT	$\begin{aligned} & \text { PROD'N } \\ & \text { INDUCED } \end{aligned}$	CONB＇ IMDUEED	rofal	TYPE 1A	TYPE I8	TYPE 11
1	6．6754	E．6984		9．9859	\％． 145	3．8891	1.1121	1.1176	\｛．1820
2	－ 1687	－ 0848	－ 6 ．as	\％．085	4．087	8．4745	1．\square^{164}	1．0118	1.1298
3	6． 8119	数． 885	6． 8632	6．8383	6．0\％彦	1．6219	1.368	1.6983	1.8366
4	\％． 249	0． 0 \＃ 45	－13 ${ }^{1 / 4}$	－． 065	－ 103	8．8487	1.1826	1.2215	1.6356
5	\％ 1118	4．3599	6．89\％		－ 0 885	6．62\％	\％．77\％	¢． 0892	1.8113
6	－ 25 ？	0.1039	－． 0888		\％． 12 i	－ 6.425	1.1499	1.1821	1.6511
7	\％． 8131	5．9026	－． 8965	－ 0.831	－． 5665	0．8223	1.1998	1.2367	1.6955
（f）	． 8317	\％． 825	0． 0084	6． 1829	\％．6138	9．6484	1.0779	1.8901	1.5256
9	0.0173	\％．0025	\％．9653	¢．1823	6． 0138	0.634	1．1176	1.1345	1.9331
11	0.8171	0.8111	0． 8 ¢31	1.0142	0．021		1.6465	1.8276	2.9791
11	－． 3393	0.6817	4． 9803	－ 826	－ 0^{285}	6． 618	1． 8445	1.8517	1.5740

TOTAL SECTOR OUTPUT KULTIPLIERS
NORTHERN TERRITORY:
******中*\&*************中******* 11-SECTOR TABLE

SECTOR	InITIAL IMPACT	FIRST ROUNB	imdustrial SUPPORT	PROD'H INDUCED	CONS H INDUCEB	TOTAL
1	1. 1808	- 1245	. 8294	\%.1539	\$.1163	1.2763
2		9. 3477	- . 1220	6. 4698	0.3376	1.81874
3		- 1624	\%. 456	1.2279	6.7458	1.2737
1	1.06000	-.3594	- $\frac{7}{7} 86$	\%.429	0.2335	1.6625
5	1.enem	\$. 8459		6. 0^{565}	0.2836	1.2609
6		- 2188	6. 0742	+.2924	\$. 2878	1.5882
7	1.8	C. 1642	0.0312	6.1954	0.1427	1.3381
8	1.9480	0.1218	2.8268	4.1436	- 3466	1.4951
-		0.1161	. 1198	0.1359	¢. 3236	1.4595
18		- 0.1962	0.1636	0.6598	9.4645	2.1212
11		. 0.988		. 1188	9.478\%	1.5975

TABLE 6.21
TOTAL SECTOR IMCOME HULTIPLIERS
NORTHERN TERRITORY:
11-sector table

sector	IKITIAB IAPACT	flest ROLHD	Industrial SUPPDRT	PROD'M IRDUCED	CONS'h IRDUCED	total	TYPE IA	TYPE IB	TYPE 11
1	S.1151	- . $8^{3} 1$	-. 8667	0.8398	1.835 ${ }^{5}$. 1894	1.2872	1.3458	1.5371
2	. 3112	-.1846	0.8238	0.1883	4. 1973	4.5468	1.2478	1.3175	1.6827
3	0.837	-. 8221	0.8572	\%. 2292	0.6132	0.9741	1.6955	1.9219	2.3320
4	0.2335	0.8597	- 0177	0.1875	1. B $_{67}$	0.3782	1.2859	2.3318	\%.32\%
5	1.2531	0.6136	4.1823	0.6169	- ${ }^{\text {¢ }}$ 387	5.3297	1.3534	1.382 d	1.2928
6	+13218	- 6481	- 1142	0.1622	¢. 883	C.4652	1.1495	1.1738	1.9523
7	0.1438	0.8388	8.6874	6. 8462	8.811	8.2311	1.248	8.3217	1.614
8	+.4203	-. 3351	-. $0^{6} 61$	8.819	6.6999	0.5314		$1.978{ }^{\text {c }}$	1.335
\%	-. 3928	. 0.332	0.0948	1.638	0.8933	-. 5241	1.8846	1.8968	1.3382
11	8.4821	-. 1714	-. 8450	0.2163	9.1339	\% 7524	1.4262	1.5389	1.8710
11	1.6189	- 1261	0.014	5. 338	-. 1388	0.7754	1.8439	1.8583	1.2778

TABLE 6.22 TOTAL SECTOR EMPLDYAEMT BULTIPLIERS NORTHERN TERRTTORY:

sector	IHITIAL IMPACT	FIRST RDUAD	industrat SUPPORT	PROD'H I WDUCED	cons'H INDUCED	potal	TYPE IA	TYPE IE	TYPE II
1	0.1757	-. 0183		¢. 0 © 039		8.8852	1.3435	1.951	1.1390
2	0.0442	6.0859	. 6221	0.6579	\%. 193	0.6715	1.1325	1.1797	1.6169
3	4.0132	0. 1182	0.0097	0.6.89	0. $0^{2} 26$	0.8127	1.3136	1.1443	1.7692
4	0.1137	0.0932	-.01816	0.1868	M. 1134	0.339	1.3895	1.1977	2.472 .4
5	0. 1122	4.018	- 0.032	0.8312	1.0117	0.0251		1.1659	2.1574
6	\%. 242	\%.836	9.803	-6. $0^{4} 4$	9.0165	- 0 . 450	1.1483	1.2097	1.6812
7	0.8195	0.1037	0.8867	0.3044	¢. 1 ¢62	©.8320	¢.1883	1.2239	1.8433
8	-. 1332	-.603 ${ }^{6}$	0.0685	1. 1 [8]6	-.1198	. 056	1. 1914	1.1872	1.786
9	-. 6285	\%. 028		9.9832	4. 185	-65022	1.3978	8.1124	1.7629
11	0.2206	4.812	0.8334	2.1154	-. 0266	- 0.626	1.5834	1.746	3.9362
11	\%.0526	- . 121	- \%is	- 1025	6. 0^{274}	0.0225	1.0397	1.0469	1.8503

response to the first round effects, The industrial support output requirements are calculated as the elements of the columns of the Z inverse, less the initial dollar stimulus and the first round effects as shown in Table 6.8. This table shows that the industrial support effects over all sectors of an increase of one dollar in the sades of Sector 1 to final demand is $\$ 0.0193$. The first round and industrial support effects are together the production induced effect. Consumption Induced Effects The consumption induced effect is that induced by increased HH income associated with the original dollar stimulus in output. The consumption induced income effects are the consumption induced output effects multiplied by the appropriate household coefficients. Employment multipliers are calculated by substituting the employment coefficients for the household coefficients.

The total output multiplier effect is the total of the production induced effect and the consumption induced effect, in addition to the initial $\$ 1$ increase in sales. For the Darwin region (Table 6.8) the total output response to a dollar increase in output is $\$ 1.1967$.

The total output multiplier for sector j measures direct, indirect and induced requirements from all sectors for each dollar increase in sales of sector $;$ to final demanc. For example, each increase in the sale of output of the Animal Industries sector in the Darwin region produces a total increase in output of $\$ 1.1967$. The induced effect of the increased sales will be $\$ 1.1967-\$ 0.1199=\$ 0.0768$.

An examination of Tables 6.8 to 6.22 provides some important information with respect to the expected output response of each sector on a regional basis. This may be sumnarised by three main points. First, we would expect that the regions of the Northern Territory, ranked in size from the metropolitan to rural regions, would display an overall pattern in the size of ontput multipliers which reflects this ranking. The 'larger' economies would be expected to be more diversified and therefore to contain stronger linkages which would contribute to higher output multipliers. In generel terms the ourput multipliers reflect the expected rankings with the Top End region showing usually the highest regional maltipliers and the Katherine-Barkly region showing the lowest. Note that the relative distubution of the sectors within each region alsoplays an inportant part in determining the multiplier rankings. When the 'size' of the region is measured in terms of the total output of all sectors in the region there is some correspondence between the ranking of the regions and the size of the output multipliers for each sector.

Secondly, it is noticeable that the output matlipliers relating to each sector in the Northern Territory table are usually larger than those of the corresponding sectors in the regions. As outlined in Section 6.2, the territory tables incorporates all of the linkages of the regional tables. From another point of view, the regional multipliers for each sector should be seen as the disaggregation of the spatial incidence of the territory multiplier effects. However it must be remembered that the total multiplier effects for the territory as a whole and the regions are not directly comparable, as a dollar increase in sales of a sector at the territory level does not correspond to a dollar increase in sales of the same sector at the regional level at the same time. in other words an initial dollar spent in the territory usually means that less than one dollar is spent in each region.

Thirdly, some similarities occur in the rankings of multipliers across the regions. However the individual rankings within each region reflect the relative importance of the industries within the region in terms of the effect on expansion in that sector has on the rest of the economy. In a!l the regions the Public Administration sector generates the largest total ourput multiplier. On the other hand, in the Top End and Katherine-Barkiy regions, the total output multiplier of the mining sector is relatively 10 w , and this can be seen to be a result of the consumption induced effect. Very little of the household component of the effect of increased output is fed back into the conomy, that is, very little of the increase houschold incone is spent within the region. Wost of the effect of increase in output stops at the production induced stage, and over eighty percent of these inputs are imported. Income Mutipliers

Tables 6.8 to 6.22 also provide the GRIT II income multipliers for the regions of the Northern Territory. These are provided in three forms namely: (i) the initial impact or direct income effect, indicating the initial effect on household income of an increase in output of each sector. First round incone effects are calculated by multiplying the first-round outpat effects by the appropriate HH income coefficients, as shom in Chapter 2. For instance an increase of one dollar in output of the Animal Industries sector in the Darwin region would increase houschold income in that sector within the region by $\$ 0.0287$ (Table 6.9); (ii) the production induced income effect, which is the first round and industrial support effects (excluding the initial impact) in response to an increase in sales of one doliar to final demand by each sector. For instance the production induced income effect of the Animal Industries sector in the Darwin region would be $\$ 0.034$ as a result of industrial support requironents. Finally
(iii) the initial, production and consumption induced effect is listed; this figure is $\$ 0.1646$ for the example quoted.

The direct income effects indicate the labour intensity of each sector in each region. These show, as expected, a high degree of similarity between regions with slight variations reflecting the efficiency of labour use in particular sectors. There is, however, within each region a wide disparity in this coefficient between sectors, reflecting the differences in labour intensity. This ranges, for example, from $\$ 0.108$ to $\$ 0.5691$ per dollar of output in the Animal Industries and Commanity Services and Entertainment in the Darwin Region. These differences have an important effect on the calculation of both direct and indirect, and total income multipliers.

The total income effect shows a consistency between regions in the upper and lower rankings. Those sectors with high direct coefficients, together with large contributions to the personal income of the regions show variable but consistently the highest total income effects over all regions, namely the Commity Services sector. Each increase of one dollar in the value of output of the Community Services sector destined for final demand in the Alice Springs region, adds an additional $\$ 0.7964$ to regional houschold income; the same dollar increase in the same sector in the Katherine-barkly region would increase this income by only $\$ 0.7296$. The sector with the lowest total income effect is usually the Mining sector, as a result of the small contribution made by this sector to the personal income of the regions.

Type I and Type II Income Multipliers
As described above, income multipliers refer to changes in income per dollar initial change in output. Income inultipliers are conventionally converted to a "per unit measurement" by the calculation of Type I and Type II multipliers as described in Chapter 2 . These were also calculated for all ragions (Tables 6.8 to 6.22).

The Type IA incone multiplier illustrates, for the Darwin region, that for each dollar of initial income effect, the total initial plus first round income effect in Sector 1 (as a result of increased output) will be $\$ 1.2639$, for Sector $2, \$ 1.2512$ etc.. When industrial support effects are included (Type IB), associated income effects for Sector 1 will be $\$ 1.3126$ and when consumption induced effects are included (Type II) associated income will be \$1.5113. From Tabie 6.9: Type I and II Income Rultipliers, Darwin Region: 1976-77.

Type $I A=\frac{I+F}{I}=$	Sector 1	1.2639
2	1.2512	
3	1.3522	

Type $I B=\frac{I+P}{I}=$	Sector 1	1.3126
2	1.3080	
3	1.4390	

Type $I I=\frac{I+P+C}{I}=$	Sector 1	1.5113
2	1.5059	
3	1.6567	

```
where: I = Initial effect
    F = First round effect
    P = Production induced effect
    C = Consumption induced effect
```


Employment Multipliers

Tables 6.8 to 6.22 also present the GRIT II employment multipliers for the regions of the Northern Territory. These also are provided in three forms, parallel to those described above for incone multipliers. In general terms, if the wage rate becween sectons is constant, employment mutiipliers would be expected to reflect income

75.

multipliers in terms of ranking between sectors and between regions. The extent, to which the income multipliers and employment multipliers vary in ranking highlights difference in personal income levels between sectors, For example, in the Alice Springs region, while the other Agriculture sector shows one of the lowest requiranents for the direct income component, its direct requirenent in terms of employment is relatively high. This reflects the low incomes earnco In the highly iabour intensive other crops industry.

The colum of initial employment effects show variations both betwen regions for the same sector and between sactors in the same region. The fomer is an indication of the dfferences in technology which exist between regions in the same sector. For example, the Animal Industries sector which varies thxoughcut the tarxitory, requires 0.0849 units of labour per unit ${ }^{2}$ of output in the Top End the same sector in the Katherine-Barily region requires only 0.0749 employaes to produce the same level of output. These diferences in technology, both betwean sectors and between regions produce soveral changes in the rankings of total employment multipliers when compared overall of the regions of the terxitory. These sectors, namely the Animal Industries, Other Agriculture, Commuity Services, and Pubilc Administration and Defence sectors show the highest-ranked employment nultipliers, but the ranking of these three sectors changes between regions. For instance the Animal Industries sector shows the highest total employment maltiplier in the katherinc-Barkly rggion, but is replaced in the first rank by the other Agriculture sector in the Alice Springs region, and the Commanity Services sector in the Top End region.
2. I.e. per thousand collars of output.

The multipliers assembled in Tables 6.8 to 6.22 provide a wealth of information relating to the response which can be expected within the regions of the Northern Territory to a change in economic circumstances. Several important points need to be established at this stage. First although the uniform tables presented in this chapter enable comparisons of multipliers between regions without difficulty, it should be remembered that the industry content of some sectors will vary substantially between regions in an area like the Northern Tervitory which encompasses several climatic and physical zones. This is so particularly with respect to the primary industries which vary from mining to animal industries to other agriculture, with different combinations and technologies between regions. This variation is accompanied by variations in the Manufacturing sector, which also differs considerably between the regions. Even normally stable industries like Transport, Public Administration and Trade vary, and it may be necessary to consult the non-uniform tables and moltipliers to obtain a sufficient understanding of the response of a particular region to a change in economic circumstances. The analysis of this response should be interpreted in the knowledge of the nature of the industries which comprise the regional economy.

Second, the multipliers offer significant advantages and improvements in the regional planning process or in the formation of regional policy. They provide an opportunity to isolate those sectors which will contribute the highest additional output income and employment in each region and thereby indicate those sectors which might receive special attention if regional economic growth is to be encouraged. They provide also a basis of estimating the likely decrease in economic activity associated with the closure or contraction of an industry.

Comparisons of sector multivliers between regions provide measures of the response which can be expectod in each region to the establishment of a new industry or the exparsion of any sector, and thereby provide guidance to location policy. For instance, if it was desired to locate an industry to maximise the increase in regional output resulting from the establishment of that industry, the regions showing the highest relevant output multipliers would be considered as the appropriate location.

Third, although the tables of multipliers offer a conveniont method of selecting regional economic growth strategies, it should be remembered that the multipliers are relevant only in the context of the transactions table from which they are derived and should be interpreted in this light. It often transpires, for example, that the razining of multipliers suggests that one or two sectors offer the most promising avenues of regional expansion, but that the linkages shown in the transactions tables suggest that expansion of these sectors is not feasible. The Manufacturing sector in most Northem Territory regions illastrates this point; it shows consistently high output muluipiliers throughout the regions and appears as a promising sector for expanston of regional output levels. However this sector is closely linked with other manufacturing and primaxy sectors, and the output of the Manofacturing sector cannot be incroased without concurrent increases in these other industries and improvements in the transportation and other service facilities.

Fourth, it is an advantage to consider all of the multipliers for a region in detemining regional development strategies, and to consider these multipliers in terms of criteria for regional development.

It is possible that the multipliers Gan indicate diferent dreetions of development according to the development criteria, i.e. that sectors with the bighest output multipliers are not necessarily those which would contribute the highest additional employment or income. Also by considering separately the magnitudes of the initial and production induced effects, and the consumption induced effects it is possible to detemine whether the expansion of any sector in a region will confer advantages on the local sectors primarily through increased demand for industrial support requirements or through increased household expenditures. 6.4 Summary

This chapter, with accompanying appendices, has provided the empirical results of the GRIT II system for the regions of the Northern Territory. The large volume of results has allowed only a highly selective discussion of the input-output tables and maltipliers. This discussion has been cast only in explanatory terms; the potential contribution in understanding the structure and spatial response pattern of the Northem Territory economy is enomous, but has not been considered in this report.

APPENDTX 1

NATICNAL INPUT-OUTPUT CLASSIFICATTON IN TEDMS OF ASIC

1968-69

Agriculture, Forestry and Fighing

01.01	Sheap	0111, 0113 (part)
01, 02	Cereal grains	0112, 0113 (part)
01.03	Meat catily	0121
01,04	Milk cattie and pigs	0122, 0123
01.05	Poulty	013
01.06	Other farming	014, 015, 016,017
02.00	Services to agriculture	020
03.00	Foresiry and logging	030
04.00	Pishing, trepping and hunting	041, 042

10 Mining

11.01	Iron	1104
11.02	Other metallic mincrais	110 (axcl. 110 ${ }^{\text {a }}$)
12.00	Cosi and crude petroleun	120. 130
14.00	Non-metsilic n.e.c.	140, 150
16.00	Staryices to mining	180

21-22 Food, Tobacco

```
21.01 Mest products
211
21.02 Milk products 212
21.03 Fruit and vegetable products 213
21.04 Margarine, oils and fats 214
21.05 Flour mill and coreal food 215 products
21.06 Bread, cakes, and bigcuits 216
21.07 Confectionery and cocos products 2181
21.08 Food products n.e.c. \(2182,2183,2184,217\)
(including fish and sugar)
21.09 Soft drinks, cordials and syrups 2191
21.10 Beer and mat 2192, 2193
21.11 Alcholic beverages n.e.c. 2194, 2195
22.01 Tobacco products 2210
```

23-24 Textile and Clothing

23.01	Prepsrod fibres (cotton gandigs. wool scouring, top-making)	2311 to 2313
23.02	Man-mad fibres, yarns and fubrics	2354, 2315
23.03	Cotton, wik an flax yarpa. fobrics and housthoid textinas	2316. 2319,2327
25.04	Hool mid worsted yarns nad fabics	2317. 2518
23.05	Textli fimighing	2321
23.06	Textlis floor covering, feit and felt products	2331.2332
23.07	Textile products n.e.c. (inci. cenves. rope, etc.)	2333-2355
24.01	Knitting mills	241
24.02	Clothing	242
24.03	Footwent	243

```
    25.01 Sswmill mooducts 2FS1, 2512, 2515
    25.02 Plywood, Vmeers and manufictured 2315
        boards
    25.03 Joinery and woud mroducts n.e.c. 2514, 2516
    25.04 Furniture, mattresses, brooms 252, 3443
        and brushes
```

26 Payex
26.01 Pulp, paper and papetboand 2615
26.02 Fifrebostd and paper containens 2612-2614
26.03 Paper product n.e.c. 2615
26.04 Newspapars and books 2621
26.05 Comsercial and job printing 2622, 2623
and printing crad service
27 Chenafels
27.01 Chemical ?ertilleors 2715

(plastic materials, synchetic
resins, industrisl gases,
synthetic rubber, other batic
chesica1s)
27.03 Pants, vermishes and lecquers 2722
27.04 Phermacouticad and veterinary 2723, 2724
products, agricultural chemdcals
27.05 Soap and other detergents 2725
27.06 Cosmetic and toilet 2726
preparations
27.07 Chemical products n.e.c. fincl. 2721. 2727, 2728
maunition, explosives mis
Elreworks)
27.06 Petrolem and conl produces 273.274
28 Hon-metalle Mineral Products
28.01 Glass and glass products 281
28.02 Clay products 282
28.03 Coment 2831
28.04 Ready-mixed concret 2832
28.05 Concrete products 2833, 2834, 2835
28.06 Gypeva, plagtec and other non- 2841-2843
基talic mineral products
29,31 Motalg, Metal Products
29.01 Basic iron and stesd 291
29.02 Non-ferrous motal basic producty 292-295
31.01 Fibricatod structural getal 311products
31.02 Motal containotis, shotit metal 312product:
31.03 Cutlery and hand tools, metnl 313

 coating and inishing and

 matal products n.c.c.
    ```
    32.01 Motor vehicles and parts and
                transport equipment n.e.c.
    32.02 Ship and boat bui.ding
        and repair
    32.03 Locomotives, rolling stock 3223
        and repair
    32.04 Aircraft building and repair 3224
```

33 Machinery and Household Appliances
33.01 Photographic, scientific 331
equipment etc.
33.02 Television sets, radios, 3321
communication and electronic
equipment n.e.c.
33.03 Household appliances n.e.c. 3322,3323
33.04 lilectrical machinery and
equipment n.e.c.
3324-3326
33.05 Agriculturas machinery nad 3331
equipment
$\begin{array}{lll}33.06 & \begin{array}{l}\text { Construction, earthmoving and } \\ \text { materials handling machinery } \\ \text { and equipment }\end{array} & 3332.3333 \\ 33.07 \text { Other machinery and equipment } & 3334-3339\end{array}$
34 Leather, Rubber and Plastic Products
34.01 Leather tanning, leather and 341
leather substitute products n.e.c.
34.02 Rubber products 342
34.03 Plastic and related products 343
34.04 Signs, advertising displays, 344. 3i46
writing and marking equipment
34.05 Ophthalmic articles, jewellery, $3441,3442,3445,3447$
silverware and other
manufacturing

36.37 Electricity, Gas and Water

36.01 Electricity generation and 361distribution
36.02 Gas production and distribttion 362
37.01 Water, sewerage and drainage 370
41.42 Building and Construction
41.01 Residential buildings 411 (part), 42 (part)
41.02 Other building and construction 411 (part), 412, 42 (part)
45-46 Trade, Transport, Storage and Communication

| 46.01 | Wholesale trade | $46-47$ (exci.repairs) |
| :--- | :--- | :--- |
| 48.01 | Retail trade | 48 (excl.repairs) |
| 48.02 | Motor vehicle repairs | Re-definitions |
| 48.03 | Other repairs | Re-definitions |
| 51.01 | Road transport | 51 |
| 52.01 | Railway transport, other | 52,55 |
| | transport and storage | |
| 53.01 | Water transport | 53 |
| 54.01 | Air transport | 54 |
| 55.01 | Communication | 50 |

61-63 Finance etc.

| 61.01 | Banking | 611 |
| :--- | :--- | :--- |
| 61.02 | Finance and life insurance | 612,621 |
| 61.03 | Other insurance | 622 |
| 61.04 | Investment, real estate and | $613,631,632$ (part), 636 |
| 61.05 | Techning and other business | $633-635$ |
| 61.06 | Services | |

71-94 Public Adninistration, Community Services.

Entertginment etc.

71.01 Public administration
72.01 Defence
81.01 Health
82.01 Education, libraries, etc.
83.01 Welfare services, religious and commuity organisstions
91.01 Entertainmant and recreational services
92.01 Restaurants, hotels and clubs
93.01 Pexsonal services

71, 845i-3
72
81
82
83, 841 (part), 842, 843. 844, 8454
91
921. 922

33, 94

99 Business Expenses
99.01 Business expenses Dumny industry, No ASIC equivalent

Sector Classification

Rural Regions
 1. Animal Industries
 2. Other primary industries

3. Mining
4. Manufacturing

Metropolitan Region and State

i. Animal industries

2A. Other agriculture, Forestry

2B. Fishing
3. Mining

4A. Food manufacturing

National Sectors [ncluded

| 01.01 | Sheep |
| :---: | :---: |
| 01.03 | Meat cattle |
| 01.04 | Milk cattle and pigs |
| 01.02 | Cereal grains |
| 01.05 | Poultry |
| 01.06 | Other farming |
| 02.00 | Services to agriculture |
| 03.00 | Forestry and logging |
| 04.00 | Fishing, trapping and hunting |
| 12.00 | Coal and crude petroleum mining |
| 11.01 | Iron |
| 11.02 | Other metallic minerals |
| 14.00 | Non-metallic n.e.c. |
| 16.00 | Services to mining |
| 21.01 | Meat products |
| 21.02 | Milk products |
| 21.03 | Fruit and vegetable products |
| 21.04 | Margarines, oils and fats |
| 21.05 | Flour mill and cereal food products |
| 21.06 | Bread, cakes and biscuits |
| 21.07 | Confectionary and cocoa products |
| 21.08 | Food products n.e.c. (including fish and sugar) |
| 21.09 | Soft drinks, cordials and syrups |
| 21.10 | Beer and malt |
| $\begin{aligned} & 21.11 \\ & 2.01 \end{aligned}$ | Aloholic beverages n.e.c. Tobacco produces |

Metropolitan Region and State

4B. Kood and paper manufacturing

4C. Machinery, appliances, equipment

National Sectors Included
$\left.\begin{array}{l}\text { 25.01 } \\ \text { Sawnill products } \\ \text { 25.02 } \\ \text { Plywood, veneers and } \\ \text { manufactured boards }\end{array}\right\}$

Metropolitan Region and State
4DE. Metais, metal products, non-metallic mineral products

National Sectors Included

| 28.01 | Glass and glass products |
| :---: | :---: |
| 28.02 | Clay products |
| 28.03 | Cement |
| 28.04 | Ready-mixed concrete |
| 28.05 | Concrete products |
| 28.06 | Gypsum, plaster and other non-metallic mineral products |
| 29.01 | Basic iron and steel |
| 29.02 | Non-ferrous metal basic products |
| 31.01 | Fabricated structural metal products |
| 31.02 | Metal containers, sheet metal products |
| 31.03 | Cutlery and hand tools, metal coating and finishing and metal products n.e.c. |
| 23.01 | Prepared fibres (cotton ginning, wool scouring, top-making) |
| 23.02 | Man-made fibres, yarns and fabrics |
| 23.03 | Cotton, silk and flax yarns. fabrics and household textiles |
| 23.04 | Wool and worsted yarns and fabrics |
| 23.05 | Textile finishing |
| 23.06 | Textile floor covering, felt and felt products |
| 23.07 | Textile products n.e.c.
 (inc. canvas, rope, etc.) |
| 24.01 | Knitting mills |
| 24.02 | Clothing |
| 24.03 | Footwear |
| 27.01 | Chemical fertilisers |

5. Electricity, gas and water
6. Building and construction
7. Building and construction

National Sectors Included

| 27.02 | Industrial chemicals n.e.c. (plastic materials, synthetic resins, industrial gases, synthetic rubber, other basic chemicals) |
| :---: | :---: |
| 27.03 | Paints, varnishes and lacquers |
| 27.04 | Pharmaceutical and veterinary products, agricultural chernicals) |
| 27.05 | Soap and other detergents |
| 27.06 | Cosmetic and toilet preparations |
| 27.07 | Chemical products n.e.c. (inc. ammunition, explosives and fireworks) |
| 27.08 | Petroleum and coal products |
| 34.01 | Leather tanning, leather and leather substitute products n.e.c. |
| 34.02 | Rubber products |
| 34.03 | Plastic and related products |
| 34.04 | Signs, advertising displays, writing and marking equipment |
| 34.05 | Ophthalmic articles, jewellery, silverware and other manufacturing |
| 27.01 | Water, sewerage and drainage |
| 36.01 | Electricity generation and distribution |
| 36.02 | Gas production and distribution |
| 41.01 | Residential buildings |
| 41.02 | Other building and construction |

Rural Regions
7. Trade Transport and communication
9. Finance Transport and communication
8. Trade
10. Public administration and
defence
11. Comumity services, Finance
entertainment
National Sectors Included
46.01 Wholesale trade
48.01 Retail trade
48.02 Motor vehicle repairs
48.03 Other repairs
51.01 Road transport
52.01 Railway transport, other
53.01 Water transport
54.01 Air transport
55.01 Comunication
61.01 Banking
61.02 Finance and life insurance
61.03 Other insurance
61.04 Investment, real estate and
61.05 Technical and other business
61.06 Swnership of dwellings
71.01 Public administration
71.02 Defence
81.01 Health
82.01 Education, libraries, etc.
83.01 Welfare services, religious
91.01 Entertainment and recreational
92.01 Restaurants, hotels and clubs
93.01 Personal services

APPENDIX III

TECHNICAL APPENDIX

Australian Input-Cutput Table

After consultations with the Australian Bureau of Statistics (ABS) Input-output Section, the latest nationsl table that could be made available was the 1974-75 preliminary 109 sector absorption matrix. Input is by industry and final demand category and output by commodity group, with transactions measured in basic values, indirect allocation of competing imports, and recording intra-industry flows.

This provided the study team with a dilemna. The methodology required the national table to be in the form of industry by industry, in basic values, and with direct allocation of imports. Several alternatives presented themselves:
(i) The 1968-69 national input-output table could be used. This was the least appropriate alternative.
(ii) The 1968-69 national table could be updated to the 1974-75 output figures by applying an RAS based technique. Although this is part of the procedure used by the ABS in theix updates, it was not considered appropriate in this case as the research team lacked substantial superior data to account for the many structural shifts in the economy during the period 1968-69 to 1974-75.
(iii) The 1974-75 preliminary table could be modified to convert it to an industry by industry and direct allocation of imports basis.

Although the study team expresses reservations about the suitability of any of the above options, it was eventually decided to opt for the modification of the $1974-75$ table. The conversion to industry by
industry format was accomplished by the use of superior data and estimates where available, using the breakdown of the difference between total commodity supply and industry supply supplied with the preliminary table, and the make matrix of the 1968-69 table where it appeared appropriate. To reconcile any remaining differences, an RAS procedure was applied to the altered table, but this produced some unacceptable changes in many coefficients that were considered accurate. As the remaining differences between total outputs and inputs were minimal (all less than one percent), the RAS procedure was dropped.

The next step was to convert the tabie to direct allocation of competing imports. ${ }^{1}$ Imports are said to be directly allocated when recorded in the table as an import to the sector which uses them, and indirectly allocated when recorded as an import to the sector producing similar comnodities, i.e. that sector which would have produced the commodicies if local prociuction occurred.

When competing imports are indirectly allocated they are usually explicitly assigned in the table as an addition to the output of the sector indirectly importing them; when allocated directly they are incorporated as a direct cost to the sector consuming the commodity. Each intermediate cell of the transactions table includes both locally produced and competitively imported commodities with indirect allocation, and only the former with direct allocation. Thus with indirect allocation, competing imports are counted twice, both explicitly as an import by the 'indirect' sector and implicitly in the value of the commodities distributed from that sector, whereas with direct allocation they are counted only once. It also follows that with indirect allocation sector output totals for each sector are explicitly inclusive of competitive imports, for distribution to

[^2] Input-Output Multipliers', Annals of Regional Science, forthcoming.
other sectors, but also inclusive of competing imports for use by that sector.

It is necessary, therefore, to identify within each cell that component representing competing imports indirectly allocated through sector i, i.e.

$$
x_{i j}^{\prime}=x_{i j}+m_{i j}
$$

where $x_{i j}^{\prime}=$ transactions with indirect allocation of competing imports,
$X_{i j}=$ transactions with direct allocation of competing imports, and
$m_{i j}=$ competing imports indirectly allocated through sector i.
If $M_{i}=\sum_{j} m_{i j}$ is the total competing imports allocated through sector i, then M_{i} must be disaggregated into its components $m_{i j}$ across row i. This was performed on a proportional basis to the elements of row i. Within each column these were summed to produce $M_{i}^{\prime}=\sum_{i} m_{i j}$ which replaced the appropriate M_{i} entry in the competitive imports row. The calculated $m_{i j}$'s were subtracted from the transactions with indirect allocation to provide an estimate of transactions with direct allocation. New output totals were then obtained by column addition of the $X_{i j}{ }^{\prime} s$.

With respect to the national table used, one additional point needs to be mentioned. The resultant 1974-75 table is a gross table in that intrasectoral transactions are recorded, whereas the national table used in the original GRIT system was a net table. The resultant regional tables are therefore fully gross tables, rather than hybrid gross/net tables.

Superior Data Collection

A major characteristic of the GRIT procedure is the utilization of superior data where this is considered appropriate. Subject to the format of the available data, superior information can be inserted into the system in four stages:
disaggregated superior data - where data is available at the disaggregated 109 sector regional level.
(iv) disaggregated/aggregated ata - where data is available in a form disaggregated by colum and aggregated by rows. aggregated superior data - where data is available at the non-uniform aggregation level. transactions superior data - where data is available in transactions form at the various levels of aggregation. The study tean utilized all four stages of superior data insertion. Superior data was obtained from various sources. Extensive consultations occurred between the study team and the various ABS departments, both at the regional and national levels. All available standard and non-standard publications were perused, and some detailed information was obtained in the areas of agriculture, manufacturing, retail, mining, and building and construction. The major input at the disaggregated level were wages and salaries, and where possible these were verified from several sources e.g. payroll tax data.

The study team also consulted with various Northern Territory government departments, in order to isolate those industries which are peculiar to the region. This resulted in the drawing up of a list of industries which were considered not to conform to the nationa? 'average', and consequently the active seeking out of information about these industries. Major firms in these various industry groups were surveyed directly in order to obtain representative cost coefficients. The areas surveyed included the mining, fishing and electricity industries. In addition the Treasury Department supplied detailed breakdown of government expenditure in the public authority area. The data thus obtained was utilized at both the disaggretated/aggregated and aggregated stages of the GRIT procedure. A copy of the questionnaire appears
at the end of this appendix. The survey and the subsequent follow up was conducted by Northern Territory Chief Minister's Department.

At the transactions stage of the procedure, various superior data sources were utilized. Household consumptions expenditure for the state was obtained from the ABS household expenditure survey 1975-76, and reduced to the sub-territory regional level by the use of location quotients. Export data was obtained with the help of interstate trade statistics supplied by the ABS. In this study other final demand was obtained as a residual.

Other superior transactions data was inserted in the light of additional information obtained after the preliminary and revised preliminary tables were circulated. Members of the various Northern Territory government departments were asked to critically evaluate the preliminary tables. Anomalies discovered in the course of this evaluation occurred primarily in the mining and agricultural sectors and sales to final demand and exports in the Northern Territory table.

1. Name of firm \qquad

Location of activity in N.T. \qquad

Business address \qquad
2. Number of persons employed \qquad
3. Total value of output ex factory \qquad
4. Year for which information is supplied (preferably 1976/77)
5. Percentage (\%) Breakdown of Total Expenditure Total of Columns $A+B=100 \%$

Operating Costs (Ongoings)
(1) Manufacturing food, drink, tobacco
(2) Manufactured wood and paper products
(3) Machinery, equipment, appliances
(incl. vehicle parts)
(4) Other metal products
(5) Other manufactured products e.g. cement, paint, etc.
(6) Fuels, oils
(7) Electricity (only if purchased from electricity authority)
(8) Building - construction
(9) Motor vehicle repairs

| A | B |
| :---: | :---: |
| $\%$ Spent in | \% Spent outside |
| N.T. | N.T. |

(10) Payments to transport opexators freight and personnel travel
(11) Communications (telephone, postage, atc.)
(12) Finance: Bank and insurance charges and business services
(13) Payments to Govermments for services, e.g. water, sewerage, rates, etc. (excluding taxes)
(14) Community services, entertairment, accommodation expenses, etc.
(15) Wages, salaries
(16) Gross operating surplus fincluding interest, dividends, depreciation and profits, etc.)
(17) Other (please specify)

Operating Costs (Ongoings)

| A | B |
| :---: | :---: |
| Spent in | \% Spent Dutside | N.T.

N.T.

TOTAL

| $\substack{\text { A } \\ \text { Spent in } \\ \text { N.T. }}$ | B
 N.T. |
| :---: | :---: | :---: |
| | |
| A | |

DHECTOH GENERA
DEPAATMENI OF THE CHIE! MPWCTEA U台?WIN
Groote Eylandt Mining Co. P/l
GROOTE EYLANDT
21.9 .79

Dear Sirs, -
ECONOMIC EURUFY OF THE NORTHEM TERRTTORX
The nepartment of the Chief Minjster, in conjunction with the Economics Department, University of Queensiand, is embarking on a series of economic studies of the Northern Territory.

It is expected that the studies will prove invaluable in providing detajlec information which is essential to successfal plannjrg for the econmic devolopment of the Northern tervitery. Information on the Mining Industry in the Worthern Territory is an important requirement for the study. The information requires is indicated in the attached guestionnaires.

Every effort will be made to kecp the information confacntial for Northern Territury Goverment use only. The informatjun obtained will be reduced to a "transaction table" which will not contain the name of any individual company. A transaction table indicates the relative contribution of each sector of the conomy in producing the gooss and services supplied in the forthern Territory. A samic of a typical transaction table produced fer Queensland and its constituent regions is appended by way of illustration.

Your co-operation in providing the information sought by the Northern Territory Government will be appreaiatod.

Please do not hesitate to contact Bill Price 089896931 (reverse charges) Dopartment of the Chief Minister, ¿f you nave any problems or reguire any further guidance in supplying the information sought in the questionmares.

Yours sincerely,

CONFIDENTIAI

ECONOMIC SURVEY OF THE NORTHERN TERRITORY

MINTNG AND AESOCIATED OPERATIONS

Note:
please complete a separate table for each locetion and for each operation

1. Name of firm \qquad -
2. Nature of business \qquad - \qquad
3. Postal address for further contact \qquad
\qquad
4. Name and telephone number of firm's contact \qquad
\qquad
5. Location address for this operation
6. Is the activity at this location continued throughout the year, or does it operate for only part of the year? If for only part of the year, please specify the number of months and for which period.

[^3]MINING ANO ASSOCIATED OPETATIOHS

Note: Please complete a separate table for each location and for each operation

NUMBER OF PERSONS EMPIOXED AT THIS LOCATYON:

| SKILL CATEGORY * | EMPLOYED AS Ar 30 JUNE : | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 1977 | | 1978 | 1979 |
| | Full
 time | | Full
 time other | Full ${ }^{* *}$
 time otber |
| a) Professional | | | | |
| b) Sub-professional | | | | |
| c) Skilled | | | | |
| d) Semi-skilled | | | | |
| e) Unskilled | | | | |
| i) Total number of persons employed | | | | |

* The defintion of slills categories is as follows:
a. Professional:
b. Sub-professional:
c. Skilled:
a. Semi-skilled:
e. Unskilled:

Personnel with tortiary qualifications in sciunca, Engineering, Economics, etc. who are employed in is professional capacity or at an executive ievel

Fersonnel with tertiary or cther qualifications zot experience employed in a technical or admimistrative capacity including senicr clerical stafe
Pexsomel with appropriate trade or other qualifications and experience, such as carpenters, mechanics and mid-range clerical staff
rexsonnel with appropriate training and experience : as laboratory assistants and plant and equipment operators, juniox clerks and clexical assistancs

Pexsonnel with no special skilis, such as labourexand cieaners
*

ECONOMIC SURVEY OF THE NORTUERN TERRITORY

NOTES 30 TABLE M3

MINING AND ASSOCIATED ORERATIONS
 BREAKDOKN OF TOTAL EKPENDITURE

1. Item 3A - Mining - Metaliic - includes benericiating ores ox other minerals by crushing, milling, screeninç, washing, flotation: leaching and calcining, etc. as well as.mining, fox example, benaficiation of bauxite and production of yellow cake are included in mining. Excluded are such processes as bauxite resining and copper smelting, which fall into Category 40 - Manufactured Metals, Minerals and Metal Pxoducts. Preliminary smelting of guld is, however, ineluded under Item 3 A.
2. Similarly, Item 3B - Non-metallic mining - includes, for exmple. coal but not products such as coke, which are included under Iten 5 f 0.8 .
3. For the purposes of allocating costs please treat exploration. development, mining and processing as separate entexprises.
4. Electricity and water supply costs shonld be allocated to othex sectors in Table M3 wher electricity is provided by the enterprise as an integral part of a angle activity. In this case there should be no entry against sactor 5 in Table M\}.
5. Expenditure on the electxicity supply, and where applicable on other services such as watex supply should be allocated to each activjty in cases where supply is maintained to more than one activity such as bauxite mining and alumina meiting. In this case, please entex the cost of alectxicity to each of your activities to sector 5 in Tabla 43 , electricity and water, in the breakdown of capital and operating costs for each of your activities. please also complete the separate set of tables for electricity supply.
6. Slease estimate where information on costs is not dvailable to the wtent sought in the tables, and clearly indicate which is estimated data.
7. It is not expected that all colums for each sector will be completes. please allocate costs only to thone sectors appropriate to the costs incurred in manufacturing your kirm/organisation's product or in provialng services.
8. Sector classificatione accord with the Rustralian standard Industrial Classifications used by the Australian Bureau of statistics. These should be adhered to in allocating costs so es to maintin uniformity with information obtained from other scurces.
\qquad
\qquad

BRESKDOWN OF TOTAL COSTS

\qquad MINING AND ASSOCIATED OPERATIONS
YEAR \qquad

BREAKDOWN OF TOTAL COSTS


```
FLECTRICITY SUPHLY
```

NOTE:
These tables should only be completen wheve your organisation produces clectricity for multiple use, at this location, e.g. mining and processing or education and domesticuse, or for sale to a separate organisation.

1. Name of firm/authority \qquad
2. Postal adiress for eurther contact: \qquad
\qquad
\qquad -
3.

Name and telephone of firm's coniact
4. Location address for this operation*
5. Please list each activity or business supplied with electricity from this sourcet*
\qquad

6. Is the activity at this location continued throughout the full year, or does it operate for only part of the year? If only for part of the year please specify the number of months and for which period

| | YEAR ENDING 30 JUNE | |
| :---: | :---: | :---: |
| 1977 | 1978 | 1979 |
| $\$ 000$ | $\$.000$ | $\$ 009 \%$ |

7. a) Total value of electricity distributed
\$.000 \$:000 \$:000 or

* Please complete separate tables for each location and for each operation.

Item 5 does not apply to the Northern Territory Electricity Commission.

ELECTRICITY SUPFLY

Note: Flease complete separate table for each jocation and for each operetion

NUMBER OF PERSONS EMPLOYES AT THIS 1.OCATION:

- The definition of skills categories is as follows:
A. Professional:
b. Sub-professional:
c. Skilled:
a. Semi-skilled:
e. Unskilled:

Personnel with sextiary gualicice Lons in sciente, Engineering, Economics, etc, who are employed in a professional capacity or at an executive level

Personnel with tertiaxy ox othez qualifications anc experience empioyed in technical ox administrative capacity inclusing senior clarical staft

Personnel with sppropriate trade or other gualifications and experience, such as carpenterg, mechanics and mid-range clexical stafit

Personnel with appropriate traiming and experience. : as iaboratory assistants and plant and dequirment - operators, junior clerks and clerical assistants

Personnel with no speckal skilis, such ss leboureve and cleanerg

BREAKDOWN OF TOTAL EYPENDITUNE

1. Electricity production costs should be allocated to appropriate sectors where electricity is provided by the enterprise to a single activity. In this case, do not complete these tables for electricity supply.
2. Only complete these tables when electricity is suppled to more than one activity such as Pauxite Mining and Alumina Froduction, or supplied to consumers other than your own enterprise. The electricity supply should then be treated as a separate entity and the breakdown in total expenditure for electricity supply should be entered in the appropriate sectors in these tables.
3. Also costs of supply should be allocated to and entered against sector 5, clectricity supply in the "Mining and Associated Operations" tables, for example, for each of your enterprises which are supplied with electricity from this souxce.
4. Please estimate, whexe information of costs is notavailable to the extent sought in the tables, and clearly indicate which is estimated clata.
5. It is not expected that all colums for each sector will be completed. please allocate costs only against those sectors appropriate to the costs incurred in manufacturing youx firm/arganisation's product or in providing service.
6. Sector classifications accord with the Australian Standard Industrial Classifications used by the Australian Fureau of Statistics. These should be adhered to in allocating your costs so as to maintain uniformity with information obtained from other sources.

BEEAKOCWN OF CURRENT PRONUCTION COSTS

EIECTRICITY EUPEIY
LOCATION: \qquad YEAR

ELECTRICITY SUPPLY
\qquad

please enter payments to following
sectors $|$

gREAKDOWN OF CAPITAL COSTS

EIECARICITY SUFPL
LOCATION:
\qquad

ELECTRICITY SUPPLY
\qquad
\qquad YEAR \qquad

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Households | Other
 Final
 Deraand | Exports | . Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | $3 i 2095$ | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 10111 | 0 | 183319 | 505529 |
| 2 | 41501 | 61382 | 11322 | 311877 | 120 | 23 | 1 | 1588 | 0 | 9 | 174 | 140640 | 0 | 88879 | 657516 |
| 5 | 1 | 111 | 14804 | 67588 | 13766 | 11884 | 1645 | 2196 | 21 | 61 | 1063 | 0 | 0 | 543733 | 656873 |
| 4 | 60789 | 72830 | 85791 | 420063 | 9253 | 3.34401 | 37132 | 75589 | 3330 | 42875 | 28133 | 848860 | 89780 | 839402 | 2948028 |
| 5 | 6151 | 9741 | 25764 | 86326 | 6411 | 47\%3 | 9633 | 5793 | 32798 | . 6236 | 30219 | 87448 | 25673 | 0 | 296986 |
| 6 | 7461 | 8102 | 7540 | ? 4123 | 13642 | 0 | 1502.1 | 45367 | 28008 | 44375 | 15683 | 24136 | 857362 | 0 | 1091523 |
| 7 \% | 21512 | 29699 | 47977 | 136475 | 4674 | 995: 5 | 41522 | 31593 | 43209 | 3606 | 28104 | 625540 | 0 | 0 | 1116416 |
| 8 | 10485 | 20670 | 29268 | 138035 | 13708 | 40517 | 38181 | 14232 | 9542 | 5725 | 5041 | 180514 | 174734 | 41405 | 722057 |
| 9 | 221 | 660 | 19923 | 32921 | 829 | 2750 | 105563 | 5745 | 59842 | 11708 | 9295 | 324534 | - 0 | 280210 | 854501 |
| 10 | 0 | 0 | 11 | 153 | 9 | 0 | 2 | 14 | 0 | 0 | 1 | 8381 | 410464 | 0 | 419045 |
| 11 | 1446 | 29 | 476 | 1644 | 124 | 103 | 2360 | 1514 | 1261 | 4404 | 853 | 290400 | 270889 | 39409 | 614912 |
| Households | 28669 | 77514 | 85392 | 621261 | 75983 | 325614 | 427912 | 266711 | 323647 | 249265 | 326382 | 0 | 0 | 0 | 2798850° |
| other Value Adied | 303288 | 345281 | 205746 | 420407 | 154542 | 136021 | 348767 | 193972 | 324300 | 5371 | 124989 | 0 | 0 | 0 | 2562684 |
| Impor*s | 24005 | 31497 | 122859 | 415050 | 3525 | 136209 | 88674 | 83742 | 23543 | 45410 | 44475 | 908881 | 0 | 0 | 1933270° |
| Total | 505529 | 657516 | 656873 | 2948028 | 296986 | 1091823 | 1115416 | 722057 | 854301 | 419045 | 614912 | 3449545 | 1328902 | 2016557 | - |

G.R. West and R.C. Jensen
University of Queensland

Abstract

It is possible to identify some important inconsistencies in the definition of the components of input-output multipliers derived in the conventional manner. This paper identifies these inconsistencies which occur in output, income and employment multipliers, with the result that valid comparison of direct and indirect effects between multipliers is not possible. A suggested re-gefinition of input-output multipliers, considered to be fiee of these inconsistencies, is provided and illustrated.

This note is concemed with the interpretation of input-output multipliers. Over many years and many empirical applications of input-output analysis, methods of calculating multipliers have been derived and some have been accepted as 'conventional'. They are conventional in that they are taken for granted by most analysts, and within certain limits are accorded the status of both theoretical and empirical legitimacy. Our concern is not with the multipier concepts, nor with the general methods of multiplier derivation, but rather with the specific meaning of some of the components of the multipliers and some apparent inconsistencies in interpretation. This note briefly reviews the methods of calculation of the conventional input-output multipliers in Part 1; Part 2 illustrates the inconsistencies in interpretation in the components of these multipliers. Part 3 suggests a multiplier format which we believe to be free of these inconsistencies and simpler to interpret.

1. THE CONVENTIONAL MULTIPLIERS

It is possible from a study of the input-output literature (particularly at the regional level) to recognise a conventional concensus calculation format and terminology. ${ }^{1}$ This conventional format is described below in algebraic terms is illustrated using a 3×3 simplified table of the Queensland econony (Table 1), and its attendant A matrix, defined by heavy lines in Table 2.

Output Multipliers

The multiplier logic is usually cast in terms of response to the stimulus of a dollax increase in output or sales of each sector. Because of the linearity conditions, the arguments apply equally to each dollar of output or a dollar increase or decrease in output. For simplicity

1. This is described, for example in the two 'classics' of Chenery and Clark [1] and Miernyk [2] and many other publications.
we follow the convention of assuming an iricrease in output, and refer as an example to Sector 1. The initial stimulus of a dollar increase in output of Sector 1 calls for first round increases in output of a a_{11} ($\$ 0.071$) from Sector 1 (in addition to the dollar stimulus), of a_{21} ($\$ 0.133$) from Sector 2 and so on. These $a_{i l}$ are the separate industry or disaggregated first round intersectoral effects. The total first round effect from Sector 1 (conventionally termed the direct effect), following the dollar stimulus to Sector 1 is $\sum_{i} a_{i l}$, (or $\$ 0.327$). We should note that the first round effects exclude the initial dollar stimulus.

Now proceed from the A matrix to the general solution $B=(I-A)^{-1}$. Each element $b_{i j}$ of B is multiplier and indicates the direct and indirect requirement of sector i per dollar (increase) in sales by sector j to final demand. For example, the direct and indirect requirements from Sector 1 (Table 3) per dollar (increase) of sales to final demand by Sector 1 is $\$ 1.116$, from Sector 2 is $\$ 0.205$ and so on, giving a direct and indirect output multiplier of $\sum b_{i 1}$ of 1.509. Note that this includes the initial dollar stimulus. The same reasoning applies to the direct, indirect and induced output effects taken from the augmented inverse $B^{*}=\left(1-A^{*}\right)^{-1}($ Table 5$)$, obtained after closing A with respect to households to obtain A^{*} (Table 4). The total direct, indirect and induced outrut multipliers, obtained in this three-sector case as $\sum_{i=1}^{3} b_{i j}^{*}$ are respectively 1.999, 2.625, and 2.395. Note that these multipliers also include the original dollar stimulus. The sector output multipliers are shown in the conventional format in Table 6; the sectoral incidence of the output effects of Sector 1 are shown through disaggregated output multipliers for Sector 1, in Table 7.

Income Multipliers

Input-output income multipliers are calculated from output multipliers i.e. income increases in a sector are assumed to be linearly
dependent on output. Income, usually defined as houschold (1Hi) income is representod via the $H H$ coefficients, in the HI row of Table 4 . These coefficients are termed the direct incone change associsted with an increase of sales of one dollar to final demand by each sector i.e. $\$ 0.105$ in the case of Sector 1. The direct and indirect (DI) income effects are calculated by multiplying the elements of each column of the B matrix by the corresponding HH coefficient e.g. for Sector 1 the calculation is given in Tabse 3 . The $b_{i j} h_{i}$ provide the disaggregated income effects. and the $\sum_{i} b_{i j} h_{i}$, or sum of these, provides the direct and indirect incone multiplier, which is parallel in interpretation to the direct and indirect output multiplier from which it is obtained.

The direct, indirect and induced (DII) income multiplier is taken in cotal from the lHf row of the augnented inverse (Table 5) or calculated in a disaggregated form for Sector 1 in Table 9. The $b_{i j}{ }^{*} h_{i}$ are parallel in interpretation to the output elements of the B* matrix. It is a feature of the input-output matrices that they sum to equal the corresponding entry in the 18 row of the B^{*} inatrix.

The sector income multipliers for this example are sumarised in conventional form in Table 10. The format is similar to that of the output multipliers in Table 6, except that Type I ant II multipliers are added. The sectoral incidence of income effects of Sector 1 are illustrated in Table 11; note that the direct income effects are restricted to that sector which incurred the initial increase of sales of one dollar to final domand.

2. MULTIPLIER INCONSISTENCY

Inconsistencies in Output Multipliers
It would be conventional for the output multipliers in the Queensland example to be published in the form similar to that shown in Table 6. The total direct effects (Column 1) and the direct and indirect
effects (Column 4) do not have consistent definitions; the former excludes the original dollar stimulus, the latter inciudes it. The difference, which is conventionally termed the indirect effect (Colum 2) therefore includes the actual indirect or industrial support effects, plus the original dollar stimulus. The induced effect obeained from colums (4) and (5), excludes the dollax stimulus since both of these columns contain the stimulus and it is netted out in subtraction. Clearly, to be consistent all three effects should exclude the initial dollar effect. When considering disaggregated output effects so that the sectoral incidence of the stimulus of the jth sector can be identified, the above inconsistency is true oniy for the j th sector. For instance, the sectoral incidence of the output stimulus to sector 1 is given in Table 7 , where the original dollar stimulus is included in the first row of Column (2). For all other sectors the direct, and direct and indirect effects are consistently defined.

Inconsistencies in Income Multiplicrs

As mentioned earlier, income multipliers are effectively calculated from output multipliers by multiplication of the disagpregated output multipliers by H coefficients. There is however a major inconsistency in the terminology used in output and income multipliers. This inconsjstency lies in the use of the term 'direct'. In the common usage of output multifliers the term 'direct' refers to the direct or technical coefficients which represent the fixst round effect on all sectors in the table, in response to an initial stimulus of one dollar increase in final demand. With income multipliers the term 'direct' is confined to the HiH income increase in own sector which accompanies the initial stimulus of one dollar increase in sales. For the direct income effect to be defined consistently with the use of the term in output multipliers, it would reed to represent the $1 H$ income increases in ail sectors, associated with the first round
output effect, to be obtained by multiplying first round output effects ($a_{i j}$) by the corresponding $H H$ coefficients (h_{i}). This is shown in Table 13 for Sector 1 ; note that these exclude the initial income effect. This means in effect that although the parallel usage of terms has developed, the inconsistent definition of these terms has become common practice. In effece while colums (1) of Tables 6 and 10 are similarly named, they have quite different meanings. Similarly, colums (1) of Tables 7 and 11 are not symetrical; the single entry in colum (1) of Table 11 represents the own-sector income effect.

The inconsistency is compoumded when we consider the direct and indirect income effects shown in colum (4) of Tables 10 and 11. These are conventionally obtained, as show in Table 8, by multiplying the elements of each column of matrix B by the appropriate $H H$ coefficients. The total direct and indirect (DI) income effect from a dollar increase in sales by Sector 1 is $\left\{b_{i l} \cdot h_{i}(0.243)\right.$, which now includes the initial Effect (0.105) since the unity is retained on the main diagonal of the B matrix during the calculation of DI effects. The subtraction of the conventional direct income effect (own sectos) from the conventional DI income effect (which includes the own-sector, first-round and subsequent round effects), provides an indirect effect (in column (2) of Tables 10 and 11) which is actually similar in content to the direct and indirect effect in output multipliers, by including both first round and subsequentround effects. Consistency in DI output and income multipliers could be obtained only by deleting the unity from the diagonal of B matrix before calculating the DI effects.

The calculation of DII income multipliers, shown in Table 9 , and the subsequent calculation of induced effects by subtracting dr from DII multipliexs produces no inconsistencies in definition of induced effects between ourput and income multipliers, provided both are calcuated
on the same basis, i.e. With the presence or absence of the unity on the main diagonal.

Employment Multipliers

Conventional methods for the calculation of employment multipliers are parallel to those for the calculation of income multipliers. Clearly, the inconsistencies noted in the interprecation of income multipliers will extend also to employment mul:ipliers.

3. A CONSISTENT PRESENTATION OF INPUT-OUTPITT MULTIPLIERS

This section provides a re-definition of input-output multipliexs, one which is consistent from output to income multipliers, and which retains essence of the conventional multipliers. The discussion below avoids use of the temms "direct" and "indirect" because of the confusion of meaning attached to these terms as evident in Section 2 above.

A multipiler is essentially a measurement of response to an economic stimulus. In the case of inputwoutput multipliers the stimulus is normally assumed to be an increase of one dollar in sales to final demand by a sector, and we are interested in the major categories of response in terms of output and income increases. These major categories of effect/response are listed below and illustrated in Table i2. They are:
(i) The Initial Effect. This refers to the assumed dollar increase in sales; it is the stimulus. It is the unity base for the output multiplier and provides the identity matrix of the Leontief matrix. Associated directly with this dollar increase in output is an own-sector increase in hH income in wages, salaries etc. used in the production of that dollar of output. This is the household coefficient. $h_{i}(\$ 0.105$ for Sector 1$)$.
(ii) The First-Round Effect. This refers to the effect of the first round of purchases by the sector providing the additional dollar of output. Clearly, in the case of the output multiplier this will be $a_{i j}$ as the individual sectoral effect, and the column sum of the elements of the A matrix, i.e. $\sum_{i} a_{i j}$ as the total first round effects of a dollar increase in sales to final demand by sector i. In the case of the incone multipliers this will be the $H H$ incone increases occasioned by the first rourid requirements, i.e. $a_{i j} h_{i}$ for any individual sectoral effect, or $\underset{i}{ } a_{i j} h_{i}$ for the total effect of sector i. (Table 13)
(iii) Industrial Support Effect. This term is applied here to 'second and subsequent round' effects as successive waves of necessary output increases occur in the economy following the first-round impacts. The term specifically excludes household consimption induced effects; it is calculated fron the open inverse B, as a measure of industrial support requirements associated with a given set of first-round effects. The industrial support output requirements must be calculated as the elements of the columns of the B matrix, less the initial dollar stimulus and the first-round requirements, i.e. $\sum_{i} b_{i j}-1-\sum_{i} a_{i j}$ The income effects for each sector will be defined consistently with this i.e. $\sum_{i} b_{i j} h_{i}-h_{i}-\sum_{i} a_{i j} h_{i}$. The first round and industrial stpport can together be described as the production induced effect to distinguish them from the consumption induced effect.
(iv) The Consumption Induced Effect. As mentioned in Section 2, no inconsistencies in the definition of the induced effect in output and income muitipliers wexe apparent. The induced effect here is therefore defined in the conventional way.
namely as that induced by increased income associated with increased output. This is recorded as the difference between the columns of the open inverse B and the closed inverse B^{*}, i.e. as $\sum_{i} b_{i j}^{*}-c_{i} b_{i j}$ for output effects and $\sum_{i} b_{i j}^{*} h_{i}-\sum_{i} b_{i j} h_{i}$ for income effects.

These effect categories avoid inconsistencies between multipliers by defining the income effects symmetrically with output effects. ${ }^{2}$ gevised output multipliers for the Queensland example are shown in Tables 14 and 15, and revised income multipliers of conststent definition in Tables 16 and 17. These multipliers indicate for example that a dollar increase in sales of Sector 1 to final demand results in:
(i) an initial income increase to the workers/staff/owners in Sector 1 of $\$ 0.105$.
(ii) a first-round output effect on all sectors of $\$ 0.327 \quad \$ 0.071$ in Sector $1, \$ 0.133$ in Sector 2 , and $\$ 0.123$ in Sector 3), accompanied by a first round income increases of $\$ 0.089$, being \$0.007, \$0.031, and $\$ 0.051$ in each sector.
(iil) industrial support output effect of $\$ 0.182$ being $\$ 0.045$, $\$ 0.072$ and $\$ 0.065$ in the three sectors), which in turn is accompanied by an income increase of $\$ 0.049$, (being $\$ 0.005$, $\$ 0.017$ and $\$ 0.027$ respectively).
(iv) consumption induced output effect of $\$ 0.490$ ($\$ 0.049, \$ 0.173$ and $\$ 0.268$ respectively in the sectors) and an accompanying constumptioninduced income increase of $\$ 0.156$, betng in each sector $\$ 0.005$, $\$ 0.040$, and $\$ 0.110$ respectively.
2. Table 12 provides opportunity for a useful sumary of the inconsistencies noted in estetion 2. In terms of the romenclature of Table 12, the conventional system defines the effect as:

Type I and If Multipliers

The question of Type I and Type II multipliers deserves attention. The output multipliers are calculated both in the conventional system and the system suggested in this paper, on a 'per unit of initial effect' basis - i.e. output responses to a dollar change in output. Income multipliers as described above refer to changes in incone per dollar initial change in output. Income multipliers are conventionally converted to a 'per unit' measurement by the calculation of Type 1 and 11 multipliers as:

Type $I=\frac{\text { Direct \& indirect effect }}{\text { Direct effect }} ; \quad$ Type $I I=\frac{\text { Direct, indirect \& induced effect }}{\text { Direct effect }}$

Type I and II multipliers therefore measure the DI and DII income effects per unit of income generated within the sector expanding production, on an 'own-sector' basis, as a result of an increase in sales to final demand. The output multipliers and the Type I and II income multipliers therefore have a common structure, measuring a response per unit of initial effect.

The redefinition of multiplier components to produce consistency suggests a re-examination of Type I and II multipliers. Analysts are likely to be interested in income generated per unit of initial effect in this case it is probably useful to retain the general Type I-Type II format, but to distinguish between the first-round, industrial support and consumption induced effect in this manner:

Type IA Income Multiplier $=\frac{\text { Initial }+ \text { First. Round effect }}{\text { Initial effect (I) }}=\frac{\text { IF }}{\mathrm{I}}$
Type IB Income Multiplier $=\frac{\text { Initial }+ \text { Production Induced Effect }}{\text { Initial effect }(I)}=\frac{I P}{I}$
Type II Income Multiplier $=$ Initial + Production Induced $\frac{\varepsilon}{4}$ Consumption Initial effects (I) $\frac{\text { Induced Effect }}{I F C}$

These are shown for the Queensland example in Table 18.
110.

CONCLUDING REMARKS

The suggested multiplier format has two advantages. First, it ensures that the terms used in defining the component effects of multipliers are consistently applied in both output and income multipliers; this is not a feature of the multiplier format in conventional use. Secondly, procedures for income (and employment) multiplier calculation are considerably simplified; output effects can simply be multiplied by appropriate income (or employment) coefficients to obtain corresponding multiplier components. This also is not a feature of the conventional format. The system suggested in this paper has replaced the conventional format in our inpui-output studies.

REFERENCES

[1] Chenery, H.B. and Clark, P.G. (1962), Interindustry Economics, Wiley.
[2] Miernyk, W.H. (1965), The Elements of input-0utput Analysis, Random House.

TABLE 1: TRANSACEIONS TABLE, QUEENSLAND, 1973-4 (\$m)

| \pm | Interme | ate Se | ors | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | | | Household | Other Final | Total |
| 哭号 | 1. | 2 | 3 | Consumption | Demand | Output |
| E 1 | 129.1 | 703.5 | 20.6 | 102.4 | 864.3 | 1819.9 |
| ¢ | 242.5 | 778.6 | 359.2 | 762.2 | 1897.3 | 4039.8 |
| E 3 | 224.0 | 503.2 | 536.7 | 1434.2 | 1325.5 | 4023.6 |
| Households | 191.6 | 946.9 | 1660.4 | - | - | 2798.9 |
| Other Primary | | | | | | |
| Inputs | 1032.7 | 1107.6 | 1446.7 | 500.1 | 429.2 | 4516.3 |
| Total | 1819.9 | 4039.8 | 4023.6 | 2798.9 | 4516.3 | 17198.5 |

TABLE 2: DIRECT COEFFICIENTS MATRIX, QUEENSLAND, 1973-4

| | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 1 | .071 | .174 | .005 |
| 2 | .133 | .193 | .089 |
| 3 | .123 | .125 | .133 |

| Total | | | |
| :--- | ---: | ---: | ---: |
| Intermediate
 Households
 Other Primary
 Inputs | . .327 | .492 | .227 |
| Total | 1.000 | .234 | .413 |

| TABLE 3: $B=$ | $(I-A)^{-1}$, | QUELNSLAND, | $1973-4$ |
| :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 |
| 1 | 1.116 | .246 | .032 |
| 2 | .205 | 1.304 | .136 |
| 3 | .188 | .222 | 1.178 |
| Total | 1.509 | 1.772 | 1.346 |

TABLE 4: A* MATRIX, CLOSED WITH RESPECT TO HOLSEIMOLDS, QUEENSLAND, 1973-4
$1 \quad 2 \quad 3 \quad$ Households

| 1 | .071 | .174 | .005 | .036 |
| ---: | :---: | :---: | :---: | :---: |
| 2 | .133 | .193 | .089 | .273 |
| 3 | .123 | .125 | .133 | .512 |
| Households | .105 | .234 | .413 | - |

| TABLE 5: | $B^{*}=\left(I-A^{*}\right)^{-1}$, | QUEENSLAND, $1973-4$ | | |
| ---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | Households |
| 1 | 1.165 | .332 | .138 | .204 |
| 2 | .378 | 1.604 | .505 | .710 |
| 3 | .456 | .689 | 1.752 | 1.102 |
| (Total) | (1.999) | (2.625) | (2.395) | |
| Seholds | .399 | .695 | .856 | 1.643 |

TABLE 6: SECTOR OUTPUT MULTIPLIERS, QUEENSLAND, 1973-4
Direct ${ }^{(a)}$ Indirect. ${ }^{\text {(b) }}$ Induced ${ }^{(c)}$ Direct ${ }^{(d)}$ Direct ${ }^{\text {(c) }}$ and Indireet and Indirect Induced (4) (5)

| Sector | (1) | (2) | (3) | (4) | (5) |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | .327 | 1.182 | .490 | 1.509 | 1.999 |
| 2 | .492 | 1.250 | .853 | 1.772 | 2.625 |
| 3 | .227 | 1.119 | 1.049 | 1.346 | 2.395 |

(a) From Table 2
(b) Column (4) less column (1)
(c) Column (5) less column
(4)
(d) From Table 3
(e) From Table 5

TABLE 7: DISAGGREGATED OUTPUT MUITTPLIERS, SECTOR 1, QUEENSLAND. 1973-4
Direct ${ }^{(a)}$ Indirect ${ }^{(b)}$ Induced ${ }^{(c)}$ Direct ${ }^{(d)}$ Direct $^{(\mathrm{e})}$

| Sector | (1) | (2) | (3) | (4) | (5) |
| :---: | ---: | ---: | ---: | ---: | ---: |
| | .071 | 1.045 | .049 | 1.116 | 1.165 |
| 2 | .133 | .072 | .173 | .205 | .378 |
| 3 | .123 | .065 | .268 | .188 | .456 |
| | $\boxed{.327}$ | 1.182 | | .490 | |
| | (a) | 1.509 | 1.999 | | |

(a) From Table 2
(b) Column (4) less column (1)
(c) Column (5) less column (4)
(d) From Table 3
(e) From Table 5

TABLE 8: CALCULATION OF DIRECT \& INDIRECT INCOME EFFECTS, SECTOR 1
Sector
$b_{i 1}$
h_{i}
(2)
$b_{i 1} h_{i}$
(1)
(3)

1
1.116 . 105
.117
2
.205 . 234
.048
3
.188 . 413
.078
DI Income Multiplier $=.243$

TABLE 9: CALCULATION OF DIRECT, INDIRECT \& INDUCED INCOME EFFECTS, SECTOR 1
Sector
$b_{i 1}^{*}$
(1) (2)
$\mathrm{b}_{\text {ij }}^{*} \mathrm{~h}_{\mathrm{i}}$
(3)
$\begin{array}{rrrr}1 & 1.165 & .105 & .122 \\ 2 & .378 & .234 & .088 \\ 3 & .456 & .413 & .188\end{array}$

```
DII Income Multiplier = . 398
```

TABLE 10: SECTOR INCOME MULTIPLIERS, QUEENSLAND, 1973-4
Direct ${ }^{(a)}$ Indirect (b) Irduced (c) Direct ${ }^{(d)}$ Direct ${ }^{(c)}$ Type $\mathrm{I}^{(f)}$ Type $1^{(g)}$

| Sector | (1) | (2) | (3) | Indirect | Induced | (4) | (5) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .105 | .138 | .156 | .243 | .399 | 2.31 | (7) |
| 2 | .234 | .189 | .272 | .423 | .695 | 1.81 | 2.807 |
| 3 | .413 | .103 | .335 | .521 | .856 | 1.26 | 2.07 |

(a) From the Households row of Tables 2 or 4
(b) Column (4) less column (1)
(c) Column (5) less colum (4)
(d) Calculated as shown in Section 1
(e) Calculated as shown in Section 1 or taken as the HH row of Table 5
(f) Column (4) divided by columin (1)
(g) Column (5) divided by column (1)

TABLE 11: DISAGGREGATED INCOME MULTIPLILRS, SECTOR 1, DUELNSLANU, 1973-1
Direct Indirect ${ }^{(a)}$ Induced (b)

| Wirect and | Direct, |
| :---: | :--- |
| Indirect | Indirect |
| | Induced |

| Sector | (1) | (2) | (3) | (4) | (5) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .105 | .012 | .005 | .117 | .122 |
| 2 | - | .048 | .040 | .048 | .088 |
| 3 | - | .078 | -110 | .078 | -188 |
| | .105 | .138 | .155 | .243 | .398 |

(a) Column (3) of Table 8, less column (1) of this table. (b) Column (3) of Table 9, less column (3) of Table 8.

TABLE 12: OUTPUT AND INCOME EFFECTS OF AN INCREASE IN SALES TO FTNAL DEMAND

| | | Output Multipliers | | Income Multipliers | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Ceneral Case | Exannse | General Case | Example |
| (i) Initial Effect Production Induced Effect
 (ii) First Round Effect | | t | 1 | h_{i} | 105 |
| | | $\sum_{i} a_{i j}$ | . 327 | $\sum_{i} a_{i j} h_{i}$ | . 089 |
| (iii) Industrial Support | | $\sum_{i} b_{i j}{ }_{\text {-1- }} \sum_{i} a_{i j}$ | . 182 | $\sum_{i} b_{i j} h_{i}-h_{i}-\sum_{i} a_{i j} h_{i}$ | . 049 |
| (iv) | Consumption Irduced Effect | $\sum_{i} b_{i j}^{*}-\Sigma b_{i j}$ | .490 | $\sum_{i} b_{i j}^{*} h_{i}-\sum b_{i j} h_{i}$ | . 155 |
| | Total | $\sum_{i} b_{i j}^{*}$ | 1.099 | $\Gamma_{i} b_{i j}^{*} h_{i}$ | . 398 |

124.

TABLE 13: FIRST ROUND INCOME EFFECTS, SECTOR 1, QUEENSLAND, 1973-4

| Sector | $a_{i 1}$ | h_{i} | $a_{i 1}{ }^{h_{i}}$ |
| :--- | ---: | :---: | :---: |
| 1 | .071 | .105 | .007 |
| 2 | .133 | .234 | .031 |
| 3 | .123 | .013 | .051 |
| | First Round Income Effect | $=\frac{.089}{}$ | |

TABLE 14: SECTOR OUTPUT MULTIPLIERS BY EOUR CATEGORIES OF EFFECT, QUEENSLAND, 1973 -4

| Sector | Initial | First Round | (a) | Industrial
 Support | Consumption
 induced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Total | | | |
| 1 | 1.000 | .327 | .182 | .490 | 1.999 |
| 2 | 1.000 | .492 | .280 | .853 | 2.625 |
| 3 | 1.000 | .227 | .119 | 1.049 | 2.395 |

(a) from Table 2.
(b) from Table $2 \& 3$, using formula (iii) of Table 12.
(c) from Table 6.

TABLE 15: SECFORAL INCTDENCE OF DUTPUT MULTIPLIERS BY FOUR CATEGORIES OF EFFECT, SECTOR 1, QUEENSLAND, 1973-4

| Sector | Initial | First Round ${ }^{(a)}$ | Industrial Support | Consumption Induced | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | . 071 | . 045 | . 049 | 1.165 |
| 2 | - | . 133 | . 072 | . 173 | . 378 |
| 3 | - | . 123 | . 065 | . 268 | . 456 |
| | 1.000 | .327 | . 182 | . 490 | 1.999 |

(a) from Table 2.

TABLE 10: SECTOR INCOME MULTIPLIERS BY FOUR CATEGORIES OF EFFECT, QUEENSLAND, 1973-4

| Sector | Initial | First Round | Consumption
 Industrial
 Support | Induced | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .105 | .089 | .049 | .156 | .399 |
| 2 | .234 | .115 | .074 | .272 | .695 |
| 3 | .413 | .077 | .032 | .335 | .857 |

TABLE 17: SECTORAL INCIDENCE OF INCOME MULTTPLIERS BY FOUR CATEGORIES OF EFFECT, SECTOR 1, QUEENSLAND, 1973 -4
Sector Initial First Round Industrial Consumption Induced Total Support

| 1 | .105 | .007 | .005 | .005 | .122 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | - | .031 | .017 | .040 | .088 |
| 3 | - | .051 | .027 | .110 | .188 |
| | -105 | .089 | .049 | -155 | -.398 |

TABLE 18: TYPE I ANI TYPE 11 MULTTPLIERS, QUEENSLAND EXAMPLE

Conventional Multipliers Suggested Consistent Nultipliers

Type $I=\frac{D 1}{D} \quad$ Type $1 A=\frac{I F}{I}$
Sector $1 \quad 2.31$
$2 \quad 1.81$
$3 \quad 1.26$
Sector 1.85
21.49
$3 \quad 1.19$

Type $1 B=T P$
Sector 12.31
$2 \quad 1.81$
31.26

Type 11
$\begin{array}{rrr}\text { Sector } & 1 & 3.80 \\ 2 & 2.97 \\ & 3 & 2.07\end{array}$
$\begin{array}{rrr}\text { Sector } & 1 & 3.80 \\ 2 & 2.97 \\ 3 & 2.07\end{array}$
126.

APPENDIX V

A PROCLDURE IOR ACCURACY OPTYMIZATIUN
IN INPUT-OUMUT COEFFICIEMTS
G.R. West
(University of Queensland)

ABSTRACT

Analysts constructing and applying regional input-output tables will normally have limited budget resources. Once a prototype table has been produced, it would be inefficient for the analyst to spread these resources evenly over every cell in the table, in order to obtain saperior or updated estimates. This paper demonstrates that it is possible to rank the cocfficients in order of the importance that errors in these coefficients have on the input-output multipliers. A selection of criteria to choose from in determining this ranking is provided. It is then demonstrated how this ranking can be used as an input to an optimization model to determine exactly which coefficients the analyst should concentrate on in order that multiplier accuracy is maximized subject to imited budget resources.

I Introduction

In both the derivation and application stages of input-output analysis, it would be of interest to the analyst if he could rank the direct coefficients in terms of the relative importance of their effects on the input-output multipliers.

In the construction stage, for example, prototype iables are usually compiled and progressively updated in the 'critical' areas until the analyst is satisfied with the final transactions table. In the application stage, if the analyst is interested in particular sectors, he should give these sectors, together with other strongly interconnected sectors, close scrutiny before proceeding with the impact analysis. Therefore if the analyst can rank the coefficients in order of their relative importance in terms of the magnitude of the effect errors in the direct coefficients have on the final multipliers, he can get some idea as to which coefficients and sectors he should concentrate on in order to minimize the final multiplier errors, subject to the limited resources available.

No previous work has been published on this specific aspect to the author's knowledge. Previous work has been done on some aspects of coefficient error, but the analysis has not been carried through to the extent of explicitly ranking the direct coefficients in order of their importance, nor to the ultimate end of using this ranking in a mathematical optimization sodel. This paper attempts to fill this gap. In Section II, some background work is presented. Section III develops the mathematical formulation of muitiplier errors, and Scction IV suggests a possible optimization model. Section V presents an empirical example, and finally Section VI outlines the important conclusions.

II Background

An analyst compiling regiona! imput-output tables will normally have limited resources available in terms of money and time. It will be very likely not possible for the analyst to give very close scrutiny to all of the coefficients in the prototype table. The question then arises: which coefficients should he give first priority to, and which coefficients should he pay less attention, if any, to. Provious work has provided some hints to the answer of this question.

Lvans [2] was concerned with the suspicion that relatively snall errors in the direct coefficients ($a_{i j}$) might cumulate to relatively large errors in estimates of sector output. lle concludes that two errors opposite in sign could be compensating in their effect on the Leontief inverse, and that the $1 / 0$ model has an "inherent ability to minimize the undesirable effects of data inperfections" (y. 461). However Evans concerned himself solely with the output vector, and did not consider the effects of errors on multipliers. Similarly, Quandt $[6,7]$ was concerned with the output vectors and used shocking techniques on the ${ }_{i j}$'s to test the relationship between the distribution of the errors and the distribution of the solution. Quand showed that the skewness of the $a_{i j}$ errors tends to be transinitted to the solution vectors, and suggests the lognormal car be used as an approximate distribution of the solution.

More recently, Stevens and Traincr [8] argue that errors in the $a_{i j}$'s do not have serious effects on outputs and multipliers, and that houschold and regional purchase coefficients exert the most important effects on overall accuracy. Burford and Katz [1] also support this view. They suggest the distribution of coefficients in the colums has a relatively smil role in the determination of multiplier values, and that the main determinant of multiplier values is the colum totals of the A matrix. However both Stevens and Tratier and Burford and Katz concemed themselves with the specific case of fixed absolute errors in
the direct coefficients.
On the other hand, West and Jensen [9] used shocking techniques to examine the effects of proportional error in the $a_{i j}$'s on the multipliers, and conclude "that the instability of output multipliers varies directly with both the size of the multiplier and the extent to Which individual cocfficients dominate their respective columns in the technology matrix. This suggests that greater attention should be given to sectors showing larger multipliers, particularly if their column are relatively dominated by a small number of cells" ($\mathrm{f}, 25$).

Jensen and West [5], in an attempt to nail down the effects of coefficient size on the multipliers, performed experiments on 14 empirical tables by progressively removing the coefficients in order of their magnitude, from low to high, both cumulatively and with replacement. They conclude that there is "some enpirical suppert for the notion that the relatively larger coefficients exert relatively more influence on multipliers; it also provides empirical support for an accuracymaximizing approach to multiplier derivation. This notion, implied in most operational circumstances and probably accepted generally by analysts, is that budget resources available to the anaiyst should be directed to ensuring accuracy in the relatively large coefficients, and allocated in decreasing amounts to progressively smaller coefficients" (p. 14).

Both the West and Jensen and Jensen and West conclusions are correct, but they do not go far enough. The West and Jensen paper possibly comes closest to the correct answer by claiming that size and distribution of coefficients within columns, together with the size of the corresponding output multiplier, are the main determinants of multiplier values, but do not take account of the distribution of coefficients across colums. The same is true for the income multipliers. The Jensen and West paper acknowlodges that coefficient size is important, but does not realize that the internaldistribution of the coefficients
is also a major factor. That is, neither of the above papers take into account the level of interconnectedness of the table, nor its level of aggregation. The following model explicitly takes account of these factors.

Before the model is presented, one additional point needs to be mentioned. An efficiency optimization technique bssed on principies similar to the above, depends on the notion of what can be called holistic accuracy, in the sense that tha table should be as representatively accurate as possible in the overall sense, i.e. in the operational sense of applying the table. The nomal concept of accuracy, partitive accuracy, on the other hand, is where each individual cell, regardless of its relative importance, is deemed accurate. However an inputootput table, perse, doesn't mean much; the test is in the empirical application of the rable. Thus it is imortant that the overali picture is representative of the economy; i.e. the major sectors and linkages axe reproduced accurately, but the less important cells which exert little influence on the multipliers, etc., noed not be reproduced with the same degree of accuracy. This concept of accuracy was explicit in the work of Jensen, Mandeville, and Karunsratre [4], and is a necessary concept in any technique used to develop regional input-output tables within a reasonable time (and money) horizon. For a comprehensive discussion on the concept of accuracy, see jensen [3].

III Errors in Multipliers - Mathematical Formulation

Suppose we have an initial estimate of an input-output direct coefficient matrix, A. Then it is likely that all, or some, of the direct coefficients, $a_{i j}$, contain ermor, $d_{i j}$, either absolute or proportional. If the errors are absolute srrors, what we in fact have are first estimates of the true coefficients $\left(a_{i j}+d_{i j}\right)$. On the other hand the errors in the coefficients may be proporitonal errors, in which case
$d_{i j}=a_{i j} p_{i j}$, and we have first estimates of $\left(a_{i j}+a_{i j} p_{i j}\right)$.
The aim of this section is to find what affect, if any, the coefficient errors have on the various input-output multipliers. The analysis that follows is based on the assumption that the initial coefficient error is proportional, but this does not restrict the analysis in any way. In fact the assumption of absolute coafficient errors is more restrictive, and the following theory can easily be converted to the analysis of absolute errors by substituring $d_{i j}$ for $a_{i j} P_{i j}$. In the empirical sense, there is little to suggest either error fornat is more likely to occur, and one can find arguments in favour of both propositions. Given that a decision had to be made, however, the author is marginally inclined towards the proportional error theory, primarily on the basis that we would expect, ceteris paribus, larger coefficients to contain larger errors.

All the input-output multipliers are calculated from the Leontief inverse, $B=(I-A)^{-1}$. Therefore we need to know how the error matrix $b=\left[d_{i j}\right]=\left[a_{i j} p_{i j}\right]$ affects B. in other words, if we apply the usual theory to the coefficient matrix (A), we obtain $(I-A)^{-1}$ which is not equal to the 'true' inverse $(I-A-D)^{-1}$. The question we therefore need to answer is: how is (I-A-D) ${ }^{-1}$ related to $(I-A)^{-1}$?

Let us write:

$$
\begin{align*}
(I-A-D) & =(I-A)(I-\theta) \tag{1}\\
& =I-A-(I-A) \theta
\end{align*}
$$

and we have

$$
\begin{equation*}
D=(I-A) \theta \tag{2}
\end{equation*}
$$

From (1):

$$
\begin{align*}
(I-A-D)^{-1} & =(I-\theta)^{-1}(I-A)^{-1} \\
& =\left(I+B+\theta^{2}+\theta^{3}+\ldots\right)(I-A)^{-1} \\
& =(I-A)^{-1}+\theta(I-A)^{-1}+\theta^{2}(I-A)^{-1}+\ldots \\
& =B+\theta B+\theta^{2} B+\ldots \tag{3}
\end{align*}
$$

But, from (2):

$$
\begin{aligned}
\theta & =(I-A)^{-1} D \\
& =B D
\end{aligned}
$$

and therefore (3) becomes:

$$
\begin{align*}
(I-A-D)^{-1} & =B+B D B+(B D)^{2} B+(B D)^{3} B+\ldots \\
& =B+B D B+B D B D B+B D B D D D B+\ldots \\
& =B+E 1+E 2+E 3+\ldots \\
& =B+E \tag{4}
\end{align*}
$$

where $\mathrm{E}=\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3+\ldots$ is the error induced into $(I-A)^{-1}$ in response to an initial error D introduced into A.

Consider the error component El first:
Now the $(i, j)^{\text {th }}$ element of $B D$ is $\underset{k}{ } h_{i k}{ }^{a_{k j}} P_{k j}$
and the $(i, j)^{\text {th }}$ element of $E 1=(B D) B$ is $\sum_{\ell k i k}\left(\Sigma b_{i k} a_{k} P_{k}\right) b_{\ell j}$
The error in the $j^{\text {th }}$ output or column multiplier is therefore

$$
\begin{align*}
\varepsilon l\left(O M_{j}\right) & =\sum_{i \ell k} \sum_{i k} b_{k \ell} p_{k^{\ell}} b_{\ell j} \\
& =\sum_{\ell k} \sum_{k} a_{k \ell} p_{k} \ell^{b} \ell j \tag{5}
\end{align*}
$$

and the cotal absolute error over all j output multipliers is

$$
\begin{align*}
\varepsilon 1=\sum \varepsilon 1\left(O M_{j}\right)= & \sum_{j} \sum_{j \ell} O M_{k} a_{k \ell} P_{k \ell} b_{\ell j} \\
= & \sum_{\ell k} \sum_{k} a_{k \ell} P_{k \ell} R M_{\ell} \tag{6}
\end{align*}
$$

where $R H_{q}$ denotes the $e^{\text {th }}$ row total of $B i . e$. the $e^{\text {th }}$ row multiplier, which represents the change in output of the $\mathrm{e}^{\text {th }}$ sector in response to a one dollar change in final demand of all sectors. el denotes a scalar formed from the sumation of elements in the matrix El.

Equations (5) and (6) throw an interesting light on the coefficient error problem. For example, suppose an error occurs in one cell $a_{k e}$. The subsequent error in the $j^{\text {th }}$ output multiplier depends not on the size of the $j^{\text {th }}$ output multiplier, but the magnitude of the output multiplier corresponding to the row sector where the original error lies i.e. $O M_{k}$. If errors exist in more than one (but not necessarily all) of the direct ccefficients, the error in the $j^{\text {th }}$ output multiplier depends on the sum of the output multipliers of the errored row sectors. The error in the $j^{\text {th }}$ output multiplier in response to an error in the direct coefficient ake is found by weighting the error in ${ }_{k \ell}$ by the output multiplier of industry k and the sectoral output multiplier from industry ℓ into industry j. The error over all output multipliers is the sum of the errors in a_{l} weighted by the output multiplier from industry k and the row multiplier of industry ℓ.

Not only does this give an estimate of the total error over all output multipliers, but it also tells us the relative importance of the $a_{i j}$ coefficients in which errors occur. For a given proportional error in any $a_{i j}$, we would want to reduce the error in those cells which correspond to large $a_{i j}$'s, combined with large row and column multipliers.

Equation (6) is a summation of terms, and can be rewritten as

$$
\begin{equation*}
\left.+O M_{k i}{ }_{k i} \ell_{i} p_{k i}, \ell_{i} M_{\ell i}+\ldots \quad\right] \tag{7}
\end{equation*}
$$

where the terms in the series [] can be written in sequential order from high to low. We then have a sequential list of cells which contribute, in order of importance, to the overall multiplier error. In terms of relative efficiency, therefore, we should concencrate firstly on reducing the error in the coefficient a_{k}. R1, secondly in the coefficient $a_{k 2, \ell 2}$, and so on.

Also note from equation (6) that the total multiplier error is a function of several factors; (a) the size of the original error $\mathrm{p}_{\mathrm{k} \ell}{ }^{\prime}(\mathrm{b})$ the magnitude of the corresponding direct coefficient $a_{k \ell}$, (c) the level of interconnectedness (the values of $O M_{k}$ and $R M_{2}$); and (d) the level of aggregation (the range of values of k and l). Thus errors in the cocfficients give rise to relatively larger multiplicr errors in more interconnected tables and more disaggregated tables. Within any given table, cells which contain large direct coefficients and also correspond to large row and column multipliers have a larger effect on multiplier error than other cells. ${ }^{1}$

In an operational sense, we need to make the broad assumption that the proportional error in each coefficient is roughly of the same magnitude. We need not specify a particular value. In situations where more detailed knowledge of the local economy is available, one may be able to obtain rough ratios of these errors e.g. one may be led to believe that the error in one particular coefficient is approximately twice as large as in other coefficients. Remember, the above nodel does not aim to tell us what the errors are (although in some circumstances it can provide a rough estimate). It only gives us a pointer which indicates which cells we should be concentrating on, in the light of all the prior available information.

$$
\text { If we assume that } p_{k \ell} \approx p \text { for all } k \text {, } \ell \text {, then equation (6) }
$$ (and (7)), becomes ${ }^{2}$

$$
\begin{equation*}
\varepsilon 1=\underset{\sum_{k}}{p \Sigma \sum_{k} a_{k \ell} R M_{\ell}} \tag{8}
\end{equation*}
$$

1. These cells need not necessarily correspond to cells containing just large $a_{i j}$'s. In the case of the five sector Qucensland input-output

- Table 4] the rank correlation coefficient between the rankings of the ${ }^{3}{ }_{i j}$'s and the $O M_{k} a_{k} \ell^{R M} M_{\ell}$'s listed in order of magnitude from high to low is 0.97 . The slight difference between the rankings can be accounted for by the level of interconnectedness (i.e. the positioning of the large $a_{i j}$'s relative to each other in the table) which is not taken into account when simply ranking the $a_{i j}$'s from high to low.

2. The assumption of constant coefficient error (either absolute or proportional) is also implicit in the partitive accuracy concept, i.e. looking at each cell in turn without any prior ranking procedure.

Each term in the summation can be arranged in a matrix format, and these elements can easily be calculated. All that is required are the matrices A and B.

where El- denotes the matrix of absolute multiplier error components, as distinct from Li which is the matrix of errors in the elements of B. Once the crror matrix El'has been obtained, the elements can simply be ranked. The transpose of these elements in the A matrix then gives the relatively important coefficients.

In the simple case where $a_{k \ell} \cdot p_{k \ell}=d_{k \ell}$ is assumed to be constant, i.e. there is a constant absolute coefficient error, equation (8) reduces to

$$
\begin{align*}
\varepsilon 1 & =d \underset{\ell k}{ } \sum_{k} O M_{\ell} R M_{\ell} \\
& =d T^{2} \tag{10}
\end{align*}
$$

Where T denotes the sum of the elements of the Leantief inverse, B
i.e. $\quad T=\sum_{i} \sum_{j} b_{i j}$

In this case, all that is required to rank the coefficients is the matrix B.

The analysis so far has concentrated on absolute multiplier error. This may not be a satisfactory critexion, as multiplier size is not taken into account. A more appropriate measure would be average proportional multiplier error.

Proportional output multiplier error can be measured in two
ways: (a) the error as a proportion of the total multiplier, or (b) the error as a proportion of that portion of the multiplier above unity. Again
there are advantages and disadvantages in each approach, and the analysis can easily accommodate either method. For the sake of consistency with previous analysis and uniformity across multipliers, we will use the former approach, stressing that it is not necessarily more correct.

The proportional multiplier error in the $j^{\text {th }}$ output multiplier is, from equation (5): ${ }^{3}$

$$
\begin{equation*}
\frac{\varepsilon 1\left(O M_{j}\right)}{O_{j}}=\frac{\sum \sum_{\ell} O M_{k} a_{k \ell} p_{k \ell}\left(\frac{b_{\ell j}}{O M_{j}}\right)}{} \tag{12}
\end{equation*}
$$

and the average proportional multiplier error is thus

$$
\begin{equation*}
\frac{1}{n} \sum_{j}\left(\frac{\varepsilon 1\left(O M_{j}\right)}{O M_{j}}\right)=\frac{1}{n} \sum_{\ell k}^{\sum \sum_{k} O M_{k} a_{k \ell} p_{k \ell} \sum_{j}\left(\frac{b_{\ell j}}{O M_{j}}\right), ~} \tag{13}
\end{equation*}
$$

where $\frac{b_{j}}{O M_{j}}$ is the proportion of the column total which lies in cell (ℓ, j) of B, and n is the number of intermediate sectors.

Again using the broad assumption that $p_{k \ell}$ is constant for all k, \& we have

$$
\begin{equation*}
\frac{1}{n} \sum_{j}^{\sum}\left(\frac{\varepsilon 1\left(O M_{j}\right)}{O M_{j}}\right)=\frac{p}{n} \sum_{\ell k}^{\sum \sum \quad O M_{k} a_{k \ell} \sum_{j}^{\sum\left(\frac{\ell j}{O M}\right)}\left(\frac{b}{j}\right)} \tag{14}
\end{equation*}
$$

and each term in the series can be compiled into an error matrix as previously, ${ }^{4}$ viz:
3. Using the second measure, we would have

$$
\frac{\varepsilon 1\left(O M_{j}\right)}{\left(O M_{j}-1\right)}=\sum_{\ell k} \sum_{k} \quad O M_{k} \quad a_{k \ell} p_{k \ell}\left(\frac{b_{l j}}{O M_{j}-1}\right)
$$

Also note that we need to measure the error relative to the estimated multipliex
4. Average proportional multiplier error is the criterion used by

Jensen and West [5]. As noted previously, their results imply that the $a_{i j}$ coefficients should be ranked from high to low. Conparing this simple ranking with the ranking obtained from equation (14) for the Queensland table, results in a rank correlation coefficient of 0.98 .

where $\overline{E 1}$ is used to distinguish the error matrix from E1, as now each element is, a measure of an error component in the average proportional multiplier error, rather than the absolute multiplier error.

Simplifing further by assuming constant absolute coefficient errors reduces equation (5) to

$$
\begin{align*}
E 1\left(O M_{j}\right) & \approx d \sum_{k}^{\Sigma} O M_{k} \sum_{2 j}^{\Sigma} b_{j} \\
& =d T \mathrm{OM}_{j} \tag{16}
\end{align*}
$$

and thus

$$
\begin{equation*}
\frac{\varepsilon\left\{\left(O M_{j}\right)\right.}{O M_{j}}=d T \tag{17}
\end{equation*}
$$

i.e. the proportional output multiplier errox is constant, irrespective of the sector number. The average proportional multipliex error is thus also

$$
\begin{equation*}
\frac{1}{n} \sum_{j}^{\varepsilon\left(\frac{\varepsilon 1\left(O M_{j}\right)}{O M_{j}}\right)}=d T \tag{18}
\end{equation*}
$$

It should be noted that the above analysis is equally applicable to income and employment multipliers. Income nultipliers are obtained by the scalar multiplication of B by the household coefficients, i.e. h_{i}, the employment multipliers by the employment coefficients, i.e. e_{i}. (The output multipliers involve scalar multiplication by 1.) Sumeng the columns, of course, gives the multipliers. Equation (4) thus becomes, for example,

$$
h_{i}(I-A-D)^{-1}=h_{i} B+h_{i} E
$$

Let us now consider briefiy the errox component E2: Now
from equation (4) we have

$$
E 2=(B D)(B D B)=(B D) E 1
$$

 The error in the $j^{\text {th }}$ output multiplier is then

$$
\begin{align*}
& \varepsilon 2\left(O M_{j}\right)=\sum_{i m}^{\sum}\left(\begin{array}{l}
\varepsilon \\
q
\end{array} b_{i q} a_{q m} p_{q m}\right)\left(\begin{array}{l}
\left.\sum \sum \sum_{i} b_{m k} a_{k l} \mu_{k \ell} b_{\ell j}\right)
\end{array}\right. \\
& \left.=\sum_{m}^{\sum} c_{q}^{\Sigma} O M_{q} a_{q m} P_{q m}\right)\left(\begin{array}{l}
\left.\sum_{\ell}^{\sum} \sum_{k}^{\Sigma} b_{m k} a_{k \ell} p_{k \ell} b_{\ell j}\right)
\end{array}\right. \tag{19}
\end{align*}
$$

Again sumning over the j multipliers gives

$$
\begin{equation*}
\varepsilon 2=\sum_{j}^{\sum} \varepsilon 2\left(O M_{j}\right)=\sum_{m}^{\Sigma}\left(q_{q}^{i} O M_{q} a_{q m} p_{q^{M}}\right)\left(\sum_{\ell k}^{\left.\Sigma \sum_{k} b_{n k} a_{k \ell} p_{k \ell} R M_{\ell}\right)}\right. \tag{20}
\end{equation*}
$$

Assuming $p_{k \ell}$ is constant for all k and ℓ gives

$$
\left.\varepsilon 2=p^{2} \sum_{m}^{\Sigma} \sum_{q}^{\Sigma} \quad O M_{q} a_{q m}\right)\left(\begin{array}{ll}
\Sigma & \Sigma_{k} \tag{2}\\
b_{m k} & \left.a_{k \ell} R M_{\ell}\right)
\end{array}\right.
$$

and under the further assumption of constant absolute errors,

$$
\begin{align*}
E 2 & =d^{2} \sum_{m}^{\Sigma}\binom{\sum}{O M_{q}}\left(\begin{array}{ll}
\sum \sum k & b_{m k} \\
R M_{\ell}
\end{array}\right) \\
& =d^{2} T^{3} \tag{22}
\end{align*}
$$

In a similar manner, we can show that

$$
\begin{equation*}
\varepsilon 3=d^{3} T^{4} \tag{23}
\end{equation*}
$$

and the total multiplier error over all multipliers under the assunption of constant coefficient error is

$$
\begin{align*}
\varepsilon & =\varepsilon l+\varepsilon 2+\varepsilon 3+\ldots \cdot \\
& =d T^{2}+d^{2} T^{3}+d^{3} T^{4}+\cdots \cdot \\
& =d T\left[1+d T+(d T)^{2}+(d T)^{3}+\ldots \ldots\right] \tag{24}
\end{align*}
$$

i.e, in terms of the total multiplier sum we can write:

A gives rise to T
and $(A+D)$ gives rise to $T+d T^{2}+d^{2} T^{3}+\ldots \cdot$

$$
\begin{equation*}
=T\left[1+d T+(d T)^{2}+\ldots \ldots\right] \tag{25}
\end{equation*}
$$

This may give us a very rough estimate of total multiplier error.
Getting back to the more realistic situation of proportional multiplier error, we get from equation (19):

$$
\frac{\varepsilon 2\left(O M_{j}\right)}{O M_{j}}=\sum_{m}^{\Sigma}\left({ }_{q}^{\Sigma} O M_{q} a_{q m} p_{q m}\right)\left(\begin{array}{ll}
\Sigma & \Sigma \tag{26}\\
\ell & k \\
b_{m k} & \left.a_{k \ell} p_{k 2}\left(\frac{b_{l j}}{O M_{j}}\right)\right)
\end{array}\right)
$$

and the average proportional multiplier error is

$$
\begin{align*}
& \frac{1}{n} \sum_{j}^{\sum}\left(\frac{\varepsilon 2\left(O M_{j}\right)}{O M_{j}}\right)=\frac{1}{n} \sum_{m}^{\Sigma}\left(\sum_{q}^{\Sigma} O M_{q}{ }^{2}{ }_{q M} p_{q m}\right)\left(\sum_{\ell k}^{\Sigma} \sum_{m k} b_{k \ell} p_{k \ell} \sum_{j}^{\sum\left(\frac{b_{\ell j}}{O M_{j}}\right)}\right) \tag{27}\\
& =p_{n}^{2} \quad \sum_{m}\left(\sum_{q}^{\Sigma} O M_{q} a_{q m}\right)\left(\sum_{\ell k}^{\Sigma} \sum_{m k} a_{k \ell} \sum_{j}^{\Sigma}\left(\frac{b_{\ell j}}{O M_{j}}\right)\right) \tag{28}
\end{align*}
$$

under the assumption of constant proportional error. The terms in this equation can also be expressed in the form of an error matrix.:

In a similar manner it can be shown that, under the same conditions, the $(i, j)^{\text {th }}$ cell of the third error matrix has the following form.
$E 3=\frac{p^{3}}{n}\left[\left(\begin{array}{llll}\Sigma & \Sigma & \Sigma & \Sigma \\ r & s & m & q\end{array} M_{r} a_{r s} b_{s m} a_{m q} b_{q j}\right) a_{j i} \sum_{k}^{\sum_{i}}\left(\frac{i k}{O M_{k}}\right)\right]$

Because we are primarily interested in the ranking of the coefficjents, we can let $p=1$ to obtain the complete error matrix:

$$
\begin{array}{r}
\tilde{E}=\overline{\mathrm{E}}]+\overline{\mathrm{E}} 2+E 3+\ldots=\left[\bar{E}_{i j}\right] \\
=\frac{1}{n}\left[\left(O M_{j}+\sum_{m q \sum_{q}}^{\Sigma} M_{q} a_{q m} b_{m j}+\ldots .\right) a_{j i} \sum_{k}^{\left.\sum\left(\frac{b_{i k}}{O M_{k}}\right)\right]}\right. \tag{31}
\end{array}
$$

As the average proportional multiplier error is the sum of all the elements of \bar{E}, we simply need to rank the elements in order of magnitude from high to low to find which coefficients contribute relatively more to the average multiplier error. We should obviously look at those $a_{j i}$'s corresponding to large $E_{i j}$'s. This leads to a more efficient process of reducing multiplier erros.

IV Application to a Possible Optimization Scheme

Analysts, in compiling regional input-output tables, have usually proceeded to estimate the tabie coefficient by coefficient, on the assumption that overall accuracy will be maximized. llowever, this is not necessarily the most officient approach in that no consideration is given fexcept implicitly) to maximizing accuracy and minimizing cost. The majority of analysts involved in such an exercise will have very limited resources available (e.g. money and/or time, etc.), and the analyst will probably ask himself the question as to whether he should attempt to get superior estimates of all the coefficients, or whether his time and money would be better spent concentrating on a smaller subset of coefficients.

Section 111 above has already answered part of that question, by ranking the coefficients in relative order of importance. The second part of the question then becomes: how far along the seguence should we continue until we reach a point where the reduction in average multiplier error is not worth the trouble and effort of superior estimation?

Given the conditions described earlier, and these restrictions
142.
can easily be relaxed if, for some reason, we think we know what the relative errors in the various coefficients are, including those cells which we think contain no error (i.e. if we can assign weights to the cells reflecting the possible size of the proportional error in that cell), the elements in the matrix E can be summed to obtain the total average proportional multiplier error.

$$
\begin{equation*}
\bar{\varepsilon}=\frac{1}{n}\left(\bar{E}_{k 1 . \ell 1}+\bar{E}_{k 2 . \ell 2}+\ldots+\bar{E}_{k i, \ell i}+\ldots .\right) \tag{32}
\end{equation*}
$$

If the terms in the series are listed in sequential order from high to low, we have a sequential list of direct coefficients which contribute, in order of impretance, to the average multiplier error. This implies that we should concentrate firstiy on reducing the error in the coefficient $a_{21 . k 1}$, secondly in element ${ }_{\ell 2 . k 2}$, and so on.

The first step is to derive an error function.
Let $X=$ Number of cells with an error, and $Y=$ average proportional multiplier error resulting from X cells in error $=\frac{1}{n} \sum_{i=1}^{x} \bar{E}_{k i . \ell i}$.

We can then plot Y against X for $X=1,2,3, \ldots, n$, where the cells are numbered in order of magnitude. As each subsequent term is smaller than the previous term, the curve will have a shape similar to Figure 1.

143.

A possible mathematical function which fits this curve ${ }^{5}$
is

$$
\begin{align*}
& Y=a X^{\beta} ; \alpha \geqslant 0<\beta<1 \tag{33}\\
& \text { Now if we progressively re-estimate the direct coefficients }
\end{align*}
$$

in the order specified, we can obtain the function relating the average multiplier error remaining after χ cells have been rewestimated i.e.

$$
\begin{align*}
Y^{1} & =Y_{\max }-Y_{X} \\
& =Y_{\max }-\alpha X^{\beta} \\
& =\alpha\left(X_{n}^{\beta}-X^{\beta}\right) \tag{34}
\end{align*}
$$

where n refers to the number of cells in A which contain an error (which may or may not equal n^{2}, all the cells in the table).

In many situations, (e.g. in some Baynesian and Operations Research problems) it is common to specify a value, subjective or otherwise, to the cost of making an incorrect decision. Similarly, in input-output model estimation, it may be possible for the analyst to set a value to the cost of a certain level of error occuring. This cost will, of course, depend upon a large number of factors e.g. the relative importance of the particular region in question, the primary use for which the final table is to be put, and even the experience and personality of the analyst himself.

[^4]Suppose we can specify (implicitly or otherwise) the cost of making a unit average proportional error in the multipliers, $c_{1} .6$ Then after we re-estimate the first X cells, the total cost of the remaining multiplier error is

$$
\begin{equation*}
T C_{1}=C_{1} Y^{1}=C_{1}\left(Y_{\max }-\alpha X^{3}\right) \tag{35}
\end{equation*}
$$

If C_{2} is the average re-estimation cost per cell, the total cost of re-estimating those first X cells is ${ }^{7}$

$$
\begin{equation*}
\mathrm{TC}_{2}=\mathrm{C}_{2} \mathrm{x} \tag{36}
\end{equation*}
$$

These two cost functions are represented in Figure 2.

FIGURE 2
6. A proportional error of one unit is equivalent to a 100% error.
7. It may be desirable to assign a relatively higher cost per cell to - the more important coefficients, in which case equation (36) should be modified accordingly.

Note that the larger the number of cells re-estimated, the lower is the cost associated with the multiplier error, but the higher is the re-estimation cost. At the point where the marginal increase in cost of estimation equals the marginal savings in reduced error, the total cost will be minimized.

Now

$$
\begin{align*}
T C & =T C_{1}+T C_{2} \\
& =C_{1} Y^{1}+C_{2} X \\
& =C_{1}\left(X_{\max }-a X^{B}\right)+C_{2} X \tag{37}
\end{align*}
$$

To find the value of X which minimizes total cost, we differentiate
(37) w.r.t. X and equate to zero:

$$
\begin{align*}
\frac{d T C}{d X} & =-C_{1} \alpha \beta X^{\beta-1}+C_{2} \\
& =0 \text { when } X^{\beta-1}=\frac{C_{2}}{C_{1} \alpha \beta} \\
\text { or } \quad X^{*} & =\left[\frac{C_{2}}{C_{1}^{\alpha \beta}}\right] \frac{1}{\beta-1} \tag{38}
\end{align*}
$$

which is the optimal number of cells to re-estimate. 8
There are a couple of points to note about equation (38). In all cases tested, it was found that $\alpha \geqslant 0$ and $0<\beta<1$. Thus the minimization conditions are fulfilled, and the larger the value of C_{2}, the cost of estimation per cell, the smaller is the number of cells that should be re-estimated. Converscly, the larger the cost per unit error C_{1}, the larger the number of cells which should be re-estimated.

Secondly, we do not need the actual values of C_{1} and C_{2}, only the ratio. We can thus find the range of values of this ratio which will return a value of X^{*} between 0 and η i.e.
8. $\frac{d^{2} T C}{d X^{2}}=-C_{1} \alpha \beta(\beta-1) X^{\beta-2}>0$ when $a \geqslant 0,0<\beta<1$ which indicates the second order condition for minimization holds.
if $\quad \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}>a \beta$; re-estimate no celis.
if $\quad \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}<\alpha \beta \pi^{\mathrm{B}-1}:$ re-estimate all n cells.

However, this ratio may be fairly difficult to visualize, since they refer to different units. C_{1} is the error cost per unit error, whilst C_{2} is the estimation cost per cell. The analyst may prefer to set the cost of making an error in terms of the original cells. Then let C_{1}^{1} be the cost of an individual cell (direct coefficient) being incorrect. Ca and C_{2} are now both expressed in terms of cost per cell, and we get

$$
\begin{align*}
T C & =T C_{1}+T C_{2} \\
& =C_{1}^{1 \beta}\left(Y_{\max }-\alpha X^{\beta}\right)+C_{2} X \tag{40}
\end{align*}
$$

and

$$
\begin{equation*}
x^{*}=\left[\frac{C_{2}}{C_{1}^{1 \beta} \alpha \beta}\right]^{\frac{1}{\beta-1}} \tag{41}
\end{equation*}
$$

Thus:

$$
\begin{align*}
& \text { if } \frac{C_{2}}{C_{1}^{1 \beta}}>a \beta: \text { re-estimate no cells } \tag{42}\\
& \text { if } \frac{C_{2}}{C_{1}^{1 B}}<\alpha \beta n^{\beta-1} \text { : re-estimate all } n \text { cells }
\end{align*}
$$

V An Empirical Example

The above procedures have been applied to several Queensland GRIT [4] tables, as well as the South Australian regional tables currently being compiled, comprising various levels of interconnectedness and aggregation. For the sake of simplicity, however, the results derived from the five-sector Queensland state table will be presented here.

The transactions table, direct coefficients table, inverse matrix and various error matrices are presented in Attachment 1. Also for ease of presentation, the results refer only to the output multipliers,
but the analysis is equally applicable to income and employment multipliers. Obviously in a practical situation, income and erployment multipliers are relatively more important than output multipliers.

The simplest criteria in terms of ease of calculation to apply is absolute coefficient error/absolute multiplier error. In this case the error matrix E1 is formed simply from the product of the row and column totals of the B matrix (Table 3). This exror matrix is given in Table 4, together with the ranking of the elements. The ranking of the direct coefficients using Table 4 compared with the ranking derived just from the A matrix results in a rank correlation of 0.14 . This is understandable as the magnitude of the $a_{i j}$'s are not explicitly taken into account (since the error in each $a_{i j}$ is assumed to be the same, irrespective of coefficient size), but only implicitly in the size of the multipliers.

A more realistic criterion is proportional coefficient error/average proportional multiplier error, and we will refer mainly to this criterion, acknowledging that other criteria could easily be applied.

The error matrix EI (equation (15)) is shown in Table 5. As noted previousiy, the rank correlation coefficient derived from comparing the rankings from $\overline{E 1}$ and A is 0.98 . When $\overline{E 2}$ is added, there is a marginal change in the ranking, with a rank correlation coefficient betwean El and $(\overline{E 1}+\overline{E 2})$ of 0.998 . In no cases did the ranking change with the addition of additional error matrices, $\overline{E 3}, \overline{E 4}$, etc. Results indicace that it is of marginal value proceeding past E2, but nevertheless all calculations were taken to three terms in the expansion. Remember we are primarily interested in the ranking of the coefficients; if the actual value of the ercor component is of interest, more terms may be required.

It is of interest to note that the error components decline dramatically with each additional error matrix. For example, it would require a coefficient error of at least 3 percent before the largest element in E2 becomes non-zero, and a coefficient error of at least 32
percent would be required before any element of ET becomes non-zero. In addition, this decline is accelerated the less aggregated the table. Note, however, that these coments refer primarily to the cricexion in question; absolute multipliex error would normally require additional terns in the exror expansion.

From Table 8 we can now draw up a list of coefficients in order of priority, i.e. $a_{33}, a_{13}, a_{35},{ }_{31}, \ldots$. . This is shown in Table 9. We should therefore concentrate on these coefficients, in sequence, in order to reduce average multiplier error by the largest amount in the shortest possible time, given that we noxmally have limited budget resources.

The next step to decide on is how far along this sequence should we proceed before it becomes uneconomical to proceed any further. We therefore need to compute the cumulative sum of elements $\bar{E}_{i j}$ listed in order of their rank. This is also done in Table 9. To derive the error function we regress Y against X. If we use the form in equation (33), we obtain:
or $\quad \operatorname{Ln} Y=\operatorname{Ln} \alpha+\beta \operatorname{Ln} X$

$$
=\begin{align*}
& 0.01762+0.51223 \ln X \\
& (0.31) \tag{0.31}\\
& (22.00)
\end{align*} \quad r^{2}=0.96
$$

(the values in brackets are t-values). This gives estimated values of α and β as $\hat{\alpha}=1.01777, \hat{\beta}=0.51223$.

We now need to specify tho ratio $\mathrm{C}_{2} / \mathrm{C}_{1}$. Suppose, for example, we let $C_{2} / C_{1}=0.2$. This could mean, for example, that the cost of obtaining superior data for each cell is set at abput $\$ 200$, and the cost of making a 100% error in the multipliers at about $\$ 1000$. Applying equation (38), we obtain

$$
\begin{aligned}
x^{*} & =\left[\frac{c_{2}}{c_{1} \hat{\alpha} \hat{\beta}}\right]^{\frac{1}{\hat{\beta}-1}} \\
& \approx 7
\end{aligned}
$$

This means we should obtain superior estimates (if possible) of the first 7 coefficients listed above. From equation (39) we also see tiat jif $\mathrm{C}_{2} / \mathrm{C}_{1}>0.52$ wo should re-estimate no cells, or if $\mathrm{C}_{2} / \mathrm{C}_{1}<0.11$ re-estimate all 25 cel1s.

The above result depends on how accurately the error function can be estimated. The regression equation above would not be considered a 'good' fit in these circumstances (some error functions have returned r ? values of 0.999). In practice therefore, it is recomended that the total cost be computed iteratively for consacutative yalues of Y^{1} and X (from equation (37)) until the minimum value of TC is obtained. This is, in fact, a more efficient approach since values of TC can be computed as each Y^{1} is computed, and these values are also shown in Table 9 . It can be seen in this example that $X^{*}=7$ which coinsides with the result obtained above. Actually, the difference in cost for any value of X between 6 and 9 is so small $\$ 28$) that for practical purposes one might choose any X in this interval.

This also raises an additional interesting point. The ratio C_{2} / C_{1} is very close to its lower limit, yet only a small number of cells require re-estimation. This supports the conclusions of Jensen and West, Who suggest that the lower 50 percent of coefficients have a marginal effect on multiplier values.

VI Surmary

Analysts constructing and applying regional input-output tables Will normally have limited resources (time and money) at their disposal. It would be extremely unlikely that these resouxces would allow the analyst. to give very close scrutiny to every cell in the table. He will normally have to be satisfied with concentrating his attention on the more important sections (however he defines important) of the table, with less attention to the cells which he considers to have little or no effect on the multipliers and output vectors.

Un to now there have only been vague rules of thumb in this regard, the majority of which have been derived from shocking and simulation techniques. This paper has show that there is a simple mathenatical relationship betwoen cocfficient error and multiplice error. Furthermore, this relationship allows us to rank the coofficients in order of their importance (with respect to error in the coefficients affecting the multiplier values), subject to a wide range of criteria from which the analyst can choose.

This paper developed the analysis with particular attention to one of these criteria viz. proportional coefficiont error/average proportional multiplicr error, but explains how various other criteria can be used. It was shown that the propertional $j^{\text {th }}$ output multiplier error is largely determined by the magnitude of the direct coefficient in which the error occurs $a_{k 2}$, the size of the corresponding row sector output multiplier $0 M_{k}$, and the sectoral output multiplier from sector $\&$ to sector j as a proportion of the $j^{\text {th }}$ output malitiplicer.

Once the optimal ranking of the cocfficients hat been obtained, the analyst should proceed to work his way down the list, removing errors, if possible, from the coefficients. The optimal point in the list to stop because the improvement in multipier accuracy resulting from the re-estimation of anditional cocfficient does not warrant the additional cost involved, can be determined by allocating values to the costs of re-estimation and making of error. Empirical evidence suggests that, as a rough guide, only the first 50 percent of the coefficients exert any significent effect on tho multipilers. The error function levels off at about this point, and any additional effort to re-estimate more cells is probably not worth the resultant improvement in accuracy.

ATTACH MENT 1

The following tables are derived from the five-sector transactions table for Queensland, 1973-74, (\$m). The table was adapted from Jensen, Mandeville and Karunaratne [4]. Numbers in brackets after the coefficients denote the rank of that coefficient from high to low.

TABLE 1: TRANSACTIONS TABLE

| Sectors | 1 | 2 | 3 | 4 | 5 | H.H | O.F.D. | Exports | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 102.9 | 11.3 | 624.0 | 0 | 1.9 | 130.8 | 230.8 | 61.3 | 1163.1 |
| 2 | 0.1 | 14.8 | 79.5 | 1.6 | 17.1 | 0 | 506.9 | 36.8 | 656.8 |
| 3 | 149.2 | 93.3 | 778.6 | 52.2 | 307.0 | 973.7 | 839.4 | 846.4 | 4039.8 |
| 4 | 51.2 | 48.0 | 236.0 | 41.5 | 114.2 | 572.0 | 0 | 53.5 | 1116.4 |
| 5 | 49.4 | 75.4 | 267.2 | 155.7 | 225.3 | 1260.3 | 361.0 | 512.9 | 2907.2 |
| H.H | 106.2 | 85.4 | 946.9 | 427.9 | 1232.5 | 0 | 0 | 0 | 2798.0 |
| O.V.A. | 55.5 | 122.9 | 551.2 | 88.7 | 206.1 | 458.3 | 47.1 | 222.9 | 1752.7 |
| Imports | 648.6 | 205.7 | 556.4 | 348.7 | 803.1 | 180.6 | 6.9 | 13.5 | 276. |
| Total | 1163.1 | 656.8 | 4039.8 | 1116.4 | 2907.2 | 3575.7 | 1992.1 | 1747.3 | |

TABLE 2: DIRECT COEFFICIENTS MATRIX; A
$\left[\begin{array}{llllllll}0.0885(8) & 0.0172(20) & 0.1545(2) & 0.0000(25) & 0.0007(23) \\ 0.0001 & (24) & 0.0225(18) & 0.0197 & (19) & 0.0014(22) & 0.0059(21) \\ 0.1283 & (5) & 0.1421(3) & 0.1927(1) & 0.0468(13) & 0.1056(7) \\ 0.0440(14) & 0.0731 & (10) & 0.0584(12) & 0.0372(17) & 0.0393(16) \\ 0.0425(15) & 0.1148(6) & 0.0661 & (11) & 0.1395(4) & 0.0775(9)\end{array}\right]$

TABLE 3: INVERSE MATRIX; $B=(1-A)^{-1}$

Row Total
1.4492
1.0743
1.9509
1.3714
1.6316

TABLE 4: ERROR MATRIX E1*
(d)
$\left[\begin{array}{lllllllll}2.1339 & (15) & 2.2657 & (11) & 2.5581 & (7) & 1.9170 & (18) & 1.9613 \\ 1.5819 & (17) \\ 2.8727 & (3) & 1.6796 & (22) & 1.3954 & (19) & 1.4211 & (25) & 1.4539 \\ 2.0194 & (15) & 2.1440 & (2) & 3.4437 & (1) & 2.5806 & (6) & 2.6403 \\ 2.4025(10) & 2.5508 & 2.4208 & (9) & 1.8141 & (21) & 1.8560 & (20) \\ 2.8501 & (4) & 2.1583 & (13) & 2.2082 & (12)\end{array}\right]$

TABLE 5: ERROR MATRIX E1
$\left(\frac{\mathrm{p}}{5}\right) \quad\left[\begin{array}{lllll}0.1251 & 0.0001 & & 0.2174 & 0.0559 \\ 0.0174 & 0.0242 & 0.1723 & 0.0664 & 0.0552 \\ 0.2698 & 0.0365 & 0.4033 & 0.0916 & 0.1067 \\ 0.0000 & 0.0022 & 0.0827 & 0.0492 & 0.1889 \\ 0.0012 & 0.0108 & 0.2175 & 0.0607 & 0.1224\end{array}\right]$

TABLE 6: ERROR MATRIX E2
$\left(\frac{\mathrm{p}^{2}}{\mathrm{~s}}\right) \quad\left[\begin{array}{lllll}0.0624 & 0.0001 & 0.1463 & 0.0200 & 0.0222 \\ 0.0087 & 0.0133 & 0.1160 & 0.0237 & 0.0430 \\ 0.1344 & 0.0201 & 0.2716 & 0.0328 & 0.0428 \\ 0.000 & 0.0013 & 0.056 & 0.0176 & 0.0761 \\ 0.0006 & 0.0059 & 0.1464 & 0.0217 & 0.0493\end{array}\right]$

TABLE 7: ERROR MATRIX EJ
$\left(\frac{\mathrm{P}^{3}}{5}\right) \quad\left[\begin{array}{lllll}0.0342 & 0.0000 & 0.0805 & 0.0098 & 0.0121 \\ 0.0047 & 0.0071 & 0.0637 & 0.0117 & 0.0233 \\ 0.0740 & 0.0107 & 0.1493 & 0.0160 & 0.0232 \\ 0.0000 & 0.0006 & 0.0306 & 0.0086 & 0.0413 \\ 0.0003 & 0.0032 & 0.0806 & 0.0106 & 0.0258\end{array}\right]$

TABLE 8: ERROR MATRIX $\overline{\mathrm{E}}=\overline{\mathrm{E}} 1+\overline{\mathrm{E}}+\overline{\mathrm{E} 3}(p=1)$
$\left(\frac{1}{5}\right) \quad\left[\begin{array}{llllllll}0.2216(7) & 0.0002(24) & 0.4441(4) & 0.0857(16) & 0.0895(15) \\ 0.0308(20) & 0.0446 & (19) & 0.3519(5) & 0.1018 & (13) & 0.1730(9) \\ 0.4781(2) & 0.0673 & (18) & 0.8243(1) & 0.1404 & (12) & 0.1721 & (10) \\ 0.0000(25) & 0.0041 & (22) & 0.1688(11) & 0.0754(17) & 0.3063 & (6) \\ 0.0020(23) & 0.0198 & (21) & 0.4445(3) & 0.0929(14) & 0.1985 & (8)\end{array}\right]$

TABLE 9: CUMULATIVE SUM OF COEFFICIENTS FROM \bar{E}

| $\underset{X}{\operatorname{Rank}^{2}}$ | ${ }^{\text {a }}$ ij | $\tilde{\mathrm{E}}_{i j}$ | $\begin{gathered} \Sigma_{0} \tilde{E} i j \\ Y \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{TC} \\ \left(\mathrm{C}_{2} / \mathrm{C}_{1}=0,2\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | . 1927 | . 8243 | . 8243 | 3913.4 |
| 2 | . 1545 | . 4781 | 1.3024 | 3435.3 |
| 3 | . 1056 | . 4445 | 1.7469 | 3390.8 |
| 4 | . 1283 | . 4441 | 2.1910 | 3146.7 |
| 5 | . 1421 | . 3519 | 2.5429 | 2994.8 |
| 6 | . 1395 | . 3063 | 2.8492 | 2888.5 |
| 7 | . 0885 | . 2216 | 3.0708 | 2866.9* |
| 8 | . 0775 | . 1985 | 3.2693 | 2868.4 |
| 9 | . 1148 | . 1730 | 3.4423 | 2895.4 |
| 10 | . 0661 | . 1721 | 3.6144 | 2923.3 |
| 11 | . 0468 | . 1688 | 3.7832 | 2954.5 |
| 12 | . 0584 | . 1404 | 3.9236 | 3014.1 |
| 13 | . 0731 | . 1018 | 4.0254 | 3112.3 |
| 14 | . 0393 | . 0929 | 4.1183 | 3219.4 |
| 15 | . 0425 | . 0895 | 4.2078 | 3329.9 |
| 16 | . 0440 | . 0857 | 4.2935 | 3444.2 |
| 17 | . 0372 | . 0754 | 4.3689 | 3568.8 |
| 18 | . 0197 | . 0673 | 4.4362 | 3701.5 |
| 19 | . 0225 | . 0446 | 4.4808 | 3856.9 |
| 20 | . 0172 | . 0308 | 4.5116 | 4026.1 |
| 21 | . 0059 | . 0198 | 4.5314 | 4206.3 |
| 22 | . 0014 | . 0041 | 4.5355 | 4402.2 |
| 23 | . 0007 | . 0020 | 4.5375 | 4600.2 |
| 24 | . 0001 | . 0002 | 4.5377 | 4800.0 |
| 25 | . 0000 | . 0000 | 4.5377 | 5000.0 |

(* denotes minimum)

REFERENCES:

[1] Burford, R.L. and Katz, J.L. (1977), "Regional Input-Output Multipliers Without a Full $1 / 0$ Table", Amnals of Regional Science XI(3): 21-39.
[2] Evans, W.D. (1954), "The Effect of Structural Matrix Errors on Interindustry Relations Estimates". Econometrica 22: 461-480.
[3] Jensen, R.C. (1979), The Concept of Accuracy in Regional InputOurput, Proceedings, Input-Output Workshop of the Fourth Meeting of the Australia and New Zealand Section of the Regional Science Association, Wodonga.
[4] Jensen, R.C., Mandeville, T.D. and Karunaratne, N.D. (1979), Regional Economic Planning - Generation of Regional Input-Output Analysis, Croom llelm, London.
[5] Jensen, R.C., and West, G.R. (1978), The Effect of Relative Coefficient Sizo on Input-Output Multipliers, Proceedings, Input-Output Workshop of the Third Meeting of the Australian and New Zealand Section of the Regional Science Association, Melbourne, (forthcoming), Environment and Planning A.
[6] Quandt, R.C. (1958), "Probabilistic Etrors in the Leontief System", Naval Research Logistics Quartexly 5 (2): 155-170.
[7] Quandt, R.E. (1959), "On the Solution of Probabilistic Leontief Systems", Naval Research Logistics Quarterly 6(4): 295-305.
[8] Stevens, B.H. and Trainer, G.A. (1976), The Generation of Error in Regional Input-Output Impact Modeis. Regional Science Research Institute Working Paper A1-76.
[9] West, G.R. and Jensen, R.C. (1977), Sone Effects of Errors in Coefficients on Input-Output Multipliers. Procedings, Input-Output Workshop of the Second Meeting n the Australian and New Zealand Section of the Regional Science Association, Sydney.

| 1 | HCT0 | | 1 | 20 | 22 | 3 | 41 | 41 | 46 | 485 | 4 | 5 | 6 | 7 | － | \uparrow | 11 | 11 | \％－1 | 0．F．3． | XPORTIt | toral 1 | $\underline{2}$ | | |
| :---: |
| 1 | 1 | 1 | ＊ | － | － | － | 191 | ， | \leqslant | E | － | ， | － | － | ， | E | 184 | 1 | b | － | 2418 | 646： | 5 | | |
| 1 | 24 | 1 | 16 | 2 | 5 | － | 115 | － | 4 | ＊ | d | 1 | ＊ | － | 1 | \％ | 31 | 21 | － | － | －80！ | 2671 | $\underline{4}$ | | |
| 1 | $2{ }^{2}$ | 1 | ＊ | － | ， | E | － | － | 2 | ， | － | － | － | | ， | － | 46 | 41 | 196 | ． | 3228 | 046% | 0 | | |
| 1 | 3 | 1 | － | － | － | 382 | － | － | － | \％$\% 4$ | 15 | － | 105 | 2 | 4 | ＊ | 1 | 1 | － | ． | 28931 | 44331 | x | | |
| 1 | 4 | ＊ | 2 | ＊ | 4 | ， | 198 | － | － | 1 | 6 | \％ | ， | 6 | ＊ | ， | 1 | 651 | 703 | 4135 | 29881 | 84411 | \leq | | |
| 8 | 4 | 1 | － | ， | 26 | ＊ | 2 | 46 | 2 | 13 | 2 | － | 1977 | 120 | ！ | 11 | 23 | 1211 | 177 | 二 131 | ＋19？ | 31461 | \cdots | | |
| 1 | 4 c | 1 | － | \％ | 44 | 583 | 1 | \％ | 7 | 64 | 1 | 27 | 124 | 138 | 296 | 2 | 248 | 15： | 18 | － | 1931 | 2445： | 0 | | |
| 1 | 488 | 1 | － | 4 | ＊ | ， | 297 | 67 | 4 | \％9\％ 1 | 51 | 2 | 34817 | | 174 | 3 | 296 | 2871 | 136 | 3643 | 2441 | 4E2A1： | 0 | | |
| 1 | 4 | 1 | 1 | 1 | 1205 | 186 | 7 | 2 | 1 | 73 | 41 | ！ | 161 | 285 | 128 | 11 | 51 | 71： | 25 | 6 | 239 | 25111 | cn | | |
| 1 | 5 | ！ | 5 | 1 | 4 | 2 | 76 | 12 | 14 | 539 | 29 | 119 | 357 | 687 | 177 | 934 | 7917 | 1432： | 1193 | 351 | 0 | 16517 | \square | | |
| 1 | ＊ | ！ | 11 | 2 | ． | － | 78 | 22 | ＊ | 482 | 37 | 48% | 1 | 1774 | 1476 | 898 | 34086 | 1\％48） | 1248 | 1857－1 | $7:$ | 175481 | － | \％ | |
| 1 | 7 | 1 | 22 | 11 | 463 | 35 | 114 | 83 | 11 | 475 | 39 | 57 | 3999 | 4455 | 1356 | 1192 | 414 | 11301 | 19978 | 75875 | 1 | 1352291 | 2 | ］ | |
| 1 | － | ： | 4 | 2 | 42 | 18 | 84 | 35 | 11 | 143 | 21 | 06 | 1582 | 1188 | 1399 | 呂教 | 313 | 1221 | 1425 | 55s54 | 92191 | 546591 | － | z | \square |
| 1 | 9 | 1 | ， | 1 | 341 | 11 | 14 | 13 | \＄ | 167 | 14 | 6 | ＊ 7 | 4375 | 163 | 931 | 4285 | $322!$ | 4424 | 13667 | 2450： | 30915： | － | － | |
| 1 | \％ | \％ | ＊ | 家 | 42 | ， | － | \％ | － | － | \％ | ． | ， | － | － | 1 | 28254 | $8!$ | 462 | 1.1437 | 43202： | 1638311 | c | $1 \times$ | |
| 1 | 11 | 1 | 4 | 6 | ， | 7 | ． | ＊ | － | 4 | 6 | 1. | 16 | 317 | 314 | 369 | 3602 | 3831 | 5978 | 53184 | 133351 | 7753i | z | \leqslant | |
| 1 | 8－11 | | 40 | 56 | 274 | 103］ | 1641 | －9 | 876 | 1＊${ }^{\text {c\％}}$ | 67 | 4492 | 54354 | 1935 | 23191 | 14862 | 67196 | 841271 | － | ． | | 2476151 | | | |
| | 9．Y．角 | | 260 | 114 | 1568 | 635 | 643 | 313 | 125 | 4288 | 218 | 958 | 22772 | 45585 | 8182 | 13831 | 3842 | 115198 | － | ． | | 123731 | － | | |
| | mport | | 193 | 1 | 1195 | 1277 | 4778 | 155 | 88\％ | 14761 | 1375 | 1651 | 83\％1 | 52913 | 16873 | 5253 | 13563 | 18137\％ | 53313 | ， | －1 | 24＊3531 | 0 | | |
| 1 | InYa | ！ | 86 | 237 | \％14 | 4495 | 444 | 314 | 2\％43 | 4826． 1 | 251 | 16507 | 179518 | 13822 | \＄4．85 | 18115 | 18561 | 775 ± 21 | 93333 | 442575 | | ＊ | th | | |
| | 号 | | |

| 1 | | | 1 | \％ | 28 | 3 | 414 | 43 | 46 | 4RE | 4 | 5 | 4 | 7 | － | \％ | 16 | 11 | H－年 | E．f． | Exporis | TOPAL |
| :---: |
| ！ | 1 | \％ | － | \％ | － | － | 517 | － | － | \％ | c | － | d | － | － | － | 917 | 81 | 寿 | － | 2931 | 16321 |
| 1 | 20 | 1 | 23 | 2 | － | － | 127 | ． | ， | ＊ | 1 | 4 | t | － | 1 | \％ | 69 | 21 | － | － | 1211 | 3491 |
| 1 | 23 | 1 | ． | ， | ＊ | － | 14 | ！ | 2 | － | 5 | － | － | － | ＊ | － | 12 | 8 | 29 | 1 | 6471 | 96421 |
| 1 | 3 | 1 | － | ， | E | 17831 | － | ． | － | 118 ${ }^{\text {P }}$ | 125 | \％ | 457 | 2 | 5 | － | \％ | 11： | － | － | 1135271 | 143464： |
| 1 | － 4 a | 1 | 3 | ． | 95 | 172 | 229 | － | － | 1 | 7 | － | 耍 | 7 | ． | － | 1 | 139： | 045 | 451 | 3446 ： | 11393： |
| 1 | － 4 | 1 | ． | － | 29 | 57 | 2 | 48 | 2 | 14 | 1 | ＊ | 2975 | 123 | 1 | 11 | 75 | 123： | 295 | 164 | 222： | 3458！ |
| 1 | － 45 | 1 | － | 1 | 44^{4} | 552 | 1 | － | 7 | 15 | 1 | 27 | 13 \％ | 147 | 336 | 3 | 364 | 211 | 31 | 2 | 125： | 2139： |
| ＊ | 408 | 1 | － | ． | E | ， | 207 | 125 | 133 | 13882 | 220 | 21 | 26854 | 110 | 243 | 3 | 21 | 29 ¢ | 157 | 14178 | 34421 | 828571 |
| \％ | ＊ | ＊ | 3 | 1 | 188 | 46娄 | 11 | ＊ | 2 | 166 | 64 | 13 | 25. | 418 | 189 | $1{ }^{\text {落 }}$ | 82 | 121） | 125 | － | 3271 | 4234！ |
| － | － | 8 | 1 | 1 | 4 | 2\％ | 77 | 13 | 11 | 117% | 38 | 1313 | 298 | 438 | 181 | 592 | 1985 | P3อ2： | 1388 | 2976 | －1 | 896441 |
| 1 | 1 | 1 | 32 | \％ | ＊ | \＄4s？ | 168 | 24 | ＊ | 715 | 3 | 527 | － | 1792 | 1819 | 7393 | 41577 | 29821 | 1989 | 126364 | 741 | 191954： |
| 1 | 7 | ； | 182 | 26 | 153\％ | 172 | 454 | 214 | 73 | 3879 | 172 | 147 | 11776 | 13816 | 247% | 1757 | 5376 | 2754 | 21983 | 63448 | 7eas： | 135573： |
| 1 | 1 － | 1 | 1 18 | 2 | 47 | 459 | 142 | 36 | 13 | 176 | 25 | 部 | 1645 | 1171 | 145\％ | 317 | 4213 | 1838 | 289\％ | 39\％${ }^{\text {ck }}$ | S118！ | 3936 6 \％ |
| 1 | 1 | 4 | ， | ． | $3{ }^{\text {3 }}$ | 8 | 19 | 14 | 5 | 166 | 3 | 3 | 172 | 43 显 | 14 | \＄2 | 4487 | 3361 | 125082 | 1289\％ | 381： | 19995 |
| 1 | 10 | － | \％ | 0 | 40 | ， | － | ＊ | － | \％ | 6 | f | － | － | d | 4 | 27253 | 4 | 731 | 135824 | 64943： | 224837 |
| 1 | 11 | 1 | 16 | ＊ | 11 | 318 | － | 1 | \％ | 6 | － | 9 | 18 | 319 | 346 | 376 | 4957 | 4311 | 6595 | 23218 | －合洼： | 797611 |
| 1 | 1 ${ }^{4}-\frac{m}{4}$ | | \％ 8 | 86 | 3414 | 2782 | 2878 | 1078 | 714 | 2tavt | 123＊ | $5{ }^{5} 5$ | 63786 | 1744． | 24836 | 159\％1 | 9268 | 48079： | 5 | \％ | 4 | 2969\％ |
| | C．H．A． | | 288 | 14 | 1显 | 87\％ | 184 | 371 | 125 | 11334 | 4.42 | 11790 | 23465 | 48578 | 9919 | 14924 | 3879 | 11304： | ， | \％ | 8 | 1397848 |
| | 15 \％PDT5 | | 411 | 18 | 759 | 11455 | 646\％ | 15： | 243 | 24994 | $1{ }^{\text {¢ }}$ | 1823 | 5974 | 47457 | 18969 | 532 | 18357 | | 5985乿 | \％ | 5 | 571143 |
| | T8YA | 1 | 1637 | \＄4\％ | \＄842 | 1432964 | 17373 | 34380 | 2139 | 72397 | ＋264 | 158 | 198394 | 13557 | 30360 | 4658 | | 79774 | 15438 | 45358． | 241637 | ＊ |

| 1 | sccre | | 1 | 21 | 21 | 3 | ＋ | 48 | 14 | 4DE | 4 | 5 | 1 | 7 | 8 | － | 10 | 11 | H－M | D．F．B． | EXPORTS： | TOTAL |
| :---: |
| ； | 1 | ＋ | － | 5 | 1 | E | 1888 | \％ | \％ | ＊ | － | － | － | － | － | － | 186 | － | ， | ＊ | 228571 | 24761： |
| 1 | 24 | 1 | 350 | 7 | ， | ＊ | 13 | － | 6 | － | ， | － | ， | 4 | 1 | ， | 72 | 51 | 1 | ＊ | 11 | 5674 |
| 1 | $2{ }^{1}$ | 1 | ＊ | － | ！ | － | 25 | \％ | 2 | － | 1 | \％ | \％ | － | 6 | － | 72 | 191 | 208 | － | 10445： | 113521 |
| 1 | 3 | ！ | 1 | 1 | ！ | 20359 | ＊ | \％ | － | 12135 | 137 | 1 | 889 | 5 | 7 | 0 | 0 | $24:$ | \％ | 8 | 124982： | 225769： |
| ： | 4 | 1 | － | 1 | 111 | 592 | 282 | \％ | g | i | 8 | 3 | ） | 12 | ＊ | 0 | 1 | 293： | 1239 | 3688 | 1845： | 14843： |
| － | 45 | \％ | ， | ＊ | 35 | 56 | 3 | 63 | 2 | 19 | 2 | \leqslant | 2514 | 251 | ， | 11 | 82 | 224： | 287 | 1894 | \％ | 483 ${ }^{1} 1$ |
| 1 | 45 | ： | 13 | 1 | 596 | 899 | 1 | ． | 13 | 21 | 1 | 37 | 285 | 247 | 541 | 4 | 289 | 751 | 112 | ＊ | 11 | 3097 |
| \％ | HEE | 1 | 1 | d | \％ | 313 | 215 | 164 | 177 | 1697\％ | 24 | 26 | 38685 | 216 | 242 | 5 | 247 | 514： | 299 | 51884 | 58． | 1824081 |
| 1 | 45 | 1 | 43 | 1 | 2497 | 844 | 11 | 5 | 3 | 178 | 76 | 13 | 303 | 578 | 231 | 33 | 143 | 324： | 172 | \％ | 11 | 54331 |
| 1 | 5 | 1 | 138 | 1 | 55 | 56 | 115 | 22 | 19 | 1355 | 46 | $2{ }^{18}$ | 495 | 1537 | 293 | 1278 | 12392 | 3722： | 1913 | 5874 | 1 | 296971 |
| 1 | 6 | 1 | 58\％ | 3 | 1 | 7937 | 122 | 32 | 12 | 356 | \％ | 698 | \＄ | 3372 | 2279 | 1195 | 38487 | 4275： | 2754 | 169286 | 145： | 2489597 |
| ： | 7 | \％ | 1469 | 34 | 847 | 291 | 537 | 274 | 182 | 3124 | 199 | 195 | 144） | 24652 | 33 缶2 | 2955 | 6484 | 59871 | 35253 | 156759 | 259： | 236576： |
| \％ | － | ， | 233 | ＋ | 57 | 1152 | 21. | 62 | 27 | 2764 | 42 | 173 | 2036 | 2052 | 2383 | 516 | 4899 | 448 | 1817 | 54534 | 1827 ${ }^{\text {a }}$ | 94554！ |
| ： | － | ！ | ， | ， | 457 | 14 | 21 | 15 | 6 | 174 | \％ | 7 | 1135 | 7756 | 170 | 1440 | 979 | figs： | 22744 | 25193 | B： | 69463： |
| 1 | 10 | ！ | ＊ | 6 | \＄7 | 31 | ＊ | ， | ， | ＊ | － | \％ | － | ＊ | 1 | 6 | 31712 | \％： | 1843 | 228158 | | 26101！ |
| 1 | 11 | 1 | 287 | － | 13 | 578 | 1 | 1 | － | 1 | － | 14 | 24 | 641 | $\$ 1$ | 814 | 5764 | 921： | 9145 | 115959 | 30554： | 165383： |
| 1 | W－4 | | 2873 | 116 | 375 | 7191 | 2813 | \＄423 | 1324 | 23131 | 1453 | 7375 | 88246 | 36984 | 35535 | 27289 | 174352 | 10364： | 1 | － | ＊： | 43143： |
| | Q，V．as | | 11354 | 235 | 2128 | 1227 | 1417 | 494． | 177 | 12689 | 527 | 18854 | 33351 | 86872 | 14326 | 25263 | 4586 | 22814 | － | \cdots | 1 | 23510\％ |
| | | | 7416 | 139 | 1188 | 176948 | $765 ?$ | 264 ${ }^{\text {\％}}$ | 1233 | 28539 | 2236 | 2735 | 61337 | 18：59 | 24395 | 9845 | 21986 | 2 TES | 71342 | \％ | 31 | 5＋429 |
| | T014． | 1 | 24761 | 567 | 11352 | 228769 | 1年43 | 4686 | 3197 | 184数 | 3 \＄53 | 29697 | 24995 | 236576 | 24554 | 69403 | 201541 | ใ5393il | 14743 | 91433 | 264933： | 41 |

APPENDIX VII

MULTXPLIERS: NON-UNYPORM TABLES

TABLE VII-1 TOTAL SECTOR OUTPUT MULTIPLIERE DARWTN RECION: 16 SECTOR TABLES

| sector | INITIAL IMPACT | FIRST ROUND | inductrial SUPPORT | PROJ'M induced | cons. INDUCED | total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0808 | 0.1007 | 0.0138 | 0.1145 | $0.67+2$ | 1.1886 |
| 2 A | 1.8088 | 0.6712 | $0.810{ }^{\text {a }}$ | 0.6811 | 0.1057 | 1.1988 |
| 28 | 1. ${ }^{\text {geg }}$ | C. 3231 | 0.8412 | 0.3543 | 6.2434 | 1.6977 |
| 3 | 1.1300 | 0.2864 | 0.1450 | 1.3324 | 0.1362 | 1.5185 |
| 4 A | 1.0808 | 0.1343 | 0.8219 | 0.1535 | 1.1268 | 1.2822 |
| 43 | 1.006 | 0.0839 | 0.0147 | 0.8986 | 9.1848 | 1.2835 |
| 1 C | 1.8888 | 0.8602 | 0. 198 | 8.8992 | 6.2447 | 1.3439 |
| 4DE | 1.195 | . 2413 | 0.1619 | 0.3932 | 0.20 cz | 1.5834 |
| 45 | 1.0000 | +. 1988 | 0.1177 | 6.1156 | 0.152 | 1.2777 |
| 5 | 1.4089 | - 488 | 0.068 | \$. 5579 | 0.1552 | 1.2123 |
| 6 | 1.8088 | - 1.1888 | - 0488 | 0.2376 | 0.2376 | 1.4452 |
| 7 | 1.068 | 0.1285 | \%.8184 | 0.1469 | 0.9975 | 1.2444 |
| 8 | 1.8085 | 0.1095 | P.0189 | B. 1165 | 6.2469 | 1.3634 |
| 9 | 1.3008 | \%.1070 | 0.0147 | - 1218 | 1.2293 | 1.3516 |
| 11 | 1.768 | 1.1972 | 0.1466 | 0.6438 | 0.3343 | 1.9783 |
| 11 | 1.0108 | 0.0772 | \%.0128 | 3.0893 | 8.3187 | 1.408 |

table Vil-2 total sectok output multipliers top end region: 1o-secion

| SECTOR | IMITIAL IHPACT | FIRST ROUND | INDUSTRIAL SUPPORT | PROD'N
 1 MDuce | COMS A | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 0.1235 | - 2243 | 0.1178 | 0.0577 | 1.2455 |
| 2A | 1.8908 | 0.1818 | 8.8204 | \%.122 | S. 14.91 | 1.2623 |
| 28 | 1.0208 | 1.3803 | 0.1769 | $0.456{ }^{\text {a }}$ | 0.3172 | 1.7736 |
| 3 | 1.600 | 0.1768 | 0.9417 | 9.2177 | 0.0307 | 1.2485 |
| 4 | | 8.1674 | 6.1358 | 0.2831 | 0.1573 | 1.3604 |
| 4 B | 1.0000 | \$.1387 | 0.0382 | 0.1769 | \%.2296 | 1.4455 |
| 46 | 1.4198 | 0.1198 | -. 8127 | B.1628 | 0.3837 | 1.4662 |
| 10E | 1.0080 | P.380 | 0.1305 | 8.5105 | 0.2085 | 1.7111 |
| 4 F | 1.0008 | 0.1647 | 0.0496 | 0.2142 | 0.2153 | 1.6303 |
| 5 | 1.8188 | C. 8494 | -.8122 | 0.8616 | 0.1683 | 1.2419 |
| 6 | 1.0808 | . .2332 | 6.8591 | 0.3223 | 0.2529 | +.5752 |
| 7 | 1.695 | 0.1692 | 3.8326 | 0.2218 | 9.1354 | 1.3271 |
| 8 | f.ters | 0.1197 | 6.0259 | 0.1456 | 4.3197 | 1.4527 |
| , | 1.8068 | . 11164 | 2. 2219 | 0.1375 | 6.2315 | 1.4173 |
| 18 | 1.8688 | 6.4953 | -.1784 | \$.6657 | 6.4059 | 2.3716 |
| 11 | 8.8898 | 0.101 | 0.021 | \%.1211 | 8.416 | 1. 5371 |

| TABLE | II-3 | total sector autput hultipliers ****************************** | | | NORTHERN TERRITORY: 16-SECTOR TABLE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sector | SMITBAL IMPACT | FIRS1 ROUNB | industrial SUPPORT | $\begin{aligned} & \text { PRODET } \\ & \text { INDUCED } \end{aligned}$ | CONS'M
 Impuced | total |
| 1 | 1. 1895 | 0.1245 | (1233 | 0.1478 | ¢. 1134 | 1.2613 |
| 2 A | 1.6088 | 0.1084 | 4.1184 | . 1187 | 0.1718 | 1.2995 |
| 23 | $1.80{ }^{\text {che }}$ | 4.3681 | 6. 0659 | | 0.3517 | 1.8817 |
| 3 | | -.1824 | 9.043\% | c. 2254 | \$.5460 | 1.2714 |
| 4 A | 1.7ns | 0.1961 | 2.638\% | - 2334 | 0.1836 | 1.1183 |
| 4 B | 1.0888 | 0.1398 | 6. 0369 | 0.176\% | \%.266 | 1.4373 |
| 46 | 1.06Es | 0.1172 | \%.039 | -.1562 | 0.3456 | 1.5819 |
| 4DE | 1.185 | 0.3721 | ¢.1232 | 6.485 | 0.2338 | 1.7292 |
| 45 | 1.atis | 0.1617 | 0.1462 | 8.2979 | 9.2456 | 1.4535 |
| 5 | 1.8189 | 1. 4859 | 1.4103 | - 8 ¢62 | - 2.2027 | 1.2599 |
| 6 | 1.898 | . 2183 | 5.9794 | 0.2976 | 6.2881 | 1.3884 |
| 7 | | 1.1642 | \%. 1 [3] 2 | -.1943 | 0.1422 | 1.3365 |
| 8 | 1.5188 | \$.1219 | 1.0246 | 0.1864 | 9.3457 | 1.4922 |
| 9 | 1.1885 | 6.1181 | 1.1196 | -.1338 | 0.3221 | 1.4578 |
| 19 | 1.158 | 0.1952 | 0.1641 | 0.66854 | 1.1623 | 2.1228 |
| 11 | 1.1859 | 0.1988 | \%. 191 | 0.1179 | +.4765 | 1.5944 |

TOTAL SECTOR INCOHE NULITAPLIERS

DARWIN REGTON: 16-SECTOR TABLE

| SECTOR | $\begin{aligned} & \text { INITIAL } \\ & \text { IMPACT } \end{aligned}$ | FIRST
 ROUND | IMDUSTRIAL SUPPORT | PROD'M INDUCED | CONS• \quad.
 imbuced | tatal | PYPE IA | TYPE 18 | TYPE 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.189 | 9.1259 | 0.6038 | \%. 1296 | -2508 | 0.1594 | 1.2376 | $1.272{ }^{2}$ | 1.4833 |
| $2 A$ | 8.1873 | - 0.149 | 0.0827 | 0.1178 | 0.9398 | 6. 2357 | 1.6797 | 1.0981 | 1.2585 |
| 28 | 0.3482 | 0.19 .48 | 0.0117 | 0.1865 | 8.8683 | 8.5230 | 1.2723 | 1.3088 | 1.5023 |
| 3 | 0.9339 | - 0.892 | 1.1146 | . 1138 | 0.1523 | $0.48{ }^{2} 8$ | 1.1242 | 1.4865 | 1.7679 |
| 4 A | 0.1871 | \$. 8321 | 0.0051 | 1. 3382 | . 0354 | 8. 27 7 7 | 1.1631 | 1.1958 | 1.3732 |
| 48 | 0.3172 | - 1.1238 | 2. 842 | 0.0231 | 1.0519 | 0.3072 | 1.8751 | 1. 1.858 | 1.2528 |
| 46 | 0.4284 | 0.1232 | 9. 10155 | \%. 2288 | 0.6887 | 0.5258 | 1.5542 | 1.9671 | 1.2275 |
| 4DE | 0.2854 | ©.8701 | 1. 1185 | 1.8886 | \%. 6562 | . 1332 | 1.2年6 | 1.3166 | 1.5978 |
| 4 F | 0.2784 | 0.127 | 1.a852 | 0.3322 | 8.0455 | 0. 3481 | 1.108\| | 1.1192 | 1.2873 |
| 5 | 1.2721 | 0.1153 | c. 018 | 8.8179 | 8.6436 | - 31336 | 1.556 | 1.855 | 1.2255 |
| 6 | S. 3199 | 0.0536 | 1.1142 | 4.0678 | 6.1583 | 0.446 | 1.1678 | 1.2121 | 1.3942 |
| 7 | -. 1434 | 0.1336 | 0.8052 | 1. 0388 | . 1274 | - 2.2896 | 1.2344 | 1.2708 | 1.4615 |
| 8 | 4.4243 | 0.0323 | 0.0046 | 0.6369 | 8.6693 | 0.5385 | 1.9762 | 1.6871 | 1.2594 |
| 9 | 0.391 | 0.1331 | 9.8142 | 8.3373 | 1.6443 | . 4926 | 1.0846 | 1.8954 | 1.2683 |
| 11 | 0.4858 | ¢. 1729 | S. 8464 | 0.2192 | 0.993 | . 2189 | 1.4281 | $1.54{ }^{\text {a }}$ | 1.7712 |
| 11 | 0.5691 | - 1228 | 0.1834 | -. 2262 | - 8395 | 0.6848 | 1.6 | 1. 4 4 45 | 1.2032 |

| TABLE VII-5 | | | total sector income hultipliers
 | | | | TOP END REGION: 16-SECTOR TABLE | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SECTOR | IMITIAL IMPACT | FIRST ROUNE | InDUSTRIAL SUPPORY | PROD'N INDUCED | COMS'N : HDUCED | total | TYPE IA | TYPE 18 | TYPE 1 |
| 1 | 0.1136 | 1.1297 | 1.8855 | 0.0352 | -. 2284 | 0.1773 | 1.2615 | 1.3097 | 1.5599 |
| 2A | 6.1893 | -.1193 | 0.0947 | 0.244 | 0. 4488 | 0.2541 | 1.1821 | 1.1269 | 1.3421 |
| 2 B | 0.3541 | ¢ 1.1128 | 4.8162 | 0.1291 | 0.0923 | 0.5753 | 1.3196 | 1.3643 | 1.6249 |
| 3 | 1. 1194 | 0.1289 | 0.0085 | 8.0274 | 0.0989 | -. 855 | 2.8774 | 2.4129 | 2.3739 |
| 4 A | 6.1994 | 0.8325 | 4.0878 | 0.1401 | 0.0458 | 0.2853 | 1.1632 | 1.2012 | 1.4387 |
| 48 | 0.3694 | 8. 8318 | 1.8976 | 0.6386 | -. 8685 | 6.4145 | 1.1001 | 1.1248 | 1.3396 |
| 4 C | . 1275 | 0.1271 | 1. 0878 | 0.9348 | 8.9883 | 0.3507 | 1.6834 | 1.9815 | 1.2981 |
| 4 dE | 4.2227 | 0.8615 | - 8212 | d. 1827 | 1.853 | 0.3637 | 1.2781 | 1.3714 | 8.6334 |
| 45 | 0.2883 | 0.0315 | . 1688 | - 8.453 | 0.1628 | 0. 3914 | 1.1091 | 1.1398 | 1.8575 |
| 5 | 0.2572 | 6.6147 | 8.3026 | 6.8173 | 4.6524 | 0.3270 | 1.8572 | 1.8673 | 1.2718 |
| 6 | 0.3193 | 0.6501 | 0.6157 | 6. 6656 | 0.8736 | 0.4586 | 1.1578 | 1.2561 | 1.4365 |
| 7 | 0.1435 | 0.3396 | 0.8077 | B. 4474 | 0.0365 | 0.2273 | 1.2762 | 1.3301 | 1.588 |
| 8 | ¢. 4234 | \$. 0353 | -. 0358 | - 411 | \%. 8893 | 6.5569 | 1.8828 | ¢, 1965 | 1.385 |
| 9 | 6.3898 | 6. 1338 | 0.015 | 5. 388 | 1. 8819 | - 51.85 | 1.1886 | 1.8995 | 1.50 \% |
| $1{ }^{11}$ | 0.4615 | 0.1788 | 0.159 | 1.2166 | . 1181 | 4.7361 | 1.4255 | 1.3594 | 1.83 |
| 11 | f. 6827 | . 8262 | 0.0046 | 4.348 | -.121 | 6.7545 | 1.8434 | 1.3511 | 1.250 |

TOTAL SECTOR IUCONE KULTIPLIETE

NORTHERN TERRITORY： 16－SECTOR TABLE

| SEctios | IHITIAL
 IHPACT | FIRST ROLK | IMyยSThIAL support | PROD＇M 3 MDuces | COHS＇M Induce | TOTAL | TYPE IA | TYPE I8 | TYP笑㯭 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1151 | 0.0312 | 9.8354 | 4．8367 | 1.4328 | 0.1846 | 1.2715 | 8．3175 | 1.6936 |
| 2A | 0.2051 | 5．1214 | \％． 8183 | 1．924？ | d． 1497 | 0.2796 | 1.8996 | 1.1266 | 1.3629 |
| 29 | 0.3481 | 0.1071 | 0．0135 | 0.1226 | \％．119 | －． 5723 | 1．297\％7 | 1.3522 | 1.5446 |
| 3 | 0.3317 | 0．1238 | 8． 1169 | 9．8299 | － $0^{\text {a }} 133$ | 8．574 | 8.724 | 1.9418 | 2.3616 |
| 44 | 8.2813 | 6.6366 | ． 8188 | 8.1483 | －$\frac{3}{4} 319$ | 4.2987 | f． 1827 | 1.2261 | 1.4913 |
| 48 | 0.3189 | 8． 8319 | ． 18.87 | S． 3397 | 5．${ }^{\text {B }} 754$ | －1．4248 | 1.1534 | 1.1284 | 1.3724 |
| 46 | 1． 1275 | －． 1274 | c．4976 | $4.83{ }^{\text {c }}$ | －1898 | 5．5423 | 9．0641 | 1.1818 | 1.3157 |
| 402 | －． 2261 | 0.1652 | 6.9215 | 0.8868 | －． 3678 | － 3 3解 | \％．2885 | 1.3838 | 1.6638 |
| 45 | 0.2676 | －0324 | － 5026 | 4.811 | 8.1711 | \％． 3997 | 1.1125 | 1.1439 | 1.379% |
| 5 | 0.2551 | 0.8139 | － 6823 | ． 2162 | S． 5987 | \％．3299 | 1.85545 | 1.1635 | |
| 6 | \＄．321 | 6.1481 | 0.1150 | \％．6631 | 0.083 | P． 4671 | 1.1497 | 1.1955 | 1.4582 |
| 7 | 5.1438 | 0． 3392 | 6．1973 | C． 0465 | \＄． 1411 | P．2314 | 1.3726 | 1.3836 | 1.6098 |
| 8 | 0.4283 | 4．1365 | ． 6888 | －．8423 | －．1018 | F． 3825 | 1.2868 | 1．1096 | 1.353 |
| | 1.3928 | 1.0333 | 0． 848 | － 0 ¢cl | \％． 1932 | －． 5241 | 1.1847 | 1.19969 | 1．33） |
| 15 | 0.1621 | C．1716 | 0． 1451 | ． 1.2167 | －．1336 | － 7837 | 1.4267 | 1.5399 | 1．92\％ |
| 11 | 0.6869 | 0.0263 | 9． 8.83 | 0.85 | 6.1879 | \％．7754 | 1.81834 | 1.85 | 1．27\％ |

TABLE VII－7 TOTAL SECTÔR EHPLDYMEMT HULTIPLIERS DARWTN REGION：

| SECTOR | InITIAL IMPACT | PLRET
 ROUND | IHDUSTRIML SUPPORY | PROD＇H Inducen | COHS＇M
 IHDUCED | 10TAL | TYPEIA | TYPE IE | TYPE IL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5．${ }^{8} 822$ | 6．0124 | | ． 9129 | 5， 5_{5}^{5121} | \％．0972 | 1.1586 | 1．1358 | 1．1814 |
| 24 | 9.6194 | 1．0661 | | | F．ay | \％．6288 | 1．6999 | 1.183 | 1． 615 |
| 28 | 8． 5 ¢94 | ©．8185 | － 1811 | 0.1115 | － 6869 | 0． 0278 | 2.1671 | 2.2192 | 2.9514 |
| 3 | 1． 124 | 0.1113 | － 0.914 | 0.8129 | － 8853 | ． 8988 | 1.3548 | 1.6216 | 1．97\％ |
| 414 | 4．0248 | E． 123 | ¢．6116 | －1133 | 6． 9 ¢ 36 | ． 8116 | 4.4981 | 1.5371 | $1.68: 7$ |
| 48 | ． 1667 | ¢． 0^{1824} | 5.9893 | － Efe 48 | － 4 ¢53 | \％． 8747 | 1．1367 | 1.4414 | 1.125 |
| 14 | E．9626 | － 0.111 | | 6．3518 | 4． 4 \％ 7 | 6． 8173 | 1．${ }^{\text {P }} 228$ | 1.284 | 1.1395 |
| 4DE | ¢．6181 | －．1538 | ． 3 313 | －6351 | － 1 De57 | －${ }^{\text {E }} 2$ | 1.3748 | 1.5113 | $2.827^{\text {2 }}$ |
| $4 F$ | 8．1247 | U．832\％ | －${ }^{\text {befe }}$ | | 4． 15 ¢6 | \％．3518 | 1． 085 | $1.16{ }^{4} 4$ | 1.289% |
| 5 | －． 1142 | 1．8fi2 | － 185 | 6． 1914 | 1．1544 | 1．1298 | 1.9838 | 1.0956 | 1．4884 |
| 6 | － 0.23 \％ | 1．1532 | \％． 3189 | | 1．${ }^{\text {娄59 }}$ | 4． 338 | 1.1341 | 1.1712 | 1．4186 |
| 7 | ． 622 | 6． detes 3 | 6．ents | ©．3035 | －．${ }^{\text {B20 }} 28$ | － 8237 | 1．1580 | 1.1789 | 1.3057 |
| 8 | ©． 5332 | 5．8129 | 9.154 | \％．1533 | －． $\mathrm{E}_{\text {P1 }} 7$ | 1． 435 | 1． 1884 | 1.8980 | 1.3397 |
| 9 | －． 3351 | 4．1838 | － 0 ¢03 | － 1 1033 | \％．8685 | －． 6449 | 1.1942 | 1.942 | 1.2797 |
| 11 | 8．3234 | 0.6127 | 1． 8933 | | － 0.975 | 1． 1489 | 1.5448 | 1.6849 | 2.919 |
| 11 | ． 6.477 | － 1819 | \％．983 | ¢． H2\％$_{61}$ | 5．0191 | \％．${ }^{1589}$ | 1.639 | 1.8 | 1.2343 |

TABLE VII－8
TOTAL SECTOR EMPLOYMENT RULTIPLIERS TOP END REGION：

| SECTOR | InITIAL IMPACt | FIRST ROUNG | IMDUSTRIAL SUPPOKT | PROUK IHDUCEE | Cons＇労 1HUCED | TSTAL | TYPE \A | TYPE IB | TYPE İ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | － .8849 | 6． 1129 | | －0135 | －\％31 | ＊，1意15 | 1.1516 | 1.1593 | 50 |
| 2A | ¢． 6397 | 4.864 | 9． 1185 | 6．6．ed | 0． 0.04 | 6．6597 | | | f．1958 |
| 28 | ¢． 1111 | － 1135 | \％．til6 | 6．${ }^{\text {b }} 1$ | | | 2． 215 | 2.3618 | 3.2379 |
| 3 | ． 1565 | －1125 | 8．8．E6 | 4．6931 | \％．${ }^{\text {cest }} 15$ | 6．${ }^{\text {cid }}$ | 1.3558 | 1.4487 | 1． 38.85 |
| 4A | －． 2213 | ． 8134 | 9．0114 | 9． 8146 | | 4．${ }^{\text {食411 }}$ | 1.6263 | 1.6942 | 1.8279 |
| 42 | － 3552 | \％．1933 | 8． 3808 | | | \％．6855 | 1.85597 | 1.6726 | 1.2 26 ${ }^{\text {\％}}$ |
| 4C | 4．8668 | － 8121 | 5．6866 | | －${ }^{\text {P／} 96}$ | 4．6792 | 1.4388 | 1.4485 | 1． $18.84{ }^{\text {a }}$ |
| 4DE | | 6． 8842 | $5.80{ }^{3} 18$ | － 0 | 9．1865 | 4． 5.212 | 1．5315 | 1.7583 | 2.3045 |
| 48 | 1．9326 | － 18.29 | － 6.88 | －9．037 | 8．966 | | 5．6988 | 1.1135 | 1.323 4 |
| 5 | 0.9128 | 4． $\mathrm{B}_{2} 12$ | －1／82 | － 614 | 6．${ }^{\text {P65 }} 7$ | 6．8197 | 1.4964 | 1.1138 | 1.8694 |
| 6 | \％． 236 | 1.9038 | 6． 3113 | － 5051 | \％． 88 | 0.0366 | 1.156 | 1．2156 | 1.555 |
| 7 | \％． 8241 | －1．1846 | \％．8398 | － 495 | \％，${ }^{\text {\％}}$ | E．8334 | 1.1924 | $1.226{ }^{\text {c }}$ | 1.3926 |
| 8 | 8．132\％ | 6． 1836 | ©． 188 | －Ef 41 | －6．9\％\％ | － 8467 | 1.1893 | 1.1252 | 1.4212 |
| $1{ }^{8}$ | －．349 | \％． 133 .199 | －$\cdot 1355$ | －$\frac{1}{8} 938$ | － 8889 | 6． 478 | 1.6959 | 1.1182 | －．3662 |
| 11 | 1． 2189 0.8667 | \％．1129 | 4． 937 | 6．165 | －1129 | | 1.6154 | 8.7996 | 2.4055 |
| 11 | －． 6667 | 5．6125 | \％， 1 Bes | | － 1132 | － B82 8 | 1.6374 | 1.8412 | 1.2424 |

TABLE VII-9
TOTAL SECTOR EMPLOYMENT MULTIPLIERS NORTHERN TERRITORY

| sector | $\begin{gathered} \text { IMITIAL } \\ \text { IMPACT } \end{gathered}$ | FIRST ROUND | Industrial SUPPORT | PROD'N IMDUCED | COHE'K INDUCE | total | TYPE IA | THPE IB | TYPE II |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.6737 | 0.3114 | 1. \%0\% | C.0120 | - 10.3 | ¢.3997 | 1.1592 | 1.1584 | $1.997 ?$ |
| 2 A | \%. 6138 | 0.5193 | 4. ${ }^{\text {¢ }}$ (1) | C. 6898 | 9.1443 | 6.6281 | 1.3152 | 1.816 | 1. 2333 |
| 28 | ¢. 1198 | 0.1128 | - 6114 | 0.142 | 0.1692 | 0. 8397 | 1.8189 | 1.9974 | 2.4931 |
| 3 | ¢. 1872 | 0.5126 | | 0.0.32 | 0.1612 | C. 1116 | 1.3592 | 1.4523 | 1.6296 |
| 4 A | 0.1215 | 0.1138 | | 0.155 | C. M $^{4} 48$ | 0. 01818 | $1.64{ }^{\text {d }}$ | 1.7233 | 1.9446 |
| 48 | 0.1558 | - 1838 | | 6.1037 | 0.8968 | 0.5663 | 1.8547 | 1.8664 | 1.199 |
| 46 | 1.5688 | 0.1520 | 1.9686 | 0.1126 | 0.6191 | - 1.1784 | 1.8296 | 1.9383 | 1.1792 |
| 40 | 0.1881 | 1.0813 | 4.817 | 9.646 | -.t\|61 | 0.5252 | 1.3278 | 1.7373 | 2.4979 |
| 4 F | 1.0356 | 1.5128 | -.63 ${ }^{\text {\% }}$? | \%. 8183 | \%.8965 | 1.8456 | 1.1775 | 1.1980 | 1.2792 |
| 5 | 0.1122 | 1.8111 | 1. Q $_{\text {¢ }}$ 2 | \%. 013 | 0.055 | C. $118{ }^{\text {ck }}$ | 1.391 | 1.1657 | $1.54{ }^{2}$ |
| 6 | 0.1242 | 9.6334 | 0.8111 | - 645 | \%.6875 | 2.5363 | 1.1398 | 1.1965 | 1.4978 |
| 7 | 0.0195 | 0.1838 | -. 0187 | 6. 2845 | 0. 8 E37 | -. 2277 | 1.1967 | 1.2399 | 1.4286 |
| d | 0.1332 | 0.1034 | 9.8585 | 5. 1838 | ¢. 6891 | 5. 8161 | 1.1032 | 1.1181 | 1.37 |
| - | 0.1285 | 6. 3128 | 1.1654 | 6. 6132 | 9.3885 | 9. 518 | 1.8996 | 1.1132 | |
| 16 | 0.1256 | -.1123 | . 6934 | 0.6136 | -. 0122 | 5.0184 | 1.5944 | 1.7577 | 2.3456 |
| 11 | ¢.1526 | 5.1622 | 3.5314 | 5.5226 | 4. 6125 | -.8677 | 1.0421 | 1, 8972 | 1.2873 |

PABLE UIII－：DIREGT COEFFICIENTS， 11 －sectar table：daruik resion

| 15EET0 | 1 | 2 | 3 | 1 | 5 | 6 | 7 | 6 | 9 | 15 | 11 | H－H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0． 1014 | －．${ }^{\text {a }}$ | － 1 118 | －． 1332 | | 9． 9818 | 1．0］4춥 | ¢． 093 | 6． 3 \％ 9 | 5.8511 | 9．408 | |
| 12 | 9． 165 | － 1.852 | t． 118 | 5.8822 | 6． 10 er | ก．${ }^{\text {a }}$（et | | 9．5ser | | C．8936 | －． Bet $^{\text {c }}$ | 4．0323： |
| 3 | 5．8189 | 0．118 | －． 0686 | E．8179 | 6．089 | － | | ＊． 8581 | 3．015 | －．015 | － 0401 | 6． 0 098： |
| 4 | ¢． 0.55 | 6．2138 | ． 1978 | 介．1238 | 0． 0.35 | 0.1542 | －． 8448 | 6.3114 | | － 18335 | －． 672 | － － 1221^{1} |
| 15 | －． 1883 | 1．3147 | －． 1864 | 0． 6121 | ¢． 0.872 | －6115 | | C．5032 | ¢． 114 | S． .5478 | 6．8185 | 0.81281 |
| ＊ | ． .182 | －． 1 －182 | | －． 695 | － 1279 | 4.8015 | ¢． 131 | ¢． 5278 | － | ． 6.2179 | ． 2254 | |
| 7 | －． $0^{\text {P363 }}$ | 5.5566 | 9．5079 | －． 127 | \％．8135 | \％．8176 | 9．8525 | －． 5244 | －． 314 | 4． 255 | 0.0146 | 6．2108： |
| 8 | | | 9．8416 | －${ }^{3} 223$ | －． | 9.5893 | － 6888 | 0． 1256 | 9．833 | ＊． 189 | 0． 0.123 | 5． P118：$^{\prime}$ |
| 19 | C．${ }^{\text {ata }}$ | ¢． 339 ¢ | －．6925 | －6．335 | － 6 \％${ }^{\text {B }}$ | 1．f358 | －． 0324 | －${ }^{\text {cis3 }}$ | 3．3245 | －． 0378 | －． 3042 | 2．8689： |
| 118 | | | ก． $114{ }^{\text {a }}$ | | | | | 9．${ }^{\text {¢ } 418}$ | 管新部？ | 0.1223 | 0．8165 | ． 0.05711 |
| 111 | | | 1． 1816 | | | | 1．8E23 | 1．985？ | 9．0．0997 | 0． 222 | 0．0049 | 5．36411 |
| ： $\mathrm{H}-\mathrm{H}$ | E．1939 | 1．3433 | － 2339 | －．2785 | 1．2721 | 8.3189 | －143 ${ }^{4}$ | 1．424J | －． 391 | ． 41858 | 1． 5691 | |

TAMLE UIII－2 DIRECT COEFFICIEMTS，11－SECTOR TABLE：TOP EKB RESION

| 15ECT0\％ | 1 | 2 | 3 | ＋ | 5 | 6 | 7 | 8 | \％ | 1 | 11 | H－H： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 3．tatit | | | | － | 6．${ }^{\text {¢ }}$ 3 ${ }^{\text {a }}$ | －． Bres 5 | | 4．9041 | | 9．8598： |
| 2 | 0． 6153 | 1． 608 | 8．0．46 6 | － 1013 | 1．0060 | － | | | －1．6558 | | － | |
| 3 ： | | | E．1298 | － 1953 | 6． 585 | 0．4635 | 4．595番 | 9．0931 | | －部嗉管 | | 4．8930 |
| \＆ | | －．25eb | －． | ＊．1529 | －${ }^{\text {bity2 }}$ | C．1533 | | 6． 6125 | | － 5128 | － 0.888 | ． 51301 |
| 5 | － 0838 | | ＊．8502 | 1． 1115 | 4． 1885 | －66816 | 1． 1846 | － 6.81 | ¢． M144 $^{\text {¢ }}$ | \％．8474 | 0.8180 | 9．0123： |
| 6 \％ | 6．175 | \％．gen | 5． 3 | 6． 1879 | W． 258 | \％．88185 | －． 8131 | 6． 277 | c． 1183 | ह．216 | \％．2261 | 0． $1178{ }^{\text {a }}$ |
| 7 | －6823 | 1．8576 | 4． S $^{5} 12$ | C． 352 | －． 8375 | 4． 618 | ＊．1119 | －${ }^{8} 825$ | 色． 8429 | － 8248 | －． 3 䊺 | 0.21081 |
| \％ 1 | | | \％．${ }^{\text {mbe }} 32$ | 1． 1175 | | ¢．${ }^{\text {H }} 886$ | －． 0^{8588} | － 125 | 4.3877 | \％．1187 | \＄．0823 | － 629 ！ |
| 9 | 5．8586 | － 6388 | | | | | 5． 524 | 6．${ }^{8}$ 829 | － 123 | ¢． 1375 | 4.8042 | 1．1286： |
| 1 11 | | －．${ }^{\text {B }{ }^{\text {b }} 488}$ | | \％． $0^{\text {ctas }}$ | －． 5 ¢85 | | －．test | \％．${ }^{\text {cheme }}$ | C．6931 | 帾．1213 | \％．0808 | $0.987{ }^{1}$ |
| 181 | 6． 1111 | | 1．${ }^{\text {bintin }} 2$ | －． 5 Et | ¢．9 965 | | －6023 | －${ }^{\text {a }}$ 3 39 | \％．8892 | 6． 222 | 4． 0.854 | ． 563 C |
| H－H | 4．1136 | － 3483 | －． 1194 | 5.2293 | ¢． 2572 | － 3193 | \％．1655 | \％ 425 | \％．3198 | ＊．4315 | － 6.6827 | |

TADLE UIII－3 DIRECT COEFFICIEWTS， 11 －SECTOR TABLE：KATHERIME－BARKLY REGION

| －Sector | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | H－1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | －． Hens $^{\text {c }}$ | ¢． 1998 | | | ． .68 | f． 3 H50 | － 0858 | 5．838 | | 1．0841 | 0.6809 | 9．0089： |
| 21 | C． 8 ¢59 | 1．1118 | | C． 1818 | － 6130 | 3．8t80 | \％．gnde | － | 1．085 | ． 1.1883 | ． 8.0081 | 0．0821 |
| 1 | 6．31819 | （．0189 | ． 0.865 | E． 1181 | | 0.682 i | $0.60{ }^{0}$ | 0．648 | | \＃． 8081 | S．5001 | － 0050 |
| ！ | －．6143 | 0.1729 | ¢． 188 | 8．6265 | 8．855 | 4.8433 | 2．818 | 0.853 | － ．8188 | － 6.618 | 0.0042 | 0.2276 |
| ！ | 1．0184 | 9． 01828 | 5．608 | ¢． 1119 | 0． 213 | 1.0628 | 0.4169 | －． 1942 | ． .252 | 8.0471 | \＄． 8317 | 0.0142 |
| 1 | ． 1.224 | d． 1868 | 4．1880 | 0.4893 | ． 6.114 | ¢． 1888 | － .1112 | 0．135 | －．0138 | ¢． 2148 | －． 1288 | 1． 1070 |
| ！ | C．6352 | 9．8361 | 9．6［8］ | 2.8196 | －．6132 | 0． 8259 | －． 5527 | 1.1233 | －1． 367 | 1． 1247 | 0.1183 | 8.183 |
| ： | \％． 0468 | ． 8.839 | 9． 0808 | W． 1153 | 1． 6857 | 0.5179 | －．6．47 | 0.115 | 6． 8149 | 1． 1186 | 0.0624 | 8． 0658 |
| ！ | －． 6932 | － 0.505^{4} | － | \％．1805 | －．0082 | ． 1522 | 0.6879 | － 0.182 | $0.8{ }^{\text {a }} 71$ | 1．0373 | ． 1012 | － 0.568 |
| ：11 | | | 0.6865 | 角会告 | 2．bIst | 介， 6 B49 | 0.6818 | C．tyb | | 0.1286 | 0.6896 | 0.8679 |
| 111 | \％．1149 | ． .8911 | 9．8809 | 4．test | 1．8384 | | 8.6822 | 0． 5.837 | 1．6465 | － 1219 | ¢． 1834 | d．9739： |
| ［ $\mathrm{H}-\mathrm{H}$ ！ | 4．1758 | 1.3879 | 1.8577 | \％．2517 | 9.2484 | －． 3288 | C．144 | 6.4394 | 9．4128 | \％． 3998 | 0.6198 | 0.0100 |

TABLE UIII－DLAECT COEFFICIEMTS， 11 －SECTOR TABLE：ALICE SPRINGS REGIOM

| 1 EECTOR | 1 | 2 | 3 | 1 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | H－H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | 4．5636 | | | | 6． 489 | | 6.81 | 4． 2959 | 6．0905： |
| 2 ： | | | －． 1385 | | 0．988 | | | 9．998部 | | | 6． 6^{892} | \％．650： |
| 31 | | | \％．3634 | 6．6245 | －${ }^{10} 6$ | | | 8．8581 | \％ | | | |
| 41 | | | 8.8276 | 6． 6^{8852} | － 5.8915 | －1649 | －．${ }^{3} \mathbf{3} 52$ | \％． 8117 | | \％． 0821 | 0．08\％4 | － 0123 ！ |
| 5 | | 6． 8077 | | － 6583 | 6.6547 | － | 6．986 | － 8 821 | 4． 0174 | \％．8475 | \％．82䂞2 | ＊． $0^{\text {\％}} 142$ ！ |
| 61 | 娄． 8187 | 6． 8977 | 6．9890 | 0．6899 | ＊．8188 | | －6132 | 8．02e3 | 6．0．39 | 4.2869 | 0.0224 | 0．0227： |
| 17 | | ＊ 515 | | | － 8862 | 5． 5548 | \％． 8969 | 4．946？ | \％．${ }^{\text {\％} 438}$ | 氉．8249 | 6． 6264 | 6．21s5？ |
| 10 | 9．4．483 | 9． $0^{6} 777$ | 6．8815 | 緟． 268 | 6．6071 | 4．117 | 5． 5864 | ．119\％ | | \＄． 6183 | | \％．0567： |
| － 71 | | | | 等．8929 | | \％． 8483 | 6.6319 | | ． 6.8184 | 6． 8376 | 4．9816 | \％．1536： |
| 118 | | | 管． 5808 | 5．8968 | －． 985 | 8． 8108 | | 6． $0^{69} 8$ | | ＊．1217 | \％．0393 | 0.06571 |
| 111 | － 6116 | | 4．6513 | \＃． 685 | | \％．850 1 | 6．${ }^{\text {¢ }}$ ¢ 28 | 4．4997 | － 1.9886 | | 6.6063 | 6． $60.38{ }^{\text {i }}$ |
| （ $\mathrm{H}-\mathrm{W}$ | 9．1155 | f． 2515 | 翻． 221 | 0．2673 | 8.2331 | 6．325年 | 0.144 | 6.3957 | － 3963 | 4．4122 | ． 6132 | 6．fery： |

THELE UIII－S DIRECY COEFFICIEMTS， 11 －SECTOR TABLE：MORTHERM TERRITORY

| ：SECTMR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 3 | \％ | 18 | 11 | H－H： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | | 9．65］ | E． 180 | \％． 684 | | | | O． 088 | 6．9n妾咅 | W．${ }^{\text {a }} 981$ | 6．${ }^{3} 50$ | －． 0905 ！ |
| －2 | － 0.14 | C．78量6 | 5．${ }^{\text {deb }}$ | 5．8512 | | 8．0988 | ＊． 1 ¢ ${ }^{\text {a }}$ | | － | | 9．0061 | 6．05］${ }^{\text {a }}$ |
| －${ }^{\text {¢ }}$ | | | －126 | － 0.951 | | | 4．850 | \％．0｜ | －$\square^{8} 8$ | － | | |
| \％ 1 | E． 657 | \％．2353 | 6． 121 | 5．1426 | 9． 3926 | ＊．1391 | ．$\frac{18}{4}$ | 4． 8123 | －5．${ }^{\text {¢ }}$［2］ | \％．${ }^{\text {B }} 229$ | 9.8983 | 0.61371 |
| 15 1 | \％．0055 | | ＋．682 | W． 8137 | \％．8467 | | 4．0968 | 6．0835 | － 0.184 | 8.8475 | 1．824 | 9．8139： |
| 1 6 | 霉． 8204 | 官．884 | \％． 353 | 6． 1182 | \％． 2235 | | 0． 0131 | － 0.269 | 6． 8172 | 1.2184 | \％．8258 | 0.01971 |
| 17 ： | \％．858\％ | － 6 年572 | \％． 093 | 等． 0351 | | \％ 9576 | \＄． 8.881 | － 6124 | \％．0225 | － 2248 | C．0318 | 0．23911 |
| －： | － 5 gat | | ＊．${ }^{1} 951$ | \％． 24. | 4． 0.958 | \％．0113 | － 0.111 | 5． 28.82 | 5．0874 | 4． 1188 | 0.0827 | 0．811： |
| 19 | | \％． 5384 | － 1351 | \％． 1818 | \％．06E2 | ＊．${ }^{\text {P0 }}$ ¢5 | － 332 | | 9．${ }^{2} 98$ | －． 375 | | ． .1543 |
| 115 | | | | | | \％． 8^{86} | \％．\square^{46} | －．0685 | 1．${ }^{\text {\％}}$ \％1 | 9．1215 | 0.0106 | 6． 06711 |
| ： 11 | \％． 1115 | | （1）${ }^{1} 25$ | | 3．0095 | \％．9891 | － 0.825 | | | －1221 | 9．9056 | |
| ｜ Hm H | 爯．115i | －3．312 | －． 317 | ． 2335 | \％ 2551 | \％．321 | 1．1438 | 1．426 ${ }^{\text {a }}$ | 1． 3928 | A．4921 | \％．6069 | 0．054 |

APEEDDX：IX

| 138crem | 1 | 28 | 縭 | 8 | 4 ＊ | 4 | $4{ }^{4}$ | 4EE | － | 5 | 6 | 7 | \square | \pm | 16 | 11 | －-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | C．${ }^{\text {（4）}}$ | 5． | 17．083 | | 5． 214 | －．tyed | C．0en | 0．006s | ，\％${ }^{\text {\％}}$ | ． 58 星 | 9．tast | | 6．0898 | \％．080 | | | 0．gate |
| 12 l | ¢． 8185 | 9．6e73 | S．Hese | ． 58 \％ | － 0134 | －． det $^{\text {d }}$ | | ，540 | 5．04ts | T．${ }^{\text {a }}$ ， | g．enta | －＊．ter | － 0 （1） | － 6 Wex | －6483 | 6．${ }^{\text {che }}$ | |
| 128 | －¢ | （2． | － | － | H．${ }^{\text {ctet }}$ | 䰻． | | | －．eys | | 2．艁部 | －．＊\％${ }^{\text {m }}$ | | C．809 | －． Pre3 4 | － 6 gex | － 0.0920 |
| 17 | 9．8090 | | － | －＊＊896 | | －．tyd | －角部 | －．624y | 9．4ns | 6．01909 | 8．3081 | E．0日月 | －0．0］4 | B．${ }^{\text {B }}$ | | c．609 | \％． 00388 |
| \％${ }^{\text {a }}$ | 2．0032 | 5．9＊＊ | | － | 0．0223 | | －พีำ\％ | | － b $^{\text {a }}$ | | 0．95\％ | 2．HMS | 8．6as | －． 103 E | | 9.3688 | （0． |
| 84 | \％．809 | \％． \％$^{\text {P／}}$ | ＊． $0^{0} \mathrm{I}$ | | －的新 | 5.8133 | \％．04？ | 9．803 | | －． ¢ $^{\text {a }}$ | 6.8117 | | －．${ }^{\text {cose }}$ | 6．0353 | ． 6.3005 | W． | － 0 di91 |
| 151 | \％，＊＊＊ | －Wext | －1．3848 | 6．1147 | 4．0051 | \％．8845 | －． | | 6．${ }^{4} 84$ | － 5 ¢ ${ }^{\text {ch }}$ | － 0.648 | － 5016 | － | 5．${ }^{\text {a }}$ 1 | | | ＊${ }^{3} 818$ |
| 1 畋 | 6． 0 期解 | 9．ande | 8．948 | C．${ }^{\text {\％}}$ \％ | 6．6245 | ． 0213 | －． 0484 | C．146s | 6．42䊩 | － 0.812 | －140\％ | 2．tems | \％ndi3s | 6－48961 | 4．${ }^{\text {in }} 113$ | 6． 1937 | \％．3814！ |
| 14\％ | 0．0987 | | 6．1423 | －．．6432 | | 0．078 | － | \％．terl | | | －\％exy | ＊．0921 | 6． 8023 | 9．8sc3 | 0． 8103 | 9．3ns\％ | C．0043 |
| 15 | －． dnes 3 | 0．tan7 | 6． 9847 | 5．09084 | 3．6嗗3 | | | 5．919\％ | \％．tits | 0．2972 | 0.0815 | 0． 0 （4） | | 0．8y的 | C． 0478 ； | 2．898x | 6． 512 Ca |
| 16 | | 0.8875 | 2．x⿹ㅗํ ${ }^{5}$ | － | C．${ }^{\text {a }}$ | \％${ }^{\text {catal }}$ | 0．0．3 ${ }^{\text {a }}$ | 0．31嗉 | －．0t ${ }^{\text {cti }}$ | 9．6879 | 0.6109 | 0．8131 | 0.827 | 9．${ }^{\text {d }} 184$ | ． 2179 | 0． 0 \％ 24 | 0．3987 |
| 17 | 0．3343 | 6． 1412 | \％．楼7 | 0．8079 | 6． 6175 | ． $62.0{ }^{\text {che }}$ | | －6119 | － $0^{1 / 55}$ | \％．463\％ | W． 1088 | 6．8625 | | 8．0314 | 0．025 | C．DiAK | 6．21881 |
| 1 炜 | － 0 Hat | 6．ants | W．4．95 | －${ }^{3} 416$ | | ＊．6111 | 0．095 | | － Hax $^{\text {a }}$ | 0.81652 | －6053 | －．${ }^{\text {dex }}$ | －．t25 | 8． 0 883 | ＊ 0109 | 9． 1423 | \％．E120 |
| 18 | | | － 4 ¢03 | 0．83ct | | | 8．6．684 | S．0．437 | | － 2 2984 | －．．395 | | \％．${ }^{\text {\％}} 3$ | － 2345 | A．8378 | W． 5 （6）2 | ． |
| 110 | | H．tes | 3． 1988 | 4．5085 | | F．4at | | | | \％．85cy | －\％${ }^{\text {cen }}$ | C．5354 | 5．${ }^{\text {¢ \％}}$ | － | ． 12223 | － | －， 3778 |
| 111 | －${ }^{\text {Wexty }}$ | | 品新17 | －${ }^{\text {and }}$ | | － | | | 3． 3 \％e9 | －．fysk | － | －${ }^{\text {antas }}$ | 6.6057 | ＊．10\％ | 0．52\％\％ | 3． 5 \％${ }^{49}$ | |
| 1 \％－${ }^{\text {\％}}$ | 1．109\％ | ．187 | 3．24＊${ }^{\text {\％}}$ | － 2354 | 5．1971 | － 6.37 | 1．4234 | \％．ziss | E．2764 | － 2721 | －．3189 | 0．143 | 4.4243 | 5．3918 | 5．4735 | W． 5687 | ［． |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | 1 | 24 | 28 | 3 | $4{ }^{4}$ | 4 | 4 | N2E | ＊ | 5 | 6 | 7 | 3 | 9 | 115 | 18 | H－H1 |
| 1 | | 4，成轔 | | | | | | \％．196\％ | | 3．043 | | 1．${ }^{\text {a }}$（5） | 6．0．4874 | | | －， | |
| 1 24 | －． 0^{5} | ＊．${ }^{\text {a }}$ \％ 7 | | － | \％．112 | | | 牙路部番 | 6．${ }^{\text {atas }}$ | \％．1393 | | | 全． | | \％．4．03 | | |
| ${ }^{1} 28$ | 4． 1 ent | | | ＊，解解 | 9．6182 | \％\quad Hex | | | | | 5．925 | | －001\％ | 0．680］ | | \％．035 | －${ }^{\text {cexa }}$ |
| 8 ${ }^{\text {\％}}$ | －${ }^{\text {Buta }}$ | | | 4．1298 | \％． 138 | －${ }^{-1565}$ | | 6．1793 | 6． \％$^{2} 97$ | 気．69\％ | 8．3835 | 要。粃起 | | \％．${ }^{\text {conc }}$ | ，\％فำ选 | 1． 985 | |
| 14．4 | 6， 327 | 4．70488 | 4．35\％ | | － 129 | | \％．94＊ | －． | －4891\％ | 0．${ }^{\text {cha }}$ | | － | | \％．009 | | 8． 3017 | |
| － | \％．49080 | H．temb | | 6． $0^{\text {\％}}$ | － | \％． 514 | | | －．tev3 | 6． | \＄－6989 | | －n\％ | W． 1482 | | \％．ents | |
| －48 | 9．0．0．3 | | － 0.431 | \％．${ }^{\text {cis }}$ | －\％ | －鋁新 | \％． | 6． 6 ¢\％ | －．${ }^{\text {chen }}$ | | | 9．4． | 2．${ }^{\text {a }}$ S | \＃．数教 | 6．6317 | | O．${ }^{\text {\％}}$ 稆3 |
| 1 絇 | － | | | | | 5．0351 | －6．622 | 8．174\％ | | 4．${ }^{\text {atal }}$ | W．145t | \％．609y | 8．483 | ＊n＊9\％ | | E．t38 | |
| 1 ＊ | | 5．gisen | 6．202 | 9．303 | － 0 ¢ 7 | 9－412 | 3．tan | | \％．${ }^{\text {g }} 141$ | 4．8367 | | C． 43 | － $0^{4} 82$ | － 0 defa | －834．4 | 9，既15 | |
| 1 | 4．033 | ＊．${ }^{\text {dez }}$ | 9．0．88 | | ＊．066\％ | 0.8839 | － 6 ¢51 | \％． 0128 | 4．4E76 | 0．656s | | ${ }^{6}$ | 9．04l1 | －．1．ct | － $0^{\text {data }}$ | － 186 | 9．0123 |
| 8 | － 1 ¢94 | \％．0765 | | 0．0393 | \％． 683 | \％－${ }^{\text {alay }}$ | ＋${ }^{3} 133$ | \％．037\％ | 4．959\％ | －6．126 | ＊－6\％ | － 0131 | W． 0.97 | | － 2161 | －12st | －． 017 |
| 17 | 6， 623 | 6， 874 | 6．057 | －Win2 | 6．0399 | 4.9618 | 6． 4342 | 9．63I4 | | P．$\$^{5} 58$ | | 0.1817 | 6.6483 | 1．8429 | － 5.248 | | － 2 2新変 |
| 16 | －${ }^{\text {meat }}$ | ©． 5 \％${ }^{\text {a }}$ | － 8851 | \％．${ }^{1}$ | 0.0125 | | ©，\％at | 8.3182 | － 4.85 | | ＊．tseb | － 4 \％88 | － 4 2s\％ | 4.83 | 4．1187 | 9．573 | |
| 19 | | 6． Bex $^{\text {che }}$ | \％．0492 | 4．280 | － $0^{\text {¢ }}$ | S． 8041 | \％．t123 | － 0.5815 | －1．064 | 4．0203 | | 6．0324 | 6． 6 ¢ 67 | 3．32．3\％ | 5．＊373 | | 2．124＊ |
| 118 | | －atay | 6．thy | －． 0 告部 | \％${ }^{\text {\％}}$ | | （ ided | －粗教 | | － | 6．44） | －${ }^{\text {a }}$ | －6ABA | － | －1347 | | |
| 111 | 6.0118 | | 2． dil $^{\text {d }}$ | 2．31\％ | －． Hy 5 撸 | W． 8683 | 4．645c | \％． | 6． ¢13 $^{\text {ce }}$ | －${ }^{\text {2 }}$ 解 | （1．）第新 | \％． 65 | 0．835 | －8．882 | －． 828 | \％．905 | |
| | \％．133 | \％．1893 | 8.3548 | 9.415 | 8．1894 | | 4． S^{275} | \％． 2227 | 78． 2882 | 4．2372 | 5．31\％3 | 4．1435 | 4．9284 | 6．3893 | 6．435 | \＄063 | |

| 15cictol | 1 | 24 | 28 | 3 | \＆${ }^{\text {a }}$ | 48 | 44 | 408 | 4 F | 5 | 6 | 7 | 3 | 7 | 1／ | 11 | －H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | －${ }^{\text {¢ }}$ | | －．考要的息 | （4．6量歸 | ＋．6785 | －6888 | | | | | －．${ }^{\text {ceven }}$ | | － 0 \％${ }^{\text {che }}$ | | \％． 884 | ©． 6 585 | |
| | | | | | | | | 9． | | | | | 3．8085 | | 3．${ }^{3}{ }^{3} 5$ | | 4．42se！ |
| 28 | 3．bs | | | | | | | | | | | | －．${ }^{\text {zas }}$ | | － 9.9838 | | 6．032 ${ }^{\text {5 }}$ |
| ； 3 | | － | | 4．126 | | －6．${ }^{\text {P }}$ | | 當．1187 | | 4． 419 | ＊．1536 | | \％．684 | － 0.8848 | － 60808 | 0．835\％ | |
| 1 －${ }^{\text {a }}$ | | | －．eltis | 4．$\square^{8} 26$ | － 6187 | 5.5682 | －．9ent | 5．8098 | －． | | \％． 9 \％${ }^{\text {a }}$ | | 1．905㖴 | | 9．60ts | | 0．${ }^{\text {B4E4：}}$ |
| \％ 4 析 | | | | 韹． | | 6.8137 | 5．3905 | | － 1.8 | | | ＋． ¢ $_{\text {6 }} 16$ | | 8．0．0\％ | 6． 0503 | ＊．${ }^{\text {B }} 1114$ | 5．0¢919 |
| \cdots－4C | | | | | 2．㜢数？ | ＊． | | \％．seat | | | | | 9．9084 | | 6．881 | | － Prea $^{\text {a }}$ |
| －4DE | | | －． | | | （1）${ }^{\text {\％}} 5$ | ［49572 | 1．1857 | | －$\square_{\text {a }}$ | ＋．1267 | | 8．162？ | | 6． 6889 | － 033 | － |
| －A ${ }^{\text {at }}$ | 4．${ }^{3} 817$ | －6．6887 | 8．1817 | S． 6137 | | 4．6\％17 | | | \％． 0134 | 5．964 | －${ }^{5} 512$ | ¢．8123 | \％9627 | 9．${ }^{\text {a }}$ \％ 5 | 0．8308 | \％．0才23 | 4． $0^{\text {® }} 121$ |
| 15 | | 3．96乌＊ | 番．${ }^{\text {cha }}$ | | 6．6s82 | | | － 015 | | 5． 5 ¢6\％ | | －新6 | － ¢ $^{5} 35$ | 教部4 | 6． 475 | － 6.224 | 6． $0^{\text {P38 }}$ |
| － | | | －${ }^{1 / 39}$ | | | | | | 8．8997 | －4．35 | | 0.8131 | 6． 3269 | 4． 0^{1172} | 3．216 | ． 6253 | － 1 者187？ |
| 17 | | | 者．657 | 番．08515 | 4． 4.382 | 4．8599 | 6．${ }^{3} \mathbf{3} 29$ | ［1334 | 4． 6392 | 9．8566 | \％．9573 | 0．376： | － 5^{6424} | 9．0423 | 8．6249 | | － $2.57{ }^{\text {c }}$ |
| 43 | | | | | | ¢． 4135 | 音，00967 | 0.7271 | | 9．${ }^{\text {cens }}$ | | 7．${ }^{\text {b }}$ ！ 11 | －5\％ 24 | | 0．4188 | －8327 | |
| 19 | | | 3．${ }^{4}+3$ | | | 6． 1935 | | 6．${ }^{\text {sel }} 17$ | 4．8害36 | | ＊＊ | －\％3票2 | | | 4．0375 | －．鳃3！ | 2．1543： |
| 111 | | | 1． | | | | | | | | | | ＋50\％ | 5．${ }^{\text {capes }}$ | －1215 | | |
| 111 | －． 11 1等 | 1． 0 ¢ 8 87 | | 6．4823 | | | | | | | 6．f561 | 8．${ }^{6} 25$ | c．agd | 3．4 48 | 4． 7221 | | |
| 8 $\mathrm{m}_{\text {－}}^{4} 1$ | \％．1151 | 1．2591 | | ，36317 | | | 1．4273 | 8．2251 | 1.2376 | \％．2551 | 最．32？ | －1．138 | － 62 23 | \％．3929 | \％．4631 | | |

| 13ECTI事 | 1 | 2A | 21 | 3 | 4 A | 41 | 418 | ＊${ }^{\text {E }}$ | 4 | 5 | 6 | 7 | 8 | 7 | 19 | 1： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | 1．6519 | | | －${ }^{\text {P1／55 }}$ | 1．${ }^{\text {b }} 219$ | | | | 4． $0^{3} 51$ | | | 3．불傷 | －$\frac{18}{8} 80$ | | | |
| 124 | 6． 1187 | 1.0575 | 1．9E12 | 9．585 | －${ }^{1} 144$ | | | B．${ }^{\text {begy }}$ | | 1．9世15 | | － | \％．6510 | 5.8120 | －．evi | |
| 127 | | 6．0150 | | －．A¢ET | －6811 | | | | | －．${ }^{\text {a }}$ | | | 6．6619 | | | |
| 131 | 3． 0^{5} | 4．部疑1 | | 1． 1742 | －．${ }^{\text {b }}$ 89 | | E．${ }^{\text {B }} 15$ | － 8312 | 6．8372 | 5．1502 | | 5． 6 ¢ 82 | 6．5054 | 4．8911 | －${ }^{\text {a }} 9$ | 5.85041 |
| 4 4 ： | 4．883 | － 6558 | －8．8165 | 6．03E！ | 1． 2.231 | | | －${ }^{\text {ases }}$ | 4．8825 | | | 穵，娄晋！ | － aras 5 | － 819 | －ames | |
| 148 | \％．${ }^{\text {B }}$ 593 | － 0 ¢ 81 | 0.0334 | 6． 6 832 | | 1．景！54 | A．8818 | －1985 | －${ }^{\text {ebeb }}$ | －6． | － | 3．${ }^{\text {B }}$＋12 | 3．935］ | \％．8986 | | － 0 1619： |
| 146 | c． 6 \％ 81 | Q．${ }^{\text {IfP }} 1$ | －．8553 | 1．123\％ | | | | 1．1942 | 9．811＊ | | －． B 1515 | － | －6㟺5 | 1．0192 | 6． 5 853 | |
| 1 40E | 8．8035 | | 4．38 | \％．3885 | －． 3315 | F．${ }^{2} \mathbf{2} 87$ | 施595 | 1.1772 | 6． 2265 | | 3.1661 | 6．436 | 8． 8985 | ＋．0836 | 5． 4182 | |
| 14F： | 刍．1119 | | － 145 | 0.3574 | | 4．${ }^{\text {Brenen }}$ | 臬，教部？ | | 1.5171 | － | 9． 1114 | －． $0^{4} 23$ | | 9．3584 | C．6．615 | 4． 018 \％ |
| \％ 5 | －． 4 ¢589 | 0.5881 | | 6．${ }^{4} 1885$ | － 4 ． 295 | | － 3959 | 6．1174 | 8． 1125 | 1． 1.85 | 4．193\％ | 6． $6^{85} 5$ | 8．0139 | 0．6150 | －． 1573 | \％．8191： |
| 16 | － 0198 | －1．386 | 6．${ }^{\text {¢ }}$－54 | －5129 | － $0^{\text {d5 }} 13$ | 4．6883 | （8．7351 | S． 1135 | 6．1122 | 0．6205 | 1．${ }^{\text {bab }}$ 27 | 1．1153 | 8.8238 | － 623 | －2532 | － 0.8285 |
| 17 | － 0.8184 | | －${ }^{\text {S } 868}$ | 4．1127 | ¢． 8176 | \％． 223 | 9.8112 | 6． 1167 | － 0.818 | 1．9345 | 4． 21219 | 1.8686 | | | 3． 8398 | 9．91s3： |
| － | 6.3877 | | － 0 ¢ ${ }^{885}$ | 5． 474 | － 5139 | 8．8127 | 1．${ }^{\text {P9，97 }}$ | 8.9331 | 3．${ }^{\text {E }} 42$ | －．${ }^{\text {B }}$ 59 | 争㜢17 | 4．8183 | 1.3272 | －6．0985 | 5． 278 | 4．8533： |
| ： 1 | | | s．8448 | \％． B $_{\text {cita }}$ | 4．312 | | 6． 8.32 | 4．8953 | －titga | 5．轌甥 | | －${ }^{\text {B }} 358$ | －$\frac{1}{4} 43$ | 1．0245 | 9．0475 | |
| 118 | | | H．${ }^{\text {ceg }}$ 97 | － | 8． 0 娄敫 | | | | 6．goss | | | 6．3585 | | \％．$\frac{1201}{}$ | 1.1394 | － 0.048 c |
| 11 | 4．311 | 告数新 | 刍影矿硈 | 8．${ }^{\text {a }}$［1 1 | | － | | | | | － | | 8．36d\％ | 0.1102 | 9．1262 | 1．755\％ |

| | 1 | 3 A | 21 | 3 | 4． | 48 | AE | 488 | 45 | 5 | 6 | 7 | 1 | 9 | ¢ | 11 ： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | （6）． | | | 6． $6^{2}+33^{3}$ | | | | －6．651 | | | －－ | | 2．${ }^{3} 58$ | 6．3043 | 4，6054： |
| 12 20 | \％．8134 | | | | －． 12122 | | 5．59］ | | 的，新家］ | | | | | | 3．tast | |
| 12. | | | | | －．${ }^{\text {（18）}} 13$ | | \％．esisp | | | | | 5．${ }^{\text {geby }}$ | 4． $0^{80} 5$ | 咅． | 4．96es | |
| 1 ${ }^{\text {3 }}$ | | | | ？．138？ | | ＋6888 | －Et？${ }^{3}$ | －1．775 | 1．8．937 | | －9．329 ${ }^{\text {d }}$ | | \％．06：18 | 8． 8 ¢ ${ }^{\text {a }}$ 7 | 9．8．76 | |
| －14 | 6．8828 | | | | 1． 2.26 | | | | | | | 9．${ }^{\text {a }}$ 塥1 | －．${ }^{\text {cisfor }}$ | 9．${ }^{\text {a }}$ \％ 5 | －＊量勿近 | |
| － 48 | \％． | | 6．853 | | 4． | f， 6.44 | 6，＊318 | | | 4．8933 | 6．8112 | 9．612 | －18． 4 | 3．4015 | \％．9035 | |
| 34 | 9． $0^{\text {cte }}$ | | 5．9465 | | | | 1．3834 | 0．tell | － | 4．3616 | －䑨： | | 8．${ }^{\text {3 }}$ | 4． 180 | 4， 4519 | －0ect |
| －488 | | －． 0.622 | \％．3185 | | 8．6249 | 8． 462 | 18．576 | 1.215 | 6． 6669 | －． $\mathrm{V}_{6} 62$ | 6．1713 | | 0． 0112 | 4． 01038 | 9．384？ | 6．0395： |
| －4F | ＋+182 | | C． $24 \% 4$ | 禹勘掊 | | | ＊．8513 | | 1.15 | | | | － 08.34 | 6． 0807 | 6．9613 | |
| － 3 | | ＋ | | | ¢． 1 ¢67 | － | | 5．4ist | 要，蒌豆84 | | 9．6844 | | | 1． 1135 | 8．8543 | ，E1g3： |
| － 1 | ©． 8214 | 6． 6182 | | 8． P454 4 | 8．8123 | － | | 0． 0^{15} | | \％．8274 | | 隠如： 5 | S．${ }^{\text {B }}$ 997 | 0．02284 | 6.2512 | ＊．${ }^{\text {acha }}$ |
| 31 | 3．${ }^{\text {¢ }} 7735$ | 5．884＊ | 6． 6794 | －部畐 | －6．724 | 4．6733 | 5．4223 | 5．3485 | 1．${ }^{\text {3 }}$ 8988 | －6． －$_{\text {¢ }} 9$ | \＄． 1773 | 1．1175 | \％．E517 | 2． 0.515 | | \％．0．61离 |
| ： 3 | | 4． 58.59 | | ¢． | － 1146 | －${ }^{\text {－}} 126$ | － 6.6883 | － 5253 | 4． 4 \％ 382 | 9．${ }^{\text {cis }}$ | 4． 133 | － 8.897 | 1．8268 | 6． $0^{19} 9$ | 9． 0^{2863} | |
| \％ 9 | － 6 咅嗉3 | 6． 6939 | A．çs？ | | 1．${ }^{1837}$ | 菏． 3188 | | | 5．tyd | | | ＊．8372 | \％．${ }^{4635}$ | 1．8254 | 0.8876 | － 5 －839 |
| 111 | | | | | | | | | 9．3565 | | | | | 9．agei | 1.1300 | |
| 111 | 6．${ }^{\text {B }} 183$ | | | | 1．${ }^{\text {\％}}$ 888 | | 1．6852 | 4．8388 | 安，3033 | | － 4585 | | ． 6 曾 63 | 6．${ }^{\text {che }} 8$ | 8．6261 | |

TABLE $X-3$ 1NUERSE HATRIX， 11 －SECTOR GPEM MODEL：KATHERIME－BARKLY REGIOM

| 1SEC | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 7 | 18 | 11 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1．0183 | 1．0632 | | －6．884 | －${ }^{1 / 4}$ | －${ }^{\text {a }} 19$ | － 3901 | 1．682 | | 0．0352 | －． 0 －02 |
| 2 | 1 | ©．0．058 | 1． 1.8 | | 8． 811 | 5．8360 | C．${ }^{\text {ctas }}$ | 5.8 | | ¢，${ }^{\text {aneng }}$ | \％． $0^{3} 5$ | |
| 3 | \％ | －${ }^{\text {Sta }} 2$ | | 1．6754 | \％ | －fintis | | | 5．${ }^{\text {coget }}$ | －1838 | －\％ | － 6.8521 |
| 4 | 1 | 5．896 | \％． 747 | | $1.922{ }^{\text {a }}$ | －． $0^{6} 85$ | 6． 6444 | C． $0^{\text {¢ } 226}$ | \％．${ }^{\text {cien }}$ | | －． 0125 | 6．0556： |
| 5 | 1 | 1． $0^{81} 72$ | 1． $0^{\text {P }}$ | | 1.9117 | 1．018 | 1．Wh3 | \％． 8187 | 4． 884 | 尔． 8259 | 9．7568 | 0.83223 |
| 16 | 1 | ©． 218 | 6．1929 | － | ＊． 1184 | ＊． 1117 | | \％． 8121 | －． 3^{36} | － 0130 | ． 2478 | － $0^{8} 2971$ |
| 7 | ！ | \＃．3396 | | 6． $5^{88} 8$ | － 0.237 | \％． 183 | 4．328 | 1.6565 | 1．9314 | ． 1335 | 0．1397 | 0．1235： |
| 8 | \％ | －6．186 | 6． 4853 | | － | | 5．${ }^{\text {\％}}$ 8027 | 4.6953 | 1.18112 | －． 0 昌75 | 6． 24.5 | |
| － 9 | \％ | | | | | | | | \％．${ }^{\text {en ma }}$ | 1．${ }^{\text {bib }} 7$ | \％．6435 | （3014： |
| ： 18 | 1 | | －${ }^{\text {cide }}$ | | | 8． $0^{3} 3^{3}$ | | －\％ | 6．$\square^{\text {B }}$ | 3．074 | 1.1371 | |
| 11 | 1 | 4．711 | － 6.113 | | | 6． Efe $^{\text {d }}$ | 需 318 | －6．3824 | －3．3588 | P． 067 | 6． 6.256 | 1.6035 |

| \％scm | | 1 | 2 | ？ | 1 | 5 | 8 | 7 | 8 | \％ | \％ | 11 ： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1．58198 | －\％${ }^{\text {a }}$ | | － 0 － 039 | ＊．1858 | | | | 9．${ }^{\text {bit }}$ 49 | | 9． ¢0，$^{\text {垂：}}$ |
| 2 | ！ | － | 1.8 | | 9． 5093 | 4．${ }^{3}+3$ | | 4． | － | 6． 8108 | 9．0012 | 4． 5 ¢5 5！ |
| 3 | ！ | | | 1.5727 | （．6． 423 | 6． 685 | | | | H．382 | － | 4． 4aby $^{\text {a }}$ |
| 5 | ？ | ＊． 5 532 | | \％．${ }^{\text {\％}} 477$ | 1－6984 | | 9．1157 | － | 6．${ }^{\text {\％}}$ ！ 57 | 6． 8828 | 6． 0321 | 8． $8111:$ |
| 15 | 1 | 5．1054 | | | \％．${ }^{\text {B4g }} 7$ | 1.81849 | | 熏䱏74 | 4．${ }^{4} 25$ | 8． 1184 | \％．1569 | \％．2219！ |
| 8 | 1 | 6． 213 | | | 5．1124 | 4． 8194 | 1.818 | 6．5156 | \％． 2119 | \％． 1156 | 1．2598 | 4．0235： |
| ： 7 | \％ | －． 3677 | 6．3598 | ＊．65］ 3 | 4． 531 | － 8088 | 4．8673 | 1.1188 | \％． 15 | 5． $0^{5} 514$ | \＄．0532 | \＄．8341： |
| － | 1 | － 8.896 | \％．8080́ | | | \％．6\％${ }^{\text {\％}} 77$ | 1．8156 | 4．9679 | 1.2214 | 8．醇71 | \＄． 268 | 5．${ }^{\text {\％}}$ ¢42： |
| 17 | ！ | | －9529 | 6．1883 | －${ }^{\text {\％} 20}$ | | 3.0972 | －． 0362 | －${ }^{\text {\％}} 223$ | 1． 21.16 | | \％． 8529 i |
| 1 119 | 1 | | | | 量， 1 新的 | | 3．3EEE | | | 5． $0^{4}+1$ | 1.1386 | 0．6906： |
| 111 | $\stackrel{\square}{4}$ | \％． 1218 | | | | | 8．6ETS | －．${ }^{\text {2 }}$ 835 | 3．912 | 5．8091 | 0.0263 | |

TABLE X－5 INVERSE MATRIX， 11 －SECTOR GPEN MODEL：MORTHERM TERRITURY

| | Cr | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 16 | 11 ： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ！ | 1 | 1 | 1.080 | －${ }^{\text {\％}} \mathbf{3} 24$ | －${ }^{\text {Bexter }}$ | | W． 18 | | | 6．002 | －${ }^{\text {che }}$ | 9． 1850 | |
| ！ | 2 | 1 | \％ $61+1$ | | | | C． | | C．065 | | | －．${ }^{\text {ang }} 8$ | ． 08882 |
| ！ | 3 | ！ | \％．${ }^{\text {E }} 17$ | ¢． 3 E2 | 1．1468 | ． 1277 | | （1） 219 | － 8.811 | 1．823 | | 9．${ }^{40} 61$ | 9.08181 |
| ： | 4 | ： | 䚡148 | 単． 2771 | \％． 2229 | 1.1721 | \％．8181 | | 星．1998 | \％． 196 | － | \％． 482 | |
| ！ | 5 | \％ | \％． 868 | －． $0^{1 / 4}$ | | 管． 168 | 1． $0^{\text {8 }} 7$ | \＄．0649 | ¢．8976 | 0．045 | \％． 8196 | 4．4575 | 4．6232： |
| ： | 6 | 1 | 5．8223 | 6．${ }^{8} 874$ | 6． \％5 ？ | －． 1162 | － 214 | 1．${ }^{\text {\％}}$ \％ 38 | 6．3159 | \％ B $^{2} 8$ | | －2513 | － 0.82741 |
| ！ | 7 | ！ | 3．8491 | － | 6．0858 | \％． 493 | W．${ }^{3} 95$ | \％．9717 | 1．1101 | \％．0514 | 8．9594 | | 9．04371 |
| 1 | 8 | 1 | | W． 138 | W．${ }^{\text {drat }}$ | 6．${ }^{\text {a }} 367$ | 8．8866 | 8． 1168 | 2．0134 | 1.3885 | | 4．8275 | 4．304t |
| 1 | 9 | 1 | \％．8038 | － 424 | | | | 4．8152 | －．354 | \％．titis | 8.1230 | 易，易台68 | 1．3544： |
| 1 | 1 | ！ | | \＄． 5184 | | | \％．${ }^{\text {den }}$ | | | | | 1．1383 | |
| ； | 1 | ＋ | E． 1118 | 6．${ }^{\text {gex }} 21$ | | | 4． 085 | | 留。要碞2 | | 0．3893 | 5．9261 | 1．08858： |

table xi－1 inverse mateix， 11 －sector closed model：daruin regiow

| －SECTER | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 19 | 11 | $\mathrm{H}-\mathrm{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | 1．694 | | | 6． | －最部量 | | | | | 8． 1815 | － 2081 | 6．0301： |
| 12 | 6．356 | | 6．6112 | 6．634 | | －． 613 | －．8895 | － 0^{6012} | | －．8023 | \％．0115 | 6． 9624 ！ |
| 131 | | | 1.6776 | 需．1222 | | 9． 0448 | | | | － 10.816 | 0.6897 | 4．6935： |
| 14 | 笭． 116 | ． 24.255 | 1.2933 | 1．1533 | 6． 1182 | 6．1846 | \％．6133 | －． 83818 | \％．8154 | － 6.859 | － 0.279 | \％．246！ |
| 15 | | \％．8177 | 告． 162 | \％．8212 | 1.5132 | 6． 8115 | | 6． $0^{6} 13$ \％ | 1．8234 | 8．8595 | 0．9337 | \％．0196： |
| 16 | | | | 6． 236 | 6．6377 | | | 6． 6.433 | －133䅹 | 4.2731 | 告．455 | \％ 83191 |
| 17 | 6． 0785 | ． 1842 | | 6．1594 | 6． 881 \％ | \％． 1233 | 1.1167 | 最．1474 | \％．1483 | ． 2.238 | ． 1738 | 9．2549 |
| 18 | | ． 1.188 | 6.8566 | 9． 0337 | O．811 | | －6135 | | －． 176 | ＊．8378 | ＊． 6137 | 4．9175： |
| 191 | 6．6133 | － 18.83 | | \％．6369 | － 5.871 | \％． | －${ }^{\text {8 }} 522$ | 6． 6463 | 1． 8.655 | 8． 1811 | ． 0593 | 6．812i |
| 111 | 4． 584 | | 罂，曹31 | 重．8833 | | | 9．4187 | | －．1841 | 1.1452 | 6．8556 | 9．0693： |
| 111 | | 6． $0^{6} 595$ | ． 1277 | ． 8289 | 6． 5227 | | － 4148 | 6． 5^{416} | －． 427 | 6． 6737 | 1．85s3 | 6．1763： |
| \％ $\mathrm{H}^{(1)}$ | －1645 | | \％．3076 | ． 4 罂23 | － 533 s | | \％．2复复7 | | 部．483管 | 4．718番 | 0.6854 | $1.1313:$ |

| ：3EtMon | 1 | 2 | 3 | 4 | 5 | 6 | 7 | \＄ | 9 | 1 1 | 11 | H－1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | | | | | 雤， | | | | － | 6． 6 \％ 450 | 4．0652 | －\％322 ${ }^{\circ}$ |
| 2 | ＊． 4157 | 1．8307 | | 6． 62.23 | | H． 0912 | | －6612 | 4． 6911 | 4． 4825 | －6．617 | －602早： |
| 13 | | \％．3545 | 1.1882 | 5．1433 | 6．${ }_{8}^{88} 22$ | 8．8272 | | | － 444^{2} | \％．8893 | 或．3845 | 9．0535： |
| 14 | － 319 | 4．3289 | 需． 216 | 1．1951 | 8．0169 | ． 1837 | ＊． 0 －186 | 6．6346 | \％．6176 | 5．7688 | ． 1342 | \％．829 ${ }^{\text {ct }}$ |
| \％${ }^{3}$ | | \％．6193 | | \％． 236 | 1.9127 | － 6 著123 | 5．8188 | 需． 135 | 6．6245 | ＊＊6\％8 | 6． $0^{3} 327$ | －．02111 |
| 16 | | 6．1242 | ＊＊ 678 | \％． 6.875 | | 1.3177 | \％．8228 | | 6.6355 | 6．2729 | 1．85013 | 4． 3521 |
| 7 | 4．1184 | －． 2159 | 4． H19 4 | －． 1393 | \％．9\％17 | \％．1706 | －1730 | \％．1894 | 6． 1777 | \％．2380 | 1．2284 | 6． $2745:$ |
| 8 | 4．512 | \％．25\％ | 0． $0^{4} 55$ | \％． 815 | | － 3244 | | | －6213 | 9．3．446 | 6．${ }^{\text {8222 }}$ | \％．8296： |
| 9 | \％${ }^{8} 278$ | 1．1159 | 9．677 | 9． $0^{6} 52$ | | － 0681 | \％ 0631 | 6．9783 | 1.6828 | 6．1441 | 0.1555 | 6．1572） |
| \％ 1 | | 6．4 ${ }^{18} 9$ | | \％${ }^{\text {3 }}$ | －． 620 | 4． 4 \％ 37 | | | | 1．1437 | ＊．3680 | － 6.595 |
| 111 | | － 6.53 | ＊．6562 | \％ 0.345 | 4． 3219 | ＊．${ }^{43}$ | 售，6178 | 4．4127 | | \％，${ }_{6} 78$ | －． 255 | \％． 5780 |
| | \％．1818 | \％．55\％ | | 整352娄 | 3． $228{ }^{\circ}$ | 6．437\％ | \％ 22.89 | \％．5537 | | \％．7356 | \％．7545 | 1.19131 |

TAELE XI－3 INUERSE MATRLX，11－SEETUR CLOSED MODEL，RATHEEIME－DARKLY REGION

| ISECTOR | 1 | 2 | 3 | 4 | 5 | δ | 7 | 8 | \％ | 10 | 11 | H－H： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | | \％． 837 | | 4．544 | 6．8934 | 4．834 | | 8． 888 | － 6097 | － 0.81 | 8.8512 | 5.00131 |
| 12 1 | 4．8861 | | | － 61810 | | | 1．9054 | 0．${ }^{\text {en } 12}$ | － 1.8 | － 0.819 | 0.0016 | 0.0325 i |
| 3 ： | | － 1 817 | 1.8784 | \％．120 | 5．${ }^{\text {c／8m}} 2$ | | 5．0982 | －1．2005 | | －${ }^{\text {cte }} 12$ | 6．184？ | 1．0687： |
| － 4 ！ | 它． 199 | － 1884 | －． 6111 | 1．5319 | 0.1091 | 1． 1566 | 6． 8983 | \％． 2212 | 0.1157 | \％． 334 | 5.0274 | 9．8347 ${ }^{\text {i }}$ |
| 15 ！ | － 1115 | 1．0189 | －． 0 E16 | \％． 2184 | 1.8073 | 1．1117 | \％． 116 | 湅．153 | 4．835\％ | \％．6768 | 0．0468 | 8．833： |
| 1 6 ！ | ． 243 | | C． 614 | 6． 168 | 9． 186 | 1．6878 | 9．0155 | 2． 8448 | －． 231 | ． 2592 | 0.8415 | \％．8189： |
| 17 ： | d．${ }^{\text {¢ }}$ 589 | ． 48.57 | \％．9］89 | \％．623 | －${ }^{\text {¢ }} 385$ | 6．761 | 1.6789 | \％．9943 | C．9\％19 | 0．1211 | 0.1051 | 6．1349： |
| 181 | 6． $0^{\text {b }} 179$ | \％．323 | | 1． 1889 | （12s1 | | \％．8184 | 1． 8479 | 8．8113 | 6． 0^{6121} | 6.0525 | \＄．9789： |
| 19 1 | ©．6119 | 1． 271 | | ． 6232 | －． 823 | －． 43 ？ | 0.0215 | 6．3374 | 1.8114 | －6．013 | \％．0510 | －． $4798:$ |
| 111 | \％．815 | ¢． 835 | －0813 | | 0． 0.82 | 0．0．0337 | 5．${ }^{\text {cid }} 17$ | 6． $0^{\text {¢ }} 49$ | 0.0845 | 1.1434 | 0.8966 | $0.0105:$ |
| ：\％： | － 8235 | － 0 ．ast | 6． 8255 | C． 253 | ¢． 1228 | 8．0396 | | 4． 0412 | ＊．0439 | \＄． 17779 | 1.0578 | 4．8867： |
| ： $\mathrm{H}-\mathrm{H}$ ： | 0．1662 | 1．3837 | 專．781 | 5.3315 | ． 2782 | | 0.1931 | 4．542\％ | 0.4999 | 8．7826 | 0.7296 | 1.16891 |

| SSEET0\％ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 11 | H－H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | | | 4．38982 | | 6．6480 | \％．0095 | | 8． 0901 | | | $8.6{ }^{8} 81$ | \％．0891！ |
| 2 | \％． 4138 | 1.81878 | 4．080 | 0． 1833 | 9．040 | ＋． 0 ¢3 | | | | | 告，岛豆 | S． 30831 |
| 1 1 1 | \％． 806 | | 1.5728 | 4． 1127 | | ． 0.112 | 1．3086 | | 5．837 | 早． 2836 | － 2017 | 9．0912： |
| ＊ | － 6118 | 8.8079 | \％．0489 | 1．18程 | \％．814 | 4．1248 | \％．${ }^{\text {g }} 18$ | 0.8263 | 5． 0131 | \％．8475 | 9．0264 | 8．02481 |
| 151 | 0．0．63 | \％． 1153 | 5.8024 | | 1．暑11等 | 4．132 | 4． $0^{6} 123$ | \％．8142 | 4．0296 | 6．4732 | 0.0375 | 8．82691 |
| 3 | 0.8276 | 0．1203 | | ． 8258 | 5．395 | 1． 1.182 | 2．0234 | 0． 8399 | 0．8336 | \＄． 2770 | | \％． 4416 |
| 7 | －1183 | 6.1434 | \％． 1263 | \％． 1519 | 2． 9 \％14 | 8．1842 | 1.1682 | 家．1891 | － 8.1832 | 8．2179 | 6．2324 | 0．3102： |
| 8 | \＃． 211 | \％． 8293 | 0.8077 | 8.852 | 2． 2280 | 番． 1.814 | W．${ }^{\text {W }} 222$ | 1.8543 | | 8．1747 | 7．052\％ | 9．8762： |
| － 9 | 6． 6.35 a | \％．6611 | W． 1114 | 4．6727 | P． 8585 | 星．8592 | －． 771 | | 1.1153 | 0.1032 | 0．1422 | 0．2174： |
| 1 1 1 | | 8． \％$_{\text {¢ } 27}$ | 6．6067 | 3．${ }^{6} 83$ | 4．${ }^{\text {\％}} 28$ | Q． 2937 | 畨． 1818 | 7．09ヵ2 | | 1． 1447 | 0．0663 | 0．0789： |
| 111 | 0． 8248 | 4． 233 | \％．655 | 8．827 ${ }^{\text {8 }}$ | 6． 227 | 9． 32 | 業． 1182 | 4．8462 | 8．${ }^{3} 451$ | 6． 1287 | 1.8600 | |
| | \％．1882 | 1．3377 | 6． 649 | 番，39\％9 | H．3314 | 5．4685 | \％．2338 | 6．5362 | 智旨359 | 8．7356 | 皆． $790^{\text {雨 }}$ | ¢． 2428 ： |

tagle xis inuense matrix，li－sector closed hobel，horthern terryory

| ：SECYOR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | \％ | 18 | 11 | $\mathrm{H}-\mathrm{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0 | 6．8125 | \％．342 | | \％． 0 ¢ 81 | | | 6． 8005 | | 8． 8952 | 0.0953 | 4． 563 31 |
| 2 | | 1．602\％ | \％．4852 | 4． 0.923 | | 6． $0_{0}^{4} 412$ | \％． 0^{685} | 1． 4812 | 6．6011 | 6． 6123 | 2．0637 | 6． $0^{8} 834$ ； |
| 3 | | 6．8317 | 1.1474 | 梠．1287 | － 0^{6} 造18 | \％． 6232 | | 4．8639 | ． 0.829 | 9．3881 | 4.36 .5 | |
| 4 1 | 0．819 | ＊．2943 | | 1.1812 | | \％．1753 | 6．6151 | \％． 8332 | \％． 0174 | 霓894 | 6． 3334 | \％．025： |
| 5 | | 数． 614 | | 9．824 4 | 1． 1837 | | | －． 158 | \％．3392 | \％．0．727 | 6.6379 | 6． 216 \％ |
| 16 | | － 2358 | ， $0^{3} 43$ \％ | 5． $0^{3} 775$ | 5．63d | 1.0177 | \％ $0^{3} 228$ | | 6．6．356 | \％${ }^{6} .273$ | 9．4595 | 6.9564 ？ |
| ： 7 | \％．1216 | 6．2332 | 6．0253 | （1547 | | \％．2616 | 1.1745 | | \％．1786 | 9.2545 | 0．2535 | 6．3392\％ |
| 5 | 4．832 | 6． $0^{3} 23$ | 8．9894 | 6． 0372 | \％．0．6123 | 6． 2248 | | 1． $0^{4} 42$ | \％．1177 | 6． 0^{465} | \％ 6174 | 0． 2.29 ！ |
| \％ 9 | | 6．133\％ | －． 1129 | \％ 8.6871 | － 6555 | ． 0851 | \％ 3735 | 0.8977 | 1.1185 | \＄．1724 | 偊。1339 | |
| 1 16 | 窇，${ }^{\text {g }}$ 816 | ＊．${ }^{1 / 29} 9$ | 4． | ＊． 6 ¢ 9 | | | －．${ }^{\text {P }} 819$ | 6．6953 | | 1． 14.46 | － .9663 | 4． 6 委 588 |
| 11 | －6245 | 需． 3585 | | 粼．8282 | 4．4226 | 篓． 5377 | | 5．64．3 | 多． 6444 | 6．8745 | 1．3577 | |
| 约－ | 3． 8 584 | 1．3468 | \％${ }^{6741}$ | 103782 | － 3297 | | 4．231\％ | | 4．324 | －7520 | 6.7754 | $1.2165^{\frac{1}{3}}$ |

fable X－1 thuerse marrix，11－sector open hodel ：daruin megion

| ：SEC | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 19 | 11 ： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ！ | 1． bgat $^{\text {a }}$ | | 1．5986 | 1．8837 | －．0188 | M．${ }^{\text {20888 }}$ | － \％20 $^{\text {a }}$ | | \％． 3019 | 0． 0314 | 0．0080： |
| 12 | ： | － 8155 | 1． 1888 | 1．${ }^{\text {beber }} 4$ | 0．0826 | | 2．${ }^{\text {Pex }}$ | | 4．80¢ ${ }^{\text {b }}$ | | 0．23988 | 9．08811 |
| 3 | ！ | 5． 5183 | W．$\square^{\text {E／}} 45$ | 1．8774 | 1．${ }^{\text {B }} 222$ | 9．8．ET2 | － 0.48 | | C．tas5 | | 4.8013 | － 5 ¢ 044 |
| 4 | 1 | 畨． 8134 | ． .2345 | 1．195荷 | 8．1447 | 4．${ }^{\text {a }}$ \％91 | ． 6.1771 | － 6.789 | － 187 | 2．0448 | ． 0.0564 | ． $0.132:$ |
| 5 | 1 | －． $0^{89} 9$ | － 0188 | | | 1.0075 | | \％． 8055 | ＊． 8839 | \％． 415 | \＄．9573 | 9．0191： |
| 6 | － | － 6188 | 9．936 | 6．9388 | E．6125 | \％． 8285 | 1．1925 | 4． 1153 | －． 288 | － 1293 | 0.2532 | 0.22651 |
| 7 | 1 | 1．0457 | －． 1857 | C． 1134 | 8． $0^{1} 171$ | 年．0846 | 6． ¢ 219 | 1.6886 | 0． 8278 | ＋．8352 | 1． 5386 | ． 01661 |
| 18 | 1 | 0.1078 | － 1119 | 9．5587 | 0.8276 | 6．${ }^{5859}$ | 9． 0^{614} | F．8183 | 1．1273 | － 0.995 | 1．0269 | － 6 ¢231 |
| 19 | 1 | 0．9622 | 8．${ }^{1} 434$ | ¢． $0^{4} 41$ | | 1． 8.87 | －${ }^{\text {W }}$ W66 | ． .8356 | ． 8 8．43 | 1.0255 | 0.8472 | － 6 E591 |
| （10 | ！ | | 0．${ }^{\text {en }} 5$ | | 4．349 | | | | | | 1．1394 | |
| 111 | 1 | \％． $0^{6} 181$ | E．\square^{170} | 9．${ }^{\text {ge }} 21$ | 4．${ }^{\text {¢ }}$ | 4． 8687 | | － 6.829 | | \％． 2192 | 6.9262 | 1．0851： |

Table $x-2$ meverse matrix， 11 －sector opey nodele top end region

TARLE XII-3 INERSE MATRTX 16 -SECTOR OPEN WODEL: WDRTHERN TERRITORY

TABLE XIII－1 TH\＆ERGE MATRIX，1S－SECTOX CLOSED NODES：BARUIK REGIOH

| ISEG70R | 1 | 2 合 | 21 | 3 | ＊${ }^{\text {A }}$ | 48 | 45 | 48E | 4F | 5 | 6 | 7 | 0 | 9 | 18 | 11 | $\mathrm{H}-\mathrm{H}:$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1．683 ${ }^{\text {3 }}$ 3 | ， 5. | － 0.05 | | | －． | 事，数重 | | | － 1585 | | | －$+10{ }^{\text {cher }}$ | 0． 8581 | 6．8514 | | |
| 124 | 4．0167 | 1．9978 | | | 1． 1144 | －． | | | 1．4801 | | | | 1．1831 | 4．8911 | | | － |
| 1 18 | | | 1．01011 | 6．3989 | 0．8086 | | 5． 5428 | | 6． ded $^{8} 7$ | 5． 0.947 | | | | 4．7015 | \％．esti | | －．${ }^{\text {E23：}}$ |
| － 31 | 0．6512 | ＊，戈郖1 | | 1.6743 | －．$\square^{13} 9$ | | －．唓17 | 6． 6314 | －\％\％\％ 7 | 6． V13 $^{\text {B }}$ | 6．${ }^{\text {6 }}$ \％ 57 | | | 9．30382 | － 6.8617 | －． | |
| 1 紷 | 6． 明Pa $^{\text {a }}$ | 3． B $_{\text {cte }} 21$ | | ． 5136 | 1． 1255 | | 0．${ }^{\text {el }} 46$ | － 0^{20838} | 6．6055 | | | ＊． 8819 | 4．0046 | －． 3183 | －6963 | | 4． 1 189： |
| 1 4 | 6．${ }^{183}$ | | | | | | 1．5825 | | | 6．${ }^{\text {¢ }}$ ¢ 12 | 6．1132 | 6． 61817 | 2．0816 | 0．4．tis | －6835 | | 8．6330： |
| 146 | －管数 | 0． 6.63 | | 3．1242 | 4．89896 | －． 12085 | 1.85 | | 6．814 | －6．839 | | | － 4861 | \％． 0836 | 1．1829 | C．${ }^{\text {cieper }}$ 8 | |
| －IDE | 3.8947 | C． 6 E．83 | | \％． If $^{\text {P }}$ | －1355 | 6． 297 | －$\frac{1}{618}$ | 1.1853 | －． $\mathrm{m}^{2} 96$ | 6． 5887 | P．1896 | － 6 653 | －． 1135 | ． 6072 | 1． B4 $^{\text {a }} 3$ | －6． $0^{\text {cis }}$ | ． 5 ¢a3： |
| －析 | ＊． ¢ $_{\text {¢ }}$（21 | －．1543 | | －． 1479 | － 4.816 | 0．4813 | | | 1.6175 | | 1．8182 | －． 0 \％ 2 \％ | 4．9132 | 9．0E11 | 8． 818 | | － |
| 1 告 | | 6．3888 | －． 1171 | － 6 ¢ 939 | $6.31+1$ | 6． 113 | \％．1148 | | | 8．8131 | 6． 1118 | | E． 129 | － 2234 | －．9695 | | －． 183 |
| 18 | －． 241 | ＊． 1151 | － 8199 | －144 | C．ti9 | 5． 8193 | 6． 0^{177} | －6．65 | －． 2218 | 4．337？ | 1． B $_{1} 154$ | 1.811 | 8．8．833 | 0.9339 | 0.2731 | 5． 4.455 | 2． 3188 |
| 17 | \％． 6769 | | 0.1881 | －．1145 | \％．9797 | 9．1138 | 0.1318 | ． 11153 | 6.8979 | 5．8818 | 5.1242 | 1.1187 | ＊．1495 | 8．1482 | ＋2．237 | \＄．1737 | － 26384 |
| 5 | | 8． fill $^{\text {a }}$ | 9．${ }^{\text {\％}}$ 142 | \％．1534 | －\％23 | 5．6107 | －．1153 | | －．713等 | \％．${ }^{\text {6 }} 18$ | 4．2214 | ¢． 1134 | － 0.352 | 8.8169 | －6376 | － 1136 | 5． 194 |
| － | \％．3142 | － 0.528 | 2．8862 | \％．1356 | 1．824 | ©． 6.874 | －． 4448 | | | ¢． 5271 | －${ }^{3} 428$ | \＄． 1522 | －3．853 | | 5．194， | － 0.593 | \％．${ }^{\text {che }} 9111$ |
| 11 香 | \％．${ }^{\text {el }} 13$ | | | － 1832 | | | \％．6833 | －．6．tys | 3．${ }^{\text {兽衰28 }}$ | | 6． 5035 | 0．6es？ | －5．83 | 0.9641 | $1.14{ }^{2} 2$ | 4． | 9．07934 |
| 111 | \％．E296 | － 0 ，1157 | | － 1265 | 8．5183 | 4．${ }^{\text {¢ }} 264$ | －． 348 | － 6 ［887 | － 2232 | 4． 4327 | F． 8298 | －${ }^{\text {P }} 188$ | \％．8411 | 8.6427 | 5．1737 | 1.13503 | 8． 3758 |
| （ $\mathrm{H}-\mathrm{L}$ | －1594 | 5.2357 | －．523 | | 0．22\％？ | 0．3772 | －．5258 | 8．43部 | | 0．3336 | \＄．4486 | 4．2898 | | 0．4726 | 0.3189 | 1． 6846 | 1．153］ |

| 19Ecron | 1 | 24 | 28 | 3 | 4 | 4 | $8{ }^{2}$ | 40E | 4 4 | 5 | 6 | 7 | 0 | 9 | 10 | 11 | 戌＂4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1．${ }^{\text {\％}}$（5\％ | | | | C．${ }^{2} 464$ | | E．${ }^{\text {gig }}$ 2 | 8．8652 | ＊．${ }^{\text {Eaxam }}$ | | | ＊． 56 | 1．6192 | | 9．0．649 | －．${ }^{\text {b }}$ 部4 | ＊ |
| －2＊ | 6． 5^{515} | | 㫨，ESE32 | | 8．${ }^{\text {6 }} 12{ }^{\text {a }}$ | | | | | | \％． 2×8 | | | 0． 3 203 | － 6 ¢ 635 | | |
| － 2 | | | | | － 5 番18 | | 6．5829 | 6．${ }^{\text {P1／}}$ | | 9．96897 | － 1089 | | | 1．3918 | | \％．116 | |
| \％ | 9．8宕14 | | ＊． 01 部 | 1．139 | －解哏 | －6397 | \％． 121 | 6．1785 | 媇． 1842 | | \％． 28.86 | | ¢．9824 | 9， 915 | 4．3596 | | －．${ }^{\text {B }}$［ 171 |
| \％84 | | 4．${ }^{\text {b／}}$ 31 | 6． 153 | ©．t19 | 1．3239 | － | | －8．853 | | | | | 4． 8.847 | | 4．9862 | 6． 8181 | 3．0639 |
| 1818 | | | | | | | 昔．8828 | ＊，娄数！ | | ＊． | 9．125 | | 6． 6.019 | 9．6819 | 4．8853 | | |
| 1虬 | 7．1883 | | 9．64\％ 4 | 4．5145 | \％． 585 | ＋．685 | 1．8539 | | 6． 489 | 8． $3^{88} 19$ | \％． 1815 | \％．4185 | | 8． 318 | 8.1028 | 8．Eigll | |
| －ABE： | | | \％． 2282 | 3．3PE8 | ． 1272 | | －． 13 | 3．217 | | （1）． | －${ }^{\text {cojose }}$ | | | 8．81979 | 章． 8583 | | |
| 1 ${ }^{\text {F }}$ | | | \％．211 | 8．8842 | 8．1825 | | | 8． $0^{\text {entil }}$ | 1． 1.55 | | | 1．10 \％${ }^{1}$ | C．${ }^{\text {a }}$ S | 3． 5021 | 9．853 | 6．0．39？ | |
| 1 | | \％．0194 | \％． 5183 | 5． $0^{\text {B }} 18$ | | 0．0125 | 8． 182 | 5． 8225 | | 3． 1.126 | | 6． $0^{\text {P1 }}$ | 高． 1.57 | 9.8244 | 1．8396 | －${ }^{18826}$ | |
| 16 | － 0.128 | \＄． 8177 | 6．0234 | 6． 847 | \％． 5297 | 8．${ }^{1} 15$ | | | ． 224 | \％．${ }^{\text {E7 }}$ | 8．8．7 ${ }^{\text {¢ }}$ | ＊． $0^{2} 27$ | F．${ }^{\text {B } 482}$ | \％． 355 | 6.2729 | 5， 5 | 4．33921 |
| 17 7 | －．1174 | － 1477 | \％．2218 | 8． 1195 | －1238 | 1．1739 | 0.1786 | 9．1385 | ＋．1466 | 5．8918 | 4．591崖 | 1．1737 | \％．1887 | 0.1770 | 3．2382 | \％．22as | 6． 29771 |
| 181 | 6．8118 | 6．13\％ | ＋+1227 | | － 2114 | \＄． 22.29 | \％．1226 | | \＄．8178 | 5． 13 | F．${ }^{\text {F }} 246$ | －1．853 | | ＊ 9216 | 6． 445 | －${ }^{12} 220$ | －6．6931 |
| ：7 | 6．${ }^{\text {S }} 266$ | | 8． 121 \％ | － 4 ¢ ${ }^{\text {c }}$ | 3．6414 | \％． 6615 | 6.2757 | 6．452． | E． 857% | | \％．${ }^{\text {ctsaz }}$ | | 事，番705 | 1－6\％96 | 4．1442 | 6， 3 855 | 6． 15721 |
| 11.1 | | －\％${ }^{1 / 425}$ | － 5183 | | 3．4823 | 9．835 | | － 0.85 | | 6． 6125 | 6． 1 季高 | 4． 4 칩18 | | 6．385 | 1．1439 | | － |
| 111 | － 4.829 | － 6164 | （6376 | 0.3682 | － 1195 | －1275 | | | | | \％．${ }^{\text {\％}}$ 年5 | \％．1796 | －${ }^{2}$ | 6． 0^{43} | － 0.035 | | |
| | 6．879］ | 4．234！ | 6．375 | | \％ 2853 | | ＋5¢ ${ }^{\text {¢ }}$ 7 | 田，317t | | 8．327 | 8． 6518 | 需 3273 | 5． 8 \％86 | ＊． 176 | 5．7361 | 5．7345 | T． ¢\％1才 $^{\text {\％}}$ |

| 1sECTAR | － | 23 | $2{ }^{2}$ | 3 | ＊ | 48 | 4. | 15 | 4 | 5 | 6 | 7 | 8 | 9 | 18 | 11 | H－N： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | －．93 ${ }^{\text {¢ }}$ | －．1412 | 0．683 | 1.7792 | －． 0.08 | 3． 0864 | 4． 0183 | | －㗜致2 | －6．63 | 5.8092 | ． 1084 | dsca | S． 2 ¢5 | 0． 1156 | 6．${ }^{\text {条嗉71 }}$ |
| ［ 34 | 3.6142 | 1.8122 | －． dent 2 | －14\％ | 8．1107 | | －． 6001 | \％．08t | f．0183 | \％．8189 | － 6 ¢f8 | 4．8984 | 0.84 | 8.0081 | 0.4885 | 7．8181 | 3． 08011 |
| 128 | | 2． $\mathrm{B}_{8} 8$ | 1.1012 | | 1． 1824 | －18＊ | － 1018 | B． 180 | －181 | ． 8 8e9 | H． $118{ }^{\text {ef }}$ | | 5.8011 | 0．6814 | 0.1018 | 0.6817 | 0．9724i |
| 13 | 0.610 | 9．3011 | | 1.145 | 9． 8.833 | C． 5667 | 3．1113 | － 1639 | －1．84 ${ }^{3}$ | ．．．${ }^{1 / 1}$ | 0.125 | －1． 1 | \＄．18822 | | 0.0874 | | ． 0 ．${ }^{\text {P15 }}$ |
| ！4 | 8． 1849 | 4．7841 | － 1155 | 5.6837 | 1． 2219 | 1．1039 | 1．834 ${ }^{\text {c }}$ | 4． $0^{3} 38$ | U． 8652 | 8． 8.829 | － 0184 | － 1621 | W． 684 | 1． $0^{184} 4$ | 0.0386 | ． 1880 | ． 11061 |
| 148 | － | | － | －\％f11 | －618 | 1．1152 | 4． 6123 | － 4.115 | 9．617 | 0． 8811 | 0.0116 | 0.8419 | 6． 0319 | 1． 8019 | ． .185 | | ． 80331 |
| 146 | | － 0 ¢18 | 5． 5 | － $0^{8} 8$ | | －${ }^{\text {¢ }}$ 撸 6 | －．ty | 4.8017 | 1．819 | ＊ 3 Bi8 | 8．802 | －6．195 | 6.8875 | m．0869 | 8．0229 | 9.8118 | 1 |
| | － 1 （1552 | | 1．8189 | 6.9093 | ． 8.831 | － 6.848 | S．8741 | 1.2149 | \＄． 8639 | | 0.1568 | － 185 | \％． 8124 | 0． 81871 | 8.6457 | C． 1142 | ． 7094 |
| 1 4f： | 6． 1127 | 2．08\％9 | －1892 | 0.6846 | － $0^{3} 123$ | －．1132 | 9．1828 | － 0.438 | 1.0155 | | －．6035 | | －． $0^{3} 45$ | 8． $\mathrm{B}_{2} 20$ | 0.6933 | ． 1842 | ． 04311 |
| 1 3 | ． .6133 | － 6118 | 6．1204 | \＄． 8922 | 0.1158 | 9． B 147^{1} | －． 19 | －．8288 | \％．1888 | 1.1137 | －．1145 | 9.1122 | －． 11 \％${ }^{\text {d }}$ | 0.8301 | 9．8736 | ． 388 | ．0244： |
| 1＊ | 0．8279 | － 118 | ． 8232 | 5． 8122 | 8.1217 | 1219 | 0.8227 | ． 291 | －${ }^{3} 55$ | 0.0339 | 1．8178 | － 6223 | T．${ }^{\text {B } 459}$ | 0． 8.349 | 0.2738 | －． 5505 | 31 |
| ： 7 | 6．1205 | T．1475 | E． 2372 | 5.6265 | 1．1353 | \％．1809 | ¢． 8974 | 8.1542 | \％．1597 | ＊． 1115 | 3．2028 | t．1748 | T． 2983 | －．1966 | 0.2642 | 6.2534 | ． 33929 |
| ： 1 | 8.0129 | －．135 | \＄． 8191 | －．0982 | 1.1235 | － 0.836 | 8.1212 | ＋，417 | \＄． 1182 | － 1122 | 1．8221 | E．1173 | \＄． 0399 | ©． 6178 | C． 1484 | ． 1.172 | 0.22971 |
| 1 | 4．0335 | ＋ 1491 | H．1492 | 4． 113 | \％． 8533 | － 1.876 | － 1974 | －1．1673 | －．1721 | －．f558 | ． 3.858 | | ． 1979 | ． 11185 | 0.1724 | ． 1339 | 4．2631： |
| 118 | － 1813 | － | T．6103 | | 9．1424 | \％． 2834 | \＄． 8546 | － 1831 | 0．8332 | －${ }^{-1927}$ | －．1538 | －1619 | 6．6．645 | －．6．143 | 1.1443 | ． 0883 | 9． 1.9 988 |
| 111 | \＄．0242 | 8.1197 | ． 0.4183 | S．P385 | 0.1213 | 5．029 | －1037 | \＄．8264 | 9． 1278 | \％． 2228 | S．318 | 1．016\％ | 0.8447 | 0.8444 | 0.0765 | 1.5577 | 0.98141 |
| （ $\mathrm{H}-\mathrm{H}$｜ | 9.1846 | 4.2796 | －． 5723 | \％． 17 | 3.29 | ． 12 | － 5623 | ， 3805 | 8.3997 | ＋．329 | ． 4.481 | 0.2534 | － 0.5626 | 6．524 | 1.7527 | 0.7754 | 1．2162 |

BrBLIOGRAPIY

Australian Bureau of Statistics, (1978) Australian National Accounts -Inpat-Output Tables 1974-75 (Preliminary), Canberra.

Australian Bureau of Statistics, (1976) Australian National Accounts -1975-76, Canberra.

Bacharach, M. (1970) Biproportional Matrices and Input-Output Change, Cambridge University Press.

Barker, T.S., (1975) "An Analysis of the Updated 1963 Input-0utput Transactions Tables", in Allen, R.I.G. and Gossling, W.F. (eds.), Estimating and Projecting input-Output Coefficients, Imput-Output publishing Company.

Blin, J. and Cohen, C., (1976) "Technological Similarity and Aggregation in Input-Output Systems: A Cluster-Analytic Approach", Discussion Paper No. 163, Graduate School of Management, Northwestern University, Evanston, Illinois.

Boster, R.S. and Martin, W.E., (1972) "The Value of Primary versus Secondary Data in Interindustry Analysis: A Study in the Economics of the Ecoromic Models", Annals of Regiorial Science, 6,2: 35-43.

Bourque, P.J., et al., (1967) The Washington Economy: An Input-Outpat study, University of Washington.

Brownrigg, M., (1971) "The Regional Income Multiplier: An Attenpt to Complete the Model", Scottish Journal of Political Economy XVIII, 3: 281-297.

Brownrigg, M., (1974) A Study of Economic impact: The University of Stirli, Scottish Academic Press.

Burford, R.L. and Katz, J.L. (1977), "Regional Input-Output Multipliers Without a Full 1/0 Table", Annals of Regional Science XI(3): 21-38.

Cambridge Department of Appiled Economics, (1963), Input-Output Relationship 1954-66, Chapman and Hall, Lordon.

Chenery, H.B. and Clark, P.G. (1962), Interindustry Economics, Wiley.
Central Statistical Office (UK), (1971), Provisional Input-Output Tables for 1968.

Commonweal th Bureau of Census and Statistics, (1973), Australian National Accounts - Input-Output Tables 1962-63, Canberra.

Consad Research Corp. , (1967), Research Fedeyal Procurement Study, Office of Economic Regional, U.S. Department of Comerce, Wash., D.C.

Cutbush, G.C., (1973), Input-Output Analysis and Regional Economic Planning. M.Ec. Dissertation, University of New England, Armidale.

Czamanski, S. and Malizia, E., (1069), "Applicability and Limitations in the Use of National Input-Output Tables for Regional Studies", Papers and Proceedings of the Regional Science Association, 23: 65-77.

Department of Economic Affairs (UK), (1967), Use of an Input-Output Model in the Preparation of the British National Plan, in Economic Comission for Europe, Macroeconomic Models for Planning ana Policy Making, UN, Geneva.

Dickinson, J., (1977), An Interindustry Model of the Northern Region of Queensland, paper presented to the Input-Output Workshops of the Second Meeting of the Australian and New Zealand Section of the Regional Science Association, Sydrey.

Edwards, G.C., (1977), An Input-Output Model of the Tasmanian Economy, paper presented to the Input-Output Workshop of the Second Meeting of the Australian and New Zealand Section of the Regional Science Association, Sydney.

Evans, W.D. and Hoffenberg, M. (1952), "The Interindustry Relations Study for 1947", Review of Economics and Statistics, XXXIV, 2: 97-142.

Evans, W.D. (1954), "The Effect of Structural Matrix Errors on Interindustry Relations Estimates", Econometrica 22: 46i-480.

Friedlander, D., (1961), "A Technique for Estimating a Contingency Table Given the Marginal Totals and Some Supplementary Data", Journal of The Royal Statistical Society, Series A, 412-420.

Goldman, M.R., (1969), Comment on Czamanski and Malizia (1969), Papers and Proceedings of the Regional Science Association, 23: 79-80.

Government Gas Engineer and Chief Gas Examiner, (1975), Annual Report, Brisbane.

Greig, M.A., (1971), "The Regional Income and Employment Effects of a Pulp and Paper Mill", Scottish Journal of Political Economy.

Hansen, W.L. and Tiebout, C.M., (1963), "An Intersectoral Flows Analysis of the Califormia Economy", Review of Economics and Statistics, 45,4: 409-418.

Harvey, M.E., (1976), The Impact of the Wool Crisis on the Bourke Economy Between $1968 / 69$ and 1970/71: A Regional Input-0utput Study. Department of Agricultural Economics and Business Management. Miscellaneous Publication No. 2, University of New England, Armidale.

Hewings, G.J.D., (1989), "Regional Input-Output Models Using National Data: The Structure of the West Midlands Economy", Annals of Regional Science 3: 179-191.

Hewings, G.J.D., (1971a), "Regional Input-Output Models in the UK: Some Problems and Prospects for the Use of Nonsurvey Techniques", Regional Studies 5: 11-22.

Hewings, G.J.D., (1971b), "Nonsurvey Imput-Output Tables for S.E. Kent Using 1963 and 1968 UK Input-Output Data", Discussion Paper 5, S.E. Kent Regional Input-Output Study, Center for Research in the Social Sciences, University of Kent at Canterbury.

Hirsch, W.Z., (1959), "Interindustry Relations of a Metropolitan Area", Review of Economics and Statistics, 4i,3: 360-9.

Huxley, S.J., (1973), Interregional Trade Flows in Queensland 1970-7), Vols. I and II, Co-ordinator General's Department, Srisbane.

Iserd, w., (1953), "Regicnal Comodity Balances and Interregional Commodity Flows', American Economic Review, XLIII, 167-180.

Isard, W. and Keunne, R., (1953), "The Impact of Steel upon the Greater New York - Philadelphia Industrial Region": Review of Ecomomies and Statistics, 34, 289-301.

Isard, W, and Langford, T.w., (1971), Regional Input-Oucput Study. Recollections, Reflections and Diyerse Notes on the Philadelphia Experience, MTTPress, Canbildge, Mass.

Jensen, R.C. (1976a), "An Interindustry Study of the Central Queensland Economy", Economic Record, 52, 39: 315-338.

Jensen, R.C., (1976b), An Interindustry Study of the Central Queensland Economy. Unpublished Ph.D. thesis, University of Gueansland.

Jensen, R.C., (1977), Some Procedural Conventions and Their iffects on Input-Output Multipliers, paper presented to the Input-Output Work shop of the Second Fieeting of the Australian and New Zealand Section of the Regional Science Association, Sydney.

Jensen, R.C. and McGaurr, D., (1976), "Reconciliation of Purchases and Sales Estimates in an Input-Output Tabies", Urban Studies, 13, 59-65.

Jensen, R.C. and McGaurr, D., (1977), "Reconciliation Techniques in Input-Output Analysis: Some Comparisons and Implications", Urban Studies, 14: 327-337.

Jensen, R.C., Mandeville, T.D., and Karunazatne, N. D. (1977), Generarion of Regional Input-Output Tables fer queensland. Report to the Co-ordinator General's Department and the Department of Commercial and Industrial Development, Department of Economics, University of Queensland.
Published (1979) as Regional Economic Planning: Generation of Regional Input-Output Analysis, Croom Helm.

Jensen, R.C., and West, G.R. (1978), The Effect of Relative Coefficient Size on Input-Output Multipliers, Proceedings, Input-Output Workshop of the Third Meeting of the Australian and New Zealand Section of the Regional Science Association, Melbourne, (forthcoming), Environment and Plamning A.

Jensen, R.C. (1979), The Concept of Accuracy in Regional input-Output, Proceedings, Input-Output Workshop of the Fourth Meetine of the Australian and New Zealand Section of the Regional Science Associations, Wodonga.

Jones, L.L., Sporleder, T.L. and Mustafa, G., (1973), "A Source of Bias in Regional Input-Output Models Estimated from National Coefficients", Annals of Regional Science, 7,1: 67-74.

Kokat, R., (1966), The Economic Component of a Regional Socioeconomic Model, IBM Technical Report, 17-210.

Lecomber, R., (1971), "A Critique of Methods of Adjusting, Updating and Projecting Matrices, Together with Some New Proposals", Discussion Paper in Economics No. 40, Conference on Input-Output and Throughput, Norwich.

Malizia, E.E. and Bond, D.L., (1974), "Empirical Tests of the RAS Method of Interindustry Coefficient Adjustment", Journal of Regional Science, 14.

Mandeville, T.D., (1975), Linking APMAA to Representative Regional InputOutput Models, Aggregative Programing Model for Australian Agriculture Research Report No. 8, Department of Agricultural Economics, University of New Eng1and, Armidale.

Mandeville, T.D. and Powell, R.A. (1976), Structural Interrelationships in a NSw Wheat-Sheep Region, Department of Agricultural Economics and Business Management. Bulletin 22, University of New England, Armidale.

Mandeville, T.D. and Jensen, R.C. (1978), The Impact of Major Development Projects on the Cladstone/Calliope, Fitzroy, Queensland, and Australian Economies: An Application of Input-Output Analysis. Report to the Department of Commercial and Industrial Development and Comalco Limited, Department of Economics, University of Queensland.

Matuszewski, T.I., Pitts, P.R., and Sawyer, J.A., (1964), "Linear Programming EStimates of Changes in Input Coefficients", The Canadian Journal of Economics and Political Science, 30 : 203-10.

McGaurx, D., (1976a), Measuring a City's Dependence on Its Region: An Input-Output Study of the City of Toowoomba, Paper presented to the first Meeting of the Australian and New Zealand Section of the Regional Science Association, Brisbane.

McGaurr, 0., (1976b), Personal communication on work in progress.
McMenamin, D.G. and Haring, J.E., (1974), "An Appraisal of Non survey Techniques for Estimating Regional Input-Output Models", Journal of Regional Science, $14(2)$, 191-205.

Miernyk, W.H. (1965), Elements of Input-Output Analysis, Random House.
Miernyk, W.H. (2969), "Coments on Czamanski and Malizia", Papers and Proceedings of the Regional Science Association, $2 \overline{3:} 81-82$.

Miernyk, W.H., (1975), The Projection of Technical Coefficients for Medium Term Forecasting, MR-20, Regional Research Institute, West Virginia Iniversity.

Miernyk, W.H., (1976), "Comment on Recent Developments in Regional InputOutput Analysis", International Regional Science Review 1,2: 47-55.

Miernyk, W.H. et al., (1970), Simulating Regional Economic Development: An Interindustry Analysis of the West Virginia Economy, Heath Lexington.

Miller, R., (1957), "The Impact of the Aluminum Industry on the Pacific Northwest: A Regional Input-Output Analysis", Review of Economic and Statistics, 34: 200-209.

Moore, F.T. and Petersen, J., (1955), "Regional Analysis: An Interindustry Model of Utah", Review of Economics and Statistics, 37: 368-383.

Morrison, W.I. and Smith, $P .,(1974)$, "Nonsurvey Input-Output Technicues at the Small Area Level: An Evaluation", Journal of Regional Science 14(1), 1-14.

Mules, T.J., (1967), Interindustry Analysis and the South Ausitralian Wool Industry, M.Ec. thesis, University of Adelaide.
0^{\prime} Connor, R. and Henry, E.W., (1975), Input-Output Analysis and 1ss Applications, Charles Griffin.

Parker, M.L., (1967), An Interindustry Study of the Western Australian Economy, Agricultural Economic Research Report No. 6, University of Western Australia Press.

Quandt, R.C. (1958), "Probabilistic Errors in the Leontief System", Naval Research Logistics Quarterly 5 (2): 155-170.

Quandt, R.E. (1959), "On the Solution of Probabilistic Leontief Systems", Naval Research Logistics Quarterly 6(4): 295-305.

Richardson, H., (1972), Input-Output and Regional Economics, Weidenfeld and Nicolson, London.

Schaffer, W., (1970), "Estimating Regional Imput-Output Coefficients", Georgia Institute of Technology, Discussion Paper 16.

Schaffer, W.A. (ed.), (1976), On the Use of Input-Output Moriels for Regional Planning, Studies in Applied Regional Science, Volume 1, Martinus Nijhoff, Leiden.

Schaffer, W. and Chu, K., (1969a), "Non Survey Techniques for Constructing Regional Interindustry Models", Papers and Proceedings of the Regional Science Association, 23: 83․101.

Schaffer, W.A. and Chu, K., (1969b), "Simulating Regional Interindustry Models for Western States", A Program on Regional Industrial Development, Discussion Paper 14, Georgia Institute of Technology, Georgia.

Shen, T.Y., (1960), "An Input-Output Table with Regional Weights"; Papers and Proceedings of the Regional Science Association, 6: 113-119.

Smith, P.S. and Morrison, W.I., (1974), Simulating the Urban Economy, Pion, London.

State Electricity Comnission of Queensland, (1975), Annual Report, Brisbane.

Stevens, B.H. and Trainer, G.A. (1976), The Generation of Error in Regional Input-Output Impact Models. Regional Science Research Institute Working Paper A1-76.

Stone, R. and Leicester, C.S., (1966), "An Exercise in Projecting Industrial Needs for Labour", Cambridge.

Su, T.T., (1970), "A Note on Regional Input-Qutput Models". Southern Economic Journal, 36: 325-327.

Tiebout, C.M., (1969), "An Empirical Regional Input-Output Projection Model". Review of Economics and Statistics, 51, 334-340.

Theil, H., (1967), Economics and Information Theory, North Holland Publishing Co., Ansterdam.

United Nations, (1968), A System of National Accounts, Studies in Methods, Series F, No. 2, Rev. 3, New York.

Walderhaug, A., (1972), "State Input-Output Tables Derived from National Data", 1971 Proceedings of the Business and Economic Statistics Section of the American Statistical Association, Washington, 77-86.

West, G. and Jensen, R.C. (1977), "Some rffects of Errors in Coefficients on Input-Output Multipliers", paper presented to the Input-Output Workshop of the Second Meeting of the Australian and New Zealand Section of the Regional Science Association, Sydney.

[^0]: G.R. West
 J.T. Wilkinson
 R.C. Jensen

[^1]: 4. See Jensen, R.C. and West, G.R., "The Effect of thative Coefficient Size on Imput-Output Mltipliers", Enviroment and plaming A (forthoming).
[^2]: 1. See Jensen, R.C. 'Some Accounting Procedures and their Effects on
[^3]: * Total sales or value of goods and services produced at this location

[^4]: 5. The reason for estimating the error function in this form rather than in another form was that this form returned consistently superior regression results in empirical tests. However, this function does make several assumptions, 0.g. continuity. Also note that the error function need not be specified mathematically in practice; the final results can be derived with greater accuracy by an iterative technique by the computer. We will come back to this point later.
