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ARTICLE OPEN

Exploring DFT+U parameter space with a Bayesian
calibration assisted by Markov chain Monte Carlo sampling
Pedram Tavadze 1✉, Reese Boucher1, Guillermo Avendaño-Franco1, Keenan X. Kocan2, Sobhit Singh3, Viviana Dovale-Farelo 1,
Wilfredo Ibarra-Hernández4, Matthew B. Johnson1, David S. Mebane 2 and Aldo H. Romero1

The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly
correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states.
Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another.
In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously
improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted
by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that
LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable
to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.

npj Computational Materials           (2021) 7:182 ; https://doi.org/10.1038/s41524-021-00651-0

INTRODUCTION
Thanks to the seminal works of Hohenberg, Kohn, and Sham1–3

researchers can simplify the many-body Schrödinger’s equation
into a mean-field approach for the electronic Hamiltonian in
materials. This approach allows us to computationally predict
numerous material-specific properties utilizing the elegance of the
density-functional theory (DFT)2–6. Since the groundbreaking
development of DFT, there have been numerous adaptations
designed to optimize the accuracy of the exchange and
correlation effects in DFT calculations. The largest complication
of DFT lies within the accurate description of the exchange and
correlation energy. An exact exchange-correlation (XC) functional
is not yet known. However, various approximations for the XC
functional have been made to more precisely and efficiently
describe the electronic quantum states in materials7–16

Strongly correlated materials are greatly affected by the
systematic error introduced in the widely used existing XC
functionals, where the electronic kinetic energy is of the same
order as the electron-electron repulsion. In this strong-interaction
regime, distinct electronic properties can have various competing
phases that are very sensitive to the description of the correlated-
electronic states, as in the case of the d− and f− electron systems,
and in the metal-to-insulator transition observed in many oxides17.
The lack of accurate representation of the electronic state by
commonly used XC functionals impacts the prediction of the
electronic and vibrational properties, in particular, the electronic
bandgap, which can be significantly underestimated18,19.
The currently accepted approaches to improve the DFT

predictions, known as beyond-DFT methods, include: hybrid XC
functionals20–23, DFT+DMFT24–37, and paramount to this work,
DFT+U38,39. To address the above problem, DFT+U introduces an
on-site Coulombic interaction for the treatment of the electronic
correlation effects17. An external Hubbard-like40,41 term is added
to the DFT Hamiltonian along with a double-counting term, which
negates the initial DFT calculation for the terms the Hubbard

Hamiltonian attempts to correct. Two parameters U and J are
supplemented to the Hubbard-like term to correct the Coulomb-
repulsion term and the effective exchange interaction, respec-
tively. This method is famously used in LDA+U38,42,43, and can be
generalized to numerous DFT functionals to correct the error-
prone calculations.
The main challenge facing DFT+U is obtaining the optimal U

and J correction parameters. To date, there are many methods
designed to obtain these values. One of the most popular
methods is the semi-empirical approach44 in which the para-
meters’ values are modified until the DFT+U predictions of some
physical predefined observables are in agreement with the
experimental measurements, such as electron bandgap, lattice
parameters, or the atomic magnetic moment. Unfortunately, this
method is limited to the materials for which experimental data is
available.
Other methods are based on density-functional perturbation

theory, linear response, the constrained random-phase approxima-
tion, and Hartree-Fock-based methods45–54. Though these theore-
tical methods are quite mature and have been implemented in
different computational packages55–57, it is unclear if the search for
optimal correctional parameters will have a global minimum or
multiple different local minima. This is a question that can only be
addressed by a careful exploration of the U and J parameters.
Furthermore, the explicit dependence of the DFT+U Hamiltonian
on orbital-dependence adds another dimension to the parameter
space (i.e., the known metastability issue in DFT+U) 58–60.
It is also unclear if a set of parameters defined for a specific

material can be generalized to other materials (even within the
same material family), or if the dependence of those parameters is
strongly dependent on the selected XC functional within the DFT.
The current understanding is that the correction parameters
cannot be transferred to different materials because electronic
correlations are governed by the nature of the chemical bonding
and the coordination number, leading to the manifestation of
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different correlation effects within the same material family61–63.
This further complicates the use of the DFT+U methods in high-
throughput calculations.
In this investigation, we implemented an algorithm that builds a

probability distribution in the parameter space of U and J for five
strongly correlated iron-based compounds having different Fe
oxidations states using three different XC functionals. We
subsequently performed DFT+U calculations using the mean
values obtained for the U and J parameters for the initial five
materials and three other similar iron-based compounds. We
compared our results with the experimental data to investigate
how well the distribution of the correction parameters can be
extended to other similar compounds. Moreover, we inspected
the relationship of the U and J parameters with different XC
functionals.
The main goal of this project is to determine the distribution of

the U and J values that can generate accurate predictions for iron-
based materials using DFT+ U modeling. We use Bayesian
calibration assisted by Markov chain Monte Carlo (MCMC) to
sample the parameter space of U and J values on the potential
energy surface. MCMC obtains the posterior distribution from the
Bayes’ theorem in an empirical form.
Bayes’ theorem defines the relationship between posterior and

prior probability distributions on the parameter space:

PðU; JjXÞ ¼ PðXjU; JÞ PðU; JÞ
PðXÞ : (1)

Where P(U, J∣X) is the posterior density on the parameter space
given the dataset X, P(X∣U, J) is the likelihood, P(U, J) is the prior
density, and P(X)= ∫P(X∣U, J)P(U, J)dUdJ is the integrated prob-
ability of the data (or “evidence") given the model.

Priors
The prior density is bounded uniform, with boundaries drawn in
such a way that prevents the unphysical regions of the parameter
space (i.e., J > U) from appearing in the posterior.

Likelihood
The likelihood model is a “white noise" model with variance
estimated in the course of the calibration

PðXjU; JÞ ¼
Y

j

1

ð2πσjÞNj=2
expf

PNj

i ½MijðU; JÞ � Xij�2
2σ2

j
g; (2)

where Mij and Xij are the DFT model results and corresponding
experimental measurement i of type j, respectively, and Nj is the
total number of experimental results of type j. The variance of the
experimental error σj for property j is estimated in the calibration,
with an inverse gamma prior.

Markov chain Monte Carlo
The evidence P(X) may be written in terms of the likelihood and
prior

PðXÞ ¼
Z

PðXjU; JÞPðU; JÞdJdU: (3)

This integral is not analytically estimable in the present case
because of the nonlinear nature of the likelihood. Therefore, a
Markov chain sampling procedure is used, which is guaranteed to
converge in the limit of infinite samples drawn64. In practice, the
routine generally moves through an initial equilibration (burn-in)
period before settling into its equilibrium state. Convergence is
not guaranteed if insufficient samples are drawn from the
parameter space, but criteria indicative of non-convergence can
be tested for and ruled out, using for example a batch means
test65. The MCMC procedure leads to a sample-based posterior

distribution, from which the statistical behavior of the stochastic
model can be easily inferred (for more details see ref. 66.
XC functionals play a vital role in DFT. Numerous attempts have

been made in the past to model the XC functional for the accurate
prediction of many-body quantum interactions67,68. In particular,
the precise description of the metal-to-insulator transition in
strongly correlated materials requires methods that go further
than a single determinant of the N-electron wave function38. Even
though DFT is an exact theory, the perfect XC functional is not
yet known.
The local density approximation (LDA), proposed by Kohn and

Sham2, adopts the exchange and correlation energies of the
homogeneous electron gas69–72. It follows that LDA is most
successful in predicting the properties of solids whose effects of
exchange and correlation are short-range70. Nevertheless, it is
broadly used in different material classes. LDA is known to
underestimate exchange energy and overestimate correlation
energy73. LDA systematically overbinds atoms causing an under-
estimation of the bond lengths and lattice parameters.
Generalized-gradient approximation (GGA) XC are semi-local

functionals that consider the gradient electron density to account
for the anisotropic manner of the localized electron densities10,74

of many materials. Contrary to LDA, GGA functionals tend to
underbind atoms overestimating bond lengths and lattice
constants. Perdew-Burke-Ernzerhof (PBE)10,74 is the most popular
GGA XC functional and has been used successfully to study many
types of materials75.
Similar to PBE, Perdew-Burke-Ernzerhof revised for solids

(PBEsol)11,76 is a GGA XC functional. PBEsol differs from PBE only
by two altered parameters that allow PBEsol to maintain many of
the reliable properties from PBE76. PBEsol improves the equili-
brium properties such as bond lengths and lattice parameters
over PBE. However, it is generally poor in predicting dissociation
or cohesive energies and reaction energy barriers77–80.
The correction in DFT for strongly correlated materials can be

introduced by including the Hubbard model81.

EDFTþU½ρσðrÞ; fniσmm0 g� ¼ EDFT ½ρðrÞ� þ EHub½fniσmm0 g� � Edc½fniσmm0 g�;
(4)

where ρσ(r) represents the charge density for spin σ and niσmm0

represents the density matrix for site i, states m andm0, and spin σ.
The EHub is the Hubbard correction for the electron-electron
interaction that is only applied to specified correlated states (d−
and f− electrons). The Edc, known as the double counting term,
contains the energy of the correlated electrons calculated within
DFT82,83. This term must be subtracted from the total energy as
the Hubbard term already contains the corrected energy of these
states. The EHub used in this study is the rotationally invariant form
introduced by Lichtenstein et al.81. In this form, the Hubbard
Hamiltonian is written in terms of matrix elements of the Coulomb
electron-electron interaction. The matrix elements can be
expanded in terms of Slater integrals and spherical harmonics.
The effective Coulomb and exchange interactions, U and J are
defined using the matrix elements of the Coulomb electron-
electron interaction. Using atomic orbitals to extract the Slater
integrals can lead to a large overestimation because the Coulomb
interaction is screened. In DFT simulation packages, U and J are
treated as parameters to reach an agreement with experimental
results.
The DFT+U method offers a relatively simple solution to the

complex problem of XC interaction calculation in strongly
correlated materials. In this work, the method used to determine
the double-counting correction in the Hubbard Hamiltonian was
the rotationally invariant method proposed by Liechtenstein81.
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RESULTS AND DISCUSSION
Studied materials
In this study, we experimented with a group of iron-based
compounds Fe (Im3m), Fe3Ge (P63/mmc), Fe2P (P62m), SrFeO3

(Pm3m) and BaFeO3 (Pm3m) having different Fe oxidation states.
The experimental properties and crystal structures of each
material are listed in Table 2. For Fe, BaFeO3, and SrFeO3 we
chose the cubic phases, while for Fe3Ge and Fe2P, we chose their
hexagonal phase. In our calculations, Fe, BaFeO3, SrFeO3, Fe3Ge,
and Fe2P have two, five, five, eight, and nine atoms per unit cell,
respectively. Fe, Fe3Ge, and Fe2P have a ferromagnetic (FM)
ordering84–86, while BaFeO3 and SrFeO3 exhibit a helimagnetic
(HM) ordering87.
SrFeO3 is a cubic perovskite and its HM structure propagates

along <111> direction by 46∘ from one layer to another87. Zhao
and Zhou88 suggest that at low temperatures SrFeO3 adopts
domains of FM phase causing magnetic inhomogeneity generat-
ing a metal-to-insulator transition. Given that our study is for 0 K,
we use the FM ordered SrFeO3 phase.
As for BaFeO3, it is well known that depending on the oxygen

deficiency and temperature, it can adopt different crystal
structures including triclinic, rhombohedral, tetragonal, and
cubic87,89. These different phases correspond to different mag-
netic orderings ranging from the HM in the hexagonal to the FM
in the cubic phase87,90. This material is reported to be an insulator
in the cubic phase91. BaFeO3 follows the <100>magnetic propa-
gation direction and the helical structure rotates the y-z
component of the spin by 22∘. Based on this smaller angle,
BaFeO3 is closer to a ferromagnetic structure than SrFeO3

87. This is
supported by the large magnetic field (42 T)92 required to switch
SrFeO3 from HM to FM compared to the small magnetic field (0.3
T)91 required to switch BaFeO3. Given the small HM characteristic
turn angle in the BaFeO3, we considered this structure to be FM
for this investigation.
We performed our calculations assuming that all structures had

a collinear FM ordering. This assumption was made considering
computational efficiency. Moreover, both of the perovskites were
assumed to be insulating and in their cubic phases. Even though
SrFeO3 is not insulating, we purposefully selected a bandgap for
this material (we choose a bandgap reported for a thin film93, to
both evaluate the robustness of MCMC to errors in small target
values and avoid overfitting towards metallic states.
Using the MCMC sampling, the space of U and J parameters was

built up with the calculations made for these five compounds. The
mean values of U and J parameters were extracted from the
estimated distribution after the burn-in. Using these mean values,
we performed simulations for the original five materials as well as
for the new materials: FeO (Fm3m), α-Fe2O3 (R3c), Al2FeB2
(Cmmm), Fe5PB2 (I4/mcm), and Fe5SiB2 (I4/mcm).
For each XC functional, we see that after a certain critical

number of pairs of proposed parameters, equilibration (burn-in) is
reached, and the algorithm starts to efficiently explore the most
important regions of parameter space. The critical number of
proposed parameters are approximately two-thousand pairs for
PBE and PBEsol, and fifteen-hundred pairs for LDA. LDA and
PBEsol explored different areas of parameter space more
frequently than PBE. The progression of parameters is provided
in MCMC trace plots in supplementary Figure 1.
The Hubbard model was introduced to DFT to correct the errors

in the simplifications of the XC functionals. However, these
corrections can be system dependent. Therefore, if the distribu-
tion of the correction parameters applied to various materials is
localized, one can conclude that the correction parameters can be
used universally in that specific XC functional with similar
materials with reasonably good accuracy.
After the PBE+U Markov Chain reached the stationary zone (ca.

2500 pairs of proposed U and J), the parameters varied minimally

until it was terminated (ca. 8000 pairs). This leads us to believe
that once the critical number of proposed pairs is reached and the
algorithm locates an initial minimal variance of proposed
parameters, it will not locate another in parameter space. The
same behavior was observed for LDA+U and PBEsol+U. This
suggests that there is only one maximum for the U and J
probability density distribution.

Univariate analysis
The arithmetic means and standard deviations of the U and J
parameters are displayed in Table 1. The standard deviation of the
J parameter (σJ) is smaller than that of U (σU) for all three XC
functionals. This is due to the higher effect the Coulomb-repulsion
has on the energetics of a system compared to the exchange
interaction. The mean value of the J parameter (Javg) is larger than
the J values used in other DFT+U investigations50,82,94. However,
recent studies have shown that larger values of J are needed to
reproduce the magnetic moments of some iron compounds95,96.
These larger values of J tend to decrease the overprediction of the
magnetic moment (See Supplementary Figure 2).
The mean value of the U parameter (Uavg) is substantially larger

in LDA in comparison to its GGA counterparts (PBE and PBEsol).
This is expected as LDA is the simplest XC functional. As
mentioned earlier, LDA assumes the XC energy is that of a
homogenous electron gas. Therefore, it requires a greater on-site
electron-electron Coulomb-interaction correction. LDA system-
atically overbinds the atoms causing an underestimation in the
bond lengths. Thus, it requires a larger U parameter to create
the Coulomb-repulsion and expand the bonds and consequently
the lattice parameters. Table 2 shows this initial underestimation
in the lattice parameters and the subsequent improvement when
introducing U and J in the calculations. Regarding the GGA
functionals, PBEsol required a slightly larger U parameter than PBE.
One of the purposes for the introduction of PBEsol was to correct
the overestimation of PBE76 in the bond lengths for non-
correlated materials. For correlated materials, however, this
overestimation leads to a closer prediction in bond length to
the experimentally measured because correlated materials need
an extra Coulomb-repulsion for more precise predictions.
The distribution of U and J parameters is more localized in PBE

comparing to that of LDA and PBEsol. This can be visualized in
Figure 1 by noting the spread of the distribution in the parameter
space in each case. Furthermore, the univariate analysis, provided in
Table 1, shows that PBE has a noticeably smaller overall standard
deviation (σUJ) than LDA and PBEsol. A small overall standard
deviation of U and J in the parameter space (i.e. a localized
distribution) indicates that using the mean values Uavg and Javg
simultaneously improves the results toward a better agreement with
the experimental data for all of the structures. Therefore, we expect
Uavg and Javg values from the distribution for PBE+U are more
transferable to other materials than LDA+U and PBEsol+U.
The last column of Table 1 shows the Pearson correlation

coefficient of the U and J parameter (ρUJ). If the correlation factor
is equal to zero, U and J are completely independent. As the

Table 1. Univariate analysis of the parameter space distributions.

XC Functional Uavg (σU) Javg (σJ) σUJ ρUJ

LDA 5.9 (1.0) 2.1 (0.6) 1.4 0.5

PBE 3.1 (0.3) 1.9 (0.1) 0.1 0.7

PBEsol 4.5 (0.6) 2.1 (0.4) 0.5 0.2

Uavg and Javg represent the arithmetic mean of each distribution. σU and σJ
denote the standard deviation. σUJ denotes the overall standard deviation.
Lastly ρUJ represents the Pearson correlation coefficient between U and J
parameters.

P. Tavadze et al.
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correlation approaches one, the dependence increases. If the
correlation is equal to one, U and J are completely dependent. This
is reminiscent of the Dudarev approximation97, a more simplified
yet rotationally invariant form, where the functional can be
obtained by only considering the zeroth-order Slater integral. The
treatment of U and J values in ref. 97 is analogous to incorporating
the exchange interaction to the Coulomb interaction using an
effective U, Ueff= U− J95. Within the Dudarev approximation the
two parameters of Lichtenstein form, U and J, are effectively

reduced to one parameter, Ueff. We find that PBE has the largest
correlation between U and J. This seems to indicate that out of the
three studied XC functionals, PBE has the closest result between
Dudarev approximation 97 and Lichtenstein form81.

Performance assessment
We have recorded the experimental and predicted values of
lattice parameters, volume, bandgap, and magnetic moment for

Table 2. Structural, electronic, and magnetic properties of selected iron-based compounds.

Material XC a b c Volume Bandgap Mag. Mom. MP

Fe Experiment 2.87a 23.64 0.0b 2.22c FMb

Im3m LDA (+U) 2.75 (2.83) 20.71 (22.55) 0.00 (0.00) 1.95 (2.73) FM (FM)

PBE, (+U) 2.83 (2.84) 22.58 (22.96) 0.00 (0.00) 2.19 (2.09) FM (FM)

PBEsol (+U) 2.78 (2.85) 21.59 (23.22) 0.00 (0.00) 2.12 (2.71) FM (FM)

Fe2P Experiment 5.87d 3.46d 119.34 0.0e 1.91f (Fe(II)) FMf

P62m LDA +U) 5.56 (5.88) 3.42 (3.32) 91.31 (99.37) 0.00 (0.00) 1.11 (2.26) FM (FM)

PBE (+U) 5.81 (5.91) 3.41 (3.38) 99.55 (102.43) 0.00 (0.00) 2.25 (2.09) FM (FM)

PBEsol (+U) 5.70 (5.90) 3.40 (3.36) 95.70 (101.25) 0.00 (0.00) 2.03 (2.23) FM (FM)

Fe3Ge Experiment 5.17g 4.22g 112.79 0.0g 2.00g FMg

P63/mmc LDA (+U) 4.95 (5.18) 4.03 (4.17) 85.69 (96.80) 0.00 (0.00) 1.25 (2.75) FM (FM)

PBE (+U) 5.14 (5.17) 4.20 (4.21) 95.83 (97.50) 0.00 (0.00) 2.18 (2.37) FM (FM)

PBEsol (+U) 5.15 (5.17) 4.22 (4.28) 96.85 (98.97) 0.00 (0.00) 2.17 (2.66) FM (FM)

BaFeO3 Experiment 3.97h 62.57 1.8i 3.50i FMi

Pm3m LDA (+U) 3.86 (3.90) 57.31 (59.09) 0.00 (0.00) 2.64 (3.56) FM (FM)

PBE (+U) 3.97 (3.98) 62.47 (63.24) 0.00 (0.00) 3.02 (3.37) FM (FM)

PBEsol (+U) 3.90 (3.91) 59.39 (59.75) 0.00 (0.00) 2.88 (3.45) FM (FM)

SrFeO3 Experiment 3.85j 57.06 1.8k 3.10m FMo

Pm3m LDA (+U) 3.74 (3.78) 52.24 (53.93) 0.00 (0.00) 2.51 (3.49) FM (FM)

PBE (+U) 3.84 (3.85) 56.70 (57.21) 0.00 (0.00) 2.87 (3.15) FM (FM)

PBEsol (+U) 3.77 (3.79) 53.45 (54.64) 0.00 (0.00) 2.71 (3.36) FM (FM)

FeO Experiment 4.31q,s 80.06 1p-2.4r 3.32q AFMq

Fm3m LDA (+U) 4.15 (4.20) 71.28 (73.31) 0.00 (2.85) 3.30 (0.12) AFM (AFM)

PBE (+U) 4.24 (4.27) 76.43 (77.74) 0.00 (0.00) 3.40 (3.51) AFM (AFM)

PBEsol (+U) 4.15 (4.22) 70.25 (75.24) 0.00 (0.00) 3.29 (3.55) AFM (AFM)

α− Fe2O3 Experiment 5.03t 13.75t 301.82 2.1u 4.9u AFMv

R3c LDA (+U) 4.62 (4.95) 13.31 (13.60) 246.03 (289.03) 0.00 (1.74) 1.11 (4.00) AFM (AFM)

PBE, (+U) 5.00 (5.05) 13.86 (13.91) 300.59 (306.85) 0.53 (1.15) 3.55 (3.85) AFM (AFM)

PBEsol (+U) 4.91 (5.00) 13.66 (13.73) 285.18 (297.22) 0.30 (1.49) 3.36 (3.95) AFM (AFM)

AlFeB2 Experiment 2.92w 11.03w 2.87w 92.23w 0.0x 1.21w,y,z FMw,y,z

Cmmm LDA (+U) 2.90 (2.87) 11.13 (10.84) 2.64 (2.85) 85.17 (88.53) 0.0 (0.0) 0.0 (1.64) FM (FM)

PBE (+U) 2.92 (2.92) 11.01 (11.01) 2.86 (2.86) 91.91 (91.91) 0.0 (0.0) 1.40 (1.52) FM (FM)

PBEsol (+U) 2.92 (2.92) 11.01 (11.01) 2.86 (2.86) 91.91 (91.91) 0.0 (0.0) 1.37 (1.57) FM (FM)

Fe5PB2 Experiment 5.49l 10.35l 311.67 0.0 1.73 l FMl

I4/mcm LDA (+U) 5.45 (5.45) 10.31 (10.31) 306.45 (306.45) 0.0 (0.0) 1.43 (2.21) FM (FM)

PBE (+U) 5.44 (5.51) 10.34 (10.39) 305.79 (315.32) 0.0 (0.0) 1.79 (1.99) FM (FM)

PBEsol (+U) 5.35 (5.48) 10.18 (10.26) 292.08 (308.12) 0.0 (0.0) 1.55 (2.11) FM (FM)

Fe5SiB2 Experiment 5.55l 10.34l 318.45 0.0 1.83l FMl

I4/mcm LDA (+U) 5.45 (5.45) 10.31 (10.31) 306.45 (306.45) 0.00 (0.0) 1.48 (2.11) FM (FM)

PBE (+U) 5.50 (5.54) 10.33 (10.42) 312.25 (320.29) 0.00 (0.0) 1.84 (1.98) FM (FM)

PBEsol (+U) 5.43 (5.51) 10.12 (10.27) 298.58 (312.42) 0.0 (0.0) 1.61 (2.04) FM (FM)

Values outside (inside) parenthesis are from simulations using DFT (DFT+U). The DFT+U calculations were performed using the mean values of U and J from
the distributions. Letters a, b, and c represent the lattice parameters. MP represents the final magnetic phase. Volume, bandgap, and magnetic moment are
expressed in units of Å3, eV, and Bohr magneton (μB), respectively.
a Ref. 114, b Ref. 115, c Ref. 116, d Ref. 117, e Ref. 118, f Ref. 85, g Ref. 86, h Ref. 119, i Ref. 91, j Ref. 120, k Ref. 93, l Ref. 121, m Ref. 122, n Ref. 123, o Ref. 124, p Ref. 125, q Ref. 126, r

Ref. 127, s Ref. 128, t Ref. 129, u Ref. 130, v Ref. 131, w Ref. 132, x Ref. 133, y Ref. 134, z Ref. 135.
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the studied materials in Table 2. Even though volume, bandgap,
and magnetic moment were set equally as target parameters, it
can be seen that the corrections for lattice parameters have been
more effective than the bandgap and magnetic moment. This is
because treating the volume on the same footing as bandgap and
magnetic moment increases the importance of the lattice
parameters. Also, changes in lattice parameters can subsequently
effect the magnetic moment and bandgap predictions.
We selected an accuracy criterion of 0.09 Å and compared the

experimental and predicted lattice parameters before and
after the Hubbard correction. As expected, LDA usually under-
estimates the lattice parameters. This corroborates our previous
findings that LDA needs a larger U value to correct the
underestimation of the bond lengths. The introduction of the
correction parameters improves the prediction for most of the
structures. As mentioned before, PBE is known for overestimating
lattice parameters in non-correlated materials. For strongly
correlated materials, as in the case of this study, this trend benefits
PBE in predicting the lattice parameters reasonably accurately
without any corrections. This was also observed by Meng et al.98 in
their study of a group of iron oxides using beyond-DFT approaches,
where they observed adding the suggested U and J parameters to
PBE minimally influence the lattice parameters prediction. This
result also supports our previous observation that PBE requires
smaller correction parameters. On the other hand, PBEsol under-
estimates the lattice parameters. This was expected because PBEsol
was introduced to correct the overestimation of PBE. The U and J
parameters suggested in this study improve the lattice parameter
prediction in PBEsol. Detailed analysis can be found in supplemen-
tary Table 2.
The same analysis was performed for the magnetic moment

with an accuracy criterion of 0.2 μB. Magnetic moment predictions
by LDA are underestimated for all of the structures. This
underestimation frequently turns to an overestimation by
introducing the correctional parameters. PBE, however, usually
predicts the magnetic moment accurately, and adding the
suggested U and J does not change the number of accurate
predictions. PBEsol, similar to LDA, underestimates the magnetic
moment. The suggested correctional parameters convert this

underestimation to overestimation. Detailed analysis can be found
in supplementary Table 3.
As for bandgap predictions, predicting a zero bandgap by DFT

+U is not remarkable. The materials listed with a bandgap in Table
2 are BaFeO3, SrFeO3, FeO, and α-Fe2O3.BaFeO3 exhibits a metallic
behavior even after the Hubbard correction. Additional calcula-
tions were performed with the aim to open the bandgap in this
compound using higher values of U. However, this was not
achieved, even with values as high as 8 eV. Similarly, SrFeO3 also
shows a metallic behavior with and without the correctional
parameters. Experimentally it has both metallic and insulating
phases88. To be able to capture the insulating phase using DFT
one has to prepare a structure that includes both HM and FM
domains. For FeO (wüstite), the only XC functional that could open
a bandgap using the Hubbard correction was LDA, however, the
magnetic moment was drastically underestimated. Prediction of
the correct bandgap in FeO requires special care associated with
the occupancies of the 3d states46. Mandal et al.99,100 showed DFT
+U is not sufficient for reproducing the experimental results of
FeO and one has to employ the DFT+DMFT29–37 method to
accurately predict the AFM state of FeO. As for α-Fe2O3 (hematite),
before introducing U and J parameters, LDA predicted a metallic
behavior, while PBE and PBEsol opened a small bandgap. Using
the correctional parameters all three XC functionals estimated an
acceptable bandgap without compromising other properties.
Finally, we show the root mean square error (RMSE) and mean

absolute error (MAE) of the predicted properties (volume,
magnetic moment) in Supplementary Table 4. The RMSE and
MAE show the improvement in the predicted values in all of the
XC functionals after including the Hubbard correction.
In summary, we selected a group of iron-based compounds and

explored the space of the correction parameters U and J that can
improve the prediction results (volume, magnetic moment, and
bandgap) for all of the studied materials simultaneously. This
semi-empirical exploration was done using a Bayesian calibration,
assisted by Markov Chain Monte Carlo sampling. For these iron-
based compounds, we extracted three sets of U and J for LDA,
PBE, and PBEsol XC functionals. All the U and J distributions have a
single maximum. LDA requires a significantly larger U parameter

Fig. 1 The density was estimated using a gaussian kernel density estimation (KDE). The bandwidth was selected using the Scott136 approach.
Each KDE is normalized to one separately. δ is the step between contour lines. (top left) Shows the probability density function of accepted U
parameters. (bottom left) Shows the joint probability density function of accepted U and J. (bottom right) shows the probability density
function of accepted J parameters.
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comparing to GGA functionals. U and J achieved in PBE are the
most transferable between the studied iron-based compounds.
The Dudarev approximation can result in a closer prediction to the
Lichtenstein form in PBE compared to that of LDA and PBEsol.
Assessing the correction parameters obtained from the distribu-
tions, showed the suggested correctional parameters improve the
prediction of the lattice parameters and the magnetic moment in
all XC functionals. A correct bandgap was not predicted for FeO or
BaFeO3, due to the inability of DFT+U to reproduce the
experimental results. In the case of α− Fe2O3, bandgap estimation
was improved for all the XC functionals. PBE predicts the lattice
parameters reasonably accurately even without the Hubbard
correction for these iron-based compounds. Lastly, based on the
analysis performed in this study, we conclude that the U and J
pairs provided can be a good starting point for DFT+U
calculations on the iron-based compound. In the future, it will
be interesting to expand the parameter space to incorporate the
details of the orbital occupation58–60, the inter-site Hubbard V95,
and pseudopotentials101. Moreover, various other properties such
as cohesive energy, formation energy, elastic constants, etc. can be
used in dataset X. The proposed methodology can be employed
for other systems to predict their properties for a given set of
parameters within the spirit of high-throughput calculations.

METHODS
DFT+U and Bayesian calibration interface
Since the underlying model is nonlinear and the evidence P(X) is
intractable, we used MCMC to draw the samples from the distribution.
The MCMC sampler used an adaptive block proposal. For each run of the
sampler, post equilibration (burn-in) convergence was assessed using a
standard of ±5% for both U and J at 95% confidence using a Student t-test
on batch means. Mixing of the sampler depicts a stationary behavior, and
convergence was obtained for all runs after approximately 2000 post-burn-
in draws.
This experiment is a set of back and forth communications between the

DFT package and the MCMC sampler. The DFT+U calculation is performed
using the U and J parameters proposed by the MCMC sampler. Based on
the accuracy of the DFT prediction in comparison with the experimental
values, the MCMC sampler proposes a new pair of parameters drawn from
a normal distribution centered at the U and J of the previous step for a new
trial, and so on. We use a block-proposal scheme (both i.e.U and J are
proposed at once). Our implementation uses an adaptive proposal where
the covariance of the multivariate normal proposal distribution is shaped
to the accepted points. At each MCMC step the likelihood is calculated and
the proposal is accepted or rejected based on the Metropolis-Hastings
algorithm (for more details see ref. 66. A schematic representation of the
algorithm is shown in Fig. 2.

Computational details
The DFT calculations were performed using the Vienna Ab initio Simulation
Package (VASP)102–105. The valence electrons wave functions were
described by the projector augmented-wave106,107 method. The kinetic
energy expansion and optimum irreducible Brillouin zone grid (k-grid) for
each structure were obtained by choosing a maximum error of 1 meV/

atom for the total energy in each cell. We used Γ-centered and Monkhorst-
Pack type108k-grids for hexagonal and cubic structures, respectively.
Detailed convergence parameters are provided in supplementary Table 1.
The Slater integrals values for Fe 3d shell were evaluated using the U, J,
and the ratio of F4/F2, as implemented in VASP109.
The Kohn-Sham equations were solved self-consistently with a

maximum total energy difference of 10−5 eV. Furthermore, we assumed
the crystal structure geometry to be optimized when the internal stress
tensor components differ from the ambient pressure (assumed to be zero)
by less than 0.5 kbar, and the residual forces on each atom are less than
1meV/Å.
As a consequence of the MCMC random walk, the algorithm might step

in unphysical areas of the parameter space where J > U. These values
are expected to be proposed because the Markov chain is free to explore
every possible region seeking points where the predictions are close to the
provided experimental values. Initially, the algorithm has little guidance
from past proposed parameters leading to the proposition of unphysical
parameters. To penalize the MCMC walker anytime an unphysical pair is
proposed by the sampler, we skip the DFT calculation and return senseless
values for the DFT+U prediction (e.g. bandgap=−50 eV, volume=
−50Å3, magnetic moment=−50 μB). This encourages the algorithm to
avoid proposing unnatural parameters and to explore other areas of the
parameter space. The same strategy is used to penalize the algorithm
when the U and J correction results in a change of space group.

DATA AVAILABILITY
All MCMC sampling results are available at https://doi.org/10.24435/
materialscloud:16-d6. All DFT calculation results are available from the corresponding
author upon request.

CODE AVAILABILITY
The codes preparing the inputs for DFT code and analyzing the outputs to be
transferred to MCMC code are available at https://github.com/petavazohi/MCMC-UJ-
Fe.git.
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