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Abstract 

 

Deep Fingerprint Matching from Contactless to Contact Fingerprints for Increased 

Interoperability  

 

Alexander Wilson 

 

 

Contactless fingerprint matching is a common form of biometric security today. Most 

smartphones and associated apps now let users opt into using this form of biometric security. 

However, it’s difficult to match a finger-photo to a fingerprint because of perspective distortion 

occurring at the edges of the finger-photo, so direct matching using conventional methods will 

not be as accurate due to a lack of sufficient matching minutiae points. To address this issue, we 

propose a deep model, Perspective Distortion Rectification Model (PDRM), to estimate the 

fingerprint correspondence for finger-photo images in order to recover more minutiae points. 

Not only do we determine the feasibility of matching synthesized fingerprints from finger-photos, 

but we also show that matching a finger-photo to a fingerprint directly is possible by using our 

proposed Coupled Generative Adversarial Network (CpGAN) verifier. The results from our 

PDRM show that our method for creating synthetic fingerprints from finger-photos provides a 

more accurate matching (AUC=96.4%, EER= 8.9%) than just using the same commercial 

matcher to match finger-photo and fingerprints directly (AUC=92.1%, EER=15.7%). Finally, 

our proposed CpGAN verifier provides the best matching accuracy with AUC=98.4% and 

EER=6.3%.
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Chapter 1:  

Introduction 
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Introduction 
Fingerprint matching is a common biometric modality which can be used almost anywhere 

for quick and easy security, from consumer products, like phones, to government facilities. The 

reason the use of fingerprints is so widespread is because of their fast-matching capabilities by 

matching only particular feature points on a fingerprint called minutiae points. These minutiae 

points are extracted from the ridges and valleys on a fingerprint. While only one or two minutiae 

points might not be unique, the combination of minutiae points contained in the entire fingerprint 

are. Most fingerprint matching systems use these minutiae points for matching [1],[9]. While the 

entire fingerprint is generally unique individual minutiae points might match up to other people 

minutiae points so creating a matching vector of minutiae points that has enough datapoints is 

directly correlated to higher security, so any fingerprint matching software wants to have the 

maximum number of minutiae points it can have. 

 

Figure 1: (Top Left) Contactless finger-photo. (Bottom Left) Ground truth fingerprint. (Top 

Right) Synthetic fingerprint from only pix2pix module of PDRM. (Bottom Right) Synthetic 

fingerprint from PDRM with only the CpGAN module. 
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There are a multitude of ways to collect fingerprints; these methods include using ink and 

paper to get a rolled fingerprint, using a contact-based capacitive or optical fingerprint reader, and 

capturing a close-up picture of a finger, which is referred to as a finger-photo. Any contact-based 

fingerprint can suffer from elastic deformation, which is when the skin compresses or stretches 

while applying pressure onto paper or a platen. This deformation causes displacements for the 

relative properties of minutiae, and consequently, alters the identification information within the 

captured sample. While contactless finger-photo collection lacks elastic deformation due to the 

inherent structure of the capturing process [6]. However, contactless data suffer from a different 

kind of distortion, perspective distortion caused by the 3D shape of the fingertips. With a rolled 

fingerprint, one can get an even view of all points on a finger from edge to edge. However, from 

a finger-photo, the edges of the finger are curved compared to the center of the finger. This 

compresses the minutiae points and makes them harder to identify and represent accurately in a 

fingerprint template. So, it is a tough balancing act of which method is more viable, while contact 

based collection doesn’t have perspective distortion is does have elastic distortion and while 

contactless based collection has perspective distortion it does not have elastic distortion. 

Contactless however also has the added benefits of being hygienic and in today’s age of Covid-19 

this is much more valuable. Cameras are ubiquitous in modern society and having the ability to 

create an equivalent fingerprint without any deformations from a finger-photo allows even more 

accessibility to biometric security. 

The main objective of this paper is to create a method that can take a finger-photo and turn 

it into a fingerprint by removing the perspective distortion. This allows commercial matchers to 

match finger-photos to an existing rolled fingerprint database. Our secondary objectives are to 

match legacy fingerprints to the synthetic fingerprint images generated from contactless based 

finger-photos and to create a pre-processing module to allow our new method to seamlessly 

integrate into any existing fingerprint matching system. No new technology will be widely used if 

it does not have compatibility with existing framework, which is why we added the secondary 

objectives. We want any module created from this research to also be practical. First and foremost 

is to create synthetic fingerprints from contactless based finger-photos however a good model will 

be able to accomplish both the primary and secondary objectives at the same time. 
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We propose a Perspective Distortion Rectification Module (PDRM) to map the domain of 

finger-photo images to the domain of synthetic rolled fingerprints. The proposed PDRM is a 

careful modification of a Conditional Generative Adversarial Network (cGAN) [3] upgraded using 

two deep fingerprint-to-finger-photo verifiers to force the generator to preserve the identification 

information of samples during the mapping. Some results are shown in Fig. 1 for unrolling a finger-

photo to an equivalent fingerprint. The method described in this paper can easily be incorporated 

as a pre-processing module into any existing commercial fingerprint matching system, allowing 

commercial matchers to be used without modification by enabling the finger-photo probe input to 

be matched directly against a rolled contact-based fingerprint gallery 

One major challenege that we faced is the two different distortions between the two 

fingerprint collection methods, elastic deformation and perspective distortion. If elastic 

deformation is removed by using contactless based fingerprint capturing methods then the 

fingerprint image will end up having perspective distortion. Since our secondary objectives is to 

match synthetic fingerprints to legacy fingerprints we will end up converting perspective distortion 

into elastic deformation, not just removing perspective deformation all together. Another challenge 

is image consistency among the dataset. Contactless fingerprints are all captured on a camera and 

there can be small variations in light, angle, and color can all effect a model, these variances needed 

to be accounted for and removed if possible using computer vision techniques. 

In our research we first tried to understand how existing systems deal with perspective 

distortion and elastic deformation in their own domain matching systems to determine if there are 

similarities between the two methods. We wanted to find commonalities that legacy systems used 

to match finger-photo to finger-photo and fingerprint to fingerprint. Finding this common ground 

would allow us to determine what we need to focus on when create the synthetic fingerprints. The 

next thing we researched was for existing methods to match finger-photos to fingerprints directly, 

these methods would need to account for all the pre-processing issues that were addressed in the 

challenges so we could have a better understanding of what our pre-processing steps should be. 

This would also allow us to determine the faults and challenge that these other researchers found 

during their own investigations as well so we could be better prepared when we start creating our 

model. This would also give perspective into other models and methods that can perform our 

primary objective to see what works and what doesn’t work. 
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Contributions 
The contributions of this project can be summarized as follows: 

• Alexander Wilson contributions: 

o CpGAN model 

o Complete PDRM model 

o MinutiaeNet module of PDRM 

• Ali Dabouei contributions: 

o First iteration of verifier module in PDRM model 

o Pre-processing of the dataset 

• Brady Williams contributions: 

o Results from testing on commercial matcher 

Related Work 
With the rise of fingerprint matching, one of the main issues with capturing the fingerprint 

is elastic deformation. This elastic deformation can be solved in several ways, special equipment 

like sensors [21], [22]. However, the more affordable and practical method would be to just not 

have the fingerprint come into contact with the capturing device at all, having a contactless-based 

fingerprint capturing method. The problem with contactless based fingerprint collection thought is 

perspective distortion, which is the distortion along the edges of the finger-photo that increases in 

severity as the region of interest moves further from the finger center. Most of the current 

approaches to address this issue extract minutiae from both the contactless and contact-based 

fingerprints and match them against each other [8]. However, the number of reliable minutiae for 

matching is very small due to the perspective distortion. Another method is to just ignore the 

perspective deformation and focus only on the large cluster of minutiae points in the central core 

region of the finger by enhancing the image and making minutiae points pop out of their 

surroundings, as addressed in [8], [13]. However, the problem with this approach is that the 

matching system will then be ignoring vital minutiae points that could impact the overall accuracy. 

While this approach is fine for lower security systems that might not need a high chance of 

certainty in the accuracy of the match, it would be unsecure to use this in anything more advanced 

and secure. Another approach is to focus on localized texture patterns (i.e., ridge locations, ridge 

orientations, pores, etc.) from the entire contactless fingerprint and match them using those 

features instead, as shown in [7], [15]. In [23] they define a method that allows for not only 
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matching on the minutiae feature vector, but also the overall minutiae topology and their relevance 

to other surrounding minutiae points. This approach gives another layer of security on top of 

simply matching minutiae points by making the entire fingerprint another major feature as well 

since the location of minutiae points in relevance to other minutiae points will also be unique. 

Instead of just making two minutiae points vectors the entire fingerprint is taken into account, this 

removed the need to even reconstruct the minutiae points in the area of the image affected by 

perspective distortion. 

A more accurate form of fingerprint matching is 3D fingerprint matching, and this does 

solve the problems with deformation however the new issue here in this solution is that sometimes 

multiple cameras are needed to properly capture the contactless fingerprint. One such paper [18] 

has created a sensor that can illuminate the finger and take three images of the finger from different 

angles to gather all necessary information to create a proper representation of the contactless 

fingerprint. These 3D representations can then be matched using contactless 3D fingerprint 

matching software like in paper [20]. However, using multiple cameras of special hardware is quite 

costly but one solution to this problem is addressed in [12] where they perform the same steps as 

a typical 3D fingerprint matching algorithm but use only one camera. They generate a new kind 

of 3D representation of the fingerprint from the single camera. Existing minutiae conventions are 

then converted to this 3D space to allow matching between their special 3D representation of the 

contactless fingerprint and the legacy minutiae points. While this method would allow for legacy 

fingerprint data to be matched with new 3D fingerprints collected it would require a brand-new 

matcher to replace existing structures. 

Another way to solve the perspective distortion problem is to clear up the image in pre-

processing. There are many image processing techniques that allow perspective deformation to be 

corrected [19] and in the paper [14] they show a pre-processing setup that allows for correcting of 

the contactless fingerprint image and they also create a matcher that can match contact-based 

fingerprints to the corrected contactless based fingerprint. Their matcher matches both the texture-

based representation of the fingerprint as well as the minutiae points themselves. 

There are also several other potential problems with capturing a contactless finger-photo, 

including nonuniform illumination, environmental conditions, and even finger orientation. These 

issues often reduce the effectiveness of minutiae or feature extraction algorithms which, 
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consequently, reduce the accuracy of fingerprint matchers [5], [10]. To compensate for distortions 

in the orientation maps, neural networks are used to correct the orientation of finger-photos [11]. 

These neural networks extract minutiae points regardless of orientation and can match contactless 

fingerprints. Nonuniform illumination is addressed in [7], where they apply a robust pre-

processing step to finger-photo images that normalizes uneven illumination, as well extracts points 

of interest in the finger-photo. 

Wider adoption of contactless fingerprint matching is what biometrics practitioners should 

be striving for, but in order to do that, according to [8], an existing model needs not only to match 

contactless fingerprints to contactless fingerprints, but also be able to match contactless 

fingerprints to a database of legacy rolled fingerprints. The method addressed in [8] says this issue 

with a model called the deformation correction model to correct the deformations in the contactless 

fingerprint to then be used to match the legacy fingerprints. However most legacy fingerprint was 

captured using contact-based methods meaning they might suffer from elastic deformation. A 

matcher that matches contactless fingerprints to legacy fingerprints will also need to account for 

this deformation conversion. 

The takeaway from the research done here is the following. Pre-processing is a very 

important step, alone it is almost able to correct the perspective distortion in a contactless 

fingerprint if a custom matcher is used for matching these cleaned images. To cut down on cost 

and make contactless fingerprint matching more widely used it needs to have minimum impact on 

existing system, meaning no extra cameras, sensors, or brand-new matchers. Using only one image 

will also cut down on user error as well when collecting images, if there is only one image of the 

fingerprint that is being collected at a time there is only one view that needs to be corrected when 

it comes to orientation and illumination. A new method needs to be as un-invasive to existing 

infrastructure as possible and be able to match existing legacy contact-based fingerprints to 

contactless-based fingerprints. A neural network can be used to create a new representation of an 

image and match based on this new representation that will use features in the embedded domain 

for matching. Our method will be using all of this in different areas throughout the project. 

Outline 

 Chapter one of this thesis was to explain the general information of the work that needed 

to be done. It showed the background information of the domain and scope of the thesis and defined 
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what terms would be used. We went over the common fingerprint collecting methods and their 

flaws. It shows the contributions of the team, the challenges we faced, and a general explanation 

of the final solution for our thesis, the PDRM model. And finally, the research to determine what 

would need to be done in the thesis. 

 Chapter two explains in more detail the final model first explained in chapter one, the 

PDRM model. Going over each individual module, their use, and how they were constructed. This 

chapter also explains the building block technologies used to make up these modules and the loss 

functions behind each one to be later used in chapter three. The first section explains the building 

blocks of all modules and the PDRM while each subsequent section of this chapter focuses on the 

individual module. 

 In chapter three we go over every loss function that we created for every module and the 

final PDRM. Each loss function has its own label to identify the difference between loss functions 

and be able to easily identify each section and how its used in the diagrams form chapter two. This 

chapter is used to better show how exactly each variable is being used throughout the entire 

process. 

 Chapter four first goes over the experiments that were performed as well as the details of 

how they were performed and the dataset they were performed with. The chapter also goes into 

exact detail of the models used to construct each individual module and the parameters used for 

testing. The chapter also explains how the compare the results of the experiments and what they 

should be compared to. 

 Chapter five and six shows the results of the experiments. Most experiments are shown on 

a single graph, Fig. 8 and the actual synthetic fingerprints of the tests are shown together so you 

may see the qualitative results rather than just the quantitative graph results. We go over the 

experiments and explain what we believe they mean according to our research and what the overall 

conclusion of this thesis was. And finally, the future work that could be done to improve the thesis. 
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Chapter 2:  

Proposed Method 
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Proposed Method 
The overall goal for the method presented here is to estimate an equivalent synthetic 

contact-based fingerprint from a contactless finger-photo. This would allow for any existing 

fingerprint matching system to use our model with minimal modifications. However, when 

converting a contactless finger-photo to a rolled fingerprint, the main issue is the perspective 

distortion. To take this issue into account, first the dataset is pre-processed to correct for 

illumination inconsistencies and orientation inconsistencies between the ground truth and the 

contactless finger-photo images, then we focused on using a Generative Adversarial Network 

(GAN) [4] to convert the domain of finger-photo images to another domain of synthetic rolled 

fingerprints, specifically using the pix2pix model [3]. The generators of GAN networks in all 

modules uses a U-NET architecture [1] as shown in Fig. 2. The U-NET architecture is a U-shaped 

convolutional network where typically an image is inserted, it is boiled down into a embedded 

domain feature vector used an encoder and then it is reconstruction through convolution and 

concatenation with its residuals from previous layers called upsampling with the decoder. 

 

Figure 2: U-Net model architecture 
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Specifically, our model uses a U-NET 256 model since the input size of the image is 256x256. 

Every discriminator is a simple convolution layers directly inputted into 4 fully connected layers 

and an output layer to determine if the image is fake or real. The MinutiaeNet module however 

does not have a GAN and its model is called a CoarseNet which is created using a few ResNet 

based models to generate some minutiae maps. These ResNet models specifically are residual 

based models where the residuals are brought forward in the layers as shown in Fig. 3. The ResNet 

residual networks generate multiple maps when combined and processed again create the minutiae 

score map that we need. 

Generative Adversarial Network 

A GAN model consists of two differentiable modules, a generator G, and a discriminator 

D. The generator maps some noise variable z from a prior noise distribution, 𝑝𝑧(𝑧), to a data space 

with distribution 𝑝𝑑𝑎𝑡𝑎. While the discriminator determines if an input is either a real data, y, or 

the output of the GAN, 𝐺(𝑧), using a classification scheme. During the training, the generator and 

the discriminator are constantly working against each other in a minimax game, where the 

generator is trying to fool the discriminator into thinking generated (synthetic) data is the same as 

the real data, while at the same time, the discriminator is trying to discriminate between the 

generated (synthetic) and real data. The loss function for the GAN model is: 

 

Figure 3: CoarseNet model architecture 
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𝐿(𝐷, 𝐺) = 𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log(𝐷(𝑦))] + 𝐸𝑧~𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] . (1) 

To find the proper solutions for the generator and the discriminator, we perform a two-

player minimax game as shown by the following optimization: 

min
𝐺

max
𝐷

𝐿(𝐷, 𝐺) = min
𝐺

max
𝐷

𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log 𝐷(𝑦)] + 𝐸𝑧~𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] . (2) 

This method is simply using a noise variable for the input to the generator. Another model 

called a conditional GAN [3] allows for the input sample to be added as a condition to the input of 

the generator and the discriminator. We will be using this version of the GAN model throughout 

the paper. To this aim, cGAN makes the following conditional changes to the algorithm: 

𝐿𝑐(𝐷, 𝐺) = 𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log(𝐷(𝑦|𝑥))] + 𝐸𝑧~𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑥)))] , (3) 

and, to optimize this function for a two-player minimax game, we employ the following objective: 

min
𝐺

max
𝐷

𝐿𝑐(𝐷, 𝐺, 𝑦, 𝑥) = min
𝐺

max
𝐷

𝐸𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[log 𝐷(𝑦|𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑥)))] . (4) 

Since the GAN now allows specific conditions rather than random noise, we can now specify an 

input to the GAN and always get the same output from that specific input. 

Perspective Distortion Rectification Method 

Our perspective distortion rectification model is an implementation of the conditional 

generative model (cGAN) called pix2pix [3] with two added verifiers to force the generator to 

focus on the more important aspects of the fingerprint, as shown in Fig. 4. One verifier, called the 

Coupled-GAN (CpGAN) verifier [16], focuses on extracting the embedded domain features for 

matching, while the other verifier, called MinutiaeNet [9], identifies the minutiae points for 

matching. 
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The MinutiaeNet and CpGAN verifiers are both deep modules that are trained separately 

from the pix2pix module and are added to the pix2pix module with frozen weights. These modules 

are only used to validate the results of the pix2pix module and help the generator to preserve the 

ID information. They work similarly to the discriminator of a typical GAN model by being a 

checker to determine how accurate the synthetic image is compared to the ground truth. While a 

normal discriminator can just tell if an image is fake or not the CpGAN verifier module and the 

MinutiaeNet module can be used to determine how close the synthetic fingerprints are to being 

real fingerprints. The training of each of these modules are explained in the next two sections. The 

CpGAN verifier used in this model is a modified form of the CpGAN presented in [17]. The 

modification made to CpGAN are as follows: the weights of the finger-photo module in CpGAN 

are replaced with the weights of the fingerprint module, the decoders and the discriminators of 

both modules are removed, and the contrastive loss is replaced with an 𝐿2reconstruction loss. The 

objective of the CpGAN was to identify some embedded domain features that can be used for 

matching between contactless fingerprints and contact-based fingerprints and once the CpGAN 

has been trained to identify these features we only need the weights of the fingerprint module 

 

Figure 4: Perspective distortion rectification model, consisting of a pix2pix module, a CpGAN 

verifier and a MinutiaeNet module. 
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because we need a model to identify these embedded domain features and treat synthetic 

fingerprints and ground truth fingerprints the same. The MinutiaeNet module is two MinutiaeNet 

generators, called 𝑀1  and 𝑀2 , with an 𝐿2 reconstruction loss between the results of both 

MinutiaeNet generators. The MinutiaeNet’s objective is to simply identify the minutiae points of 

a fingerprint, if two MinutiaeNets both test the synthetic fingerprints and the ground truth 

fingerprints and get the same results between the two then the minutiae points on the synthetic 

fingerprint is passable for real matching. 

Our PDRM module requires these two verifiers so that they can improve and validate the 

quality of the generated synthetic fingerprint from contactless finger-photos. The CpGAN verifier 

is designed to detect low-dimensional embedded features that can be used by a contrastive loss [2] 

to create a common embedded feature vector for matching finger-photo and fingerprint pairs. The 

CpGAN verifier will then allow the PDRM to locate these low-dimensional embedded features 

and match their quality. The MinutiaeNet verifier is added to allow the PDRM to identify minutiae 

points in the synthetic fingerprints, because these minutiae points are the most important features 

that represent the information within fingerprints and are being widely used by the existing 

fingerprint matching systems. If our model is to be used commercially and be unintrusive these 

features are the most important features that need to be replicated to convert contactless 

fingerprints to contact-based fingerprints to allow any matcher that uses minutiae points for 

matching to use this model seamlessly.  

Coupled Generative Adversarial Network (CpGAN) 

The CpGAN model consists of two conditional GAN models [3] referred to as the finger-

photo module and the fingerprint module, as shown in Fig. 5. The finger-photo module is dedicated 

to reconstructing the finger-photo images, and the fingerprint module is dedicated to reconstructing 

the fingerprint images. The generators of both modules use the U-Net architecture [1] to allow for 

finger-photo and fingerprint matching using the generated low-dimensional embedded feature 

vectors constructed by utilizing a contrastive loss, the adversarial loss of each module, and the 𝐿2 

reconstruction loss.  
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The main goal of the CpGAN is to match finger-photos and fingerprints using the 

embedded domain feature vectors. This is accomplished by training the generators to identify these 

features for both finger-photos and fingerprints, so when this CpGAN is turned into a verifier and 

added to the PDRM module, it can identify these features and allow the PDRM to create a better 

synthetic fingerprint by focusing on these embedded domain features.  

A U-Net architecture is used as our generator in the main model for its unique mapping 

capacity. This structure condenses an image into its contextual information in a subspace which 

we then use for matching a finger-photo against a fingerprint. The feature maps of each layer are 

also passed forward to the up-sampling layers which allow for the high-dimensional features to be 

combined with the up-sampled features to allow the generator to reconstruct the images. 

Even though the finger-photo and fingerprint images of the same person are in different 

domains, the low-dimensional embedded feature vectors should be the same, meaning that the 

CpGAN should be able to gradually identify similarities between both domains. The features that 

we seek to identify are domain invariant and exist across both domains. By focusing on these 

 

Figure 5: Coupled GAN consisting of two conditional GANs coupled together via their 

embedded feature vectors. 
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features, the PDRM can identify them early in the synthesis process, as well as keep these features 

throughout. 

Contrastive loss is used in the CpGAn to determine the difference between the embedded 

domain of each module using imposter pairs and genuine pairs. The 𝐿2 reconstruction loss is used 

to make sure that each module is reconstructing each image at the end of the U-Net architecture. 

The adversarial loss is used to also emphasize the GAN create realistic recreations of the input 

images of each module. If the input images between the modules are genuine pairs or imposter 

pairs there is no difference to the adversarial loss or the 𝐿2 reconstruction loss, they perform the 

same way every pair, only the contrastive loss will change.  

MinutiaeNet 

To further force the generator to preserve the ID information during the mapping, we 

employ a second-deep model to constrain the generation process. The MinutiaeNet module [9] is 

a differentiable feature extractor for minutiae points in fingerprints and finger-photos. MinutiaeNet 

uses two separate networks called the CoarseNet and FineNet as seen in Fig. 6. The CoarseNet 

creates a minutiae score map along with other information that is all passed into the FineNet, which 

further refines the score map to identify precise minutiae points. However, the PDRM method only 

uses the CoarseNet and score map results. Our method uses the already existing model created in 

[9], so no training is directly done for the MinutiaeNet. 

 

Figure 6: MinutiaeNet architecture [9] consisting of a CoarseNet and a FineNet. 
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The MinutiaeNet verifier is two CoarseNets combined, as shown in Fig. 2. The only output 

we utilize from the CoarseNet is the score map, which is used alongside an 𝐿2 reconstruction loss 

function to determine the similarities of the minutiae points of the ground truth fingerprint and the 

synthetic fingerprint from the finger-photo created by the cGAN module. 

This module is added to allow the PDRM to focus on recreating the most important part of 

the fingerprint when synthesizing the fingerprint from its finger-photo, i.e., the minutiae points. 

Since most common fingerprint matching systems use these features for matching, and we want 

our PDRM module to be able to be attached to any existing fingerprint matching system to simply 

improve its matching performance when presented with finger-phot probes, the minutiae points 

are important features that need to be recreated properly. 

One minor change we performed to get the MinutiaeNet to properly work and be 

differentiable in the PDRM model was that the entire dataset was processed through the 

MinutiaeNet and the results were then taken and stored as a new dataset, this new dataset was then 

used to train another neural network, a ResNet-18 network [24] that was differentiable with the 

rest of the PDRM model, to recreate the MinutiaeNet results when the fingerprint images were fed 

into it. 
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Chapter 3:  

Loss Functions 
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Contrastive Loss 

This loss function is a distance-based loss function that decreases the distance between the 

representations of genuine pairs (finger-photos and fingerprints of the same identities) in an 

embedded subspace while also increasing the distance between the representations of imposter 

pairs (finger-photos and fingerprints of different identities). The contrastive loss function (𝐿𝑐𝑜𝑛𝑡) 

is defined as: 

𝐿𝑐𝑜𝑛𝑡(𝐸𝐹𝑃ℎ𝑜𝑡𝑜(𝑥𝐹𝑃ℎ𝑜𝑡𝑜
𝑖 ), 𝐸𝐹𝑃𝑟𝑖𝑛𝑡(𝑥𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
), 𝑌) =  (1 − 𝑌) (

1

2
) (𝐷𝑧)2 +  (𝑌) (

1

2
) ((0, 𝑚 − 𝐷𝑧) )

2
, (5)  

where 𝑥𝐹𝑃ℎ𝑜𝑡𝑜
𝑖  is the i-th finger-photo image and 𝑥𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
 is the j-th fingerprint image. The variable 

Y is a binary label to determine if the finger-photo and fingerprint are genuine or imposter pairs. 

The value of Y will be 0 if the two images are from the same ID and Y will be equal to 1 if the 

two images form an imposter pair. The term 𝐸𝐹𝑃ℎ𝑜𝑡𝑜 is the encoder of the finger-photo module of 

the CpGAN, while 𝐸𝐹𝑃𝑟𝑖𝑛𝑡 is the encoder of the fingerprint module of the CpGAN. The parameter 

m is the margin that is used to determine how close we want genuine pairs to cluster and how far 

away at minimum we want the imposter pairs to be apart in the embedding domain. The distance 

𝐷𝑧 is defined as the following: 

𝐷𝑧 = ||𝐸𝐹𝑃ℎ𝑜𝑡𝑜(𝑥𝐹𝑃ℎ𝑜𝑡𝑜
𝑖 ) − 𝐸𝐹𝑃𝑟𝑖𝑛𝑡(𝑥𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
)||

2

2
. (6)  

Adversarial Loss 

The proposed method uses three adversarial losses to get to the final module. First, we 

explain the adversarial loss for CpGAN and then describe the adversarial loss for the main pix2pix 

module. 

 First the CpGAN adversarial losses. The term 𝐺𝐹𝑃ℎ𝑜𝑡𝑜 is the generator for the finger-photo 

module, and 𝐺𝐹𝑃𝑟𝑖𝑛𝑡  is the generator for the fingerprint module. The variable 𝐷𝐹𝑃ℎ𝑜𝑡𝑜  is the 

discriminator for the finger-photo module, and 𝐷𝐹𝑃𝑟𝑖𝑛𝑡  is the discriminator for the fingerprint 

module. The term 𝑦𝐹𝑃ℎ𝑜𝑡𝑜
𝑖  is a real finger-photo image, and 𝑦𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
 is a real fingerprint image. 

Using the notations in Eq. (4), the adversarial loss function FPhoto GAN is given as: 

𝐿𝐹𝑃ℎ𝑜𝑡𝑜 = min
𝐺

max
𝐷

𝐿𝑐(𝐷𝐹𝑃ℎ𝑜𝑡𝑜, 𝐺𝐹𝑃ℎ𝑜𝑡𝑜, 𝑦𝐹𝑃ℎ𝑜𝑡𝑜
𝑖 , 𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ) , (7) 



20 

 

and similarly, the loss for FPrint GAN is given as, 

𝐿𝐹𝑃𝑟𝑖𝑛𝑡 = min
𝐺

max
𝐷

𝐿𝑐(𝐷𝐹𝑃𝑟𝑖𝑛𝑡 , 𝐺𝐹𝑃𝑟𝑖𝑛𝑡 , 𝑦𝐹𝑃𝑟𝑖𝑛𝑡
𝑗

, 𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑗

) . (8) 

The total loss function is the combination of these two losses together, given as: 

𝐿𝐺𝐴𝑁𝐶𝑝𝐺𝐴𝑁
= 𝐿𝐹𝑃ℎ𝑜𝑡𝑜 + 𝐿𝐿𝐹𝑝𝑟𝑖𝑛𝑡 . (9)  

Now the pix2pix module has a very similar objective function except that it only has one GAN 

loss, so there is only one generator G and one discriminator D. The loss is denoted as: 

 𝐿𝐺𝐴𝑁 = min
𝐺

max
𝐷

𝐿𝑐(𝐷, 𝐺, 𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑖 , 𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ) . (10) 

This loss is meant to force the generator of the attached GAN model to create better 

synthetic images to fool the discriminator in a constant back and forth game between the 

discriminator and the generator. Without a loss like this the GAN won’t have much incentive to 

create realistic synthetic images. 

L2 Reconstruction Loss 

𝐿2 reconstruction loss is used in every GAN model and it is used in place of contrastive 

loss when adding the CpGAN verifier into the pix2pix model. 

The CpGAN reconstruction loss is used to tell the GAN that it must recreate the output of 

the GAN to look like the input of the GAN based on the Euclidean distance between the input and 

reconstructed output images. Both the finger-photo and fingerprint GAN modules have a 

reconstruction loss. The reconstruction loss for the finger-photo module ( 𝐿2𝐹𝑃ℎ𝑜𝑡𝑜
) and the 

fingerprint module (𝐿2𝐹𝑃𝑟𝑖𝑛𝑡
) are as follows: 

𝐿2𝐹𝑃ℎ𝑜𝑡𝑜
= ||𝐺𝐹𝑃ℎ𝑜𝑡𝑜(𝑧|𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ) − 𝑥𝐹𝑃ℎ𝑜𝑡𝑜
𝑖 ||

2

2
, (11) 

𝐿2𝐹𝑃𝑟𝑖𝑛𝑡
= ||𝐺𝐹𝑃𝑟𝑖𝑛𝑡(𝑧|𝑥𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
) − 𝑥𝐹𝑃𝑟𝑖𝑛𝑡

𝑗
||

2

2
, (12) 

where z is a random noise vector. 

The total 𝐿2 reconstruction loss for CpGAN is now defined as:  
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𝐿2𝐶𝑝𝐺𝐴𝑁
=

1

𝑁2
∑ ∑(𝐿2𝐹𝑃ℎ𝑜𝑡𝑜

+ 𝐿2𝐹𝑃𝑟𝑖𝑛𝑡
)

𝑁

𝑗=1

𝑁

𝑖=1

, (13) 

where N is the number of training samples. 

 Then the next instance of 𝐿2 reconstruction loss is pix2pix where the results of the cGAN 

generator (synthetic fingerprint) with the ground truth fingerprint are compared. The 𝐿2 

reconstruction loss for this model is as follows: 

𝐿2𝑝𝑖𝑥2𝑝𝑖𝑥
= ∑(𝐺(𝑧|𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ) − 𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑖 )

2
.

𝑁

𝑖=1

 (14) 

Contrastive loss cannot be used for the CpGAN verifier when it’s implemented into the 

perspective distortion rectification module. 𝐿2 reconstruction loss is used in place of contrastive 

loss, and it is defined by the following equation: 

𝐿2𝑉𝑒𝑟𝑖𝑓
= ||𝐸𝐹𝑃ℎ𝑜𝑡𝑜(𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ) −  𝐸𝐹𝑃𝑟𝑖𝑛𝑡(𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑗

) ||
2

2
. (15) 

The final instance of 𝐿2 reconstruction loss is used when the MinutiaeNet module is added 

to process the output of the pix2pix model and we need to find the Euclidean distance between the 

minutiae heatmaps of the ground truth fingerprint and the synthetic fingerprint. Let 𝑀1 represent 

the MinutiaeNet for the synthetic fingerprint, and 𝑀2 be the MinutiaeNet for the ground truth 

fingerprint. The MinutiaeNet 𝐿2 reconstruction loss is as follows:  

𝐿2𝑀
= ∑ (

𝑀1(𝐺(𝑧|𝑥𝐹𝑃ℎ𝑜𝑡𝑜
𝑖 )) −

𝑀2(𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑖 )

)

2

.

𝑁

𝑖=1

(16) 

 This loss is used two different ways, one way it will force the GAN model to have the input 

and output images look similar as done in the pix2pix module, and the CpGAN before being 

converted to a verifier. Essentially making the conditional and the output of the model be the same. 

The more weight put into this the higher the similarities between the input and the output images. 

The other way is simply finding the Euclidian distance between two feature spaces in the 

MinutiaeNet module and the CpGAN module. 
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Total Losses 

The total loss for the CpGAN is defined as the following function: 

𝐿𝑇𝑜𝑡𝑎𝑙𝐶𝑝𝐺𝐴𝑁
= 𝜆1𝐿𝑐𝑜𝑛𝑡(𝐸𝐹𝑃ℎ𝑜𝑡𝑜(𝑥𝐹𝑃ℎ𝑜𝑡𝑜

𝑖 ), 𝐸𝐹𝑃𝑟𝑖𝑛𝑡(𝑥𝐹𝑃𝑟𝑖𝑛𝑡
𝑗

), 𝑌)

+ 𝜆2𝐿𝐺𝐴𝑁𝐶𝑝𝐺𝐴𝑁
+ 𝜆3𝐿2𝐶𝑝𝐺𝐴𝑁

 , (17)
 

 

where 𝜆1, 𝜆2, and 𝜆3 are the hyperparameters to control the effect of each loss function. 

The total loss for the PDRM module is defined by the following equation: 

𝐿𝑇𝑜𝑡𝑎𝑙𝑃𝐷𝑅𝑀
= 𝛼1𝐿𝐺𝐴𝑁 + 𝛼2𝐿2𝑝𝑖𝑥2𝑝𝑖𝑥

+ 𝛼3𝐿2𝑉𝑒𝑟𝑖𝑓
+ 𝛼4𝐿2𝑀

, (18) 

where 𝛼1, 𝛼2, 𝛼3,and 𝛼4 are the hyperparameters. 
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Chapter 4:   

Details and Experiments 
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Experimental Details 
For each experiment, the performance of the models is measured by using a Receiver 

Operating Characteristics (ROC) curve to show the overall accuracy of each model in matching 

finger-photos against fingerprints. In all experiments, the baseline is how well the commercial 

matcher can match directly the regular contactless finger-photo (Fphoto) and the fingerprint 

images (Fprint). If a model performs worse than this baseline, then it is no longer worth considering 

because this would mean the commercial matcher already outperforms our proposed models 

without any intervention. Both the CpGAN and PDRM models use the Adam optimizer with a 

learning rate of 0.0002, a batch size of 1, and both are trained for 200 epochs. The MinutiaeNet 

uses an Adam optimizer with a learning rate of 0.005, a batch size of 2, and is trained for 1000 

epochs. 

Dataset 

The dataset used in this paper is the Non-Contact Fingerprint Dataset, which is a set of 970 

subjects using four legacy fingerprint devices and three contactless fingerprint devices. The 

contactless dataset consists of 512x512 images with a resolution of 500 ppi. The contact-based 

 

Figure 7: Pre-processing steps for the “WVU non-contact fingerprint dataset” dataset. 
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dataset consists of 800x750 sized images with a resolution of 500 ppi. The contactless prints need 

to be preprocessed so any insignificant differences between the contactless and contact fingerprints 

like orientation, color, and size, can be removed to allow easier generation for the GAN models 

by having them not worry about these variables and instead focus on the important variables like 

minutiae points and the embedded domain features. To make sure that both the fingerprints and 

the finger-photo are similar, pre-processing steps are applied to both images, as shown in Fig. 7. 

The steps are as follows: segment the skin from the background, then convert the image to 

grayscale, perform histogram equalization, and finally rotation correction. These steps are 

performed on both the fingerprints and the finger-photos, but because of the image capturing 

process used in the data collection, some of the ridges of the minutiae points are quite blurry. 

Because of this, after the first pre-processing step, any image that does not meet expectations are 

thrown out. The second pre-processing step is only applied to the finger-photos, which is 

orientation estimation and reliability estimation. In reliability estimation if the edges of these 

finger-photo images are not well defined they are excluded from the dataset, else the algorithm 

moves on to core point extract and ROI extraction. The output size for all images are normalized 

to 256x256 pixels. 

Implementation Details 

PDRM Architecture 

The proposed PDRM model consists of the MinutiaeNet module, pix2pix module, and 

CpGAN module. The CpGAN module is the two encoders from the CpGAN model, as described 

in the next section connected by a 𝐿2  reconstruction loss at the output of the encoders. The 

MinutiaeNet module consists of two CoarseNet models [9] connected by a 𝐿2 reconstruction loss 

at the output of the CoarseNet models. The finer details of the MinutiaeNet are described in Sec. 

5.2.3. The pix2pix module is a cGAN model described in [3] with a U-NET generator. The total 

loss function for the PDRM model is given by Eq. (18). The hyperparameters for the loss function 

(18) are shown in table 1. When modules are removed the hyperparameters that control that module 

is set to 0. The hyperparameter 𝛼1  controls the adversarial loss of the pix2pix module. The 

hyperparameter 𝛼2 controls the 𝐿2 reconstruction loss of the pix2pix module. The hyperparameter 

𝛼3 controls the 𝐿2 reconstruction loss of the CpGAN verifier. The hyperparameter 𝛼4 controls the 

𝐿2 reconstruction loss of the MinutiaeNet module. 
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HYPERPARAMETER

S 

𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 AUC EER 

EXPERIMENT 1 1 1 1 10 96.4% 8.9% 

EXPERIMENT 2 1 1 0 0 65.6% 46.1% 

EXPERIMENT 3 1 1 1 0 91.7% 15.5% 

EXPERIMENT 4 1 1 0 10 58.7% 49.7% 

Table 1: Experiment 1-4 Hyperparameters for total loss functions. 

CpGAN Architecture 

As described previously the CpGAN model consists of two cGAN modules called the 

finger-photo and fingerprint modules. Each module is composed of a generator and a 

discriminator, and each generator is composed of an encoder and a decoder. The encoder will 

encode the input image down into an embedded domain feature vector of size 1x256 while the 

decoder takes that embedded domain feature vector and turns it back into the input image. The 

generator’s architecture is the classical U-NET [1], and the two modules are connected by a 

contrastive loss that compares the embedded domain feature vectors of the outputs of the encoders 

of both modules’ generators. Since this model uses a contrastive loss, an equal number of imposter 

pairs and genuine pairs need to be created. We create one imposter pair for every genuine pair, 

which is 3,335 of each pair. The total loss function for this model is given by Eq. (17). The 

hyperparameters for Experiment 5 (see Fig. 11) are: 𝜆1=1, 𝜆2=0.001 and 𝜆3=1. 

MinutiaeNet 

The MinutiaeNet module is taken directly from [9], where an already trained CoarseNet 

model is used to detect minutiae points and creating a minutiae point score map as shown in Fig. 

6. Our MinutiaeNet module takes those weights from the pre-existing CoarseNet model, copied 

into another Resnet-18 [24] model that mimicked the CoarseNet model, and then applied that 

mimic model into the two generators in the MinutiaeNet module. The details of the Minutiae 

module can be found in [9]. 
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Chapter 5:  

Results and Evaluation 
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Evaluation 
Fig. 8 shows the results for Experiment 1. These results indicate that the accuracy of the 

matched synthesized fingerprints from finger-photos generated by the PDRM model is 4.3% 

higher than the accuracy of matching the finger-photos to the fingerprints directly using the 

commercial matcher. This shows that the full PDRM model can accurately synthesize the 

 

 

Figure 8: Experiments 1– 4;  (a) Baseline: Fphoto vs Fprint using Commercial Matcher, 

AUC: 92.1%, EER: 15.7%; (b) Experiment 1: PDRM - Synthetic Fprint vs Fprint using 

Commercial Matcher AUC: 96.4%, EER: 8.9%; (c) Experiment 2: PDRM w/o 

CpGAN+MinutiaeNet - Synthetic Fprint vs Fprint – Commercial Matcher AUC: 65.6%, 

EER: 46.1%; (d) Experiment 3: PDRM w/o MinutiaeNet - Synthetic Fprint vs Fprint – 

Commercial Matcher AUC: 91.7%, EER: 15.5%; (e) Experiment 4: PDRM w/o CpGAN 

- Synthetic Fprint vs Fprint using Commercial Matcher AUC: 58.7%, EER: 49.7%; 

Experiment 5 – (a) Fphoto vs Fprint using CpGAN Matcher AUC: 98.4%, ERR: 6.3%. 

 

 

 



29 

 

important points of a fingerprint from a contactless finger-photo. This PDRM is also unintrusive 

to any existing fingerprint matching system, allowing it to be seamlessly added to any commercial 

matcher. Since the PDRM model is proven to work the next step is to perform an ablation study 

on the PDRM by removing the CpGAN module and the MinutiaeNet module to determine which 

of these modules are worthwhile or if they all play an important part in creating synthetic 

fingerprints. 

In experiment 2, we removed both the CpGAN and MinutiaeNet modules from the PDRM 

model to see how well a simple cGAN model could synthesize the fingerprints from the contactless 

finger-photos. When the pix2pix synthesized fingerprints were passed through the commercial 

matcher, its performance was worse than the baseline commercial matcher when matching the 

finger-photos to the fingerprints directly, as shown in Fig. 8. The accuracy was in fact scientifically 

worse than performing nothing at all and just letting the commercial matcher match the contactless 

fingerprints and the contact-based fingerprints directly. This shows that the extra CpGAN and 

MinutiaeNet modules significantly improve the quality of the synthesized fingerprint images and 

that either both of them or one of them is the reason for the PDRMs success. As shown in Fig. 9 

the quality of the synthetic fingerprint using the full PDRM module has some deformations at the 

top edge of the image, but the import minutiae points are very close to the ground truth. 

 

In Experiment 3, as shown in Fig. 8, we remove only the MinutiaeNet module from the 

PDRM. These results show that, when solely using the CpGAN module in the PDRM model, it 

 

Figure 9: (Left) Contactless finger-photo. (Middle) Ground truth fingerprint. (Right) 

Synthetic fingerprint from PDRM. 
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can generate convincing synthetic fingerprints using only the embedded domain features gathered 

in the CpGAN training as a verifier for the quality of the synthetic fingerprints, even though the 

accuracy is 0.4% less than the baseline by. As you can see form Fig. 1 the results of the PDRM 

with just the CpGAN module are quite realistic. They form good fingerprints however some of the 

minutiae points are not being properly converted. They do not quite match up with the minutiae 

points of the ground truth, the image more closely resembled the contactless fingerprint rather than 

the ground truth. 

In Experiment 4, as shown in Fig. 8, we removed the MinutiaeNet from the PDRM. These 

results are very poor, and the accuracy of the modified PDRM is less than the PDRM with just the 

pix2pix module. In Fig. 10 you can see that the unlike experiment 3 the synthetic fingerprint 

created from the PDRM without the CpGAN verifier more closely resembles the ground truth 

however it’s very fuzzy, especially around the center where more of the important minutiae points 

are located. Just focusing on creating good minutiae points does not seem to be an adequate 

approach when trying to create synthetic fingerprints; more details are important in these matchers 

than what was originally thought including visibility and clarity. Also, these central minutiae 

points features play a much larger role than previously thought when it comes to matching. 

 

The best results are obtained so far is when we were using the PDRM model with both the 

CpGAN and MinutiaeNet modules. All module information is important in creating a high-quality 

synthetic fingerprint, including the embedded domain features from the CpGAN module to the 

 

Figure 10: (Left) Contactless finger-photo. (Middle) Ground truth fingerprint. (Right) 

Synthetic fingerprint from PDRM without CpGAN Verifier. 
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minutiae points from the MinutiaeNet module. We need to also keep a balance between looking 

too much like the input finger-photo and being too fuzzy for the matcher to properly identify 

minutiae points. While it appears the CpGAN module holds more weight than the MinutiaeNet 

module, the MinutiaeNet module gives the synthetic fingerprints the boost the PDRM needs to 

outperform the baseline commercial matcher when matching the finger photos to fingerprints 

directly. Perhaps if the results of just the MinutiaeNet module in the PDRM were not so fuzzy the 

MinutiaeNet module could hold a lot more weight in how important the module is in making a 

realistic synthetic fingerprint. 

In Experiment 5, as shown in Fig. 11, we used the CpGAN module as a verifier to directly 

match the finger-photos to fingerprints like the commercial matcher. The accuracy of the CpGAN 

matcher is 6.4% higher than the commercial matcher and is 2.0% higher than the PDRM accuracy. 

Using CpGAN as a matcher to directly match finger-photos to fingerprints is more effective than 

all other methods outlined in this paper. However, to use this matcher, it would require the entire 

existing fingerprint matching system to be replaced with this CpGAN matcher. This contradicts 

one of the main goals we had for this paper, where any method created should be unintrusive to 

the already existing fingerprint matching systems.  
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Figure 11: Experiment 5 – (a) Fphoto vs Fprint using Commercial Matcher AUC: 

92.1%, EER: 15.7%. (b) Fphoto vs. Fprint using CpGAN Matcher AUC: 98.4%, EER: 

6.3%. 
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Chapter 6:  

Conclusion and Future Work 
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Conclusion 
Matching finger-photo and fingerprint images is challenging due to the elastic and 

perspective distortions between the two modalities. However, the PDRM model outlined in this 

paper can overcome these issues and estimates the fingerprint version of a given fingerphoto 

sample. This paper also incorporated a deep model to identify features capable of direct matching 

of finger-photos against fingerprints. In fact, it was demonstrated that the embedded domain of the 

CpGAN was able to match samples from the two modalities. We also proposed a non-intrusive 

network that could be used in tandem with any existing commercial fingerprint matching software 

using this CpGAN as a verifier to make sure the generator was creating realistic synthetic 

fingerprints from the finger-photos. Just the verifier alone was not enough to create usable 

synthetic contact-based fingerprints because the minutiae of these fake images were blurry and ill-

defined. Hence, a MinutiaeNet verifier was added to pix2pix to have the pix2pix model focus more 

on the minutiae points when synthetizing images. This provided great synthetic images, and the 

accuracy of using these synthetic images was only slightly worse than using the CpGAN matcher 

but had the bonus of being able to be incorporated into any existing commercial fingerprint 

matcher.  

Future Work 
 This thesis can be expanded on, there is still room to grow in the fingerprint reconstruction 

field. While the best results of finger-photo to fingerprint conversion is promising when it comes 

to matching minutiae points, visually the reconstructed fingerprints look fuzzy around the edges 

(Fig. 10). If this tool is to be used more universally used it needs to be better at creating synthetic 

images visually as well as in the embedded domain to allow for any existing fingerprint matching 

system to use the reconstructed fingerprint. The dataset should also be screened to account for any 

biases in the types of fingerprints. There are three distinct types of fingerprints including the whorl, 

loop, and arch. Our dataset could have an uneven distribution of these fingerprint types since they 

do not occur evenly among the population, the existing network could have a bias towards a 

specific one of these fingerprint types and needs to be identified moving forward so the bias can 

be removed or accounted for. 

 The MinutiaeNet weights that were copied over and used in the MinutiaeNet module of the 

PDRM were pre-existing weights trained on a completely different dataset with slightly different 

domains, to improve accuracy the MinutiaeNet and PDRM could be trained on the same dataset 
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to clear the images up. However, this would require a dataset that had finger-photos, fingerprints, 

as well as minutiae point ground truths for both the finger-photos and fingerprints. Also, the actual 

MinutiaeNet module didn’t use the entire MinutiaeNet weights, it used a copy of the weights that 

were recreated on a separate network. Finding a better way to implement this PDRM model to 

allow the original MinutiaeNet to be properly implemented could also improve accuracy. 

In the PDRM the input image size was set to 256x256 and in the case of this dataset that 

cut each dimension in half losing 75% of the total images size. Reducing the image size so much 

was required by our systems to allow for quick training of the networks, within a day to two days 

for most training sessions, however this massive reduction in size could have a major impact on 

this sort of project by removing much needed small details that were inside the area affected my 

perspective distortion needed by the PDRM to reconstruct those areas. Future versions of the 

PDRM should use a larger image size to allow for more details to be passed through. 

 Ultimately, the goal of this project was to create synthetic fingerprints from finger-photos 

that is better for matching then not modifying the images, and that was proven to be possible. Now 

it’s just a matter of cleaning the resulting images through more precise testing. 
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