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ABSTRACT: Centrale OO is a pioneering project aiming to deploy in Paris a fleet of 100 % electric taxis.
The significant initial investment and the current restricted vehicle autonomy give a high relevancy to the
charging terminal location task. This task can be seen as a variant of the well-known capacitated covering
location problem (CCLP). A mixed integer programming model suiting the features of the project is proposed.
Its originality lies in the way a punctual demand is built to satisfy the usual requirements of such models,
whereas the true demand in the project is attached to moving vehicles. The efficiency of the proposed model
has been compared by simulation with other more classical approaches on different sets of randomly generated
instances.

KEYWORDS: electric vehicles, charging terminal location, covering location problem, linear program-
ming, simulation.

1 INTRODUCTION

1.1 Context

Centrale OO1 is a pioneering project aiming to de-
ploy in Paris a fleet of 100 % electric taxis. The com-
pany in charge of the management of the fleet is the
Société du Taxi Electrique Parisien (STEP). The de-
ploiement of such fleets finds is main motivation in
sustainable issues: electric vehicles release almost no
air pollutants at the place where they are operated
and have less noise pollution than internal combus-
tion engine vehicles. However, the main drawback of
an electric vehicle is its weak autonomy – 80 km in
the case of the Centrale OO project. The constraints
of the management, as expressed by the STEP, are

• A taxi must never break down

• An opportunistic demand inside Paris and its
suburbs must always be satisfied (legal environ-
ment of Paris)

• The number of booking demands accepted has to
be maximized

The charging problem of the taxis must therefore be
carefully adressed. At a strategic level, one aspect
of this problem consists in determining the best loca-
tion for the charging terminals. At a tactical level, a

1See the website http://taxioo.com/index.html for an artis-
tic view.

good assignement of the trips to the taxis is crucial.
In taxi fleet management, two kind of requests can
be differentiated: booking requests and opportunis-
tic requests. The first ones can be immediate or in
advance of travel and have to be processed by the
taxi dispatching system which assigns the request to
a taxi. The opportunistic requests correspond with
the traditional taxi services picking up passengers at
cab-ranks or from the side of the road. Of course, this
kind of requests are not processed by the dispatching
system.

This paper deals with the location issue. The sig-
nificant initial investment (the cost of an electrical
charching terminal is about 10.000 euros) and the re-
stricted vehicle autonomy give a high relevancy to
the charging terminal location task. Indeed, a wrong
placement may in effect lead to a poor fleet manage-
ment with vehicles having difficulties to charge the
batteries due to charging terminals saturation or even
with vehicles constantly running out of charge to keep
operating. Our purpose is to propose a practical way
for computing the “best” locations.

1.2 Model

A complete directed graph G = (V,A) models the
network. The vertices are points in the city at which
trips start and finish. They can moreover be used to
locate charge terminals. The arcs model the possible
trips. The duration of a trip is a random variable Ta
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of expectation τa.

The demand for each possible trip a ∈ A is assumed
to follow a Poisson process of rate λa. Actually, these
demands are split between booking demands and op-
portunistic demands, see Section 5 for a more accurate
description.

There are n taxis. A taxi consumes γ Wh by unit of
time when it is moving. It stores ρ Wh by unit of
time when it is charging.

The number of charge terminals is denoted by r. Sev-
eral terminals can be located at the same vertex.

1.3 Main results

Finding the right locations for the charging terminals
can be seen as a variant of the well-known capacitated
covering location problem (CCLP). We modelize it
as a mixed integer program. Its relevance is proved
through simulations and comparisons with other lo-
cation strategies.

1.4 Plan

The paper is organized as follows. In Section 2, the
facility location problem and more particularly the
covering location problem are briefly introduced. An
upper bound for the maximal number of customers
accepted by the system and different strategies for
demand estimation are detailled in Section 3. In Sec-
tion 4, a mixed integer linear programming for elec-
tric charging terminal positionning is proposed. The
principles of the taxi behaviour simulator are briefly
described in Section 5. Finally, Section 6 is dedicated
to computational experiments.

2 LITERATURE REVIEW ON COVER-
ING LOCATION PROBLEMS

The location problem was originally defined by A.
Webber when he considered how to position a single
warehouse minimizing the total distance between the
warehouse and a set of customers (Webber, 1929).
In 1964, Hakimi (Hakimi, 1964) defines the P-median
problem, the problem consists in determining the best
location for a set of limited facilities in order to min-
imize the sum of the weighted distances between the
clients and the facilities serving these clients.

The problem increases its relevance during the last
decades, high costs related to property acquisi-
tion and facility construction make facility location
projects a critical aspect of strategic planning for
a wide range of private and public firms. Indeed,
the fact that facility location projects are long-term
investments leads the researchers to focus on dy-
namic and stochastic location problems (see (Owen

and Daskin, 1998) for a review of this extension of the
problem). Another important variant of the problem
is the Capacitated Facility Location Problem (CFLP)
where facilities have a constraining upper limit on the
amount of demand they can satisfy. An extension of
the CFLP closely to our problem is the Capacitated
Facility Location Problem with Multiple facilities in
the same site (CFLPM). In charging terminal loca-
tion the positions of the terminals are not the only
decision variables, the number of terminals at each
position have to be fixed too.

However, in some real-world applications selecting
the best location for distance minimization is not
the best suitable choice. For example, in electric ve-
hicle charging terminal location, like in other crit-
ical applications such as ambulance and fire ter-
minal location, the interest is to guarantee that
the different geographic zones are covered by a fa-
cility (closer than a previously fixed covering dis-
tance). This class of problems are known as Cov-
ering Location Problems (see (White and Case,
1974), (Schilling, Vaidyanathan and Barkhi, 1993)
and more recently (Vijeyamurthy and Panneersel-
vam, 2010) for a complete review of covering prob-
lems). In that context, the covering issue can be
sometimes modelized as a problem constraint. How-
ever, if the covering distance is fixed to a small value
the problem might become unfeasible. The Maximal
Covering Location Problem (MCLP) (Church and
ReVelle, 1974) locates the facilities in order to max-
imize the number of covered customers (customers
with a distance to the nearest facility smaller than
an initial fixed distance). An extension of the prob-
lem very interesting for critical applications is the
maximal covering with mandatory closeness prob-
lem which imposes a maximal distance (less stringent
than the covering distance) between the geographi-
cal zones and the nearest facility (Church and ReV-
elle, 1974). These covering models implicitly assume
that if a geographical zone is covered by a facility
then the facility will be always available to serve the
demand. However, in some applications, when facili-
ties have a fixed capacity, being covered is not suffi-
cient to guarantee the demand satisfaction. We find
in the literature some models attempting to overcome
this issue by maximizing the number of geographi-
cal zones covered by multiple facilities (Daskin and
Stern, 1981; Hogan and ReVelle, 1986; Gendreau, La-
porte and Semet, 1997).

We present in Section 4 the linear programming mod-
els proposed to solve the electric vehicle charging lo-
cation problem.
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3 MACROSCOPIC RELATIONS

3.1 General relations

Let use denote by λ̃a the average number of demands
for a trip a that are accepted by unit of time. We
have λ̃a ≤ λa.

Let λ̃ =
∑
a∈A

λ̃a be the average number of trips ac-

cepted by unit of time and let τ = 1
λ̃

∑
a∈A

λ̃aτa be the

average duration of an accepted trip.

The energy consumption of the system by unit of time
is γλ̃τ . The maximal rate of supply in energy is ρr.
Therefore, we have the following inequality

γλ̃τ ≤ ρr (1)

Another inequality can be derived, by considerations
on the time needed to realize the different tasks. Let
us consider a taxi over a time window of sufficiently
large duration T . Denote by x the time during which
it stores energy at a charge terminal. Over the time

window, it spends in average T λ̃τ
n unit of time with a

customer on bord. Therefore, we have

T λ̃τ

n
+ x ≤ T

During this duration x, it stores a quantity of energy
that must cover in average the consumption over the
time window. Hence

γT λ̃τ

n
≤ ρx

Combining these two inequalities leads to

(γ + ρ)λ̃τ ≤ n (2)

Equations (1) and (2) can be summarized in the fol-
lowing inequality.

λ̃ ≤ min

(
n

(γ + ρ)τ
,
ρr

γτ

)
(3)

Knowing the number of taxis, their efficiency (en-
coded by γ), the numer of charging terminals, their
efficiency (encoded by ρ), we have an upper bound on
the number of trips that can be accepted by unit of
time.

3.2 Estimating a pointwise demand in energy

All the covering location models take in input a point-
wise demand. A way to build such a demand di at-
tached to a vertex i consists in computing the energy
needed by unit of time for the trips starting at i: it
is precisely γ

∑
a∈δ+(i)

λaτa. Dividing this quantity by

ρ provides the number of recharge terminals ensuring
this supply. It suggests to define

douti =
γ

ρ

∑
a∈δ+(i)

λaτa

In the last equation, the pointwise demand is calcu-
lated considering the trips starting at vertex i. This
model presumes that taxis charging tasks take place
mostly at the origin of the trips. However, other re-
alistic strategies can be also envisaged. One of these
strategies is to consider that taxis charge the batteries
at the end of the trips. A pointwise demand consider-
ing the energy consumed by unit of time for the trips
arriving at i is also proposed. We can then define

dini =
γ

ρ

∑
a∈δ−(i)

λaτa

Finally, a third strategy is proposed considering a
pointwise demand as a linear combination of douti and
dini :

dmixi = αdouti + (1− α)dini

4 ELECTRIC VEHICLES CHARGING
TERMINAL LOCATION

The EV charging terminal location problem consists
in determining the best locations of the charging ter-
minals. The linear programming model has to take
into account two important aspects. First, the charg-
ing terminals have to be conveniently spread over the
geographical area in order to avoid remote geograph-
ical zones which difficult taxi operability and fleet
management. The second aspect is that the model
has to determine the number of charging points fa-
cilitating the charging process of the taxis by min-
imizing the risks of terminals saturation. For these
purposes, we propose two models, one called the P -
median model, the other the Demand-based model.

V is the set of geographical points of the problem
and J ⊆ V is the set of potential locations where the
charging terminals can be located. The number of
terminals is limited to r.
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4.1 P -median model

Following Hakimi (Hakimi, 1964), we define xj to be
the decision variables indicating if a facility is located
to the point j and yij to be the variables indicating
that the geographical point i is assigned to the facility
located in j. The linear program minimizing the sum
of the distances between clients and facilities can be
written as follows.

min
∑
i∈V

∑
j∈J

distijyij (4)

s.t.∑
j∈J

yij = 1 for all i ∈ V (5)

yij ≤ xj for all i ∈ V, j ∈ J (6)∑
j∈J

xj ≤ r (7)

xj ∈{0, 1} for all j ∈ J (8)

yij ∈{0, 1} for all i ∈ V, j ∈ J (9)

4.2 Demand-based model

Another approach consists in defining a model with
two distances βfar and βclose as proposed by Church
and ReVelle (Church and ReVelle, 1974). The idea is
then to spread the terminals by fixing a maximal dis-
tance (βfar) between the different geographical zones
and the nearest charging terminal and, at the same
time, trying to maximize the demand that will be
covered by a nearby charging terminal (βclose).

We can then define Jfari (resp. Jclosei ) as the subset
of points in J at distance less than βfar (resp. βclose)
from i ∈ V . Conversely, V closej is the set of points at
distance less than βclose from the point j ∈ J .

Let xj be the decision variable indicating the number
of terminals located at point j ∈ J and yij to be
the fraction of the demand di for i ∈ V covered by
a charging terminal located in j at distance less than
βclose from i.

The linear programming model proposed to solve the
problem called Demand-based model is the following.

max
∑
j∈J

∑
i∈V close

j

diyij (10)

s.t. ∑
j∈Jfar

i

xj ≥ 1 for all i ∈ V (11)

∑
j∈Jclose

i

yij ≤ 1 for all i ∈ V (12)

∑
i∈V close

j

diyij ≤ xj for all j ∈ J (13)

∑
j∈J

xj ≤ r (14)

xj ∈ Z+ for all j ∈ J (15)

yij ∈ R+ for all i ∈ V, j ∈ Jclosei

(16)

The objective function (Eq. 10) consists in maximiz-
ing the pointwise demand covered by a charging ter-
minal considering the distance βclose. Eq. 11 imposes
that a geographical zone i ∈ V must be covered at
least for one charging terminal considering the dis-
tance βfar. Here the mandatory closeness is only
required for the geographical zones closer than βfar
from a potential charging terminal location in order
to find a solution even if this constraint is violated
for some geographical zones. We stress that an ad-
equately βfar make possible to spread the charging
terminals over the geographical area. Eq. 12 specifies
that for each geographical zone i ∈ V the sum of the
fractions of demand covered by a charging terminal
considering the distance βclose has to be less or equal
to the unit. The idea here is that the demand of each
geographical point can be satisfied by different charg-
ing terminals and our interest is to maximize the po-
tential energy required being supplied by a terminal
closer than βclose. Eq. 13 are the constraints linking
the variables xj with the variables yij . For a given
potential charging terminal location Jj , this last set
of variables can only be positive if a charging terminal
is finally located to Jj , that means xj > 0. Besides,
thanks to the definition of the pointwise demand di,
Eq. 13 also imposes that the demand allocated to a
charging terminal cannot exceed its capacity. The
goal of this constraint is to assign a larger number
of terminals on the geographical points with a great
demand decreasing that way the risk of saturation
for the charging terminals. Finally, Eq. 14 limits the
number of terminals of the problem.
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CR1 R : CT1 CR4
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Figure 1: Customer acceptation mechanism for the electric vehicle management system architecture

5 TAXI SIMULATOR

5.1 Simulation

The taxi behavior simulator consists in a discrete-
events simulator programmed in C++. It simulates
the model described in Section 1.2. Each possible
trip between the points of the city is characterized
by two parameters, λbook and λopp, representing the
rates of the Poisson process for booked and oppor-
tunistic demand, respectively. For sake of simplicity,
the duration and the distance of each trip are con-
sidered constant over the time. The inputs of the
simulator are a description of the system state and
the simulation parameters. The system is originally
defined by:

• A set of points defined by their coordinates rep-
resenting the geographical points of the city.

• The location of the charging terminals.

• The fleet of taxis. Each taxi is defined by the
following parameters:

– AUT: it is the current autonomy of the ve-
hicle.

– MAX AUT: it is the autonomy of the vehi-
cle when it is fully charged.

– POS: it is the initial position of the vehicle.

Opportunistic and booking demands are treated dif-
ferently. The booking demands are managed by the
taxi dispatching system deciding whether a demand is
accepted or not. The opportunistic demands always
have to be satisfied, the simulator affects the trip to a
free taxi located at the same geographical point. As
we can note, an opportunistic demand is only consid-
ered when it exists spatial and temporal coincidence
between the demand and a free taxi, otherwise the de-
mand is simply ignored. It is worth recalling that the

opportunistic demands may lead to unsatisfied book-
ing demands initially accepted by the taxi dispatching
system.

5.2 Taxi dispatching system

A fleet management system aiming to overcome the
weakness of the real-life rule-based taxi dispatching
system is proposed in this section. The main ob-
jectives of the system are to maximize the number
of accepted customers and to minimize the customer
waiting time. One of the major issues is how to deal
with opportunistic demand. Indeed, this kind of de-
mand is unpredictable and must always be satisfied,
so free taxis must be at any moment able to satisfy the
longest trip without running out of charge. This con-
straint makes the problem considerably more complex
forcing the system to provide a mechanism ensuring
the feasibility of the already accepted trips each time
an opportunistic demand is accepted.

The approach proposed consists in maintaining con-
tinuously a feasible planning for the taxis and the
charging terminals (see Figure 1). Each time a cus-
tomer asks for a trip, a simple insertion algorithm
is run, at the end of which either the trip has been
successfully inserted or not. The objective is to as-
sign the customer to the taxi minimizing the customer
waiting time (a parameterizable announced customer
waiting time can be authorized). If none of the tried
delays on the pick-up time leads to a feasible plan-
ning, a rescheduling algorithm allowing to reallocate
the already accepted customers to the taxis is run.

In all these processes, a key routine which schedules
the charging tasks of a taxi, given a planning for the
other taxis and the charging terminals is often called.
It consists in a greedy algorithm aiming to insert a
charging task between each pair of successive trips of
the same route.
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In the case of an opportunistic demand, which is nec-
essarily accepted, we follow exactly the same scheme
except the fact that there is no degree of freedom in
the insertion process: the trip is inserted at the front
of the planning of the taxi stopped by the customer,
and the rescheduling algorithm is also run if it is nec-
essary.

In the next sections, the algorithms integrating the
fleet management system are briefly described. Let us
first introduce some notations. Let CRi be a booking
customer request. Each customer request CRi is de-
fined by a start time Si and an origin-destination pair
Oi − Di. The Si is fixed by the customer when the
customer request arrives. The completion time of a
trip is Ci = Si+ τOiDi

, where τOiDi
is the travel time

between the origin and destination of the customer
request CRi. Finally, let R : CTj be a taxi charging
task scheduled on the charging terminal CTj .

5.2.1 Insertion algorithm

This algorithm is the first step in order to decide if
a new trip CRnew is accepted or not. The objective
is to assign the trip to the taxi minimizing the delay
on the pick-up time. The algorithm increasely tests
the different authorized pick-up times. Once the start
time is fixed, we sequentially try for each vehicle to
insert the new request. First the scheduled charging
tasks are removed. Then the new request is accepted
only if it can be inserted with no constraint viola-
tion (the pick-up times of the rest of customers are
respected and the current autonomy of the vehicle,
without any charging task, is sufficient). In the case
that the vehicle autonomy-related constraint is vio-
lated, a greedy algorithm trying to schedule a charg-
ing task between each pair of trips is proposed. After
the charging tasks are inserted, if the taxi is able to
perform the trips without running out of charge, then
the customer request is also accepted.

5.2.2 Rescheduling algorithm

The rescheduling algorithm is proposed when the new
customer is still not accepted after the insertion algo-
rithm. As for the insertion algorithm, the goal is to
find a new feasible planning for the vehicles integrat-
ing the new request CRnew. The main difference is
that the trips can be reassigned to different vehicles.

The problem without taking into account the
autonomy-related constraints can be solved in poly-
nomial time (Neumann, Schwindt and Zimmermann,
2002). The idea is to convert the schedule of trips
(without the charging tasks) into a graph and to ver-
ify using a max flow computation that all trips can
be performed by the taxis. To construct the network
two vertices are considered for each customer request
CRi, the first one represents the pick-up time vi and

the second one the completion time v′i of the customer
request. Four dummy vertices are required: 0, 0′, a
source s and a sink t. The arcs are (s, 0), (0′, t), all
the (s, vi), all the (v′i, t), all the (0, v′i), all the (vi, 0

′),
and all the (v′i, vj) such that the customer request
CRj can be performed by the same taxi than the
customer request CRi and after CRi, that means if
Sj ≥ Ci + τDiOj . Except the arcs (s, 0) and (0′, t),
they all have a capacity equal to 1. The arcs (s, 0) and
(0′, t) have a capacity equal to n. A maximum flow is
this directed graph determines the schedule feasibil-
ity and also proposes a new planning for the vehicles
respecting the pick-up times of the customers.

The max flow computation is integrated in the
rescheduling algorithm in order to check the feasi-
bility of the schedule for a given pick-up time in
[Snew, Snew + ∆] and, if it is the case, to find a refer-
ence planning (planning without charging tasks). A
local search explores the neighborhood of the refer-
ence planning defined by the swap and the reallocation
operators (Savelsbergh, 1992). Finally, for each ex-
plored planning respecting temporal constraints, the
greedy algorithm for charging task scheduling is se-
quentially applied to the taxis that do not satisfy
autonomy-related constraints (that is, taxis whose
current charge is not enough to realize all the trips
assigned to them without adding charging tasks). If
a feasible solution is found, the new customer is then
accepted.

6 COMPUTATIONAL EXPERIMENTS

The linear models for charging terminals location pre-
sented in Section 4 have been compared and evalu-
ated by simulation on a set of randomly generated
instances. Two set of instances have been generated
considering different values for the average number of
demands by unit of time. We consider then a first
set of instances with a weak demand (λweakbook ≈ 0.4
and λweakopp ≈ 1.0) and a second set of instances with

a strong demand (λstrongbook ≈ 0.8 and λstrongopp ≈ 2.0).
Each set is composed of 60 instances (10 instances
for each combination) generated from different values
for the number of terminals (r = {5, 20, 40}) and for
the number of vehicles (n = {100, 200}). The compu-
tation experiments consist on a 900 minutes simula-
tion. The maximal authorized delay on pick-up time
is fixed to ∆ = 15 minutes and the minimal charging
time for a vehicle is fixed to 10 minutes.

Table 1 shows the results for the comparison between
both models for the 40 instances with 5 charging ter-
minals. The first column (NbTrips) displays the aver-
age of accepted customers (booking and opportunis-
tic demands). NbBooking is the average of accepted
booking requests. The average percentage of operat-
ing time and the average percentage of time when a
taxi is waiting for an available charging terminal are
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r = 5 NbTrips NbBooking %Operating %Waiting for charging
weak demand

n = 100

P -median model 481.6 359.2 85.41 % 9.52 %
Demand-based model (dout) 497.6 362.0 90.98 % 4.67 %
Demand-based model (din) 488.7 359.8 91.84 % 3.63 %
Demand-based model (dmix) 488.5 358.9 91.17 % 4.41 %

n = 200

P -median model 551.6 366.9 90.16 % 7.06 %
Demand-based model (dout) 567.9 368.3 94.97 % 2.80 %
Demand-based model (din) 563.3 365.8 94.99 % 2.70 %
Demand-based model (dmix) 560.3 366.9 94.95 % 2.80 %

strong demand

n = 100

P -median model 744.3 654.1 55.19 % 38.04 %
Demand-based model (dout) 777.1 672.7 64.08 % 29.44 %
Demand-based model (din) 803.4 678.7 68.83 % 24.28 %
Demand-based model (dmix) 789.9 674.3 65.63 % 27.67 %

n = 200

P -median model 886.0 703.9 66.01 % 30.33 %
Demand-based model (dout) 943.5 725.0 75.04 % 21.48 %
Demand-based model (din) 943.0 718.5 77.30 % 19.09 %
Demand-based model (dmix) 953.0 723.8 77.43 % 19.03 %

Table 1: Comparison between different programming models for instances with 5 charging terminals

r = 20 NbTrips NbBooking %Operating %Waiting for charging
weak demand

n = 100

P -median model 497.0 361.4 94.46 % 0.19 %
Demand-based model (dout) 495.9 361.4 93.99 % 0.28 %
Demand-based model (din) 499.0 362.7 94.19 % 0.22 %
Demand-based model (dmix) 495.1 363.4 93.98 % 0.31 %

n = 200

P -median model 566.7 367.0 96.79 % 0.11 %
Demand-based model (dout) 564.5 367.9 96.49 % 0.17 %
Demand-based model (din) 561.2 368.5 96.57 % 0.16 %
Demand-based model (dmix) 561.1 368.5 96.49 % 0.20 %

strong demand

n = 100

P -median model 894.8 733.7 90.02 % 0.89 %
Demand-based model (dout) 895.4 734.5 88.97 % 1.26 %
Demand-based model (din) 884.7 733.4 89.21 % 1.15 %
Demand-based model (dmix) 895.5 737.1 88.59 % 1.36 %

n = 200

P -median model 994.9 741.2 93.85 % 0.73 %
Demand-based model (dout) 1005.4 744.8 93.40 % 0.88 %
Demand-based model (din) 997.0 741.1 93.28 % 0.87 %
Demand-based model (dmix) 1008.9 744.0 93.19 % 0.95 %

Table 2: Comparison between different programming models for instances with 20 charging terminals
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r = 40 NbTrips NbBooking %Operating %Waiting for charging
weak demand

n = 100

P -median model 492.6 362.1 94.88 % 0.06 %
Demand-based model (dout) 493.8 361.2 94.71 % 0.06 %
Demand-based model (din) 493.3 362.5 94.85 % 0.04 %
Demand-based model (dmix) 492.8 361.8 94.69 % 0.05 %

n = 200

P -median model 549.7 366.9 97.08 % 0.03 %
Demand-based model (dout) 556.1 366.1 97.04 % 0.03 %
Demand-based model (din) 560.5 366.6 97.06 % 0.03 %
Demand-based model (dmix) 559.1 367.9 96.99 % 0.02 %

strong demand

n = 100

P -median model 902.1 731.6 91.30 % 0.24 %
Demand-based model (dout) 897.6 732.9 91.66 % 0.13 %
Demand-based model (din) 896.4 732.7 91.44 % 0.14 %
Demand-based model (dmix) 897.0 732.8 91.31 % 0.13 %

n = 200

P -median model 999.0 741.1 95.00 % 0.14 %
Demand-based model (dout) 1009.3 741.4 94.96 % 0.09 %
Demand-based model (din) 1008.8 741.0 94.90 % 0.11 %
Demand-based model (dmix) 1006.5 741.9 94.91 % 0.12 %

Table 3: Comparison between different programming models for instances with 40 charging terminals

displayed on the last two columns.

The demand-based model is generally more efficient
than the P -median model. More customers are satis-
fied, the operating time of taxis is higher and the time
waiting for an available charging terminal is drasti-
cally reduced. In some cases, this last value is even
divided by two. The different ways proposed to esti-
mate the pointwise demand have been also compared.
We observe that no strategy overcomes clearly the
others.

This results reflects the advisability of considering de-
mands in problem model. Nevertheless, the results
are less conclusive for a large number of charging ter-
minals as Table 2 and Table 3 show for 20 and 40
charging terminals, respectively. Although demand-
based models are generally more efficient than the
classical model, the reduction of waiting time is less
important than for the instances with 5 charging ter-
minals. Finally, we observe that demand-based mod-
els are better adapted to rush hours because the ef-
ficiency of these models increases directly with the
average number of demands by unit of time.

7 CONCLUSION

In this paper, we study the electric charging termi-
nal location problem. An upper bound for the num-
ber of customers that can be served by the system
has been first computed. Then, different models have
been proposed to solve the problem. The first model
searches to locate the terminals in order to minimize
the sum of the distances between the geographical
points and the nearest charging terminal. The second

model is a demand-based mixed integer linear pro-
gramming model that considers a pointwise demand
in order to maximize the demand covered by a close
charging terminal. The originality of the approach
lies in the way how initial dynamic demands are es-
timated as static pointwise demands. Both models
have been tested and compared on a set of realis-
tic instances randomly generated. The results show
that the proposed demand-based model generally im-
proves the model minimizing the sum of distances.
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