
Faculty & Staff Scholarship

2005

Simulated Annealing Heuristics for Managing Resources during Simulated Annealing Heuristics for Managing Resources during

Planned Outages at Electric Power Plants Planned Outages at Electric Power Plants

Alan McKendall

James Noble

Cerry Klein

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3053&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F3053&utm_medium=PDF&utm_campaign=PDFCoverPages

Computers & Operations Research 32 (2005) 107–125
www.elsevier.com/locate/dsw

Simulated annealing heuristics for managing resources during
planned outages at electric power plants

Alan R. McKendall Jr a ;∗, James S. Nobleb, Cerry M. Kleinb

aDepartment of Industrial & Management Systems Engineering, 325A Mineral Resources Building, PO Box 6070,
West Virginia University, Morgantown, WV 26506, USA

bDepartment of Industrial & Manufacturing Systems Engineering, E3437 Engineering Building East,
University of Missouri-Columbia, Columbia, MO 65211, USA

Received 17 December 2002

Abstract

This paper presents a mathematical model and simulated annealing heuristics for assigning activities to
workspaces and resources (e.g., equipment, parts, and toolboxes) to work/storage spaces during planned outages
at electric power plants. These assignments are made such that the distance resources (toolboxes) travel
throughout the duration of the outage is minimized. This problem is de2ned as the dynamic space allocation
problem. To test the performance of the proposed techniques, a data set is generated and used in the analysis.
The results show that the simulated annealing heuristics perform well with respect to solution quality and
computational time.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Dynamic space allocation problem; Simulated annealing; Integer programming model; Outage planning;
Electric power plants

1. Introduction

This research is motivated by the challenge to reduce congestion and work crew interference inside
a reactor containment building during planned outages at a nuclear power plant. During planned
outages, activities (laydown, preventative maintenance, surveillance, etc.) are scheduled with respect
to constraints on resources, space, and logic relationships between activities such that outage duration
is minimized. Once the schedule of the outage activities are obtained, laydown managers and building

∗ Corresponding author. Fax: +1-304-293-4970.
E-mail address: armckendall@mail.wvu.edu (A.R. McKendall).

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0305-0548(03)00206-5

mailto:armckendall@mail.wvu.edu

108 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

coordinators assign activities to workspaces and idle resources (e.g., toolboxes) to storage spaces
when they are not used to perform an activity. These assignments are made based on the knowledge
and past experiences of the plant managers and coordinators. Since these assignments are often
determined based on limited information and without the aid of an algorithm or eAcient technique,
poor assignments are made causing high congestion and work crew interference. Therefore, this
paper focuses on assigning activities to workspaces and resources to work/storage spaces such that
the total distance the resources travel throughout the duration of the outage (transportation cost) is
minimized. This problem is de2ned as the dynamic space allocation problem (DSAP). If the total
distance resources travel is reduced, then travel time is reduced. According to Askin [1, p. 204],
reduced material movement translates into reductions in required aisle space, higher productivity and
safety, reduced storage space and utility requirements, simpli2ed material control and scheduling,
and less overall congestion. Hence, when minimizing the distance resources travel, other objectives
are achieved simultaneously. More importantly, outage cost is reduced.

In the building construction literature, Zouein [2] de2ned the layout planning problem as the task of
assigning site space to resources such that they can be accessible and functional during construction.
In addition, they de2ned dynamic layout planning as creating layouts that change over time as
construction progresses. The authors used a construction method to heuristically assign site space to
resources with respect to minimizing transportation and relocation costs subject to two-dimensional
geometric constraints. Transportation costs are based on the travel distance of a resource from storage
to the location where it is used, and relocation costs are based on the travel distance of a resource
from one storage space to another storage space. The authors stated that their results are desirable
when solving a problem for which no closed-form mathematical solution exists. Other papers in this
area that addresses the dynamic layout planning problem are Tommelein [3] and Lin [4].

In light of the literature review, there are no known papers that address the DSAP de2ned in this
paper. Although the dynamic layout planning problem is similar to the DSAP, these problems are
diHerent for the following reasons.

• The layout con2guration for the DSAP remains the same throughout the planning horizon
(i.e., the workspaces and the storage locations are the same for each period); however, it changes
in the dynamic layout planning problem (e.g., constructing the interior walls of a building restricts
the availability of space).

• In the DSAP, the resources are renewable. In contrast, the resources are consumable (non-
renewable) materials in the dynamic layout planning problem.

• In the DSAP, transportation cost is de2ned as the distance resources travel (i.e., the sum of the
travel distances of the resources from/to storage to/from workspaces, from storage locations to
other storage locations, and from workspaces to other workspaces) throughout the duration of
an outage. In the dynamic layout planning problem, the total distance resources travel is the
sum of the transportation (travel distances of resources from storage to workspaces) as well as
relocation costs (travel distances of resources from storage to storage locations), and the travel dis-
tances of resources from workspaces to workspaces is not considered, since the resources are non-
renewable.

• The dynamic layout planning problem only assigns construction resources to locations. In contrast,
the DSAP assigns outage activities and their required resources (toolboxes) to workspaces and
idle resources (toolboxes) to storage spaces.

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 109

In this paper, a mathematical formulation and two simulated annealing heuristics are developed
for the DSAP. In Section 2, the de2nition, assumptions, and mathematical formulation for the DSAP
are given, and a small problem instance is solved using the formulation to illustrate the complexity
of this problem. Then two simulated annealing heuristics for the DSAP are presented in Section 3.
In Section 4, the computational results of the proposed techniques on a set of randomly generated
test problems are given. Finally, Section 5 provides conclusions and future research directions.

2. The dynamic space allocation problem model

2.1. Problem de8nition

When scheduling outage activities (e.g., laydown, preventative maintenance, surveillance) during
planned outages at electric power plants (speci2cally, in a reactor containment building at a nuclear
power plant), several resources are needed to perform these activities. Through interviewing personnel
and observing planned outages, the authors concluded that the most constraining resources were the
pedestal and polar cranes, work crews (laborers, operators, engineers, etc.), toolboxes, and space.
A brief description of how these constraining resources are utilized during planned outages follows.
First, larger objects (e.g., materials, equipment, toolboxes) are moved into the reactor containment
building through the equipment hatch using the pedestal crane. Once these objects are moved into
the building, the polar crane is used to move the objects to work/storage spaces. However, workers
are used to move smaller objects into the building through the equipment hatch, and they are also
used to move these objects to work/storage spaces. Furthermore, work crews (operators, engineers,
etc.) are needed to operate the equipment and to perform maintenance and surveillance activities.
The most constraining resource, space, is used to store, stage, and move materials, as well as to
perform outage activities. After the outage activities are performed, the objects are moved out of the
building into a warehouse until the next outage.

There are many software products used to manage projects and to schedule outage activities (i.e.,
to determine start and 2nish times for the outage activities). After obtaining the schedule of outage
activities, plant managers and coordinators assign outage activities and their resources (i.e., toolboxes)
to workspace locations and idle resources (i.e., idle toolboxes) to storage locations. These assignments
are made based on the knowledge and past experiences of the plant managers and coordinators. Since
assignments are often determined based on limited information and without the aid of a sophisticated
algorithm or technique, poor assignments are often made causing high congestion and work crew
interference. As a result, this research focuses on developing eAcient algorithms for the problem of
eAciently assigning outage activities to workspaces and resources to work/storage spaces such that
the distance the resources travel throughout the duration of the outage is minimized. In other words,
at each time period an activity is started, it is assigned to a workspace as well as the resources
required to perform that activity, and the idle resources are assigned to storage spaces. Furthermore,
at each time period an activity is completed, its resources are either moved to storage spaces or
assigned to other workspaces where activities, which require those resources, are beginning. This
problem is de2ned as the DSAP. Below, the assumptions, notation and formulation for the DSAP
are presented.

110 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

2.2. Problem assumptions

The assumptions for the DSAP are as follows:

1. The location of the work/storage spaces (i.e., layout con2guration) is known;
2. The distances between locations are known;
3. The resources required to perform each activity are known;
4. The schedule of the outage activities are known a priori and are determined with respect to

precedence relationships between activities as well as constraints on resources and workspaces
such that outage duration is minimized;

5. Only one activity can be performed in each workspace in a given period, and the workspace
assigned to an activity is large enough to perform the activity and store its required resources;

6. Each activity requires only one workspace and at least one resource;
7. Each activity is assigned to only one workspace (e.g., if an activity is performed in multiple

periods, the activity is assigned to the same workspace for multiple periods);
8. The capacities of the storage spaces are known;
9. The objective is to minimize transportation costs (i.e., the total distance the resources travel

throughout the duration of the outage).

2.3. Mathematical notation

The indices, parameters, and variables for the DSAP formulation are presented below.
Indices

j = activity number such that j = 1; 2; : : : ; J where J = total number of activities;
t = resource number such that t = 1; 2; : : : ; T where T = total number of resources;
p = time period such that p = 1; 2; : : : ; P where P is the total number of periods;
k; l ∈ L = the set of all spaces or locations (storage/workspaces) such that L = (1; 2; : : : ; N)

where N = total number of storage/workspaces;
w ∈ W = the set of workspaces where W ⊂ L;
s ∈ S = the set of storage spaces where S ⊂ L and W ∪ S = L;
Rj = set of resources required to perform activity j;
Ip = set of idle resources in period p;
Ap = set of activities performed in period p;

Parameters

dkl = distance between locations k and l;
Cs = maximum number of resources allowed in storage space s;
NRj = number of resources required to perform activity j;

Decision variables

xptk = 1 if resource t is assigned to location k at time period p,
= 0 otherwise; and

yjw = 1 if activity j is performed in workspace w,
= 0 otherwise;

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 111

2.4. Mathematical formulation

Minimize
T∑

t=1

N∑

k=1

N∑

l=1
l �=k

P−1∑

p=1

dklxptkxp+1; tl (1)

Subject to :
∑

∀s∈S

xpts = 1 ∀p; ∀t ∈ IP; (2)

∑

∀t∈Ip

xpts6Cs ∀s ∈ S; ∀p; (3)

∑

∀w∈W

yjw = 1 ∀j; (4)

∑

∀j∈Ap

yjw6 1 ∀w ∈ W; ∀p; (5)

∑

t∈Rj

xptw = NRjyjw ∀p; ∀j ∈ Ap; ∀w ∈ W; (6)

xptk = 0 or 1 ∀p; ∀t; ∀k ∈ L; (7)

yjw = 0 or 1 ∀j; ∀w ∈ W: (8)

The objective function (1) minimizes transportation cost (i.e., total distance the resources travel
throughout the duration of the outage). Constraint set (2) ensures that every idle resource in each
period is assigned to a storage space. Constraint set (3) guarantees that the storage capacity for each
storage space in each time period is not exceeded. Assigning each activity to only one workspace is
considered in constraint set (4). To ensure that at most one activity is assigned to a workspace in
each period, constraint set (5) is used. Constraint set (6) ensures that the required resources needed
to perform each activity are assigned to the workspace where each activity is performed. Lastly, the
restriction on the decision variables are given in (7) and (8).

2.5. Small problem instance

The mathematical formulation for the DSAP will be used to solve a small problem instance. The
data for the problem instance is given in Table 1. For instance, activity 3 is performed in periods 1
and 2 and requires resources 2, 7, and 8. Also, resources 1, 4–6 are idle in period 1. The layout of
the facility is given in Fig. 1 such that there are three workspaces (locations 1–3) and three storage
spaces (locations 4–6). The rectilinear distance measure is used to determine the distances between
the locations. For instance, the distances between locations 1 and 2 as well as 1 and 6 are 1 and
3 distance units, respectively. Furthermore, the maximum capacity of each storage space is three
resources.

112 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

Table 1
Data for the small DSAP instance

Period Activity Required resources Idle resources

1 1 9 1, 4, 5, 6
2 3
3 2, 7, 8

2 2 3 1, 5
3 2, 7, 8
4 4, 6, 9

3 5 1, 2, 9 4, 6, 8
6 5
7 3, 7

4 6 5 1, 2, 4, 6,
7 3, 7 8, 9

5 7 3, 7 2, 4, 6, 8
8 1, 5, 9

Location 1
(Workspace 1)

Location 2
(Workspace 2)

Location 3
(Workspace 3)

Location 4
(Storage space 1)

Location 5
(Storage space 2)

Location 6
(Storage space 3)

Fig. 1. Layout con2guration.

Before using the DSAP formulation to solve the small problem instance, the nonlinear (quadratic)
objective function needs to be linearized so that a branch and bound technique can be used to
solve this problem. The standard linear programming transformation is utilized to linearize this term.
Therefore, the linearized objective function,

T∑

t=1

N∑

k=1

N∑

l=1
l �=k

P−1∑

p=1

dklwp+1;ptkl (1′)

is substituted for objective function (1) where wp+1;ptkl is a zero/one decision variable, and the
constraints

xptk + xp+1; tl − 16wp+1;ptkl ∀p; ∀t; ∀k; l ∈ L(k �= l); (9)

xptk + xp+1; tl¿ 2wp+1;ptkl ∀p; ∀t; ∀k; l ∈ L(k �= l); (10)

wp+1;ptkl = 0 or 1 ∀p; ∀t; ∀k; l ∈ L(k �= l); (11)

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 113

Activity 2 Activity 3 Activity 1 Activity 2 Activity 3 Activity 4
 3 2, 7, 8 9 3 2, 7, 8 4, 6, 9

 5 1, 4, 6 5 1
 p = 1 p = 2

Activity 7 Activity 6 Activity 5 Activity 7 Activity 6
 3, 7 5 1, 2, 9 3, 7 5

 8 4, 6 1, 8, 9 2, 4, 6
 p = 3 p = 4

Activity 7 Activity 8
 3, 7 1, 5, 9

 8 2, 4, 6
 p = 5

Fig. 2. Optimal solution to the small problem instance.

are added to the formulation. Now the formulation for the DSAP is a zero/one linear integer program
and can be solved using a branch and bound technique.

The DSAP formulation is solved optimally using a branch and bound algorithm (CPLEX solver,
version 6.0). The optimal solution is given in Fig. 2 and has a cost of 16 distance units. In period
1, activities 2, 3, and 1 as well as their required resources are assigned to workspaces 1, 2, and
3, respectively. Also, the idle resources 1, 4, and 6 are assigned to storage space 3, and the idle
resource 5 is assigned to storage space 2. This is the initial assignment of resources to locations;
therefore, the cost of this assignment is zero. However, the cost of the assignment of resources to
locations is 2 distance units, in period 2, since resources 4 and 6 travel one distance unit from
storage space 3 in period 1 to workspace 3 in period 2. In other words, the distance the resources
travel between periods 1 and 2 is 2 distance units. In addition, the cost of the assignments in periods
3, 4, and 5 are 7, 5, and 2 distance units, respectively. Therefore, the total distance the resources
travel is 16 distance units.

The DSAP instance above required only a few seconds of computational time. However, when
several DSAP instances with 10 locations and 10 periods were considered, low quality, though
feasible, solutions were obtained for some of the problems, yet for others a feasible solution could
not be obtained, after 48 h of computational time on a Pentium IV 1:8 GHz PC. As with any
combinatorial optimization problem, as the problem size increases, the computational time increases
exponentially.

The computational complexity of the DSAP can be examined by considering the complexity of
its sub-problems. The DSAP consists of two problems: the workspace allocation problem (WAP)—
the problem of assigning activities to workspaces (i.e., assign the required resources to perform the
activities to workspaces); and the storage space allocation problem (SAP)—the problem of assigning
idle resources to storage spaces. Assignments are made such that the total distance resources travel
during the planning horizon is minimized. The WAP is a generalization of the quadratic assignment
problem, since there are multiple periods. The formulation for this problem is given in Section 2.4.
More speci2cally, the WAP formulation consists of objective function (1) as well as constraint sets

114 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

(4)–(8), where the locations k and l need to be restricted to the set of workspaces, W , in objective
function (1) and constraint set (7). For the DSAP instance given above, the number of possible
WAP solutions in the 2rst period is 3! (i.e., the number of ways activities 1–3 can be assigned to
the three workspaces is 3 factorial). Since activities 2 and 3 are assigned to workspaces in the 2rst
period, the number of possible WAP solutions in the second period is one. That is, in period 2,
activities 2 and 3 are assigned to the same workspaces as in period 1, and activity four is assigned
to the same workspace as activity 1 in period 1. In periods 3, 4, and 5, the numbers of possible
WAP solutions are 6, 1, and 2, respectively. As a result, the number of possible WAP solutions
for the DSAP instance is 72, which is the product of the number of possible solutions in each
period. In contrast, the SAP is a set partitioning problem. In other words, the set of idle resources in
each period is partitioned into sets of resources assigned to speci2c storage spaces. The number of
resources assigned to each set is based on the capacities of the storage spaces. The SAP formulation
consist of objective function (1) as well as constraint sets (2), (3), and (7), where the locations k
and l need to be restricted to the set of storage spaces, S, in objective function (1) and constraint set
(7). For the DSAP example given above, the number of possible SAP solutions in the 2rst period is
78 (i.e., the number of possible ways the idle resources 1,4–6 can be assigned to the three storage
spaces is 78). In periods 2, 3, 4, and 5, the numbers of possible SAP solutions are 9, 27, 510, and
78, respectively. Thus, the number of possible SAP solutions is 753, 990, 120, which is the product
of the number of possible solutions in each period. Obviously the solution space for the SAP is
much larger than the solution space for the WAP. Accordingly, the number of possible DSAP
solutions is 54, 287, 288, 640, which is the product of the number of possible WAP solutions and
SAP solutions. Therefore, the DSAP consists of two computationally intractable problems. As a result,
it is impossible to obtain optimal solutions for large scale DSAPs in reasonable computational time.
Hence, two simulated annealing heuristics are developed to quickly obtain high quality solutions for
the DSAP.

3. Simulated annealing heuristics for the DSAP

Many large combinatorial optimization problems have been solved successfully by applying sim-
ulated annealing (SA) heuristics. Kirkpatrick [5] was the 2rst to use SA to solve combinatorial
optimization problems. Wilhelm [6] and Heragu [7] applied SA heuristics for solving the quadratic
assignment problem. Chen [8] as well as Adil [9] applied SA heuristics for the cell formation prob-
lem. Since SA heuristics perform well for a number of related problems, it is applied to solve the
DSAP problem. In this section, two simulated annealing (SA) heuristics are presented for the DSAP.

The SA heuristic starts with an initial solution y0, call it the current solution (i.e., let yc = y0),
and its transportation cost is obtained, TC(yc). At the current iteration, a neighboring solution of
the current solution is obtained by performing a move (or operation). This solution is denoted
as y′. If the cost of the neighboring solution is better than the cost of the current solution, then
the neighboring solution is selected as the current solution at the next iteration. More speci2cally, if
TC(yc)−TC(y′)¿ 0, then set yc=y′ for the next iteration. If the cost of the neighboring solution is
worse than the cost of the current solution (i.e., TC(yc)−TC(y′)¡ 0), then the neighboring solution
is selected as the current solution for the next iteration with respect to an acceptance probability.
Otherwise, keep the current solution for the next iteration. At each iteration, the best solution and its

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 115

[(9), (3), (2,7,8), {1, 4, 5}, {6}, {∅ }] Period 1
[(4, 6, 9), (3), (2, 7, 8), {1, 5}, {∅ }, {∅ }] Period 2

y0 = [(1, 2, 9), (5), (3, 7), {4, 6, 8}, {∅ }, {∅ }] Period 3
[(∅), (5), (3, 7), {1, 2, 4}, {6, 8, 9} {∅ }] Period 4
[(1, 5, 9), (∅), (3, 7), {2, 4, 6}, {8}, {∅ }] Period 5

Fig. 3. Initial solution for the DSAP instance.

cost, denoted Best sol and Best cost, are saved and updated, if necessary. The heuristic is repeated
for a certain number of iterations or until a stopping criterion is met.

An initial solution for the WAP is generated by assigning the 2rst activity to the 2rst workspace,
the second activity to the second workspace, and so on, in the 2rst period. In the second period,
if one or more of the activities in the second period is performed in the 2rst period, assign these
activities to the same workspaces as in the 2rst period. The other activities are assigned to the 2rst
available workspaces. This process is repeated until all the activities in each period are assigned to
workspaces. An initial solution for the SAP is generated by 2rst forming a set of idle resources
which is assigned to the 2rst storage space. The number of idle resources in the set is determined
by the capacity of the storage space. Then the next set of resources is assigned to the second storage
space, and so on. For instance, if there are seven idle resources in period 1 and the capacity of each
storage space is 3, then the 2rst three idle resources are assigned to storage space 1. The second
three idle resources are assigned to storage space 2, and the last idle resource is assigned to storage
space 3. This process is repeated for each period, until all of the idle resources are assigned to
storage spaces. Therefore, the initial solution, denoted as y0, for the DSAP can be represented as
multiple sequences of sets of resources. The 2rst half of the sets of resources in each sequence (or
period) represent the solution for the WAP, which is the sets of resources, in parentheses (), required
to perform the activities assigned to the workspaces. The second half of the sets of resources in
each sequence represent the solution for the SAP, which is the sets of idle resources, in braces
{}, assigned to the storage spaces. For the DSAP instance de2ned in Table 1 and Fig. 1 with a
maximum capacity of three idle resources in each storage space, the initial solution y0 is generated
and given in Fig. 3.

In Fig. 3, the initial solution y0 for the DSAP instance shows the location of each of the resources
in each time period. For instance, in period 1, resource 9 required to perform activity 1 is assigned to
workspace 1, and resource 3 required by activity 2 is assigned to workspace 2. The set of resources,
2, 7, and 8, required by activity 3 is assigned to workspace 3. The set of idle resources {1; 4; 5} is
assigned to storage space 1, and the set of idle resource {6} is assigned to storage space 2. Storage
space 3 is empty, since no idle resources are assigned to storage space 3. In period 2, activities 2
(3) and 3 (2, 7, 8) are assigned to workspaces 2 and 3, respectively, since they are assigned to these
workspaces in period 1. Therefore, activity 4 (i.e., the set of resources 4, 6, and 9) is assigned to
the 2rst available workspace. That is, it is assigned to workspace 1. The set of idle resources {1; 5}
is assigned to storage space 1, and storage spaces 2 and 3 are empty. Hence, each sequence gives
the location of the resources in each period. In period 2, the cost of the assignment of resources
to locations is 3 distance units, since resource 4 travels 1 distance unit and resource 6 travels 2
distance units. For periods 3, 4, and 5, the cost of the assignments of resources to locations is 11,
6, and 5 distance units, respectively. Therefore, the transportation cost of the initial solution y0 is
25 distance units, denoted as TC(y0) = 25.

116 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

Once an initial solution y0 is generated and set equal to yc, a neighboring solution y′ is ob-
tained by performing an operation on the current solution yc. For the WAP, a move is de2ned as
follows:

1. Interchange the locations (workspaces) of two activities in one or more of the periods.
2. In one or more of the periods, remove an activity from a location (workspace) and assign it to

an available location (empty workspace).
3. A combination of both (1) and (2).

Considering the initial assignment of resources in period 4 for the DSAP solution in Fig. 3,
removing activity 6 (and its required resource 5) from workspace 2 and assigning it to workspace 1
is an example of the second type of move. An example of the third type of move is to interchange
the locations of activities 6 (5) and 7 (3, 7) in period 4. That is, assign activity 6 (and its required
resource 5) to workspace 3, and assign activity 7 (and its required resources 3 and 7) to workspace
2, in both periods 3 and 4. Also, in period 5, remove activity 7 (and its required resources 3 and 7)
from workspace 3 and assign it to workspace 2. It is necessary to perform these moves for periods
3, 4, and 5, to maintain feasibility (i.e., to ensure assumption 7 and constraint 4 holds). In other
words, if activity 7 is assigned to workspace 2 in period 4, then activity 7 must also be assigned to
workspace 2 in periods 3 and 5. Since the three operations are necessary to maintain feasibility, the
set of operations is de2ned as a single move. For the SAP, a move is de2ned as follows.

1. Interchange the locations (storage spaces) of two resources assigned to diHerent storage spaces in
one of the periods.

2. In one of the periods, remove a resource from a location (storage space) and assign it to a
diHerent location (storage space in which the capacity has not been met).

In Fig. 3, an example of the 2rst type of move is to interchange the location of idle resources 1
and 6 in storage spaces 1 and 2, respectively, in period 4. More speci2cally, assign idle resources 1
and 6 to storage spaces 2 and 1, respectively, in period 4. An example of the second type of move
is to remove idle resource 1 from storage space 1 and assign it to storage space 3, in period 4.
Another example is to remove idle resource 6 from storage space 1 and assign it to storage space
2, in period 5. Since the number of possible moves for the SAP is much larger than the number of
possible moves for the WAP, most of the attempted moves during the execution of the SA heuristics
are for the SAP.

In some cases, it may be necessary to assign speci2c outage activities to speci2c workspaces.
For example, if outage activity 7, in the DSAP instance de2ned above (Table 1 and Fig. 1), is
a maintenance activity performed on a large machine and can only be performed in workspace
3 (location 3), then activity 7 is initially assigned speci2cally to workspace 3. Using the DSAP
formulation to obtain the optimal solution for this problem, this would require setting the decision
variable y73 = 1. As a result, the assignment of activities to workspaces and idle resources to
storage spaces changes, and the transportation cost increases to 18 distance units (from 16 distance
units). Therefore, restricting activities to speci2c workspaces reduces the complexity of the problem,
since the number of feasible solutions is reduced. With respect to the heuristic solution procedure,
restricting activities to speci2c workspaces reduces the number of WAP moves; thus, reducing the
complexity of the problem. For example, if activity 2 can only be performed in workspace 2, then

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 117

there is only one WAP move in periods 1 and 2 (i.e., interchange the locations of activities 1 and 3
in period 1 and interchange the locations of activities 3 and 4 in period 2). Since assigning speci2c
outage activities to speci2c workspaces reduces the complexity of the DSAP, it is not considered
in this research. However, the SA heuristics presented in this research can easily be modi2ed to
consider this case.

The acceptance probability is de2ned as the probability of accepting a non-improving neighboring
solution as the current solution for the next iteration. It is de2ned as

P(RTC) = e−RTC=Tc and Tc = T0�r−1 for r = 1; 2; : : : ; R;

where RTC = TC(yc)− TC(y′), Tc represents the current temperature, T0 is the initial temperature,
r − 1 is the number of temperature reductions, and � is called the cooling ratio and is usually set at
0.90 as in Wilhelm [6] and Heragu [7]. If a randomly generated number x, between 0 and 1, is such
that x ¡ P(RTC), then accept the non-improving neighboring solution as the current solution for
the next iteration. Otherwise, reject the non-improving neighboring solution, and keep the current
solution. At the initial temperature, the SA heuristic has a higher acceptance probability, which
allows the acceptance of non-improving solutions. Therefore, this allows the heuristic to explore
the solution space without quickly converging to a poor local optimum. After steady state has been
reached (after a certain number of iterations), the temperature is reduced. As the temperature reduces,
the heuristic has a lower acceptance probability, thus, enabling the SA heuristic to converge to a
high quality local optimum.

The SA heuristic for the DSAP, called SA I, is given below.

Step 0: De2ne the SA parameters: T0 = initial temperature, � = cooling ratio, AM = attempted
number of moves at each temperature, p = probability of performing a SAP move, Max iter =
maximum number of consecutive iterations without improvement.
Step 1: (a) Initialize the temperature change counter: r = 1.
(b) Initialize the number of iterations without improvement counter: i = 0.
Step 2: (a) Generate an initial solution y0 and assign it to the current solution (i.e., set yc = y0).
(b) Obtain the cost of the current solution, TC(yc).
(c) Set the following parameters: Best sol = yc and Best cost = TC(yc).
Step 3. If i¿Max iter, then stop and return Best sol and Best cost. Else, (1) Initialize counter

for the number of attempted moves at each temperature: j = 0.
(2) Set the current temperature according to the annealing schedule, Tc = T0�r−1.
Step 4: (a) Obtain a neighboring solution y′ of yc by randomly selecting a period t and randomly

selecting either a WAP or SAP move in period t. The probability of selecting a SAP move is p.
(b) Update j = j + 1.
(c) Calculate the cost of y′, TC(y′).
(d) Calculate the change in the total cost RTC = TC(yc) − TC(y′).
Step 5: If RTC¿0 or (RTC¡0 and x=random (0; 1)¡ P(RTC)=e−RTC=Tc , then (1) Set yc=y′

and TC(yc)=TC(y′). (2) If Best cost ¿ TC(yc), then Best cost =TC(yc), Best sol=yc, and i=0.
Else, update i = i + 1.

Else, update i = i + 1.

118 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

Activity 1 Activity 2 Activity 3 Activity 4 Activity 2 Activity 3
 9 3 2, 7, 8 4, 6, 9 3 2, 7, 8

 1, 4, 5 6 1, 5
 p = 1 p = 2

Activity 5 Activity 6 Activity 7 Activity 6 Activity 7
 1, 2, 9 5 3, 7 5 3, 7

 4, 6, 8 4, 6, 8 1, 2, 9
 p = 3 p = 4

Activity 8 Activity 7
 1, 5, 9 3, 7

 4, 6, 8 2
 p = 5

Fig. 4. Initial solution for the SA II heuristic.

Step 6. If j¿AM , then update r = r + 1, and go to step 3. Else, go to step 4.

The second SA heuristic developed (SA II) performs steps 0–6 of the SA I heuristic. However,
the generation of the initial solution (for the SAP) and the SAP moves are slightly diHerent than
in the SA I heuristic. The generation of the initial solution for the WAP for the SA II heuristic is
the same as for the SA I heuristic. However, the generation of the initial solution for the SAP is
diHerent. When generating an initial solution for the SAP for the SA II heuristic, the 2rst set of
idle resources in period 1 is assigned to the 2rst storage space. The number of idle resources in the
set is determined by the capacity of the 2rst storage space. Then the next set of idle resources is
assigned to the second storage space, and so on, in period 1. In period 2, if one or more of the
idle resources in period 2 is idle in period 1, assign these idle resources to the same storage spaces
as in the 2rst period. The other idle resources are assigned to the 2rst available storage spaces.
This process is repeated until all the idle resources in each period are assigned to storage spaces.
For example, considering the DSAP instance in Table 1, idle resources 1, 4, and 5 are assigned
to storage space 1 (location 4), and idle resource 6 is assigned to storage space 2 (location 5), in
period 1. Since idle resources 1 and 5 are assigned to storage space 1 in period 1, they are assigned
to storage space 1 in period 2. In periods 3–5, idle resources 4, 6, and 8 are assigned to storage
space 1, and idle resources 1, 2, and 9 are assigned to the 2rst available storage space (storage space
2) in period 4. Therefore, idle resource 2 is assigned to storage space 2, in period 5. See Fig. 4
for the initial solution for the SA II heuristic. The transportation cost of the initial solution is 25
distance units, which is the same as the cost of the initial solution for the SA I heuristic. However,
this initial solution is much better, since the cost of moving resources from storage spaces to storage
spaces in consecutive periods is at a minimum, and the number of SAP moves needed to improve
the initial solution is greatly reduced. Also, since most of the cost comes from moving resources
from/to workspaces to/from storage spaces in consecutive periods, performing a few WAP and SAP
moves can drastically reduce the cost (recall, the number of possible SAP moves are much greater
than the number of WAP moves).

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 119

In step 4a for the SA II heuristic, an SAP move is de2ned as follows:

1. Interchange the locations (storage spaces) of two idle resources assigned to diHerent storage spaces
in one or more periods.

2. In one or more periods, remove an idle resource from a location (storage space) and assign it to
a diHerent location (storage space in which the capacity has not been met).

3. A combination of both (1) and (2).

Considering the initial assignment of idle resources in period 4 in Fig. 4, exchanging the locations
of resources 4 and 2 is an example of the third type of SAP move. That is, assign idle resources 2
and 4 to storage spaces 1 and 2, respectively, in time periods 4 and 5 (SAP move 1). Also, remove
idle resource 4 from storage space 1, and assign it to storage space 2 (SAP move 2), in time period
3. Since resource 2 is not idle in period 3, the movement of this resource is not considered in the
preceding periods. Furthermore, since resource 4 is not idle in period 2, the movement of this resource
is not considered in the preceding period (period 1). As a result, when the idle resources 2 and 4 are
moved from one location to another in period 4, the movements of these idle resources in periods
3 and 5 are considered so that the cost of moving the idle resources is minimized in consecutive
periods. Therefore, the SA II heuristic is equivalent to the SA I heuristic with a look-ahead and
look-back strategy.

4. Computational results

A set of test problems was developed for the DSAP to test the performance of the SA I and SA
II heuristics. The test problems were generated based on the 2ve following factors.

(1) N =Number of locations (low value is 6, medium values are 12 and 20, and high is 32);
(2) P = schedule changes or number of periods (low value is 10, medium is 15, and high is 20);
(3) ADV =Activity duration variability (low value is 0.75 and high is 1.75);
(4) ANRA =Average number of resources per activity (low value is 1.4 and high is 2.4);
(5) WU =workspace utilization (low value is 50% and high is 90%).

Based on the 2ve factors above, 96 test problems were generated such that 24 test problems were
generated for each N . For the 6-location problems, a 2 × 3 layout is considered such that the 2rst
row is the set of workspaces and the second row is the set of storage spaces (same as Fig. 1).
The 10-location problems use a 2 × 5 layout where the 2rst row is the set of workspaces and the
second row is the set of storages spaces. The 20-location problems use a 4 × 5 layout such that
rows 1 and 4 are the set of storage spaces and the two middle rows are the set of workspaces.
Similarly, the 32-location problems use a 4 × 8 layout where rows 1 and 4 are storage spaces and
rows 2 and 3 are workspaces. The distances between locations were calculated using the rectilinear
distance measure. The maximum capacity of each storage space was set to three idle resources, and
the minimum and maximum numbers of resources required by an activity are 1 and 3, respectively.
Therefore, the total numbers of resources for the 6-, 12-, 20-, and 32-location problems are 9; 15; 30,
and 48, respectively.

120 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

In order to determine the parameter settings for the proposed heuristics, both theoretical and ex-
perimental techniques were used. The initial temperature T0 was determined by randomly selecting
three problems (at least one easy and one hard) from each set of 24 test problems (i.e., for each
N -number of locations). For each problem, an initial solution is generated as discussed earlier,
and 5000 iterations of a pairwise exchange heuristic were performed. The change in the objective
function value (RTC) was recorded at each iteration. De2ning the parameter P(RTC) (i.e., the
acceptance probability) and using RTC with the highest frequency for RTC ¿ 0, as well as the
formula P(RTC) = e−RTC=T0 , T0 was obtained for each problem, and the maximum T0 was used for
each set of 24 test problems. Since the T0 obtained is small and the solution space is extremely large,
T0 was multiplied by 300 so that enough temperature reductions can be performed during the imple-
mentation of the heuristic. The same initial temperature obtained was used for both heuristics. Since
the initial temperatures were multiplied by the constants 300, the formula P(RTC) = e−RTC=(TC=300)

was used to obtain the acceptance probability. Afterwards, the number of attempted moves at each
temperature AM was set to diHerent levels by using formulas related to the problem size for a num-
ber of the randomly generated test problems. Generally, AM is set to the product of the number of
locations (N), the number of periods (P), and the capacity of the storage spaces (i.e., AM=3(N)(P))
performed well. Therefore, this formula was used to obtain AM for both heuristics. Also, based on the
initial temperature, the formula Tc =T0�r−1, and performing several experimental runs with diHerent
values of � between 0.9 and 0.9999, the cooling ratio � was set to 0.9988. Since the solution space
for the SAP is much larger than the solution space for the WAP, the probability p of performing
an SAP move was set to 0.6, 0.7, and 0.9, for each test problem. Lastly, the maximum number of
consecutive iterations without improvement Max iter was obtained experimentally for each heuris-
tic. Since the number of moves is reduced using the SA II heuristic, Max iter is slightly smaller
for most of the problems for this heuristic. This information as well as the settings for the initial
temperature T0 and the number of attempted moves at each temperature AM for both heuristics are
given in Table 2. Although the SA heuristics performed well with the parameter settings obtained in
this paper, it is possible to 2nd better solutions for speci2c problems using diHerent settings, since
the heuristics are stochastic.

The proposed heuristics were programmed using the C++ programming language, and the set of
test problems were solved on a Pentium IV 1:8 GHz PC. Each test problem was solved three times
for each p (i.e., for p = 0:6, 0.7, and 0.9, three runs each were performed; thus, a total of 9 runs
were performed) using both the SA I and the SA II heuristics, and the best solution for each of the
three runs are given under the “SA I Results” and “SA II Results” columns in Tables 3 and 4 for
the 6- and 12-location problems as well as for the 20- and 32-location problems, respectively. Also,
the average computation times for the nine runs are presented in minutes under the “Time” columns
to the right of the solutions. The bold numbers give the best solution for each test problem, and the
asterisks (∗) indicate that the solution obtained is the optimal. The optimal solution was found for
the 2rst 24 test problems and problem P27 using the DSAP formulation presented in this research
and the CPLEX Solver (Version 6.0). Problems P22 and P27 required the most computational time,
1.8 and 57:3 h, respectively. The remaining test problems up to P48 ran for 72 h and obtained low
quality solutions.

The SA I heuristic produced the optimal solution for 22 of the 25 problems for which the optimal
solution is known, and the SA II heuristic produced the optimal solutions for all 25 problems. Out
of the 96 test problems, the SA I and SA II heuristics produced the same results for 42 (43.75%)

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 121

Table 2
Parameter settings for the SA I and SA II Heuristics

Problem size SA I Heuristic SA II Heuristic

N P MaxCs T0 AM Max iter T0 AM Max iter

6 10 3 15,000 180 1000 15,000 180 800
15 3 15,000 270 1000 15,000 270 800
20 3 15,000 360 1000 15,000 360 800

12 10 3 16,000 360 1200 16,000 360 900
15 3 16,000 540 1200 16,000 540 900
20 3 16,000 720 1200 16,000 720 900

20 10 3 17,000 600 1400 17,000 600 1300
15 3 17,000 900 1400 17,000 900 1300
20 3 17,000 1200 1400 17,000 1200 1300

32 10 3 18,000 960 1500 18,000 960 1500
15 3 18,000 1440 1500 18,000 1440 1500
20 3 18,000 1920 1500 18,000 1920 1500

of the problems, and the SA I heuristic out-performed SA II for only 3 (3.12%) of the problems.
However, the SA II heuristic out-performed SA I for 51 (53.13%) of the test problems. The percent
deviations of the best solution of SA I above the best solution of SA II are given under the “%
Deviation” column. Out of the 51 test problems, 15 of the solutions for SA I were within 2% above
the best-found solutions. Also, 27 and 9 of the solutions were within 2–5% and 5–10%, respectively.
Therefore, heuristic SA II clearly out-performed the SA I heuristic for this data set.

One of the unique aspects of the proposed heuristics is the parameter p, the probability of per-
forming a SAP move (i.e., idle resource move). The best solution for the SA I heuristic was obtained
by p = 0:90, 0.70, and 0.60 for 79.8%, 39.6%, and 36.5% of the problems, respectively. This indi-
cates that the SA I heuristic clearly performs better when only 10% of the moves are WAP moves,
since the number of SAP moves are much greater than the number of WAP moves. However, the
best solution for the SA II heuristic was obtained by p=0:90, 0.70, and 0.60 for 50%, 64.6%, and
61.5% of the problems, respectively. Therefore, the SA II heuristic performs better when 30% of
the moves are WAP moves (i.e., 70% of the moves are SAP moves). The reduction of SAP moves
from 90% in the SA I heuristic to 70% in the SA II heuristic is justi2ed, since a SAP move in the
SA II heuristic is a combination of SAP moves in the SA I heuristic. Therefore, less SAP moves
need to be performed.

The problems are listed such that the 2rst, second, third and fourth problems in each set of four
problems (separated by bold lines) are categorized as hardest, hard, easy, and easiest problems, re-
spectively. The average number of resources per activity (ANRA) and workspace utilization (WU)
determine this categorization. When the ANRA and WU are low, the average number of idle re-
sources available is high, which gives the largest possible solution space. Therefore, this problem is
the hardest. When the ANRA is medium and WU is low, the average number of idle resources is
relatively high, but not as high as the previous case. Therefore, the problem is de2ned as hard. When

122 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

Table 3
SA I and SA II results for 6- and 12-location problems

Problem size SA I results SA II Results (%) Deviation

N T Pb # 60% 70% 90% Time 60% 70% 90% Time

6 10 P01 16∗ 16∗ 16∗ 0.17 16∗ 16∗ 16∗ 0.41 0
P02 26 26 26 0.12 25∗ 25∗ 26 0.52 −4:00
P03 18∗ 18∗ 18∗ 0.12 18∗ 18∗ 18∗ 0.42 0
P04 25∗ 25∗ 25∗ 0.12 25∗ 25∗ 25∗ 0.42 0

P05 18 17 16∗ 0.19 16∗ 16∗ 16∗ 0.66 0
P06 32 32 27∗ 0.19 27∗ 27∗ 27∗ 0.71 0
P07 16∗ 16∗ 16∗ 0.25 16∗ 16∗ 16∗ 0.73 0
P08 31∗ 31∗ 31∗ 0.16 31∗ 31∗ 31∗ 0.61 0

15 P09 27 25∗ 27 0.29 25∗ 25∗ 27 0.66 0
P10 49 47 49 0.24 46∗ 46∗ 49 0.89 −2:17
P11 32∗ 32∗ 32∗ 0.59 32∗ 32∗ 32∗ 1.02 0
P12 41∗ 41∗ 41∗ 0.25 41∗ 41∗ 41∗ 0.92 0

P13 33 30 29 0.28 28∗ 28∗ 29 0.89 −3:57
P14 45∗ 45∗ 46 0.23 45∗ 45∗ 46 0.79 0
P15 35∗ 35∗ 36 0.25 35∗ 35∗ 36 0.72 0
P16 49∗ 49∗ 49∗ 0.25 49∗ 49∗ 49∗ 0.77 0

20 P17 35∗ 36 35∗ 0.54 35∗ 35∗ 35∗ 2.09 0
P18 60∗ 60∗ 65 0.58 60∗ 60∗ 65 1.51 0
P19 46∗ 46∗ 47 0.65 46∗ 46∗ 47 1.67 0
P20 60∗ 60∗ 60∗ 0.42 60∗ 60∗ 60∗ 1.56 0

P21 53 53 46∗ 0.44 46∗ 46∗ 46∗ 1.58 0
P22 71 70 67∗ 0.52 67∗ 67∗ 67∗ 1.73 0
P23 55∗ 55∗ 55∗ 0.48 55∗ 55∗ 55∗ 1.57 0
P24 74∗ 74∗ 74∗ 0.45 74∗ 74∗ 74∗ 1.74 0

12 10 P25 35 35 34 1.46 35 35 34 3.31 0
P26 52 49 47 1.55 49 49 47 3.33 0
P27 43∗ 43∗ 43∗ 1.32 43∗ 43∗ 43∗ 3.54 0
P28 55 55 56 1.21 55 55 56 3.41 0

P29 31 32 29 1.63 31 31 29 3.69 0
P30 52 52 50 1.55 50 50 50 3.60 0
P31 44 43 43 1.69 42 42 43 3.78 −2:38
P32 69 70 69 1.99 69 69 69 4.32 0

15 P33 65 65 60 3.54 59 60 60 6.42 −1:69
P34 82 80 79 3.88 80 80 79 6.57 0
P35 77 77 76 3.04 74 73 76 5.73 −4:11
P36 95 95 97 2.73 90 90 97 6.33 −5:56

P37 60 62 54 4.48 59 60 54 10.60 0
P38 90 83 85 4.52 87 87 85 13.00 2.35
P39 72 74 71 3.20 72 72 71 10.00 0
P40 108 110 113 3.14 109 109 113 10.22 0.92

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 123

Table 3 (continued)

Problem size SA I results SA II Results (%) Deviation

N T Pb # 60% 70% 90% Time 60% 70% 90% Time

20 P41 94 99 85 6.40 90 90 85 11.52 0
P42 125 122 113 5.60 117 115 113 14.57 0
P43 113 113 114 5.49 110 110 114 15.08 −2:73
P44 142 142 145 4.98 142 140 145 12.45 −1:43

P45 90 84 74 7.90 83 84 74 16.29 0
P46 125 122 127 7.64 123 124 122 19.24 0
P47 118 118 118 5.94 116 117 118 16.18 −1:72
P48 174 172 175 5.36 171 175 171 13.64 −0:58

the ANRA and WU are high, the average number of idle resources available is low, which gives
the smallest possible solution space. Therefore, this problem is de2ned as the easiest. A slightly
harder problem (de2ned as easy) is the case where the ANRA is medium and WU is high (i.e.,
average number of idle resources available is relatively low). There is no indication that any one
of the heuristics performs better for the harder or easier problems. However, as the problem size
increases, the SA I heuristic does not perform well. This can be explained by the drawbacks of the
stochastic SA I heuristic. For example, if a period and an SAP move is randomly chosen in the SA I
heuristic such that the move of the idle resource(s) in previous and subsequent periods would yield
the optimal solution, the probability of selecting these periods and performing the necessary moves
in consecutive iterations are extremely small because of the randomness of the heuristic. However,
the SA II heuristic has the capability of performing the necessary combination of SAP moves for
the SA I heuristic with a single SAP move. Thus, enabling the SA II heuristic to obtain high quality
solutions.

5. Conclusion

In this paper, the problem of assigning outage activities to workspaces and idle resources to
storage spaces with respect to minimizing the distance resources travel during planned outages at
a nuclear electric power plant was considered. This problem was de2ned as the dynamic space
allocation problem (DSAP) and was modeled mathematically. Due to the complexity of the problem,
two simulated annealing heuristics were presented for the DSAP. The 2rst heuristic, called SA I,
is a direct application of simulated annealing for the DSAP. The second heuristic, called SA II,
uses a look-ahead and look-back strategy when performing SAP moves (i.e., idle resources moves).
Although this strategy increases the computational time for larger problems (in most cases), SA II
performed much better than SA I on the set of 96 randomly generated test problems.

The techniques presented in this paper can be easily modi2ed to consider the management of
resources during the implementation of construction projects (constructing bridges, multi-story build-
ings, etc.) and during the implementation of maintenance projects at manufacturing plants, to men-
tion a few. Although the proposed heuristics (speci2cally, SA II) performed well, other solution

124 A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125

Table 4
SA I and SA II results for 20- and 32-location problems

Problem size SA I results SA II results (%) Deviation

N T Pb # 60% 70% 90% Time 60% 70% 90% Time

20 10 P49 53 53 49 5.83 52 52 49 24.64 0
P50 72 74 71 7.79 70 69 71 23.50 −2:90
P51 66 66 62 5.49 59 57 62 22.81 −8:77
P52 101 102 101 5.01 99 98 101 22.29 −3:06

P53 56 58 52 8.63 54 54 52 23.67 0
P54 76 78 73 6.91 73 72 73 24.87 −1:39
P55 68 65 69 6.58 63 64 69 21.48 −3:17
P56 101 103 99 6.53 98 98 99 21.01 −1:02

15 P57 84 82 80 15.78 76 76 80 32.27 −5:26
P58 119 121 114 14.80 112 112 114 30.97 −1:79
P59 108 107 115 13.83 103 108 115 32.39 −3:88
P60 169 167 166 11.36 162 162 166 29.43 −2:47

P61 98 96 84 16.99 89 90 84 32.28 0
P62 140 146 137 13.19 138 138 137 31.02 0
P63 137 133 134 16.14 127 127 134 30.54 −4:72
P64 199 204 194 15.13 190 190 194 28.73 −2:11

20 P65 139 129 122 17.10 121 120 122 43.16 −1:67
P66 180 172 176 24.29 167 167 176 47.27 −2:99
P67 166 170 172 15.61 164 165 172 45.35 −1:22
P68 246 250 245 12.92 244 246 245 37.51 −0:41

P69 154 133 139 19.36 135 138 139 36.41 1.48
P70 205 200 202 25.87 191 191 202 60.30 −4:71
P71 160 163 153 21.58 142 142 153 29.65 −7:75
P72 232 233 227 17.33 227 221 221 31.49 −2:71

32 10 P73 88 88 86 19.44 85 85 86 33.66 −1:18
P74 112 117 116 18.31 108 110 116 33.47 −3:70
P75 121 120 120 17.57 118 117 120 30.26 −2:56
P76 166 160 167 18.05 161 160 167 24.79 0

P77 85 83 79 14.26 81 81 79 23.88 0
P78 123 121 120 19.41 112 111 120 28.41 −8:11
P79 126 124 119 16.28 116 118 119 33.38 −2:59
P80 190 190 182 18.17 187 182 182 32.11 0

15 P81 157 154 147 35.22 140 140 140 36.89 −5:00
P82 208 205 199 41.27 194 194 183 36.36 −8:74
P83 215 215 209 42.06 200 202 205 42.18 −4:50
P84 295 308 310 28.82 289 288 287 35.87 −2:79

P85 151 160 160 34.95 144 146 148 44.22 −4:86
P86 229 227 213 50.01 209 210 209 54.37 −1:91
P87 220 216 210 29.43 210 205 211 39.45 −2:44
P88 307 328 311 27.64 302 310 310 39.92 −1:66

A.R. McKendall Jr et al. / Computers & Operations Research 32 (2005) 107–125 125

Table 4 (continued)

Problem size SA I results SA II results (%) Deviation

N T Pb # 60% 70% 90% Time 60% 70% 90% Time

20 P89 215 228 204 57.71 195 195 195 66.09 −4:62
P90 286 293 293 66.69 279 278 279 83.18 −2:88
P91 311 311 311 54.61 293 293 293 69.47 −6:14
P92 405 400 400 39.85 399 399 395 65.95 −1:27

P93 239 238 217 71.32 217 215 211 81.67 −2:84
P94 340 326 319 69.78 302 298 301 60.97 −7:05
P95 357 348 348 57.67 342 332 332 62.45 −4:82
P96 487 488 488 47.99 485 485 485 57.11 −0:41

techniques such as construction algorithms (used to construct good initial solutions), tabu search,
as well as hybrid techniques (e.g., simulated annealing with tabu search) are areas for further
consideration.

Acknowledgements

We would like to thank the referees for their valuable comments, which greatly improved the
paper. This research was funded in part by AmerenUE/St. Louis, Missouri and NASA West Virginia
EPSCoR Program.

References

[1] Askin RG, Standridge CR. Modeling and analysis of manufacturing systems. New York: Wiley, 1993. p. 204–53.
[2] Zouein PP, Tommelein ID. Dynamic layout planning using a hybrid movement solution method. Journal of

Construction Engineering and Management 1999;125(6):400–8.
[3] Tommelein ID, Zouein PP. Interactive dynamic layout planning. Journal of Construction Engineering and Management

1993;119(2):266–87.
[4] Lin KL, Haas CT. An interactive planning environment for critical operations. Journal of Construction Engineering

and Management 1996;122(3):212–22.
[5] Kirpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220(4598):671–80.
[6] Wilhelm MR, Ward TL. Solving quadratic assignment problems by ‘simulated annealing’. IIE Transactions

1987;19:107–19.
[7] Heragu SS, Alfa AS. Experimental analysis of simulated annealing based algorithms for the layout problem. European

Journal of Operational Research 1992;57:190–202.
[8] Chen WH, Srivastava B. Simulated annealing procedures for forming machine cells in group technology. European

Journal of Operational Research 1994;75:100–11.
[9] Adil GK, Rajamani D, Strong D. Assignment allocation and simulated annealing algorithms for cell formation. IIE

Transactions 1997;29:53–67.

	Simulated Annealing Heuristics for Managing Resources during Planned Outages at Electric Power Plants
	Simulated annealing heuristics for managing resources during planned outages at electric power plants
	Introduction
	The dynamic space allocation problem model
	Problem definition
	Problem assumptions
	Mathematical notation
	Mathematical formulation
	Small problem instance

	Simulated annealing heuristics for the DSAP
	Computational results
	Conclusion
	Acknowledgements
	References

