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Chapter 3

Discrete Topological Transformations
for Image Processing

Michel Couprie and Gilles Bertrand

Abstract Topology-based image processing operators usually aim at trans-
forming an image while preserving its topological characteristics. This chap-
ter reviews some approaches which lead to efficient and exact algorithms for
topological transformations in 2D, 3D and grayscale images. Some transfor-
mations which modify topology in a controlled manner are also described.
Finally, based on the framework of critical kernels, we show how to design a
topologically sound parallel thinning algorithm guided by a priority function.

3.1 Introduction

Topology-preserving operators, such as homotopic thinning and skeletoniza-
tion, are used in many applications of image analysis to transform an object
while leaving unchanged its topological characteristics. In particular, skele-
tons are often used as a simplification of the original data, which facilitates
shape recognition, registration or animation.

In this chapter, we will see how to define and efficiently implement such
operators, on the basis of elementary topology-preserving transformations.
We will also discuss some geometrical aspects of skeletons, as well as the
need for filtering them. Besides, we will see that it is sometimes interesting
to be able to selectively modify topology: we will present, in particular, a
method that suppresses holes (or tunnels) in 3D images, depending on a
“size” criterion.
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Paris, France, e-mail: m.couprie@esiee.fr

Gilles Bertrand
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These transformations are usually defined for acting on binary images
(i.e., pixel or voxel sets). In Sect. 3.2, we will extend them to the case of
grayscale images (i.e., functions), and present some applications to image
filtering, segmentation and restoration.

There are two main kinds of thinning procedures: the sequential ones, that
take a single point in consideration at each step, and the parallel ones, that
attempt at removing a whole set of points at each iteration. In the first case,
the result most often depends on the order in which the points are considered,
while the latter kind permits to provide a well-defined result, which is gener-
ally more robust than the former to noise and orientation changes. The third
part of this chapter deals with parallel thinning: we present the framework
of critical kernels, that provides a mean to guarantee the topological sound-
ness of parallel homotopic transformations. We introduce in this framework a
new algorithm that builds at once a well-defined family of filtered Euclidean
skeletons.

3.2 Topological Transformations of Binary Images

3.2.1 Neighborhoods, Connectedness

First of all, let us recall the basic definitions of digital topology [34, 29] that
will be used in this chapter.

A point x ∈ Z
D (D = 2, 3) is defined by (x1, . . . , xD) with xi ∈ Z. We

consider the neighborhood relations N4 and N8 defined for any point x ∈ Z
2

by:
N4(x) = {y ∈ Z

2; |y1 − x1| + |y2 − x2| 6 1},
N8(x) = {y ∈ Z

2; max(|y1 − x1|, |y2 − x2|) 6 1},
and the neighborhood relations N6, N26 and N18 defined for any point x ∈ Z

3

by:
N6(x) = {y ∈ Z

3; |y1 − x1| + |y2 − x2| + |y3 − x3| 6 1},
N26(x) = {y ∈ Z

3; max(|y1 − x1|, |y2 − x2|, |y3 − x3|) 6 1},
N18(x) = {y ∈ N26(x); |y1 − x1| + |y2 − x2| + |y3 − x3| 6 2}.
These neighborhoods are illustrated in Fig. 3.1.

In the sequel, we denote by n a number such that n ∈ {4, 8, 6, 26}. We
define N∗

n(x) = Nn(x) \ {x}. The point y ∈ E is said to be n-adjacent to
the point x ∈ E if y ∈ N∗

n(x). An n-path is an ordered sequence of points
x0 . . . xk such that xi is n-adjacent to xi−1 for any i ∈ {1, . . . , k}.

We denote by E the set Z
2 or Z

3. Let X ⊆ E, we say that two points x, y
of X are n-connected in X if there exists an n-path in X between those two
points. This defines an equivalence relation on X . The equivalence classes for
this relation are the n-connected components of X (see Fig. 3.2). A subset X
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N4(x) N8(x) N6(x) N18(x) N26(x)

Fig. 3.1 Different neighborhoods of a point x (the central point) in 2D and in 3D.

of E is said to be n-connected if it is composed of exactly one n-connected
component.

Fig. 3.2 The set of black points has two 4-connected components, and only one 8-
connected component. This figure also illustrates two common representations of a binary
digital image (points on the left, pixels on the right).

The set composed of all n-connected components of X is denoted by
Cn(X). A subset Y of E is said to be n-adjacent to a point x ∈ E if there
exists a point y ∈ Y that is n-adjacent to x. The set of all n-connected com-
ponents of X that are n-adjacent to x is denoted by Cx

n(X). Remark that
Cn(X) and Cx

n(X) are sets of subsets of X , and not sets of points. Besides,
if S is a finite set, we denote by |S| the number of elements of S.

3.2.2 Connectivity Numbers

Intuitively, a point x of an object X ⊆ E is said to be simple if it can be
deleted from X while preserving the topological characteristics of X (see [19]).
In the case of Z

2, this implies preserving the number of connected compo-
nents of both the object and its complementary set. In Z

3, it is necessary to
preserve also holes (or tunnels), a notion that may be formalized through the
fundamental group (see e.g. [24]).

Note that the definition of a simple point relies on notions (connected
components, tunnels) that can be classified as global, in the sense that they
cannot be defined without taking the whole object into account. Neverthe-
less, we will see that in 2D and 3D, it is possible to characterize simple points
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on a local basis, thanks to the connectivity numbers introduced in this sec-
tion. Such a local characterization is essential to get efficient algorithms for
topological transformations.

Let X be an open bounded subset of R
D, and let λ ∈ R, λ > 0. We denote

by X the complement set of X , i.e., X = R
D \X . If we use a n-connectivity

for X then we have to use a n-connectivity for X. For example in 2D the
4-connectivity for X is associated with the 8-connectivity for X, and in 3D
the 6-connectivity for X is associated with the 26-connectivity for X . This
is necessary to have a correspondence between topological characteristics of
X and X (see e.g. [29]). To summarize, we have the following possibilities in
2D: (n, n) = (4, 8) or (8, 4); and in 3D1: (n, n) = (6, 26) or (26, 6).

Now, we can define the connectivity numbers in 2D and in 3D [3]. Intu-
itively, the connectivity number of a point x relative to a set X , counts the
number of connected components of X \ {x}, which are in the neighborhood
of x, and which are adjacent to x.

Definition 1. Let X ⊆ Z
2 and x ∈ Z

2. Let n ∈ {4, 8}. The (2D) connectivity
numbers are defined as follows:

T4(x, X) = |Cx
4 [N∗

8 (x) ∩ X ]|,
T8(x, X) = |Cx

8 [N∗

8 (x) ∩ X ]|.

In Fig. 3.3, we illustrate some connectivity numbers in 2D. Figure 3.3b
shows the neighborhhod of point u, we can verify that T8(u, X) = 1 and
T4(u, X) = 1. Similarly, the reader can check that T8(v, X) = T4(v, X) = 1.
For pixel x, we have T8(x, X) = T4(x, X) = 2 (see Fig. 3.3c). The same holds
for pixel y.

Definition 2. Let X ⊆ Z
3 and x ∈ Z

3. The (3D) connectivity numbers are
defined as follows:

T6(x, X) = |Cx
6 [N∗

18(x) ∩ X ]|,
T26(x, X) = |Cx

26[N
∗

26(x) ∩ X ]|.

Figure 3.4 shows some examples that illustrate this definition. Note that
components that are not adjacent to the central point, according to the chosen
adjacency relation, are not taken into account: this is illustrated in Fig. 3.4b.

3.2.3 Topological Classification of Object Points

If we use the n-connectivity for X and the n-connectivity for X, the numbers
Tn(x, X) and Tn(x, X) give us topological characteristics of the point x in the
object X . In particular, the connectivity numbers allow us to detect whether
a point is simple or not [3, 10], both in 2D and in 3D:

1 For the sake of simplicity we do not discuss here the case of the 18-connectivity, see
[32, 3, 10] for more information.
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x

y

vu

o1 o1 o1

o1

o1 o1

b1

b1

b1 b1 b1

o2o1

b2 b2 b2

(a) (b) (c)

Fig. 3.3 We set (n, n) = (8, 4). (a): An object X (light gray and dark gray pixels). (b): The
eight neighbors of pixel u. The unique 8-connected component of N∗

8
(u)∩X is labelled with

o1, and the unique 4-connected component of N∗

8
(u) ∩ X is labelled with b1. (c): Depicts

the eight neighbors of pixel x or pixel y. The 8-connected components of N∗

8
(x) ∩ X are

labelled with o1, o2, and the 4-connected components of N∗

8
(x)∩X are labelled with b1, b2.

Theorem 1. Let X ⊆ E and x ∈ X. The point x is n-simple if and only if
Tn(x, X) = 1 and Tn(x, X) = 1.

Intuitively, this characterization states that a point is simple if and only if
there is, in its neighborhood, exactly one “object” component and one “back-
ground” component. For example, in Fig. 3.3a, we conclude from the com-
putation of connectivity numbers that points u, v are both simple, whereas
x, y are both non-simple points. In this figure, all simple points are in lighter
gray.

Note that the neighborhoods of points x and y are the same (Fig. 3.3c),
hence also the connectivity numbers, but different events occur whenever x
or y is deleted from X . In the case of x, two background components are
merged; whereas if y disappears, X is splitted into two components. Note
also that any simple point may be removed from X without altering topology,
but removing simultaneously u and v for instance would change topological
characteristics of the image (here, the number of background components).
We will see in Sect. 3.4.5 how to perform parallel thinning with topological
guarantees.

The characterization of Theorem 1 also holds in the 3D case, see the ex-
amples of Fig. 3.4.

The fact that an intrinsically global notion —the one of simple point—
admits a local characterization is indeed a quite remarkable property. It will
allow us to efficiently implement topological transformations.

The connectivity numbers are also useful to detect other kinds of points
of particular interest. A point x such that Tn(x, X) = 0 is an isolated point .
If Tn(x, X) = 0, then we have an interior point . The border points are char-
acterized by Tn(x, X) 6= 0.
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(a) (b)

(c) (d)

Fig. 3.4 (a): The central point x is a 6-simple point (T6(x, X) = T26(x, X) = 1): the
unique “object” component in its neighborhood is in black, and the unique “background”
component is in white. We have also T26(x, X) = T6(x, X) = 1, hence x is 26-simple.
(b): The central point x is a 6-simple point (T6(x, X) = T26(x, X) = 1): there are two
“object” components in its neighborhood, but only the one in black is 6-adjacent to x.
However, x is not 26-simple, for T26(x, X) = 2. (c): The central point x is such that
T6(x, X) = 2 and T26(x, X) = 1 ; the two “object” components are in black and dark gray.
(d): The central point x is such that T6(x, X) = 1 and T26(x, X) = 2.

Let us consider the case where E = Z
3, and take a point x such that

Tn(x, X) > 2. If we delete x from X , we locally disconnect the object X (see
Fig. 3.4b). We say that such a point is a 1D isthmus .

Consider the simplest case where Tn(x, X) = 2 (see an example in
Fig. 3.4c). Two situations may occur whenever x is deleted. In the first case,
the two local components involved in the definition of Tn(x, X) are in fact
connected together by a path in X outside the neighborhood of x, and the
deletion of the latter suppresses a tunnel from the object (this situation is
similar to the one of point x in Fig. 3.3a, in 2D). In the second case, the
two local components are not connected and the deletion of x indeed discon-
nects the object (see y in Fig. 3.3a for a similar 2D situation). In both cases,
topology is not preserved, in other words the point x is not simple.

In the same way, a point x such that Tn(x, X) > 2 is called a 2D isthmus ;
its deletion causes the merging of connected components of the neighborhood
of x in X (see Fig. 3.4d). If these components are connected together in X ,
the deletion of x creates a new tunnel for the object, and if they are not, the
deletion of x causes decrease of the number of cavities. Also here, the point
x is non-simple.
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3.2.4 Topology-preserving Transformations

Deleting a simple point from an object X yields an object Y included in
X , which is “topologically equivalent” to X . If we iterate this elementary
operation, we can obtain a family of nested sets that are all topologically
equivalent to X . More formally, we say that Y is an elementary homotopic
thinning of X , and we write X

e
→ Y , if there exists a simple point x for

X such that Y = X \ {x}. We say that Y is a homotopic thinning of X if
Y = X or if there exists a sequence 〈Y0, . . . , Yk〉 such that Y0 = X , Yk = Y

and Y0

e
→ . . .

e
→ Yk. If, furthermore, no point in Y is simple, we say that Y

is an ultimate homotopic thinning of X .
When transforming an object X through an homotopic thinning, it is

often needed to preserve from deletion a given subset K of X . Such a subset
is called a constraint set , and we say that Y is an homotopic thinning of
X constrained by K if Y is an homotopic thinning of X such that K ⊆ Y .
If, furthermore, no point of Y \ K is simple, we say that Y is an ultimate
homotopic thinning of X constrained by K.

In order to thicken an object X in a topology-preserving manner, it is
sufficient to compute an homotopic thinning of the complementary set of X
(for the dual connectivity), and to take the complementary of the result.

3.2.5 Transformations Guided by a Priority Function

The order in which points are considered during a thinning process plays, of
course, an important role with respect to the geometrical aspect of the result.
This order can be specified by means of a numerical function, called priority
function.

With each point x of X , a priority function associates an integer or real
number P (x), which represents the priority of point x. The points of X will
be treated during the thinning process following the increasing values of P .
To certain points x, a value P (x) = +∞ may be given, meaning that these
points must be preserved; in other words, the points with infinite priority
constitute the constraint set.

This strategy is realized by the Algorithm GuidedThinning. The complex-
ity of this algorithm is determined by the choice of the data structure used
to represent the function P . For example, a balanced search tree allows for
reaching a global time complexity in O(n log n), where n is the number of im-
age points. In certain particular cases, including the very common case where
the function P is a distance map [35], it is possible to implement Algorithm
GuidedThinning in linear time (see [1]).

If one wants to use Algorithm GuidedThinning for skeletonization pur-
poses, a natural choice for the priority function is a distance map relative to
the background. In other words, the points with highest priority (i.e., small-
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Algorithm 1: GuidedThinning

Data : X ⊆ E, a function P from X in Z ∪ {+∞} or R ∪ {+∞}
Result : X

repeat

Let x be a point in X such that x is simple for X, P (x) < +∞, and P (x) is
minimal;
X = X \ {x};

until stability ;

est value) are those closest to the background, and the points that “survive”
are well centered in the object, in the sense that their distance to the back-
ground is, roughly speaking, maximal. Note that any distance may be chosen:
discrete distances [35], chamfer distances [13], Euclidean distance [23], etc.
The choice of the Euclidean distance permits to obtain the lowest sensibility
to rotations.

(a) (b) (c) (d)

Fig. 3.5 (a): The original object X (in white). (b): The Euclidean medial axis of X (centers
of maximal balls, see text), superimposed to X. (c): A subset Y of the medial axis. (d):
Result of the skeletonization using the Euclidean distance map as a priority function, and
Y as constraint set.

However, choosing the exact Euclidean distance map as a priority function
for removing simple points from the object may lead to geometric distortions
[38]. To illustrate this point, let us consider the object X depicted in white in
Fig. 3.5a. In Fig. 3.5b, we show in black superimposed to X , all the centers
of maximal included Euclidean balls (that is, balls that are included in X
but which are not subsets of any other ball included in X). This is one of
the possible definitions for the medial axis of X (see also Sect. 3.2.6). It is
usual to take only a subset of the medial axis as constraint set for computing
centered skeletons, since the full medial axis often contains spurious points.
Such a constraint set, let us call it Y , is depicted in Fig. 3.5c, superimposed
to X . We use as priority function the map P defined by

P (x) =

{

+∞ whenever x ∈ Y ;
d(x, X) otherwise
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where d(x, X) = min{d(x, y) | y ∈ X}, and d(x, y) denotes the Euclidean
distance between x and y. When Y = ∅, the function P is just the distance
map relative to X .

Figure 3.5d depicts the result of Algorithm GuidedThinning in this case.
Note that the obtained skeleton deviates from the medial axis points.

In the next section, we will study another priority function that gives
better results than the Euclidean distance map, and is linked to a family of
filtered medial axes.

3.2.6 Lambda-medial Axis

The notion of medial axis has been introduced by Blum in the 60s [11, 12].
In the continuous Euclidean space, the following definition can be used to
formalise this notion: let X be a bounded subset of R

n, the medial axis of X
consists of the points x ∈ X that have more than one nearest points on the
boundary of X .

A major difficulty when using the medial axis in applications (e.g., shape
recognition), is its sensitivity to small contour perturbations, in other words,
its lack of stability. A recent survey [2] summarises selected relevant studies
dealing with this topic. Because of this problem, it is usually necessary to
add a filtering step (or pruning step) to any method that aims at computing
the medial axis.

In 2005, F. Chazal and A. Lieutier introduced the λ-medial axis [16], a
particular class of filtered skeletons, and studied its properties, in particular
those related to stability. A major outcome of [16] is the following prop-
erty: informally, except for particular values of the filtering parameter, the
λ-medial axis remains stable under perturbations of the shape that are small
with regard to the Hausdorff distance.

The original definition of the λ-medial axis (see [16]) holds and makes
sense in the (continuous) Euclidean D-dimensional space.

Let x = (x1, . . . , xD), y = (y1, . . . , yD) ∈ R
D, we denote by d(x, y) the

Euclidean distance between x and y, in other words, d(x, y) = (
∑D

k=1
(yk −

xk)2)
1

2 . Let S ⊆ R
D, we set d(y, S) = minx∈S{d(y, x)}.

Let x ∈ R
D, r ∈ R, r > 0, we denote by Br(x) the ball of radius r centered

on x, defined by Br(x) = {y ∈ R
D | d(x, y) 6 r}.

Let S be a nonempty subset of R
D, and let x ∈ R

D. The projection of x
on S, denoted by ΠS(x), is the set of points y of S which are at a minimal
distance from x ; more precisely,

ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) 6 d(z, x)}.
The λ-medial axis of X is the set of points x in X such that the radius

of the smallest ball that includes ΠX(x) is not less than λ. For example in
Fig. 3.6, we show a shape that is an ellipsis with a small “bump”, and we
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consider the interior X of this shape. Two different λ-medial axes of X are
displayed on the right.

a

b x’’

a’’

a’ b’

x
x’

Fig. 3.6 Illustration of the λ-medial axis in R
2. Left: Points x, x′ and x′′ and their re-

spective closest boundary points. Top right: λ-medial axis with λ = ǫ, a very small positive
real number. Bottom right: λ-medial axis with λ = d(a′, b′) + ǫ.

Now, let us consider the discrete case. For each point x ∈ Z
D, we define

the direct neighborhood of x as N(x) = {y ∈ Z
D | d(x, y) 6 1}. Thus,

N(x) = N4(x) (resp. N6(x)) whenever D = 2 (resp. D = 3).
Transposing directly the definition of the λ-medial axis to the discrete grid

Z
D would yield unsatisfactory results. For instance, consider a horizontal

ribbon in Z
2 with constant, even width and infinite length (see Fig. 3.7).

Clearly, the projection of any point of this set on its complementary set is
reduced to a singleton. If we keep the same definition as above, any λ-medial
axis of this object with λ > 0 would be empty.

x

C

a
c

b
d

D

A B

Fig. 3.7 We consider a object X in Z
2 that is a horizontal ribbon of infinite length and

width 4 (partially depicted here in gray). The projection of x on X is Π
X

(x) = {C}. The
smallest ball that includes Π

X
(x) is the one with center C and radius 0. The projections

of a, b, c, d on X are respectively {A}, {B}, {C}, {D}. Hence, the extended projection of x

on X is Πe

X
(x) = {A, B, C, D}, and we have PRX(x) = R > 2. The pixels in darker gray

are in any λ-medial axis with λ 6 R, those in lighter gray are only in the 0-medial axis
of X.

This is why we need the following notion. Let X ⊆ Z
D, and let x ∈ X .

The extended projection of x on X (where X = Z
D \X), denoted by Πe

X
(x),
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is the union of the sets ΠX(y), for all y in N(x) such that d(y, X) 6 d(x, X).
Figure 3.7 illustrates this notion and the following ones.

Let X be a finite subset of Z
D, and let λ ∈ R, λ > 0. We define the function

PRX which associates, to each point x of X , the value PRX(x) that is the
radius of the smallest ball enclosing all the points of the extended projection
of x on X . In other terms, PRX(x) = min{r ∈ R, r > 0 | ∃y ∈ R

D, Πe

X
(x) ⊆

Br(y)}, and we call PRX(x) the projection radius of x (for X).
The following definition was introduced in [14], together with an exper-

imental evaluation of the stability and rotation invariance of the discrete
λ-medial axis.

Definition 3 ([14]). The discrete λ-medial axis of X , denoted by DLMA(X, λ),
is the set of points x in X such that PRX(x) > λ.

(a) (b)

Fig. 3.8 (a): The function PRX superimposed to the shape X. Darkest gray levels rep-
resent highest values of PRX(x). (b): A 3D representation of the function PRX .

(a) (b) (c)

Fig. 3.9 Any DLMA of X is a threshold of PRX at a particular value λ. (a): Discrete
7-medial axis. (b): discrete 25-medial axis of X. (c): Guided homotopic thinning of X, with
PRX as priority function and with (b) as constraint set.
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Note that the function PRX can be computed once and stored as a
grayscale image, and that any DLMA of X is a level set of this function
at a particular value λ (see Fig. 3.8 and Fig. 3.9). For more details, illustra-
tions and performance analysis, see [14].

The illustration on Fig. 3.9b is sufficient to demonstrate that a DLMA of
a given shape X may have a homotopy type different from the one of X .

(a) (b) (c)

Fig. 3.10 (a): The original object X (in white, the same as Fig. 3.5a). (b): A constraint set
Y : a filtered DLMA, that is also a set of centers of maximal included balls (see Fig. 3.5c).
(c): Result of the skeletonization using PRX as a priority function, and Y as constraint
set.

The Algorithm GuidedThinning, with PRX as priority function and with a
DLMA of X as constraint set, provides filtered skeletons that are homotopic
to X and share the good geometric properties of the DLMAs (see Fig. 3.9c).

Another example is shown on Fig. 3.10, where a filtered Euclidean medial
axis is used as a constraint set during skeletonization. As we have seen at the
end of Sect. 3.2.5 (see also [38]), choosing the exact Euclidean distance map
as a priority function for removing simple points from the object may lead to
geometric distortions. In some cases, ”extra branches” may even appear (see
Fig. 3.5d). Choosing the map PRX as priority function yields more satisfying
results (see Fig. 3.10c), as it guides the thinning process towards elements
that belong to the different nested discrete λ-medial axes.

3.2.7 Other Applications of Guided Thinning

For certain applications, it may be relevant to take as priority function the
gray levels of an image. This makes sense when these gray levels can be
interpreted as a measure of the likelihood, for a pixel, to belong to a certain
class or region.

To illustrate this, suppose that we want to extract from a 3D magnetic
resonance image (MRI) of the head, the white matter of the brain (see
Fig. 3.11a). From the knowledge of human anatomy and the parameters of
the imagery device, we know that a volume element x situated in the white
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matter produces a response that is coded by a value F (x) for the correspond-
ing voxel, which lies between two limits µ1 < µ2. Assuming a Gaussian model,
the voxels with value µ1+µ2

2
are those with highest probability to belong to

the white matter. Furthermore, we know from anatomical data that the white
matter of the brain constitutes a simply connected volume, in other words, it
is topologically equivalent to a ball. In order to guarantee a result having the
wanted topological characteristics, we use the following scheme: start with
an object X = {x0}, where x0 is any point situated within the white matter;
then perform an homotopic thinning of X (i.e. an homotopic thickening of
X) guided with the priority function P defined by:

P (x) =

{

|F (x) − µ|, where µ = µ1+µ2

2
if µ1 6 F (x) 6 µ2,

+∞ otherwise.
The values +∞ ensure that all the resulting points have, in the image F ,
values that lie in the correct range (see Fig. 3.11b). This method has been
successfully exploited to segment the white matter, as well as the cortex,
from 3D MRI with topological guarantees [21, 22].

(a)

(b)

Fig. 3.11 (a): Detail of a 2D plane from a 3D MRI of the brain. (b): Result of the method
described in the text. Note that the result is connected in 3D, althought the shown 2D
cross-section is not connected.

In this kind of application, it is useful to be able to apply morphological
filtering operators (openings, closings, alternate sequential filters) on an ob-
ject while guaranteeing topology preservation. See [18] for the definition of
such filtering operators.
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3.2.8 Hole Closing

We have seen that it is possible, thanks to the notion of simple point, to
design operators that transform an object while preserving its topological
characteristics. However, controled topology modifications are needed in some
applications. This topic is seldom addressed in the literature. In this section,
we present a method [1] that is, to our knowledge, the first one that permits
to close holes in a 3D object.

π

concavity

holes /
cavities

π

(a) (b) (c)

Fig. 3.12 (a): A 2D objects with two holes. (b): A solid torus. This object has one hole
(tunnel), which is detected by the existence of path π. (c): The hole of the torus has been
closed.

In our approach, we consider the notion of hole from a topological point of
view. From this viewpoint, it is important to distinguish between holes, cavi-
ties and concavities. A concavity is a concave part of the contour of an object,
it is not a topological feature. A cavity is a bounded connected component
of the background, that forms a “hollow” in the object (see Fig. 3.12a).

A hole is much more complicated to define. Intuitively, the presence of
a hole (or tunnel in 3D) in an object can be characterized by the existence
of a closed path in the object that cannot be continuously deformed, inside
the object, into a single point. For example in 3D, a solid torus like the one
depicted in Fig. 3.12b has one hole.

In 2D, the notions of hole and cavity coincide, thus closing holes in 2D
may be simply done by using algorithms for connected component extraction.
But closing holes in 3D objects is by no means a trivial problem, because 3D
holes are not, like in 2D, delimited regions of space.

Based on connectivity numbers (Sect. 3.2.2) and the strategy of guided
thinning (Sect. 3.2.5), the method that we present here closes holes in any
3D object (see Fig. 3.13). In addition, this method allows for controlling the
“size” of the holes that are to be closed (Fig. 3.13b2,3). It can be implemented
by a linear-time algorithm.

The basic idea of this method consists of embedding the object X , in which
we want to close holes, into another object Y that is connected, without any



3 Discrete Topological Transformations 15

hole and without any cavity, such as a solid cuboid for example. Then, we
iteratively shrink Y by deleting points that do not belong to X , and ensur-
ing thanks to the analysis of connectivity numbers that each point deletion
does not create any hole or cavity. This method has been introduced and
formalized in [1], we recall here its main notions and properties.
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(a1) (a2)

(b1) (b2) (b3)

Fig. 3.13 Illustration of a hole closing algorithm for 3D objects. (a1, a2): The use of a
distance map leads to a good centrering of the surface patch that closes the hole. (b1, b2,
b3): A parameter controls the “size” of the holes to be closed.

Definition 4 ([1]). Let X, Y be such that X ⊆ Y ⊆ Z
3. We say that Y is a

topological hull of X if Y has no hole and no cavity, and if, for all x ∈ Y \X ,
the set Y \ {x} has a hole or a cavity.

For example in Fig. 3.13, Y =(a2) is a topological hull of X =(a1). The
set Y \ X (depicted by gray voxels in a2) corresponds to “surface patches”
that close the holes.

The following theorem allows for a local characterization of the class of
sets that are topological hulls, relatively to the class of sets that have no
cavity and no hole.

Theorem 2 ([1]). Let X, Y be such that X ⊆ Y ⊆ Z
3. Suppose that Y has

no cavity and no hole. Then, Y is a topological hull of X if and only if, for
each point x of Y \ X, x is an interior point or a 2D isthmus for Y .

Corollary 1. Let X, Y, Z be such that X ⊆ Y ⊆ Z ⊆ Z
3, and such that

Z has no cavity and no hole. If Y can be obtained from Z by iterating the
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following two steps until stability:
- choose a point x in Z \ X such that Tn(x, Z) = 1;
- set Z = Z \ {x}
then Y is a topological hull of X.

In order to get a result which is well-centered with respect to the object
X , we use a distance map to guide this process, in the manner of Algorithm
GuidedThinning. More precisely, the points in the complement of X that are
farthest from X are treated in the first place. We can also use a parameter s
that allows for controlling the “size” of holes to be closed: if one also deletes,
during the process, the candidate points x that are such that Tn(x, X) > 1,
and having a distance map value greater than s, then the biggest holes (in this
sense) will be let open. The Algorithm HoleClosing formalizes this method.
As for Algorithm GuidedThinning, with an adapted choice of data structure
this algorithm may be implemented to run in linear time. Note that, whenever
the parameter s is set to +∞, Algorithm HoleClosing indeed computes a
topological hull of X (in other words, it closes all holes).

Algorithm 2: HoleClosing

Data : X ⊆ Z
3 (the object), s ∈ R ∪ {+∞} (the size parameter)

Result : Z

Let Z be a cuboid that includes X;
Let P be a distance map relative to X (i.e., P (x) = d(x, X) for any x);
repeat

Z′ = {z ∈ Z \ X | Tn(z, Z) = 1 or (Tn(x, X) > 1 and P (z) > s)};
Let x be a point in Z′ such that P (x) is maximal;
Z = Z \ {x};

until stability ;

3.3 Topological Transformations for Grayscale Images

In this section topological notions such as those of simple point, homotopic
thinning, ultimate homotopic thinning, are extended to the case of grayscale
images. Applications to image filtering, segmentation and restoration are pre-
sented.

A 2D grayscale image can be seen as a function F from Z
2 into Z. For

each point x of Z
2, F (x) is the gray level, or the luminosity of x. We denote

by F the set of all functions from Z
2 into Z.

Let F ∈ F and k ∈ Z, the cross-section (or threshold) of F at level k
is the set Fk composed of all points x ∈ Z

2 such that F (x) > k. Observe
that a cross-section is a set of points, i.e., a binary image. As for the binary
case, if we use the n-adjacency for the cross-sections Fk of F , we must use
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the n-adjacency for the complementary sets Fk, with (n, n) = (8, 4) ou (4, 8).
Consider the function −F , that we call the complementary function of F (for
each point x of Z

2, (−F )(x) = −F (x)). Note that the complementary sets
of the cross-sections of F are cross-sections of −F . In forthcoming examples
and figures, we choose n = 8 for the cross-sections of F , thus we must use
n = 4 for the cross-sections of −F . A non-empty connected component X of
a cross-section Fk of F is a (regional) maximum for F if X ∩Fk+1 = ∅. A set
X ⊆ Z

2 is a (regional) minimum for F if it is a regional maximum for −F .

3.3.1 Cross-section Topology

Intuitively, we say that a transformation of F preserves topology if the topol-
ogy of all cross-sections of F is preserved. Hence, the “cross-section topology”
of a function (i.e., of a grayscale image) directly derives from the topology
of binary images [9]. Based on this idea, the following notions generalize the
notion of simple point to the case of functions.

Definition 5. Let F ∈ F , the point x ∈ Z
2 is destructible (for F ) if x is

simple for Fk, with k = F (x). The point x ∈ Z
2 is constructible (for F ) if x

is destructible for −F .

1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

1 0 4 9 7 7 7 0 1

1 0 9 9 3 7 7 0 1

1 0 8 6 7 7 7 0 1

1 0 7 6 2 2 7 0 1

1 0 0 6 7 7 7 0 1

1 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

1 0 0 0 7 0 0 0 1

1 0 0 9 3 7 0 0 1

1 0 0 0 7 2 6 0 1

1 0 0 6 2 2 6 0 1

1 0 0 0 6 6 0 0 1

1 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 1

1 0 9 9 9 9 9 0 1

1 0 9 9 3 7 7 0 1

1 0 9 9 9 9 9 0 1

1 0 9 6 6 2 9 0 1

1 0 9 6 9 9 9 0 1

1 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1

(a) (b) (c)

Fig. 3.14 (a): Original image. (b): An ultimate homotopic thinning of (a). (c): An ultimate
homotopic thickening of (a).

We see that the gray level of a destructible (resp. constructible) point
may be lowered (resp. raised) of one unit, while preserving the topology
of F . For example in Fig. 3.14a, the point at level 8 is both destructible
and constructible; the two points at level 2 are constructible, but only one
of them may be raised, because after that, the other point would become
non-constructible.

Let F ∈ F and G ∈ F . We say that G is an elementary homotopic thinning
of F , and we write F

e
→ G, if there exists a point x that is destructible for
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F such that G(x) = F (x) − 1, and for each y 6= x, G(y) = F (x). We say
that G is an homotopic thinning of F if G = F or if there exists a sequence
〈G0, . . . , Gk〉 such that G0 = F , Gk = G and G0

e
→ . . .

e
→ Gk. Furthermore, if

no point of G is destructible, we say that G is an ultimate homotopic thinning
of F . We define in a dual manner the notions of homotopic thickening and
ultimate homotopic thickening.

For example in Fig. 3.14, image (b) is an ultimate homotopic thinning of
(a), and (c) is an ultimate homotopic thickening of (a).

3.3.2 Local Characterizations and Topological

Classification of Points

Let F ∈ F and x ∈ Z
2. For the sake of simplicity, we will omit to mention F

unless necessary; for example, we will write N++(x) rather than N++(x, F ).
We define the four neighborhoods:
N++(x) = {y ∈ N∗

8 (x); F (y) > F (x)};
N+(x) = {y ∈ N∗

8 (x); F (y) > F (x)};
N−−(x) = {y ∈ N∗

8 (x); F (y) < F (x)};
N−(x) = {y ∈ N∗

8 (x); F (y) 6 F (x)}.
We define also:

η−(x) =

{

max{F (y); y ∈ N−−(x)}, if N−−(x) 6= ∅,
F (x) otherwise.

It is easy to show that lowering a destructible point x down to the value
η−(x) is a homotopic transformation. For example in Fig. 3.14a, the point at
level 9 in the third row can be lowered down to 7, then to 4, and finally to
0 without changing the topology of cross-sections. This property, in addition
to the local characterization of destructible and constructible points that
we present next, allows for the design of efficient algorithms for computing
transformations that preserve cross-section topology, on the model of e.g.
Algorithm GuidedThinning (see [20]).

We define the four connectivity numbers:
T ++(x) = |Cn[x, N++(x)]|; T +(x) = |Cn[x, N+(x)]|;
T−−(x) = |Cn[x, N−−(x)]|; T−(x) = |Cn[x, N−(x)]|.
The following property can be straightforwardly derived from the above def-
inition and from the local characterization of simple points in binary images
(see Theorem 1). It shows that connectivity numbers allow for a local char-
acterization of destructible and constructible points.
Let F ∈ F and x ∈ Z

2.
x is destructible for F ⇔ T +(x) = 1 and T−−(x) = 1;
x is constructible for F ⇔ T−(x) = 1 and T ++(x) = 1.

Furthermore, connectivity numbers allow for a classification of topological
characteristics of a point:
x is a peak if T +(x) = 0; x is minimal if T−−(x) = 0;
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x is k-divergent if T−−(x) = k with k > 1;
x is a well if T−(x) = 0; x is maximal if T ++(x) = 0;
x is k-convergent if T ++(x) = k with k > 1;
x is a lower point if it is not maximal; x is an upper point if it is not minimal;
x is an interior point if it is both minimal and maximal;
x is a simple side if it is both destructible and constructible;
x is a saddle point if it is both convergent and divergent.

10 10 10

10 50 10

10 10 10

10 10 10

10 10 10

10 10 10

50 50 10

50 50 10

10 10 10

10 10 10

50 50 50

10 10 10

50 30 50

50 30 50

10 10 10

50 50 50

50 30 10

10 10 10

10 10 10

50 30 50

10 10 10

(a) (b) (c) (d) (e) (f) (g)

Fig. 3.15 Topological type. The central point has the following type: a: peak; b: interior;

c: destructible maximal; d: maximal 2-divergent; e: destructible 2-convergent; f: simple
side; g: saddle.

By considering all the possible values of the four connectivity numbers, one
proves [9] that the type of a point x ∈ Z

2, whatever the function F ∈ F , is
necesseraly one and only one of the following: 1) a peak; 2) a well; 3) an inte-
rior point; 4) a constructible minimal point; 5) a destructible maximal point;
6) a minimal convergent point; 7) a maximal divergent point; 8) a simple
side; 9) a destructible convergent point; 10) a constructible divergent point;
11) a saddle point. Figure 3.15 shows examples of seven out of these eleven
types; the four other types can be obtained by duality (for example a well is
the dual of a peak, etc).

The rest of this chapter is devoted to three applications of cross-section
topology. In these applications, we combine homotopic transformations and
transformations that modify topology in a controlled manner.

3.3.3 Topological Filtering

In the case of impulse noise, a positive impulse takes the form of a small
group of pixels, having grayscale values higher than those of pixels in their
neighborhood. We can detect a positive impulse made of an isolated pixel x
by testing the topological type of x: it is a peak. One can “destroy” this peak
by lowering x down to the value η−(x). For impulses formed by several adja-
cent pixels, this procedure is not sufficient. However, if we apply homotopic
thinning to the image, an impulse formed by a few pixels may be reduced to
a peak, allowing for its detection and deletion.

On the other hand, we do not want to lower bigger groups of pixels that
may constitute significant objects in the image. This is why we need a notion
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of “thinning step” in order to control the spatial extent of the thinning (see
[20] for more details).

(a) (b) (c) (d)

Fig. 3.16 Topological filtering. (a): Original image. (b): Original image with added im-
pulse noise. (c): After 3 steps of homotopic thinning and peak lowering. (d): Homotopic
reconstruction of (c) constrained by (b).

In Fig. 3.16, we show in (c) the result of three steps of homotopic thinning
applied to image (b), followed by the lowering of all peaks. The positive
impulses have been eliminated, but some points outside these impulses have
also been lowered. It is thus necessary to restore the initial values of these
points. We use for this purpose a homotopic reconstruction operator, which
is nothing else but a homotopic thickening constrained by the original image
(that is, the final value of a point cannot be higher than the value of this
point in the original image). Since only constructible points can be raised, the
lowered peaks will not be restored at their original value. Figure 3.16d shows
a homotopic reconstruction of (c) constrained by (b). Negative impulses can
be filtered by the dual procedure. This topological filtering gives, for impulse
noise, better results than a median filter or a filter based on morphological
opening and reconstruction. In particular, it better preserves thin structures.

3.3.4 Topological Segmentation

Figure 3.17a shows an image in which one perceives dark cells separated by
lighter borders. Due to noise, this image contains a lot of regional minima:
they appear in white in (a’). An ultimate homotopic thinning (b) preserves,
by construction, all these minima and extend them as much as possible (b’).
Figure 3.18a shows a 1D profile extracted from such an ultimate homotopic
thinning. In this profile, the points A, B and C correspond to divergent points
that separate neighboring minima. Some of these divergent points (A, B) can
be considered as “irregular points” [9]: we would like to lower them in order
to eliminate, by merging, some minima having small depth.



3 Discrete Topological Transformations 21

(a) (b) (c)

(a’) (b’) (c’)

Fig. 3.17 Topological segmentation. (a): Original image. (b): Ultimate homotopic thin-
ning. (c): Ultimate filtered thinning with κ = 40. (a’), (b’), (c’): In white, the minima of
(a), (b), (c) respectively.

To this aim, we introduce the notions of κ-destructible point and ultimate
filtered thinning. Intuitively, a point κ-destructible x is either a destructible
point, or a peak, or a divergent point that lies on a crest line that divides
its neighborhood into several lower regions, such that at most one of these
regions has a difference of altitude with respect to x that is greater than κ.
Thus, the parameter κ corresponds to a notion of local contrast. For exam-
ple, points at levels 20 and 100 in Fig. 3.18b are both 10-destructible, but are
not destructible. An ultimate filtered thinning is defined in a similar man-
ner as an ultimate homotopic thinning, by using “κ-destructible” instead of
“destructible”.

In Fig. 3.17c, we see an ultimate filtered thinnning of (a) with κ = 40. A
binary segmented image (c’) is obtained by extracting regional minima of (c).
Note that this segmentation method involves only one parameter (κ) relative
to a notion of local contrast.
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(a)

0 0 0 0 0 0 0

0 0 0 30 10 10 0

0 0 0 20 10 10 0

0 200 200 200 200 200 0

0 0 0 100 90 110 0

0 0 0 110 110 110 0

0 0 0 0 0 0 0 (b)

Fig. 3.18 Illustration of κ-destructible points. (a): A 1D profile of an ultimate homotopic
thinning. (b): An image with two 10-destructible points (levels 20 and 100) that are not
destructible.

3.3.5 Crest Restoration Based on Topology

Segmentation methods that are based on minima extraction and region merg-
ing, as well as those based on contour detection, are sensitive to the quality
of the crests that separate the regions of interest (see Fig. 3.17, Fig. 3.20),
which may be alterated by noise. In this section, we propose a procedure for
detecting and eliminating narrow passes on the crests of a 2D function.
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Fig. 3.19 Crest restoration. (a): The lowest value on the crest is the one of the pass
(90). (b): After one step of homotopic thinning. (c,d): After 1 and 3 iterations of the crest
restoration algorithm. (e): Points at levels 15, 20 and 25 are separating points.

First of all, we apply some steps of filtered or homotopic thinning, in order
to reduce crests to thin lines (see Fig. 3.19b). After this, we can detect points
that belong to “thin crests”, and that must be raised in order to eliminate
passes.

Let X ⊆ Z
2 and x ∈ X , x is a separating point (for X) if T (x) > 2. Let

F ∈ F , a point x ∈ Z
2 is called a separating point (for F ) if there exists a

level k ∈ Z such that x is a separating point for the set Fk. Note that, if x
is a divergent point for F , then x is necessarily a separating point for F , but
the converse is not true. For example, in Fig. 3.19e, the points at levels 15,
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20 and 25 are separating points, whereas only the point at level 15 and the
second point at level 20 (from the top) are divergent points.

We see in Fig. 3.19b that, in order to eliminate the pass at level 90, we can
raise separating points that are constructible, until a saddle point appears.
This saddle point can then be detected and raised. We also see in Fig. 3.19b
that, if we iteratively raise constructible separating points without any re-
striction, we will also reinforce some low crest lines, like the one at level 60.
Indeed, the point at level 60 circled in white is a constructible separating
point. Furthermore, we cannot use the notions of κ-destructible point and
filtered thinnning in this case, because we would take the risk of lowering
those very passes that we want to raise.

Now, let us define a class of points that are “good candidates” for crest
restoration. Intuitively, such a point may be characterized by the presence,
in its neighborhood, of a point y which is a separating point for the section
at level k = F (x) but is not separating for higher sections. This is formalized
through the notion of extensible point defined below.

Let F ∈ F , a point x ∈ Z
2 that is a separating point for F is called

extensible if it is, either a constructible point, of a saddle point for F , and if
x has at least one neighbor y that satisfies the following two conditions:
i) y is a separating point (in the binary sense) for Fk, with k = F (x), and
ii) y is not a separating point (in the binary sense) for any cross-section Fj

with j > k.
For example in Fig. 3.19b, we can check that the two circled constructible

points at level 90 are extensible, because each of them has a neighbour at
240 which is separating for F90 but not for F91 and higher sections; whereas
the circled constructible point at level 60 is not extensible. Indeed, the point
at 90 adjacent to the latter point is separating both for F60 and for F61.

The crest restoration method proceeds by iteratively detecting and raising
extensible points. A more detailed description of the method can be found
in [20]. In Fig. 3.19c, we see the result after applying one step of the method
on (b). In particular, we see that two points at level 90 in (b) have been
raised up to 240, and that points at level 60 have not been modified. In (d),
we see the result after three iterations: the crest at 240 has been restored.
Further iterations would not modify this result.

In Fig. 3.20, we illustrate this method on a gradient image (b). Image
(b) is first thinned, giving (c). If we threshold this image, we see that either
significant contour segments are lost (d), or we get too many details. Im-
age (e) has been obtained from (c) by crest restoration until stability. The
same threshold was applied on (c,e), giving (d,f) respectively. We see that
many significant contour segments have been recovered, without introducing
artefacts.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.20 Crest restoration. (a): Original image. (b): After applying a gradient modulus
operator (the lowest values are in white). (c): After a filtered thinning. (e): After crest
restoration, performed until stability. (d,f): Thresholds of (c,e) respectively, at the same
level.

3.4 Parallel Thinning

In Sects. 3.2 and 3.3, we described transformations that are sequential by
nature. By this, we mean that after each point modification, the result of this
modification has to be taken into account in order to perform simplicity tests
for other points. Consequently, depending on the order in which the points are
examined, some arbitrary choices may be done, and different results may be
obtained depending on these choices. Even when one uses a priority function
to guide the thinning, it is not seldom that many points share the same
priority value, and arbitrary decisions are still necessary.

Another strategy for thinning objects consists of removing some of its bor-
der points in parallel [36, 37]. However, parallel deletion of simple points does
not, in general, guarantee topology preservation: see for example Fig. 3.3a,
where removing both simple points u, v would merge two components of the
background. In fact, such a guarantee is not obvious to obtain, even for the
2D case (see [17], where fifteen published parallel thinning algorithms are
analyzed, and counter-examples are shown for five of them).
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In order to study the conditions under which points may be removed si-
multaneously while preserving topology of 2D objects, C. Ronse introduced
minimal non-simple sets [33]. This work leads to verification methods for
the topological soundness of parallel thinning algorithms. Such methods have
been proposed for 2D algorithms by C. Ronse [33] and R. Hall [25], they have
been developed for the 3D case by T.Y. Kong [26, 27] and C.M. Ma [31]. For
the 3D case, one of the authors [4] introduced the notion of P-simple point as
a verification method but also as a methodology to design parallel thinning
algorithms.

More recently, one of the authors introduced in [5] a general framework
for studying parallel homotopic thinning in spaces of any dimension. This
framework, called critical kernels, is developped in the context of abstract
simplicial or cubical complexes, but it also permits to prove properties of al-
gorithms acting in Z

D. In particular, the notion of crucial point is introduced
in [7] and [6], for the 2D and the 3D case respectively, together with the proof
that any set of non-crucial points can be removed in parallel from any object
in Z

D without changing its topological characteristics.
In Sects. 3.4.1 to 3.4.4, we present a minimal set of notions needed to survey

the critical kernels framework. Section 3.4.5 is devoted to parallel thinning
in Z

D, where results about critical kernels are used only to prove topological
correctness. The reader who prefers to quickly implement algorithms may
jump directly to this latter section.

3.4.1 Cubical Complexes

Intuitively, a cubical complex may be thought of as a set of elements hav-
ing various dimensions (e.g. cubes, squares, edges, vertices) glued together
according to certain rules (see Fig. 3.21d).

Let Z be the set of integers. We consider the families of sets F
1
0, F

1
1, such

that F
1
0 = {{a} | a ∈ Z}, F

1
1 = {{a, a+1} | a ∈ Z}. A subset f of Z

D, D > 2,
which is the Cartesian product of exactly d elements of F

1
1 and (D − d)

elements of F
1
0 is called a face or a d-face in Z

D, d is the dimension of f , we
write dim(f) = d. See Fig. 3.21a,b for an illustration.

We denote by F
D the set composed of all faces in Z

D. A d-face is called
a point if d = 0, a (unit) edge if d = 1, a (unit) square if d = 2, a (unit)
cube if d = 3. Observe that any non-empty intersection of faces is a face. For
example, the intersection of two 2-faces A and B may be either a 2-face (if
A = B), a 1-face, a 0-face, or the empty set.

Let f be a face in F
D. We set f̂ = {g ∈ F

D | g ⊆ f} and f̂∗ = f̂ \ {f};

we call f̂∗ the boundary of f . Any g ∈ f̂ is called a face of f . If X is a finite
set of faces in F

D, we write X− =
⋃

{f̂ | f ∈ X}, X− is the closure of X . A
finite set X of faces in F

D is a complex (in F
D) if X = X−. If Y ⊆ X and

Y is a complex, then we say that Y is a subcomplex of X . In the sequel, the
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symbol X will denote a complex in F
D, and the symbol f will denote a face

of X .
See in Fig. 3.21d,e two examples of complexes, and in Fig. 3.21b,c examples

of sets of faces that are not complexes. The complex in Fig. 3.21d is the closure
of the complex in Fig. 3.21c.

x y

z t
(a) (b) (c) (d) (e)

Fig. 3.21 (a) Four points in Z
2: x = (0, 1); y = (1, 1); z = (0, 0); t = (1, 0). (b) A

graphical representation of the set of faces {f0, f1, f2}, where f0 = {z} = {0} × {0} (a
0-face), f1 = {x, y} = {0, 1} × {1} (a 1-face), and f2 = {x, y, z, t} = {0, 1} × {0, 1} (a
2-face). (b,c) A set of faces that is not a complex. (d,e) A set of faces that is a complex.

Let d = dim(f). We say that f is a facet of X or an d-facet of X if there is
no face g ∈ X such that f ∈ ĝ∗, in other words, if f is maximal for inclusion.
We set dim(X) = max{dim(f) | f ∈ X}. We say that X is an d-complex
if dim(X) = d. We say that X is pure if, for each facet f of X , we have
dim(f) = dim(X). For example in Fig. 3.22, X0 and X2 are pure 2-complexes,
whereas X1 is a 2-complex which is not pure.

The operation of detachment allows us to remove a subset from a complex,
while guaranteeing that the result is still a complex.

Let Y ⊆ X . We set Detach(Y, X) = (X \ Y )−. The set Detach(Y, X) is
a complex which is the detachment of Y from X . Figure 3.21e shows the
detachment of f̂ from X , where X is the complex of Fig. 3.21d and f is the
3-face of X .

3.4.2 Collapse and Simple Facets

The collapse operation is an elementary topology-preserving transformation
which has been introduced by J.H.C. Whitehead [39], and plays an important
role in combinatorial topology. It can be seen as a discrete analogue of a
continuous deformation (a strong deformation retract). Collapse is known to
preserve the homotopy type.

Consider a pair (f, g) ∈ X2. If f is the only face of X that strictly in-
cludes g, then g is said to be free for X and the pair (f, g) is said to be a free
pair for X . Note that, if (f, g) is a free pair, then f is necessarily a facet of
X and dim(g) = dim(f) − 1.

Let (f, g) be a free pair for X . Let d = dim(f). The complex X \ {f, g}
is an elementary collapse of X , or an elementary d-collapse of X . The pair
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(f, g) is also called a free d-pair (for X).
Let Y be a complex. We say that X collapses onto Y , and we write X ց Y ,
if Y = X or if there exists a sequence of complexes 〈X0, ..., Xℓ〉 such that
X0 = X , Xℓ = Y , and Xi is an elementary collapse of Xi−1, for each i ∈
{1, . . . , ℓ}. See Fig. 3.22 for an illustration.

f
X0 X1 X2

Fig. 3.22 X0: a pure 2-complex. X1: a complex such that X0 collapses onto X1; a free
pair composed of a square and an edge has been removed. X2: a complex such that X1

collapses onto X2; (a free pair composed of an edge and a vertex has been removed), hence
X0 collapses onto X2.

We give now a definition of a simple facet, it may be seen as a discrete
analogue of the one given by T.Y. Kong in [28] which lies on continuous
deformations in the D-dimensional Euclidean space.

Definition 6 ([5]). Let f be a facet of X . We say that f̂ and f are simple

for X if X collapses onto Detach(f̂ , X).

For example in Fig. 3.22, we have X2 = Detach(f̂ , X0), and since X0 ց
X2, the facet f is simple for X0.

The notion of attachment, as introduced by T.Y. Kong [27, 28], leads to

a local characterization of simple facets. The attachment of f̂ for X is the
complex Attach(f̂ , X) = f̂∗ ∩ [Detach(f̂ , X)]. In other words, a face g is in

Attach(f̂ , X) if g is in f̂∗ and if g is a face of a facet h distinct from f .
As an easy consequence of the above definitions, the facet f is simple for X if
and only if f̂ collapses onto Attach(f̂ , X). This property led us to introduce
new characterizations of simple points in 2D, 3D and 4D [19].

3.4.3 Critical Kernels

Let us briefly recall the framework introduced by one of the authors (in [5])
for thinning, in parallel, discrete objects with the warranty that topology is
preserved. We focus here on the two- and three-dimensional cases, but in fact
the notions and results in this section are valid for complexes of arbitrary
dimension. This framework is based solely on three notions: the notion of an
essential face, which allows us to define the core of a face, and the notion of
a critical face.
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Definition 7 ([5]). We say that f is an essential face for X if f is precisely
the intersection of all facets of X that contain f . We denote by Ess(X) the
set composed of all essential faces of X . If Y is a subcomplex of X and
Ess(Y ) ⊆ Ess(X), then we say that Y is an essential subcomplex of X .

Observe that a facet of X is necessarily an essential face for X . Observe
also that, if X and Y are both pure D-complexes, then Y is an essential
subcomplex of X whenever Y is a subcomplex of X .

Definition 8 ([5]). Let f ∈ Ess(X). The core of f̂ for X is the complex

Core(f̂ , X) = ∪{ĝ | g ∈ Ess(X) ∩ f̂∗}.

Definition 9 ([5]). Let f ∈ X . We say that f and f̂ are regular for X if

f ∈ Ess(X) and if f̂ collapses onto Core(f̂ , X). We say that f and f̂ are
critical for X if f ∈ Ess(X) and if f is not regular for X .

We set Critic(X) = ∪{f̂ | f is critical for X}, we say that Critic(X) is the
critical kernel of X .

Figure 3.23 illustrates these definitions. In Fig. 3.23b, we see that f̂ col-
lapses onto the core of f , thus f is regular; and that ĝ does not collapse onto
the core of g, thus g is critical. Note that, in this complex, all facets (3-faces)
are regular.

The following theorem is the most fundamental result concerning critical
kernels. Note that the theorem holds whatever the dimension.

Theorem 3 ([5]). Let Y be an essential subcomplex of X.
i) The complex X collapses onto its critical kernel.
ii) If Y contains the critical kernel of X, then X collapses onto Y .
iii) If Y contains the critical kernel of X, and if Z is an essential subcomplex
of X such that Y ⊆ Z, then Z collapses onto Y .

In Fig. 3.23, we show that the very notion of critical kernel can be seen
as a powerful thinning algorithm, which consists of computing iteratively
the critical kernel of the result of the preceding computation. Furthermore,
Theorem 3ii tells us that any essential subcomplex Y of X that is “between”
X0 (Fig. 3.23a) and X1 (Fig. 3.23d) is such that X0 collapses onto Y . This is
true, in particular, of any subcomplex Y that is a pure 3-complex containing
X1. This property gives birth to a wide class of parallel thinning algorithms,
where different criterions, based e.g. on geometrical notions, can be used in
order to choose a particular set as the result of a single thinning step (see
Sect. 3.4.5).

3.4.4 Crucial Cliques and Faces

In the image processing literature, a digital image is often considered as a set
of pixels in 2D or voxels in 3D. A pixel (resp. a voxel) is an elementary square



3 Discrete Topological Transformations 29

f

g

(a) (b) (c)

(d) (e) (f)

Fig. 3.23 (a): A 3-complex X0, made of 12 cubes. The essential faces for X0 that are not
facets are highlighted. (b): Two essential 2-faces f, g and their cores (in black). (c): X0

and its critical faces (highlighted). (d): The critical kernel X1 = Critic(X0). (e): X2 =
Critic(X1). (f): X3 = Critic(X2) = Critic(X3).

(resp. cube), thus an easy correspondence can be made between this classical
view and the framework of cubical complexes. From now on, we consider only
complexes whose facets are all D-faces, i.e., pure D-complexes.

Note that, if X is a pure D-complex in F
D and if f is a D-face of X , then

Detach(f̂ , X) is a pure complex in F
D. There is indeed an equivalence between

the operation on complexes that consists of removing (by detachment) the
closure of a simple D-face, and the removal of an 8-simple (resp. 26-simple)
point in the framework of 2D (resp. 3D) digital topology (see [27, 28]).

When X is a pure D-complex (e.g., a union of voxels in F
3), the critical

kernel of X is not necessarily a pure D-complex (see Fig. 3.23d). The notion
of crucial face, introduced in [6, 7], allows us to recover a pure D-subcomplex
Y of an arbitrary pure D-complex X , under the constraint that X collapses
onto Y .

Definition 10 ([6]). A face f in X is a maximal critical face, or an M-
critical face (for X), if f is a facet of Critic(X).
The set of all the facets of X that contain an M-critical face f is called the
crucial clique (for X) induced by f . Each facet in a crucial clique is called a
crucial face.

Some 2D crucial cliques are illustrated in Fig. 3.24. The following corollary
of Theorem 3 tell us that, informally speaking, a thinning step that preserves
all non-simple pixels (voxels) and at least one pixel (voxel) in each crucial
clique, preserves topology.
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(a) (b) (c)

Fig. 3.24 Crucial cliques in F
2 (represented in light gray): (a) induced by an M-critical

0-face; (b,c) induced by an M-critical 1-face. The considered M-critical faces are in bold.
The core of the M-critical face in (a,b) is empty, in (c) it consists of two 0-faces.

Corollary 2. Let Y be a subcomplex of X that is also a pure D-complex.
If any critical D-face of X and at least one D-face of each crucial clique of
X is in Y , then X collapses onto Y .

During the process of thinning an object, we often want to keep certain
faces like curve extremities for example, if we want to obtain a curvilinear
skeleton. That is why we introduce the following definition in order to gener-
alize the previous notions. Intuitively, the set K corresponds to a set which
is preserved by a thinning algorithm (a constraint set).

Definition 11 ([6]). Let K be a set composed of facets of X . A subcomplex
C of X is a crucial clique for 〈X, K〉 if C is a crucial clique for X such that
C ∩ K = ∅. In this case, each facet in C is called a crucial face for 〈X, K〉.

3.4.5 Parallel Thinning Algorithms

In the sequel, we give a characterization of crucial points or pixels in Z
2, which

can be checked in a quite simple manner with the help of masks. Thanks to
this characterization, one can easily implement parallel thinning algorithms
that are guaranteed to preserve topology. The interested reader is referred
to [5, 7, 6, 8] for the proofs of the stated properties 2. Implementations (in
source code) are available on the critical kernels web site3. We emphasize
that no representation of cubical complexes is used for computing this char-
acterization and thinning methods based on it: both inputs and outputs, as
well as intermediate results, are mere binary images (i.e., subsets of Z

D). For
the sake of simplicity, we limit ourselves to the 2D case, the reader can find
a similar characterization for the 3D case in [6].

2 Note that the characterization that we use in this chapter for the 2D case is actually de-
rived from the ones of [6], which deals with 3D. This allows us to present a characterization
that is simpler than the one proposed in [7].
3 http://www.esiee.fr/~info/ck
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Fig. 3.25 Masks for 1-crucial (M1) and 0-crucial (M0) points.

The masks M1, M0 are given in Fig. 3.25. For the mask M1, we also
consider the mask obtained from it by applying a π/2 rotation: we get 3
masks (2 for M1, and 1 for M0).

Definition 12. Let X ⊆ Z
2, and let M be a set of points of X .

1) The set M matches the mask M1 if:
i) M = {C, D}; and
ii) the points C, D are simple for X ; and
iii) the sets {a, b} ∩ X and {e, f} ∩ X are either both empty or both non-
empty.

2) The set M matches the mask M0 if:
i) M = {A, B, C, D} ∩ X ; and
ii) the points in M are simple and not matched by M1; and
iii) at least one of the sets {A, D}, {B, C} is a subset of M .

In the following, the set K plays the role of a constraint set (see Sect. 3.2.4).
There exists a “natural” one-to-one correspondence between the subsets of
Z

D and the pure D-complexes in F
D (see [6, 7]). Namely, with each point

(pixel, voxel) of Z
D we associate a facet of F

D (unit square, unit cube). We
extend our vocabulary accordingly: for instance, we say that a point x ∈ X
is crucial whenever the corresponding facet in the corresponding complex is
crucial.

Property 1. Let X ⊆ Z
2, K ⊆ X , and let M be a set of points in X \K that

are 8-simple for X .
Then, M is a crucial clique for 〈X, K〉 if and only if M matches the mask M0

or the mask M1.

An illustration is given in Fig. 3.26. From Corollary 2, we deduce that a
parallel thinning step that preserves all critical (i.e., non-simple) points and
at least one point of each crucial clique, preserves topology.

The simplest parallel thinning algorithm based on crucial points is the
following one. It consists of iteratively detecting the points that are simple and
not crucial (with respect to the current object and a possibly empty constraint
set), and removing them in parallel. This algorithm makes no arbitrary choice:
whenever a crucial clique is detected, all its points are preserved.
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Fig. 3.26 Illustration of crucial points (pixels). Left: the simple points are in gray, the
crucial points are marked by a black disk. The couples of black disks that are linked by a
bar, in the biggest connected component, represent all the crucial cliques that are dectected
by the mask M1. The triplet of black disks that are linked by a triangle, in the smallest
connected component, represents a crucial clique that is dectected by mask M0. All simple
points that are not crucial may be removed in parallel by a topology-preserving algorithm.
Right: the crucial points marked by a black disk constitute a set of points that is sufficient
to ensure topology preservation. All other simple points may be safely removed in parallel.

Algorithm 3: CrucialThinning

Data : D ∈ {2, 3}, a subset X of Z
D, a set K of points of X

Result : X
repeat

V =set of points of X that are simple and not crucial for 〈X, K〉;
X =X \ V ;

until V = ∅ ;

In [7, 6], we provide various algorithms based on the same principle, that
compute different kinds of skeletons: curvilinear of surface skeletons in 3D,
skeletons that are guaranteed to contain the medial axis, minimal skeletons,
asymetric skeletons, skeletons of three-dimensional objects made of surfels. . .

Back to guided thinning, we show with the next algorithm how to use
the notion of crucial point in order to avoid arbitrary choices when several
candidate points share the same priority. The result of the following procedure
is thus uniquely defined, given any shape and any priority function.

By construction, at each iteration of Algorithm 4, the current set X has the
same topology as the initial object. By “stacking” these sets that are nested
in each other, we can build a function that is a compact representation of this
family of thinnings. The simplest way to do this consists of defining a function
F that associates with each point x of X , the number of the iteration where x
is deleted, or +∞ whenever x is still in the final set. Hence, thresholding F at
any integer level provides one of the thinnings. Instead of the number of the
iteration, we can indeed choose any number that increases at each iteration.
This is not necessarily the case of the number π, but a slight modification of
the algorithm allows us to compute a function which is closely related to the
priority function used as input. This leads us to Algorithm 5.
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Algorithm 4: GuidedParallelThinning Version 0

Data : D ∈ {2, 3}, a subset X of Z
D , a function P from X into R ∪ {+∞}

Result : X

repeat
π = min{P (x), x ∈ X};
if π < +∞ then

U = {x ∈ X | P (x) = π and x is simple for X};
V = {x ∈ X | x is not crucial for 〈X, X \ U〉};
X =X \ V ;

until (π = +∞) or (V = ∅) ;

Algorithm 5: GuidedParallelThinning

Data : D ∈ {2, 3}, a subset X of Z
D , a function P from X into R ∪ {+∞}

Result : A function T from X into R ∪ {+∞}
τ = −∞;
foreach x ∈ X do T (x) = +∞;
repeat

π = min{P (x), x ∈ X};
if π < +∞ then

if π > τ then τ = π;
U = {x ∈ X | P (x) = π and x is simple for X};
V = {x ∈ X | x is not crucial for 〈X, X \ U〉};
X =X \ V ;
foreach x ∈ V do T (x) = τ ;

until (π = +∞) or (V = ∅) ;

Figure 3.27 shows, on the right, an example of function computed by Algo-
rithm GuidedParallelThinning, using the same input shape X as in Fig. 3.8,
and the priority function PRX defined in Sect. 3.2.6 (depicted on the left).

As for Algorithm GuidedThinning, it is possible to implement this algo-
rithm in O(n log n) or O(n) time complexity, depending on the nature of the
priority function.

Fig. 3.27 Left: a visualization of the map PRX , for the same shape X as in Fig. 3.8.
Right: the result of Algorithm GuidedParallelThinning.
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3.5 Perspectives

All the algorithms presented in this chapter work on images defined on Z
D.

They fit in the framework, called digital topology, pionneered by A. Rosen-
feld [34]. The success of digital topology is mainly due to its simplicity, espe-
cially for the 2D case. However, topological properties in higher dimensions
are not easily handled in this framework.

Besides, in Sects. 3.4.1-3.4.4, we described a framework based on cubical
complexes in which topological notions are defined quite naturally. Abstract
(cubical) complexes have been promoted in particular by V. Kovalevsky [30],
in order to provide a sound topological basis for image analysis. The cubical
complexes framework allows for retrieving the results obtained using digital
topology, providing a better understanding of these results. Furthermore,
new properties can be proved and new methods can be developped in this
framework, as showed by the example of critical kernels for the study of
parallel homotopic thinning in any dimension.

Further developments are needed to fully explore the possibilities and the
benefits of working directly on objects which are general cubical complexes,
and not only pure ones as it is the case in this chapter. In applications, this
should lead in particular to easier characterization, detection and analysis of
lower-dimensional structures, such as curves in 2D and 3D, and surfaces in
3D.

Fig. 3.28 An ultimate skeleton (all pixels are non-simple) that is not thin.

To illustrate this, let us consider the example of Fig. 3.28. In the continu-
ous framework, the skeleton of a bounded D-dimensional object always has
a dimension that is at most D − 1. That is, the skeleton of any object in
2D is made of curves (1D) and points (0D). Figure 3.28 is a classical exam-
ple showing that this property of thinness is not always true in the digital
topology framework.

However it is indeed possible to provide thinness guarantees in the cubical
complex framework. Consider the following thining scheme, based on the
collapse operation (see Sect. 3.4.2). Each thinning step is decomposed into
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(a) (b) (c) (d)

Fig. 3.29 Illustration of a thinning scheme based on collapse (see text).

four (in 2D) substeps corresponding to the four principal directions of the
grid, named north (N), south (S), west (W), and east (E). A north free k-
pair is a pair of faces (f, g) such that f is the only face that strictly includes g,
dim(f) = k, and g is on the north of f . In the substep N, only north free
pairs are considered. All north free 2-pairs are marked, and then removed in
parallel (see Fig. 3.29a,b). Then, all north free 1-pairs are marked, and then
removed in parallel (see Fig. 3.29b,c). The thinning scheme iterates such
steps until no more free pair can be found in a complete step (NSWE). The
topological soundness of this scheme can easily be proved. In Fig. 3.29d, we
show the final result obtained from the object of Fig. 3.29a. Observe that the
obtained skeleton is only composed of 0-faces and 1-faces, and can indeed
be interpreted as a set of curves. This thinness property may also be proved
in the general case. Of course, additional conditions may be added to this
scheme in order to preserve geometrical features such as curve extremities
(see [15]).

The cross-section topology approach presented in Sect. 3.3 can also be
adapted to the case of functions defined on cubical complexes, and bene-
fit from the ease of defining sound parallel topological operators, based on
the critical kernels main property (Theorem 3), or directly on the collapse
operation.

3.6 Conclusion

We have seen that it is possible to design topological operators acting on
binary 2D and 3D images and also on grayscale images, which are well defined,
have proven topological properties and can be implemented through efficient
algorithms.

We studied operators that transform an image while preserving its topo-
logical characteristics, and also operators that selectively modify these char-
acteristics in order to achieve some filtering, segmentation or restoration.
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Thanks to the general scheme of guided thinning that we promote in this
chapter, the geometrical features of the processed objects may be taken into
account in a flexible way, through the choice of adapted priority functions
(e.g. distance maps) and constraint sets.

In addition to the sequential approach, which has the advantage of being
simple but the drawback of needing arbitrary decisions to be made, we present
a tractable way to design sound parallel homotopic thinning algorithms, based
on the critical kernels framework. We show that the guided thinning strategy,
in particular, may benefit from this approach and result in a well-defined and
flexible thinning scheme.

The critical kernels framework is based on cubical complexes, that we
shortly presented in Sects. 3.4.1-3.4.4. In this chapter, cubical complexes were
used only to prove topological properties of algorithms acting in Z

D. Further
developments are needed to build a coherent set of image processing tools
based on cubical complexes, dealing with both binary and grayscale images,
encompassing and extending the set of digital topology tools.
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