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ABSTRACT

In spite of the widespread usage of mechanical roof bolts as
a support system in the underground coal mines, the mechanisms by
which roof bolts reinforce the mine roof are still not fully
understood. The general practices of roof bolting system are
largely based on some empirical rules, which tend to either
underdesign or overdesign.

In order to design the roof bolting system safely and
economically, it is essential to understand the flexural behavior
of the immediate roof. Based on the strata sequence, the strata
in the immediate roof are divided into three types. The flexural
behavior of the three strata types are investigated in terms of
the following effects: roof span, horizontal stress, thickness
and Young's modulus of the lowest stratum.

The reinforcement mechanism of suspension effect is analyzed
based on beam-column theory. The equations of the maximum b~nding
stress, deflection and transferred bolt load for the bolted strata
are derived. In the analysis, the bolt load is assumed to be
point load and the horizontal stress is uniformly applied to each
stratum. The reinforcement mechanism of friction effect is also
investigated. The major function of roof bolting in this case is
to create the frictional resistance between the strata by the
tensioning of roof bolts, thereby the individual layers are

combined into one single thick layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Based on the r;sults of this research, the bolts should be
equally spaced when the immediate roof is reinforced by the
suspension effect. However the bolts should be spaced based on
equal shear force concept when the immediate roof is reinforced
by friction effect.

An efficient computer program and nomographs are developed for
the determination of proper bolting pattern and bolt tension. It
is hoped that this development can lead to maximum safety with
minimum cost for the design of roof bolting system in underground

coal mines.
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CHAPTER 1

INTRODUCTION

1.1 General

Today, roof bolting is the primary support system in underground
coal mines, because more than 95% of the underground coal mined in
the United States are mined under roof-bolted roofs (1). The use
of roof bolts has resulted in a great reduction in the number of
fatal and nonfatal roof-fall accidents in coal mines (2). Further-
more, since the bolted mine roof can provide an unobstructed opening
with minimum maintenance, the productivity has increased, the cost
decreased, and the ventilation improved.

In general, based on the types of anchor, roof bolts can be
divided into two groups. One is the point-anchored bolt (or
mechanical bolt) and the other is the full-length-anchored bolt
(or resin bolt). While resin bolting has met with increasing
growth in the past decade, mechanical bolting (mainly the expansion-
shell bolt) still reinforces the roof strata, safely and economically,
in the vast majority of underground coal mines in the United
States (3).

In spite of the widespread usage of roof bolts as a support
system in the underground mining, the mechanisms by which roof bolts
reinforce the mine roof are still relatively unknown. In particular,
there is no consensus regarding the design criteria for the bolting

pattern (i.e., bolt length and bolt spacing both along and across the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



opening) and bolt tension at which it should be installed to
reinforce the mine roof with safety and economy. The common
practices of roof bolting systems are largely based on some
empirical rules, which tend to either overdesign or underdesign.

Although it is generally believed that the reinforcement
mechanisms for mechanical bolting in horizontally bedded strata
are due to the suspension effect and/or the friction effect (or
beam-building effect), a complete and detailed theory is not as
clear as it should be, and is still not fully developed (2). This
is mainly due to the fact that different geological and geometrical
conditions exist for different mines. For example, one bolting
plan which is suitable for one mine may not be adequate for the
other mines. The commonly used 4 x 4 ft. (1.22 x 1.22 m) pattern
is merely based on the rule-of-thumb, which is obviously not good
for every situation.

Since the reinforcement mechanism and the design of bolting
systems are closely related to the strata behavior, it is necessary
to systematically analyze the flexural behavior of the immediate
roofs that are likely to be encountered in coal mines.

Generally, based on the strata sequence, the immediate roofs
in the underground coal mines can be divided into three types.
They are: (a) each stratum deflects independently, (b) some
stratum (or strata) deflects more than that of the underlying
strata, and (c) each stratum deflects more than that of the under-

lying stratum (Fig. 1.1)(5). Among them strata type A is
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Fig. 1.1. Three strata types of immediate roof (5).
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usually the most critical to the stability of the immediate roof.
Therefore, an adequately designed roof bolting system is necessary.
For strata type C, if the strength of the thick stratum is

strong enough, there is no need to install any roof bolt. For type
B immediate roof, a suitable roof bolting system is needed, depending
on the strength of the roof strata and the location of the thick
(or strong) stratum (5). However, in real situation, the strata
sequence of the immediate roof is arbitrary, thus the analysis of
the flexural behavior of the immediate roof may become very
complicated. In order to overcome this difficulty, it is essential
to develop a computer program which can deal with the analysis of
the flexural behavior of any immediate roof that is likely to be
encountered.

In underground coal mines, since high in-situ horizontal stress
always coexists with vertical stress because of lateral constraint
or tectonic activities (6, 7), the effect of axial loading due to
the horizontal force should be considered in the design of roof
bolting system. The effect of horizontal stress will not only
increase the bending stress, but also influence the total stress
(i.e., the sum of horizontal stress and bending stress) on the outer
fiber of the roof stratum. When the horizontal stress is very
high, the buckling action may cause the roof strata to fail
suddenly. It should also be noted that due to the existence of
the horizontal stress, total stress instead of bending stress
should be used in the design of bolting system for more accurate

results (6-8).
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1.2 Objectives

The primary objective of this research is to analyze the
reinforcement mechanisms of the mechanical roof bolting for a
generalized immediate roof, which is made up of multiple strata
with variable thicknesses, different material properties and
arbitrary strata sequence. In addition, based on the results of
this analysis, a computer program and nomographs are developed,
from which a set of design criteria for proper bolting pattern and

bolt tension is established.

1.3 Scope
The scope of this research is confined to the following
conditions:
(1) A rectangular opening with a generalized immediate
roof in the horizontally bedded rock.
(2) The ratio of the length to the span (width) of
the opening is two or more.
(3) The mechanical bolts are of equal lengths and

vertically installed into the immediate roof.
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CHAPTER 2

LITERATURE REVIEW

2.1 Characteristics of Mechanical Roof Bolts

Although there are various types of mechanical bolts, all of
them consist of the following common elements (Fig. 2.1)(9):

(a) a solid steel bar or shank,

(b) an anchoring device at the top end of the bar, and

(c) a tensioning device at the lower end of the bar.

2.1.1 Solid Steel Bar

Most roof bolts in coal mines have a solid steel bar, although
wood rods have also been used for some particular situations. The
steel bar, generally 5/8 in. (1.59 cm) in diameter, has either a
smooth surface or a deformed appearance such as rebar or screwed
thread. At the anchoring end, the bar either has a formed slot to
accept a steel wedge for the slot-and-wedge anchorage, or is threaded
to accept the expansion-shell anchorage. At the tensioning end, the
bar may either be threaded to accept a torque nut or have an
integral forged head (10).

The yield strength of the steel bar is a fundamental parameter
in the determination of bolt tension, which in turn is very important
for the effectiveness of the mechanical bolt. Generally, the yield
strength of the steel bar ranges from 30,000 to 75,000 psi (206.85
to 517.125 MPa)(ll), depending on the carbon content, with higher

carbon for higher yield strength (12). Although a roof bolt of
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high strength is desirable, the use of very high strength bolt
should be avoided because if the bolt fails it will shoot out of the
hole with a high velocity creating a safety hazard. It is therefore
recommended that the installed bolt tension should not exceed 60% of:
(a) the yield load of the bolt, i.e. 12,000 to 14,000 1b. (5,433 to
6,350 Kg) for 5/8 in. (1.59 cm) extra-strength bolts; 18,000 to
20,000 1b. (8,165 to 9,072 Kg) for 3/4 in. (1.91 cm) extra-strength

bolts or (b) the anchorage capacity, whichever is lower (1).

2.1.2 Anchor Types

There are three major types of anchor, i.e., slot-and wedge,
expansion shell, and grouted anchorage (Fig. 2.1)(9). 1In addition
to these three types of anchor, there are another two types of
anchor, i.e., explosive-set anchor (13) and combination anchor (14),
which have also been successfully introduced. Table 2.1 summarizes
the various types of mechanical roof bolts.

(1) Slot-and-Wedge

This type of anchor was most common in the early period of roof
bolt development. The usual practice is to install a 1 in. (2.54 cm)
bolt in a 1 1/4 in. (3.18 cm) hole drilled with an air powered
stopper or jackleg drill (1). The anchorage is obtained by inserting
a steel wedge into a center slot formed at the top end of the bolt
and expanding the slot by driving the wedge against the bottom of
the hole. To achieve a good anchorage, the length of the hole has
to be carefully controlled (15). At present, the use of this type

of roof bolt has become obsolete in the U. S. and has been superseded
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Fig. 2.1. Three types of mechanical roof bolts.
(A) Slot and wedge type; (B) Expansion
shell type; (C) Grouted anchorage type (9).
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Table 2.1. Various Types of Mechanical Roof Bolts

most strata

Suitable
Type of Anchor Strata Type Comments Ref.
Slot-and-Wedge hard rock used in early stages 15
Expansion Shell: most commin in U. S. 15
a. Standard anchor medium~strength rock
b. Bail anchor soft rock
Grouted anchor: most strata, especially increased usage recently 3
good for weak rock
a. Pure point anchor grouted length< 24 in. (61 cm) 16
b. Combination system grouted length > 24 in. (61 cm) 16
Explosive-Set lower-strength rock limited usage 13
good anchorage with "No Mix Resin" 14

Combination Anchor
(Expansion shell and
no mix resin)




by the expansion-shell bolt due to the general unavailability of
compressed air and the introduction of hydraulic rotary drilling in
the underground coal mines (15).

(2) Expansion Shell

This is the most commonly used type of anchor in the underground
coal mines. The general practice is to install a 5/8 in. (1.59 cm)
bolt in a 1 3/8 in. (3.49 cm) hole. The anchorage is obtained by
applying torque to the bolt head, which in turn pulls the wedge-
shaped plug down into the shell and expands the serrated leaves
against the sides of the hole. In this type of anchor, the depth
of the hole need not be accurately controlled (15). But the diameter
of the hole is important, since an oversized hole can result in poor
anchorage (12). The fact that hydraulic-rotary-percussion drill can
anchor and tighten the bolt simultaneously contributes to the
popularity of expansion-shell anchors in modern coal mines (15).

A large number of expansion-shell designs are available with
major variations in shell length, type of serration, angle of plug
and number of leaves forming the shell. In general, they can be
divided into two types of anchor: standard type and bail type.

The standard expansion shell resembles a short tubing split length-
wise into two or four pieces, with a solid unsplit portion left at
the lower end. In the bail type, the shell body is commonly split
into halves for its full length, but kept together with a yoke-shaped
steel band. X-ray radiographs by Mitchell and Debevec (17) and

Foster, et al (18) have shown that standard and bail expansion shells
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produce different shell-borehole interface contacts. The contact
area for the standard shells is restricted to the length of the plug
because of the rigid shell-leaf attachment at the base. The bail
type on the other hand, is able to make full contact of the whole
length of the shell. Therefore, the bail anchors can provide a
better anchorage in soft rock due to smaller stress concentration,
whereas the standard anchors can penetrate into hard rock and
provide a better grip due to higher stress concentration.

The shape and type of serrations on the expansion shell are
very important factors for good anchorage. Stefanko and de la Cruz
(19) analyzed the anchorage performance between the commercial
shell and the modified shell (Fig. 2.2). They stated that the
serration on the commercial shell contributed to the failure of the
rock which resulted in excessive bleed-off, because the force
transmitted by the wedge was in the direction of the tip of the
serration, thus resulting in excessive stress concentration.

While for the modified shell, due to the reversal of the serration
(i.e., with the flat edge upward), the force transmitted by the

wedge was permitted to act nearly normal to the face of the serration.
Thus the anchorage was improved since excessive stress concentration
can be avoided. This resulted in much lower rates of bleed-off.

(3) Grouted Anchor

In this type of anchor some portions of the bolt near the top
end are grouted. The anchorage is achieved by the bonding between
the grout, bolt and hole wall. The grouted length depends on the

type of rock and the grouting material. Many grouting media have
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Fig. 2.2. Arrangement of serrations on an expansion shell.
(A) Commercial serrations; (B) Modified
serrations (19).
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been used, such as Portland cement, mortar, gypsum, chemical grout,
polyester resin and epoxy resin. Among them the resin type anchorage
is most popular due to its high strength and quick setting time.
Generally, this type of anchorage can be categorized into two groups
(16): (a) the pure point-anchored system having 24 in. (61 cm) or
less of grouted length, and (b) the combination bolting system
having grouted length more than 24 in. (61 cm). For the pure point-
anchored system it functions as a mechanical bolt, while for the
combination bolting system, the grouted portion reinforces the
upper strata as a fully grouted bolt with the ungrouted part held
by a clamping force as in the mechanical bolt (16).

(4) Explosive-Set Anchor

In this type of anchor, explosives are inserted in an anchor
tube at the end of the bolt. By expanding the anchor tube with
explosives, a corrugated effect is produced to secure a firm bond
between the bolt and the sides of the hole (13). Although this type
of anchorage is successful for the weak rock, it has a limited use
due to its complexity and higher cost.

(5) Combination Anchor (Expansion Shell and "No Mix Resin")

In this type of anchor, the effective anchorage is achieved by
adding the advantage of resin bonding to the mechanical expansion
shell. In addition, due to the fact that no spin mixing of resin
cartridge is used, the speed of installation is much faster (14).

The increased anchor performance resulting from the "No Mix

Resin" is as follows (14)(Fig. 2.3):
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Fig. 2.3. Increased anchor performance resulting from
"No Mix Resins" (14).
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(1) Increase the leaf bearing area by filling the voids
between the serrations on each metal leaf.

(2) Form a 360° bearing area by resin filling the space
between the leaf, wedge and hole wall.

(3) Creates a longer plug that maintains contact with
the total available leaf area.

(4) Generates additional resistance to anchor movement
by accumulating resin below the shell but above

the gasket.

2.1.3 Bearing Plate and Washer
Bearing plates used between the bolt head and the roofline
are generally flat or bell- or doughnut-shaped and range from 6
to 8 in. square (15.24 to 20.32 cm square) in size. The major
function of the bearing plate is to distribute the load from the
bolt to the rock surface. The bearing stress exerted by the bearing
plate should not exceed the bearing capacity of the rock surface so
that failure will not occur, thus maintaining the proper bolt tension.
In practice, the roof surface and hence the bearing plate is not
always perpendicular to the bolt. The angle washers or spherical
washers are used to create a uniform bearing surface for the nut or
bolt head, which is normal to the bolt axis. A hardened flat washer
is normally used between bearing plate and the nut or bolt head.
The use of a hardened washer not only increases the torque-tension
ratio, but also decreases the random variations of bolt tension

induced in the installation (20).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

2.1.4 Torque~Tension Relationship
The relationship between the applied torque and the induced

tension in the bolt is generally expressed as
P =Cr 2.1

where P and T are bolt temsion in 1b. and applied torque in ft-1b,
respectively, and C is a constant. C is different for different
bolt diameters and installation techniques. The rule of thumb is

C = 50 for 5/8 in. (1.59 ‘cm) bolts, 40 for 3/4 in. (1.91 cm) bolts,
30 for self-centering headed bolts, and 60 for bolts with hardened
steel washers (13). For the roof bolt with integral head, which

is tensioned by the applied torque, the steel shank is subjected to
a combination of torsional shear stress and tensile stress. The
combined stress has the effect of reducing the yield strength of

the bolt (9, 21).

2.1.5 Anchorage Capacity

The maximum load a bolt can withstand without its anchorage
slipping at a certain horizon in the roof can be determined by
underground in-situ pull tests of roof bolts (1). From these tests,
the characteristics of the anchorage can be represented by a graph
of bolt displacement versus bolt load. The load at which a slight
increase in load causes excessive anchorage displacement is defined
as the anchorage capacity of the bolt for that horizon (1). Since

the rock property is different from mine to mine it is advisable to
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carry out the pull tests to determine the anchorage capacity, which

is essential in the design of roof bolting system.

2.2 Theories of Roof Bolting

It has been estimated that over 100 million roof bolts are
used in the United States each year. Despite its widespread usage,
the complete theory of roof bolting remains underdeveloped (2).
Although numerous theories (22-26,27-35) have been proposed and a
great amount of research has been carried out elsewhere, the real
mechanism or mechanisms by which the roof bolts reinforce the
immediate roof of underground coal mines are not fully understood.

In general, the existing theories regarding the mechanisms by
which the roof bolts reinforce the mine roof are: (a) suspension
effect, (b) friction effect (or beam-building effect), (c) arching

effect, and (d) keying effect.

2.2.1 Suspension Effect

Basically, there are two types of reinforcement due to suspension
effect. One is the simple suspension and the other is the beam
suspension.

(1) Simple Suspension

The simple suspension effect is that the weight of a weak (or
loose) rock layer is suspended from the upper competent rock
stratum through the use of roof bolts. This type of support was
probably the earliest mode of reinforcement and is still used for

this purpose in the underground coal mines today.
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The load carried by a bolt, P, is given by the following
equation (22):

_ wtBL
PEW DM, F D) (2.2)

where w = unit weight of roof rock
t = thickness of the roof layer
L = roof span (or width of the opening)
B = length of the opening
N, = number of bolts per row across the opening

N, = number of rows along the opening

It should be noted that this equation is valid only if the
weight of the weak rock layers is completely suspended at the upper
competent rock stratum by the roof bolts. However, in real under-
ground situations, a portion of the weight of the roof layers is
generally supported at the abutments on both sides of the opening.
Therefore this equation mostly represents the upper limit of the
suspension load for each bolt, which tends to overdesign the bolting
system.

(2) Beam Suspension

In horizontally bedded strata, to which most immediate roofs in
coal mines belong, the strata are either unbonded or the bonding
strengths between them are small compared to the temsile strength
of the roof strata. After an opening is excavated, the immediate

roof will become detached from the overlying strata either immediately
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or after a short time (22). Generally the immediate roof over an
underground opening is assumed to behave like a series of beams
with the ends of the beams fixed or restrained at the pillars on
each side of the opening (8,22,23). The suspension effect under
this condition is mainly due to the transfer of parts of the weight
of the weaker strata to the competent stratum (or strata) through
roof bolting.

Panek (24-26) analyzed the suspension effect by both experi-
mental method and theoretical study. The experiment method used a
centrifugal testing to simulate the gravitational forces exerted on
the roof rock of underground opening. The theoretical analyses
were pased on the fixed-end beam theory with the following
assumptions:

(a) All beams are bolted such that equal deflections

occur at the bolt locations and at the support
ends.

(b) The beams have frictionless surfaces of contact.

(c

The total load to be supported by each beam
consists of two parts. One part is the transferred
load due to bolting, which is assumed to be a point
load. The other part is the uniformly distributed
load due to its own weight.

The results of his studies showed that the suspension effect
by roof bolting in a horizontally bedded mine roof depended

principally on the number of bolted roof layers and their relative
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flexural rigidities. In order to prevent strata separations at the
bolt locations, a sufficient bolt tension was necessary. The results
also indicated that for the bolted roof the maximum bending stresses
in the thick beds were usually greater than that in the thinner beds.
Thus, in a bolted roof, the thickest bed is usually the critical

one, and the failure of this member may cause the failure of the
whole bolted unit.

Although Panek's work contributed a lot to the design of roof
bolting systems, several important effects were not taken into
consideration in his studies. These included, in particular, the
analysis of the flexural behavior of a generalized immediate roof
and the effect of axial loading due to high horizontal force.
Moreover, the maximum bending stress instead of the total stress was
used in the design of roof bolting system, which is valid only when
the horizontal stress is zero or very small (8). However, in most
cases, the in-situ horizontal stress is very high (6,27).

In order to design, safely and economically, the roof bolting
system for underground openings, it is essential to understand the
flexural behavior of the generalized immediate roof. As stated in
Chapter 1, the immediate roofs can generally be divided into three
types based on the strata sequence. Basically, Panek only considered
strata type A for the study of suspension effect. Strata type B
was not analyzed due to complexity. It is worth noting that
although the bolt load calculated based on strata type A can develop

the maximum possible suspension effect for all possible strata
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sequence, it will overdesign the bolt load for the immediate roof

of strata type B.

2.2.2 Friction Effect

The reinforcement of a laminated roof by the friction effect
results from the clamping force of the tensioned bolts, which
creates frictional resistance to slip on the interfaces betﬁ’een
laminae, thus decreasing the flexure and strengthening the roof.

Panek (28-30) analyzed the friction effect of bolting in a
horizontally bedded roof by centrifugal testing of mine roof models.
The following restrictions were imposed: (a) The immediate roof
consinted of beds of equal thicknesses, all beds being of the same
material, with no bond between the beds. (b) The bolts were
installed vertically in straight lines across the opening and were
not anchored in a thick bed, the case of suspension effect therefore
being excluded (30). By means of regression analysis of the data
from model studies, he found that the relationship between the
decrease in maximum bending strain, Aef, due to friction effect and
the maximum bending strain of the unbolted strata, Enf , can be

s

expressed by the following equation (31):

Acf

€
nfs

-0.5 0.33

= - 0.375 u(bL) " INB(h/t, -1/, ] (2.3)
where 1B = coefficient of friction between the bedding planes

b = spacing of rows of bolts

L = roof span
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N = number of bolts per row
P = bolt tension
h = bolt length, or total thickness of the bolted
roof beds
tave = average thickness of the bolted roof beds
wave = average unit weight of the bolted roof beds

The reinforcement factor, RF, due to friction effect, is then

defined as

RF = ——— (2.4)

which is used to evaluate the effectiveness of the friction effect
of roof bolting. Based on these two equations, a nomograph was
derived, from which the reinforcement factor of a bolted roof can be
quickly determined. It should be mentioned that this nomograph is
based on p = 0.7 and wave = 0.09 lblin3 (2.49 g/cm3). Besides, the
material property (e.g., Young's modulus) of each roof layer is the
same. Therefore, in order to apply these equations and nomograph
with confidence to the design of roof bolting system in the real
underground situations, the above mentioned assumptions should be
understood and satisfied in the prototype, otherwise either over-
design or underdesign will result.

Janek investigated the behavior of the bolted mine roof by the
finite element method (32). In an analysis of beam-building effect,

he used one model to determine whether or not two separate slender

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

beams which were bolted with seven bolts could behave as one single
beam. He concluded that a bolt load of 15,000 lbs. (6,804 kg) was

not sufficiently high to "build"” one thick beam from two thin ones.
Based on the results of the model tests, Panek also stated that the
bolted unit could be made to act like a solid beam for wider spans

if several times as many bolts were used (30).

Van Ham and Tsur-Lavie performed experiments with photoelastic
materials subjected to uniformly distributed loading (33). They
concluded that: (a) the highest stresses occur in the lowest
roof layer of a multilayer roof, (b) a bolted multilayer roof does
not behave as one single thick beam, and (c) in a perpendicularly
bolted roof, the center. roof bolt has a negligible influence on the

roof reinforcement.

2.2.3 Arching Effect

The reinforcement of the immediate roof by the arching effect
through roof bolting was observed in the underground mining (34).
Generally this type of reinforcement occurred in a circular or an
arch-shaped opening. It also occurred in the rectangular opening
with blocky ground in the roof, possessing little or no tensile
strength.

Through the systematic use of the roof bolts, a ring (or zone)
of compressed reinforced rock may be formed around an opening.
The reinforced layer acts as a structural membrane or unit capable
of not only providing its own support, but also supporting the rock

above.
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With this type of reinforcement, the in-situ horizontal stress
plays an important role. Gerdeen, et al. (34) analyzed the stability
of the bolted mine roof under different horizontal stresses. They
pointed out that under low lateral stress, roof bolts of adequate
length are required to maintain the arch. But under high lateral
stress, the bolts may not be required to maintain the arch. This

was also confirmed by the finite element analysis (34).

2.2.4 Keying Effect

In underground coal mines, the stratified immediate roof may be
intersected by the planes of weakness. Roof bolting across these
planes of weakness will prevent or reduce movements of roof strata
along these planes. The reinforcement effect is mainly due to the
frictional resistance and interlocking phenomena from the tensioning
of the bolts. Lang (35) made a series of model experiments using
fine (i.e., < 3/16 in. or 4.76 mm), crushed rock, plastic rods or
marbles to simulate the fractured roof. From the test results, he
concluded that in order to make the roof behave stable, the following

equation must be satisfied:
S/M < 3.0 (2.5)

where S is the spacing between the bearing plates of the bolts and

M is the mean size of the rock fragments.

2.3 Bolting Pattern--Length and Spacing of Bolts
One of the most important aspects in the success of any roof

bolting endeavor is the pattern in which the bolts are placed in
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the roof strata. In most instances it has been found that a
systematic pattern of roof bolting produces the most consistent
results (36). An adequate design of bolting pattern will not only
increase the safety of the mine roof, but also reduce the labor and

cost of materials for roof bolting system.

2.3.1 Bolt Length
An adequate bolt length must be chosen with regard to the
mechanical characteristics of the rock and the dimension of the
opening. Dejean and Raffoux (37) stated that:
(a) for strong and homoéeneous ground, the sufficient
length of the bolt is in the order of 1 m,
(b) for weak and homogeneous ground, the bolt length
is usually equal to one-half or one-third of the
width of the opening,
(c) for strong stratified ground, the bolt length
usually will not be less than 1.5 m, and
(d) for weak stratified ground, the roof bolting will
not be the only support and the length of the bolt
should be greater than one~third of the width of
the opening.
Tincelin (38) suggested that the bolt length to be used is equal
to or greater than one-third of the width of the opening. Alexander
and Hosking (39) pointed out that the bolt length should be at least
three times the width of the joint blocks. Generally, it is
believed that the length of the bolt should be such that it can be

anchored in the most competent layer.
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2.3.2 Bolt Spacing

Although the bolt spacing and, hence the bolting pattern are the
key parameters in determining the overall effects of reinforcing the
mine roof, the current practice are mostly dependent on empirical
rules.

In the United States, roof bolts are commonly installed verti-
cally into the roof in a 4 x 4-ft. (1.22 x 1.22-m) or 5 x 5-ft.
(1.53 x 1.53-m), or combination pattern (1,29,40), although it had been
pointed out that such pattern is not suitable for every situation (4).
In France, bolting density generally ranges from 0.5 to 1 bolt per
square meter of the roof to be supported, with higher number for
weaker rocks (38). It has also been pointed out that in fractured
rock the ratio of bolt length to bolt spacing should not be less
than two (10,36). With regard to the installation of the inclined
bolts above the ribs, some investigation has been made (41). It
was found that only a slight benefit is gained over the vertical
bolts. But the inherent cost involved with the installation of the
inclined bolts and the longer installation time result in the
recommendation that no inclined roof bolts are used in normal

mining operations.

2.4 Bolt Tension

Tensioning of the mechanical bolt is a very important factor
for successful reinforcement of the immediate roof. The proper
tension with which the roof bolts should be used depends on many

parameters. These include the geometry of the opening, geological
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properties of the immediate roof, strata sequence, bolting pattern,
strength of the bolt, and the method of installation.

Although numerous tests on the anchorage capacity and the
yield strength have been done, very few studies have been made on
the adequate tension which should be used for a specific bolt
pattern.

In general practice, it is recommended that the bolt should be
installed with bolt tension equal to smaller of (a) 60% of the anchorage
capacity, or (b) 60% of the yield load of the bolt in pure temsion (15).
It was also stated that with the expansion-shell bolt, a bolt load
of 5 to 6 tons should be installed (38). The required bolt tension
for a specific bolt pattern can be determined from the nomograph
developed by Panek (29). But the limitation of that nomograph

should be understood and satisfied.
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CHAPTER 3

FLEXURAL BEHAVIOR OF IMMEDIATE ROOF

3.1 General

In order to analyze the reinforcement mechanisms and to design
the roof bolting system, it is essential to first understand the
flexural behavior of the immediate roof. Since in some cases, the
strength of the immediate roof is sufficiently strong, there is no
need to install any support. On the other hand, suitable roof
bolting systems should be installed in other cases to maintain the
roof stability; otherwise, failure of roof strata will occur.

Before analyzing the flexural behavior of the immediate roof,
the definition of immediate roof should be made clear. In the
horizontally bedded strata composed of a succession of parallel
layers, the layers are either unbonded or the bond strength between
them is small compared to the tensile strength of the rock. Generally,
after an opening is excavated, the roof strata will become detached
from the overlying rock either immediately or after a short time.
The detached layer (or layers) is called the immediate roof and the
overlying rock is called the main roof (22).

Generally, based on the strata sequence, the immediate roofs
can be divided into three types. They are: (A) the deflection of
each stratum is larger than or equal to that of its overlying

stratum, therefore, each stratum deflects independently, (B) some
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stratum (or strata) deflects more than that of the underlying
stratum, and (C) each stratum deflects more than that of the under-
lying stratum, therefore, all strata will become one equivalent
stratum (see Fig. 1.1).

For type A roof strata, the flexural behavior can be determined
by applying the beam-column theory directly. For type C roof strata,
as long as the equivalent stratum is formed, the flexural behavior
can be determined by using the beam-column theory without much
difficulty. For type B roof strata, its flexural behavior camnot be
determined immediately because some strata need to be combined into
one equivalent stratum. Furthermore, in some cases, the strata
sequence may be such that the process of combining strata need to
be repeated once or several times, which makes the problem not only
complicated but also time-consuming in the analysis. In order to
overcome this difficulty, a computer program based on the beam-column
theory is developed for the strata combination process and the
calculation of the maximum bending stress and deflection for a

generalized immediate roof.

3.2 Theoretical Analysis
In investigating the flexural behavior of the immediate roof,
the following assumptions are made:
(1) The rock within each stratum is homogeneous,
. - elastic and isotropic.
(2) There is no bonding between the strata.
(3) The coefficient of friction between the strata

is constant.
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(4) Each stratum is subjected to a uniform transverse
load (due to its own weight) and an axial load
(due to the horizontal stress).

(5) If upper stratum loads on the lower stratum, the
defléction of the two strata are equal at each
point along the roof span.

(6) All strata are of same length and width.

(7) The horizontal stress is uniformly applied to

each stratum.

3.2.1 1Individual Stratum
For an individual (single) stratum subjected to transverse
loading and axial loading simultaneously (Fig. 3.1), the following

equations are derived based on the beam-column theory (42).

4

9L
Vx = 383 BT x G-D
N A" A (3.2)
max 384 EI 32 Etz
-9 _ 12 _ g2
% =13 (6LX - L 6x )Fx (3.3)
IS S at x =0 and x = L (3.4)
max " 2t .
where
Vi = deflection along the span of each stratum
max maximum deflection at the center of the span
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Fig. 3.1. Diagram for a fixed-end beam subjected to
transverse and axial loadings (42).
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bending stress along the span of each stratum

a
1

x

cmax = maximum bending stress at the ends of the beam

q = uniformly distributed load per unit length of
each stratum

E = Young's modulus of each rock stratum

I = moment of inertia of each stratum

L = roof span

W = unit weight of rock

t = thickness of each stratum

Sx’ Fx = factor due to the horizontal stress

S = 5n(u) - 4uX(u)A(u)/tan u

F = X(u)u/tan u

u = % (P/EI)!5

X = 3(an u - W/

n(u) = 12(2 sec u - 2 - uz)/(Sul')

A(uw) = 2(1 - cos u)/(u2 cos u)

P = axial load

3.2.2 Combined Statum (Upper Stratum Loads on Lower Stratum)

For an immediate roof consisting of more than two layers, and
the thinner layer overlies the thicker layer, the lower layer is
loaded by the upper one. To simplify the discussion initially,
the number of layers will be restricted to two. Consider two beams
of equal length with their ends clamped together as shown in Fig.

3.2,
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Fig. 3.2. (A) Multiple strata diagrams (22).
(B) Transverse loading on upper and lower
stratum, respectively.
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For these two beams under the conditions assumed above, the

deflection for either the lower or the upper beam is (22,42):

, , (qy + Acl)x2 2
Vie TV T TmE, I CT05
(a, - db)x" )
- @ -0, (3.5)
2 12

where the subscripts 1 and 2 refer to the lower beam and the upper
beam respectively, the superscript "'" denotes the combined beam,
and Aq is the added load or support which has been added to and
substracted from the lower and upper beam, respectively. Since
Equation 3.5 must hold for all values of x, therefore

qkl.‘—ms =ﬂs (3.6)

1 11 1 E, I2 2

. El I . E2 12
ba = - :1 3 ; iz S
171 2 "2
51 )
Substituting Equation 3.7 into Equation 3.6 and rearranges:
E, I
171
= (q *ap
. R S —— 8)
Q) =4y + Aq = g5 E T 3.
171 2 "2
s, TS
1 2
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(3.9)

By substituting Equations 3.8 and 3.9 into Equation 3.5, the

deflection for either the lower or the upper beam is obtained:

@y * 4% )
R 5 @ - (3.10)
w23
1 2

This procedure can be extended to any number of beams. The
basic requirement is that each beam rests upon and loads on the
underlying beam. For the immediate roof consisting of multiple

layers, the following equations are obtained:

(v:l1 + qy +oeeee + qn)x2 - x)2

=
Vx E I, &I, E L G.1D
gt gt e + =)
1 2 n
E
S (q1+qz+ e +q)
q! = (3.12)
17E I, K1, E I
S 5 +aeen tg
1 2 n
4
(q; + qQy + eeuee +q) L
o= 12 a (3.13)
max El I1 E2 I2 E In "
384 T
s s S
2 n
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1 =
lnax © 26 1 (3.1
where
v"‘ = deflection of each combined stratum
q' = adjusted uniformly distributed load per unit
1

length of the lowest layer in the combined stratum

v|:13x = maximum deflection at the center of the span for

the combined stratum

Uimax = maximum bending stress in the lowest layer in the
combined stratum

Vig = .adjusted unit weight of the lowest layer in the
combined stratum. It is equal to qi/(btl)

b = width of the cross section of each layer or row
spacing

t1 = thickness of the lowest layer in the combined
stratum

Fl = F factor for the lowest layer in the combined
stratum

n = number of strata in the bolted roof

It should be noted that even though‘ the deflection is the same
for all layers in the combined stratum, the maximum bending stress
is different for each layer. In this research, only the maximum
bending stress in the lowest layer is considered. The reason for
this is that the lowest layer, being supporting the upper ones,
subjects to the largest bending stress. Therefore, when the lowest

layer fails, the upper ones will also fail due to loss of support.
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3.3 Procedure for Combining Strata

Whenever one stratum loads on its underlying stratum, the
cembination of two strata into one equivalent stratum is needed.

The basic criterion is that the deflection of the upper stratum is
larger than that of the lower stratum. However, for some sequences,
in which vy < Vys Vg > vy (the numbering sequence in the subscript
is increased from the lower stratum to the upper ones), it is
possible that vé > v (vé is the deflection of the equivalent
stratum combined from stratum 2 and stratum 3). The same condition
may occur for other strata. Besides, after the firsq combination
for all the strata, a second combination of the equivalent strata
from the first combination may still be needed. Figure 3.3 shows
such an example. It should also be noted that after each combina-
tion process, the numbering of the stratum is changed, which can
also be seen in Fig. 3.3.

Figure 3.4 is a simplified flow chart for the combination of
strata and the related calculation of the maximum bending stress and
deflection. The computer program which is written in FORTRAN IV is
given in Appendix II under the title of "Flexural Behavior of

Immediate Roof."

3.4 Parametric Study

In this study, the flexural behavior of the immediate roof
with three types of strata sequence are investigated as a function
of the following factors: roof span, horizontal stress, thickness

and Young's modulus of the lowest stratum. Three models which
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Fig. 3.3. Example of strata combination procedure.
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Fig. 3.4. Flow chart of strata combination procedure.
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represent three types of strata sequence are used. The strata
sequence, Young's modulus, thickness and unit weight of each model
are shown in Table 3.1. A horizontal stress of 300 psi (2.07 MPa)
is applied to each stratum except in the case of studying the
effect of horizontal stress. Besides, for most cases, only the
maximum bending stress and deflection of the lowest stratum are
invest%gated, because it is usually the most critical stratum in

the design of the roof spans.

3.4.1 Effect of Roof Span

In the design of underground opening, the most important item
is the roof span. For different strata sequence, the effects of
roof span on the bending stress and deflection are shown in Fig. 3.5
and Fig. 3.6, respectively. It is shown from these figures that
both the maximum bending stress and deflection increase with the
roof span. Among the three models, model A shows the largest
increase, especially when the roof span is larger than 25 ft. (7.62 m).
Furthermore, when the roof span is larger than 30 ft. (9.14 m), both
the maximum bending stress (> 1500 psi or > 10.34 MPa) and deflection

(> 3 in. or > 76.2 mm) are too high for the roof to be stable.

3.4.2 Effect of Horizontal Stress

The effects of horizontal stresses on the maximum bending
stress and the maximum deflection for the three models are shown in
Fig. 3.7 and Fig. 3.8, respectively. It can be seen clearly from

both figures that the three models exhibit. different behaviors under
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Table 3.1. Material Properties and Strata Sequence for the Three

Models
Stratum Thickness Young's Modulus Unit Weight

Model  Number  in. (cm) x 10° psi (x 10° MPa) 1b/in® (g/cm®)
6 36 (91.4) 2.15 (14.82) 0.0982 (2.72)

5 12 (30.5) 2.15 (14.82) 0.0982 (2.72)

A 4 12 (30.5) 0.90 ( 6.21) 0.0932 (2.58)
3 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)

2 6 (15.2) 0.90 ( 6.21) 0.0932 (2.58)

1 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)

6 12 (30.5) 2.15 (14.82) 0.0982 (2.72)

5 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)

B 4 36 (91.4) 2.15 (14.82) 0.0982 (2.72)
3 6 (15.2) 0.90 ( 6.21) 0.0932 (2.58)

2 12 (30.5) 0.90 ( 6.21) 0.0932 (2.58)

1 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)

6 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)

5 6 (15.2) 0.90 ( 6.21) 0.0932 (2.58)

c 4 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)
3 12 (30.5) 0.90 ( 6.21) 0.0932 (2.58)

2 12 (30.5) 2.15 (14.82) 0.0982 (2.72)

1 36 (91.4) 2.15 (14.82) 0.0982 (2.72)
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Fig. 3.5. Relationship between roof span and maximum bending
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Maximum deflection , Vmax,in

Roof span, L , ft

Fig. 3.6. Relationship between roof span and maximum deflection.
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various horizontal stresses. For model C, both maximum bending
stress and deflection are almost independent of the horizontal
stress. For model B, both maximum bending stress and deflection

are independent of the horizontal stress when it is below 1000 psi
(6.9 MPa) but increase with the horizontal stress when it is higher
than 1000 psi (6.9 MPa). When the horizontal stress is very high,
i.e., > 4000 psi (27.6 MPa), both the maximum horizontal stress and
deflection increase sharply with the horizontal stress. For model A,
of which the lowest layer is only 6 in. (15.24 cm) thick, both
maximum bending stress and deflection increase sharply with the
horizontal stress. When the horizontal stress is 2056 psi (14.18 MPa),
the lowest layer fails due to buckling.

Table 3.2 and 3.3 show the results of maximum deflection and
maximum bending stress, respectively, for each stratum in model A
for various horizontal stresses. Figure 3.9 and 3.10 show the
relationships of ratio of change in maximum deflection and maximum
bending stress, respectively, for each stratum in model A for various
horizontal stresses. It can be seen from both figures that the
maximum deflection and maximum bending stress of the upper three
thicker strata (No. 3 to No. 5) are not much influenced by the
horizontal stress as those of the lower two thinner strata (No. 1
and No. 2). For the uppermost stratum (No. 6) which is the thickest
and most stiff, neither maximum deflection nor maximum bending
stress is affected by the horizontal stress. In addition, when the
horizontal stress is larger than 1250 psi (8.62 MPa), for the lower

two thinner strata, the increases of both maximum deflection and
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maximum bending stress are very large, i.e., more than two times
of its original values, which usually may cause the problem of roof
stability.

Figure 3.11 shows the relationship between the horizontal
stress and total outer-fiber stress for the three models. It can
be seen from this figure that almost all total outer-fiber stresses
decrease with the horizontal stress except the total upper-fiber
stress for model A, which incrzases sharply with the horizontal
stress. Also,most total outer-fiber stresses are negative, i.e.,
compressive stresses. This phenomenon implies that in terms of
total stress, the horizontal stress is a major factor for strata
stability especially when it is very high (43). For instance, when
the horizontal stress is greater than 5000 psi (34.48 MPa), all the
total outer-fiber stresses are subjected to high compressive stress,
i.e., > 4000 psi (27.58 MPa), which may initiate the shear failure
in the roof strata. On the other hand, when the horizontal stress
is low, i.e., < 200 psi (1.38 MPa), the total upper-fiber stresses
for all three models are in tension, which may cause the tensile

failure of the roof rock due to its low tensile strength.

3.4.3 Effect of Thickness of the Lowest Stratum

For a single stratum, other things being equal, the thinner
is the stratum, the bigger is the deflection. However for the
immediate roof made up of multiple strata, the deflection of
individual stratum is affected by other strata depending on the

flexural rigidity of the strata. Since the lowest stratum is the
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one that is visible and is always subjected to the largest bending
stress and deflection, the effects of varying its thickness on the
flexural behavior of the stratum is investigated.

Figure 3.12 shows the maximum deflection and the maximum
bending stress for various thicknesses of the.lowest stratum for
model B. It is seen that as the thickness increases, both the
bending stress and deflection decrease. But v}hen the thickness
decrease to one half of its original value, i.e., 6 in. (15.24 cm),
both the bending stress and deflection increase sharply. The
reason for this is that when the stratum is very thin, it will
deflect considerably and separate from the upper strata. Also,
it can be seen that if the thickness is doubled, i.e. 24 in. (61 cm),
the deflection, 0.039 in. (0.99 mm), is larger than one fourth of
the original value,0.103 in. (2.62 mm), and the bending stress,

186 psi (1.28 MPa) is less than one half of the original value,
244 psi (1.68 MPa). This is mainly due to the added loading from
the upper strata, which make the lowest layer deflect more and

subject to larger bending stress.

3.4.4 Effect of Young's Modulus of the Lowest Stratum

For a single stratum, other things being equal, the stiffer
is the stratum, the smaller is the deflection. But for the
immediate roof which consists of multiple strata, the flexural
behavior is different. Figure 3.13 shows the maximum deflection
and the maximum bending stress for different Young's moduli. When

the Young's modulus is doubled, i.e., 1.44 x 106 psi (9,929 MPa),
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the deflection, 0.072 in. (1.83 mm) is larger than one half of its
original value, 0.103 in. (2.62 mm). This is caused by the added
loading from the upper strata. Also, the maximum bending stress
increase with Young's modulus. This is due to the fact that under
a specified amount of deflection, a higher bending stress will be
induced in a beam with the higher Young's modulus. Furthermore,
when the Young's modulus becomes very small, i.e., 0.32 x 106 psi
(2,206 MPa), the stratum will deflect more and separate from the

upper strata.

3.5 Buckling of Roof Strata

In underground opening, where the in-situ horizontal stress is
high, the thinly laminated strata in the lower part of the immediate
roof may fail due to buckling (44-46).

Structural analysis can be used to predict the roof stability
of coal mine entry. For a beam-column fixed at both ends (see
Fig. 3.1), the critical load (due to the horizontal force), Py is

(42,47)

2
p =4m ETI (3.15)

where
E = Young's modulus of roof stratum
I = moment of inertia of cross sectional area of the stratum

L = roof span
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Then, by comparing Equation 3.15 with the following equation
(3.16)
which is rearranged from the definition u =% (P/EI)!E (see

Section 3.2.1). A simple criterion for the buckling of roof stratum,

or the limit for the stratum to be stable is obtained, i.e.,

w<n (3.17)
where
u=t (p/ED)% (3.18)
or
u = L@p/EtD)” (3.19)

p = horizontal stress. It is equal to P/(t).

Based on Equations (3.17) and (3.19), a nomograph (Fig. 3.14)
is derived, which can be used to find u for any roof stratum under
various horizontal stresses. As an example of using this nomograph,

u = 1,55 results from the following conditions (follow dotted line

abcde):
a = Horizontal stress o 2000 psi (15.79 MPa)
b = Roof span L 240 in. (6.096 m)
c = Young's modulus E 1.0 x 106 psi (6,895 MPa)
d = Stratum thickness t 12 in. (30.4 cm)
e = u factor u 1.55
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Fig. 3.14. Nomograph for the determination of u.
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A further analysis of Fig. 3.14 shows that u increases with
increasing roof span (L) and horizontal stress (p), and decreasing
Young's modulus (E) and stratum thickness (t). In some underground
situations. where the stratum thickness is very small, say, less than
6 in. (15.2 cm) and the in—sitq horizontal stress is high, say,
larger than 3000 psi (20.69 MPa), u is larger than 7 (= 3.14).

Then, based on Equation 3.17, the roof stratum will fail due to
buckling. It should also be noted that for any stratum whose
corresponding u value is larger than 3.0, both the bending stress
and deflection are greatly increased, i.e., twenty times larger than
those whose corresponding u is zero. Therefore, for practical
application, whenever u is larger than or equal to 3.0, it will be
changed to 3.0 in the analysis of the flexural behavior of the

immediate roof.

3.6 Failure Criteria for the Unbolted Roof Strata

For uniformly loaded beam (roof stratum) with fixed-ends,
the maximum bending moment is acting at the two ends, where the
maximum bending stress and shear stress occur. Since in underground
situation, the width of the opening (roof span) is long compared to
the thickness of the roof layer (usually with the span-to-thickness
ratio greater than 5), the tensile stress is more than three times
the shear stress (22,48). Since for the sedimentary rock the
tensile strength is usually less than the shear strength, the shear
stress can be neglected with little error in the design of roof

spans (22,42,48). It should also be noted that because of the
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existence of horizontal stress, the total stress (i.e., the sum of
the bending stress and the horizontal stress) instead of the
bending stress should be taken into consideration (8). Furthermore,
since the tensile strength is not equal to the compressive strength
for most sedimentary rock, the failure conditions for tension and
compression must be considered separately (22,49).

Based on the foregoing discussion, the following failure criteria

are used in this research (6-8,49)

(1) Oy < CT in tension (3. 20)
(ii) iqTLl <_CP in compression (3.21)
where Oy = total upper-fiber stress
= 22
o + “max (3.29)
Oy, = total lower—fiber stress
=0y - O (3.23)
CT = tensile strength of rock
Cp = compressive strength of rock
oy = horizontal stress (compressive)
Umax = bending stress, expressed in tensile stress

Substituting Equations 3.4 and 3.14 into Equations 3.20 and
3.21 respectively, the failure criteria for the unbolted roof

are obtained.
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(a) Individual Stratum

2
wL :
(1) oy toe F < Cp in tension (3.24)
wL s
(ii) [aH - EE-F| < cp in compression (3.25)

(b) Combined Stratum

W1 2

@ og+ 23‘1 F<Cp in tension (3.26)
Y, L2

(ii) |uH - Ztl F1| < CP in compression (3.27)

Where F is a function of u (see p. 32), it can be determined
immediately from Fig. 3.15. Moreover, it should be noted that for
combined stratum only the lowest layer is considered because it is the
most critical one.

According to Equation 3.24 through 3.27, Fig. 3.16 and Fig.

3.17 are derived based on L = 20 ft. (6.09 m), w = 160 1b/ft3

(2.56 g/cma) and E = 1.0 x 106 psi (6,893 MPa) which are represen—

tative values. Figure 3.16 shows the relationship between the total
upper—fiber stress and the thickness of the stratum for various
horizontal stresses. It can be seen from this figure that in order

to prevent failure in the upper fiber, either the tensile strength

of the rock should be larger than the induced tensile stress when -
the horizontal stress is low or the compressive strength of the

rock should be larger than the induced compressive stress when the
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Fig. 3.15. Relationship between u and F.
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horizontal stress is high. It can also be found that when the
horizontal stress is larger than 2000 psi (13.79 MPa), the thinner
stratum (i.e., < 12 in. or < 30.5 cm) will fail due to buckling.
Figure 3.17 shows the relationship between the total lower-fiber
stress and the thickness of the stratum for various horizontal
stresses. It can be seen from this figure that in order to prevent
failure, the required compressive strength of the rock to overcome
the induced compressive stress varies with the horizontal stress,
with the higher compressive strength for higher horizontal stress.
Also, when the horizontal stress is high, i.e., > 2000 psi (13.79 MPa),
the thinner stratum (i.e., < 12 in. or < 3.05 em) will fail due to
buckling. It should also be noted for the horizontal stress which
is not shown in the graph, the relationship between the total
outer—-fiber stress and the thickness of the stratum still can be
found by interpolation in both figures.

Based on Equations 3.24 through 3.27, a computer program is
written for the evaluation of stability for a gemeralized immediate
roof (the computer program is listed in Appendix II). From this
computer program, once thé information about any immediate roof such
as mal‘:erial properties, strata sequence, opening geometry and in-situ
horizontal stresses is used as the input, the stability condition
of the immediate roof (i.e., whether it fails or not) will be deter-

mined and printed out in the output.
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CHAPTER 4
THEORETICAL ANALYSIS OF REINFORCEMENT MECHANISMS FOR MECHANICAL

BOLTING

4.1 Suspension Effect
4.1.1 Reinforcement Mechanism
Generally, the suspension effect through roof bolting in the
underground openings is to transfer a portion of the weight of the
lower weaker strata to the upper competent strata. The reinforcement
mechanism of the beam suspension effect which is valid for this
condition (see definition in page 18) is investigated in this
research. But the effect of simple suspension is excluded.
Throughout the analysis of reinforcement mechanisms of
suspension effect, the following conditions are assumed (Fig. 4.1):
(1) Each stratum is homogeneous, isotropic, and elastic.
(2) All strata in the immediate roof are constrained to
have equal deflections at bolt locations due to
adequate tension of roof bolts.
(3) There is no friction (or interaction) at the contact
points between the roof strata.
(4) Each stratum is subjected to both transverse loading
(due to the self weight of each stratum and the
load transferred through bolting) and axial loading

(due to in-situ horizontal stress).
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Fig. 4.1. Schematic illustration of suspension effect.
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(5) The transferred load through roof bolting acts as
a point (or concentrated) load.

(6) The horizontal stress is uniformly applied to

each stratum.

For this type of reinforcement mechanism to be applicable,
the strata sequence of the immediate roof should be such that the
deflection of each stratum is larger than that of its upper stratum.
However, this kind of strata sequence is not limited to the original
strata sequence such as strate type A (see Fig. 1.1). It can also
be applied to strata type B (see Fig. 1.1) as long as the final
strata sequence (after strata combination) is of such an order.
Figure 4.1 shows the general sequence of the fixed-end rectangular
beams, having common span L and width B. For simplicity, only three
layers and three bolts are shown in the figure. However, for general
application, the number of roof layers and roof bolts can be
arbitrary. The numbering sequence for the roof layers is increasing
from the lower to the upper layers.

Since in this type of the immediate roof each stratum will
deflect independently without roof bolting. Thus separation will
occur between strata. Moreover, the lower strata may subject to
very high bending stress at the support ends (i.e., ribs), which
will either cause tensile failure or initiate shear failure (see
Section 3.4.2). The function (or mechanism) of roof bolting in
this type of immediate roof is: (a) to decrease the deflection

and (b) to decrease the bending stress of the weaker strata.
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However it should be noted that, in the meantime, the deflection and
bending stress of the competent stratum (or strata) are increased.
Therefore, the load transferred by roof bolting is not without

a limit. Rather it is dependent on the flexural rigidities and
strengths of both the weaker and competent strata. Furthermore,

for the optimum design of the bolting pattern and bolt temsion, it
should also consider the anchorage capacity of the anchoring horizon
(or stratum), which will be discussed in Chapter 5.

Figure 4.2 shows a éeneral procedure for determining the
suspension effect in terms of the deflection, bending stress,
transferred bolt load, and bolt tension in this section. The
step-by-step analysis is discussed as follows:

For the i-th layer in the bolted roof, its deflection at

the bolt locations, s 1s composed of two parts, vy and Avi,

VBi

vpy T Vg Ay 4.1

where vy is the deflection before bolting and Avi is the additional
deflection due to the transferred bolt load. It should be noted
that in the calculation of vy and Avi, the horizontal stress is

applied simultaneously.

Equation 4.1 can be expressed in another form, i.e.,

B~ Vi TR Yy ¢.2)

(1 + Ri)vi (4.3)
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Fig. 4.2. Block diagram illustrating the procedure for determina-
tion of suspension effect.
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where

Ry = dvlvy (4.4)

Equation 4.2 implies that the additional deflectioﬂ due to the
transferred bolt load is a fraction of the deflection of the
unbolted layer.

The deflection, vy due to the self weight of the i-th layer
can be determined based on the beam-column theory (42)(the derivation
of equation for vy is given in Appendix I). The additional deflection,
Avi, due to the transferred bolt load is obtained by assuming the
load to be a concentrated one. For example, for one bolt installed
at the center of the roof span, the deflection at this location is

obtained as (see Equation A.1.21 in Appendix I)

T, L3

M, = 72— (4.5)
i 192 Ei Ii i

where Ti is the bolt load (concentrated load) in the i-th layer.
By equating Equation 4.4 and Equation 4.5, the following equation

is obtained:

=R, v (4.6)

Since the deflection of the center of the roof span is
maximum, A is equal to Vinax in Equation 3.2. Substituting

Equation 3.2 into Equation 4.6 gives
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S, =R S, “.7)
192 Ei Ii i i 384 Ei Ii i
or
R, q, L
i
Ty == (4.8)

The transferred bolt load Ti for more than one roof bolt can
be obtained in a similar way (the detailed derivation is given in

Appendix I):

L (4.9)

where o is a coefficient depending on the number and the locations

of bolts with o = )% when only one bolt is installed at the center.

The equations for « for more than one bolt are given in the Appendix I.
It should also be noted that Ti is the transferred bolt load

for the i-th layer. When only one bolt is used, T, is equal to the

i
transferred load for that bolt. But when more than one bolt is
used, Ti is the sum of all transferred bolt loads in the i-th layer.

Therefore, for N bolts in a row, Ti becomes:
N
T,= )T (4.10)

where Tik is the transferred load for each of the N bolts in a row.

The total transverse load to be supported by the i-th layer,

Wi, is the sum of the weight of the layer and the transferred bolt

load,
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W L+T (4.11)

1T % i
The total transverse load on the whole bolted roof layers is

equal to the sum of the weights of all roof layers,

n

Yy w,= 3 q L (4.12)
=1 bogm

By summing both sides of Equation 4.1l and then equating it

with Equation 4.12, the following equation is obtained:
i
T, =0 (4.13)
=1 f

Equation 4.13 implies that the sum of the bolt loads transferred
to the competent layers (positive value) is equal to the sum of the

bolt loads transferred from the weak layers (negative value), i.e.,

n-m n
Y T, ) = - Y T, () (4.14)
i=1 i=n-m+l

where m and n-m are the numbers of weak layers and competent layers,
respectively.
Since the function of bolts in suspension effect is to
n
transfer the bolt load from the weak strata, i.e., 2 Ti =)
i=n~-m+l
to the competent strata which provide the load,

n=m
2 Ti (+), the following equation is therefore obtained:
i=1
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nim n
P, = T, ) = - T, (-) (4.15)
Bl g 1 fmn-mil T

I 12

=1

where PB is the bolt load (or bolt tension) for each bolt.
When the bolt load is the same for all bolts, Equation 4.15

becomes

n-m n
NPy = M T, ) = - Y T, (=) (4.16)
i=1 i=n-m+l

For a fixed-end beam subjected to transverse loading and
axial loading simultaneously, the maximum moment is at the supports
(i.e. two fixed-ends)(42). At this cross-section, the maximum
bending stress occurs at the farthest fiber from the neutral axis,
with the tensile stress (positive value) at the uppermost fiber
and the compressive stress (negative value) at the lowermost
fiber (Fig. 4.3)(50). In this research, the equations related to
the maximum bending stress are expressed in terms of the tensile
stress.

The maximum bending stress of the i-th layer in the bolted

roof, Opy» can be expressed as follows:

985 = Ogmax T Ao (4.17)

where 4 max is the maximum bending stress before bolting and Ac is
the additional bending stress due to the transferred bolt load. To
simplify notation, i is omitted from the subscripts in the equations

related to the bending stress.
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Fig. 4.3. Diagram for a fixed-end beam subject to
uniform transverse and axial loadings (50).
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Equation 4.17 can also be exppresed in another form, i.e.,

6 M 6MB

.o , B
op = b tz + b r_z (4.18)
6 M
= (1 +Mﬁ) " 5 (4.19)
-] t
6 M
- K 3 (4.20)
bt
6 M
= (14 8R) —3 (4.21)
bt

where MD = bending moment due to the self weight of stratum

MB = bending moment due to function of roof bolting

BR = M.B/Mo

K =1+ BR

B = factor depending on number and location of roof bolts
It should also be noted that horizontal stress has been considered
in the derivation of both bending moments.

The equations of bending moment due to the self weight and
roof bolting are derived based on the beam-column theory. The
detailed derivation is given in Appendix I. But the most important
equations are listed as follows:

(a) the maximum bending moment due to self weight, Mo (Fig. 3.1)

2

- 4L X(u)
LS 12 tan u/u (4.22)
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(b) the maximum bending moment due to roof bolting, MB (Fig. 4.4)

(1) one bolt at the center of the span, MBX

. T, L
ic Alw)
M3 = -8 tan u/u (4.23)

(11) two bolts at symmetric locations, M‘BZ

T,, L
- 21 rcos(u—-2uml) - cos u,
Mgy =~ 74 tan ut cos u N (4.24)

(iii) three bolts; one bolt at center, two bolts

at symmetric locations, My,

[
Mp3 = "% u sinu

[TBC(I -cos u)
-2 T31(C°s u - cos(u - 2uml))]
(4.25)

(iv) four bolts at symmetric locations, MBA

L cos(u - 2uml) - cos u

MBA =77y tan u[TAI( cos u
cos(u - 2um2) - cos u
+ T42( cos u )]

(4.26)
(v) five bolts; one bolt at center, four bolts at
symmetric locations, M'BS
=_—I.‘——[T (1 - cosu) - 2T, (cosu
Mys = = T u sin ul'se 51
- cos(u - 2uml)) - 2 Tsy (cos u

- cos(u - 2um2))] (4.27)
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Fig. 4.4. Various locations for differemnt number
of roof bolts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(vi) six bolts at symmetric locations, MBG

- L cos(u - 2uml) - cos u.
My =~ T3 tam ult61 cos u )

+ T62(t:os(u - 2um2) - cos u)

cos u
cos(u - 2um3) - cos u
+ T63( cos u )1 (4.28)
where Tlc’ Tyys T31, vees T63 are bolt loads at various locations

for different number of roof bolts per row; the first sub-

script refers to the number of roof bolts per row while the

second subscript refers to the location of each bolt. Sub-
script ¢ refers to the center of the roof span and subscripts

1, 2 and 3 refer to the first, second and third bolt from the

ribs, respectively.

ml, m2, m3 are ratios of distance of bolt from ribs to the

roof span for the first, second, and third bolt. They are

equal to Xl/L, XZ/L, and X3/L, respectively.

From Equations 4.1 through 4.26, it can be found that in
order to determine the deflection and the bending stress, Ri must
be first determined. The determination of Ri is therefore a very
important step. The procedure for determining Ri for each stratum
in the bolted roof is illustrated in the following paragraphs.

Based on the assumption #2 made in p. 66 and Equation 4.3,
the following equation is obtained for the deflections at the

bolt locations for the bolted roof strata.
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4
c S, q cS,q, L
19 2 9
(1 +R) e = (1 + R) ot
1 384 E; I 2) 384 E, I,
4
c S L
.= - Y Yol
= e = (1+Rn) 8% E I (4.29)
n n

where ¢ is a coefficient depending on the locations of the bolts,
with ¢ = 1 when one bolt is at the center of the roof span.

Equation 4.27 can be simplified as

S, q S, g
171 2 *2
(1 +R) = (1 +R,) = ...
1 ]31 I1 2 EZ I2
Sn ql‘l
= (1+Rn)ﬁ (4.30)

From Equation 4.28, the expression for each Ri can be
determined in terms of one of the others, say Rl’
P U e B B S @
i i E1 Il Si i
Substituting T:L in Equation 4.9 into Equation 4.13, the

following equation is obtained:
aR1q1L+aR2q2L+....+uannL=0 (4.32)

or

R + R qz-f-....+Rn qn=0 (4.33)

19 F Ry

Substituting Equation 4.31 into Equation 4.33 and rearranging,

the expression for Rl becomes:
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R, = — Kl ke (4.34)

R, = —kL Tk (4.35)

From Equation 4.35 the characteristics of Ri are:

(i) it is dependent on the flexural rigidity of the
stratum itself and other strata in the bolted roof.

(ii) it is independent of the number of the bolts per
row and hence the bolt spacing per row.

(iii) it is independent of the bolt load (tension).

(iv) it is affected by the horizontal stress on the
stratum itself and on the other strata in the
bolted roof.

(v) it can be positive or negative, with -1 as the

limit of negative value. When Ri is positive, Ti
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is also positive (see Equation 4.9), i.e., the
transferred bolt load is added to the stratum,
which will increase the maximum bending stress
and deflection of that stratum. When Ry is
negative, i.e., the transferred bolt load is
substracted from the stratum, which will
decrease the maximum bending stress and
deflection of that stratum.
4.1.2 Failure Criteria for the Bolted Strata
In order to safely reinforce the immediate roof by suspension
effect, the bolted strata must be in stable condition, i.e., no
failure will occur in the bolted roof strata.

The failure criteria for the bolted roof strata are

9 + oy 5-CT in tension (4.36)

or

lo,; - cB| < Cp in compression (4.37)

H

where Y is expressed in Equation 4.18.

Equations 4.36 and 4.37 are basically the same as Equations 3.17
and 3.18, except that Op» instead of Umax’ is used in the former.
It should also be noted that oy is different for different bolt
number and bolt location in each row (see Equations 4.18 through
4.28). Furthermore, Equations 4.36 and 4.37 should be held for each

stratum of the bolted strata to assure the integral stability.
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4.2 Friction Effect

In some underground coal mines, there is no competent roof
stratum within a reasonable distance above the roofline from which
roof bolts can be anchored to suspend the lower weaker roof strata.
Under this condition, the successful application of roof bolting to
reinforce the immediate roof is by friction effect (or beam-building
effect) (Fig. 4.5) (3).

4.2.1 Reinforcement Mechanism

The reinforcement of a horizontally bedded roof by the friction
effect results from the clamping action of the tensioned roof bolts,
which creates a frictional resistance to slip on the interface
between the bedding planes and thus "building up" a single layer
from several individual layers. Thereby the flexure of the roof
strata is decreased and the stability of roof is increased. The
function performed by roof bolts can be explained as follows:

Consider a single beam of thickness t and a multiple beam having
four members each with thickness £ = t/4 (Fig. 4.6). Each member of
the multiple beam is assumed to be made of the same material and
having no interconnection among them. The beams considered have
fixed ends and subject to uniformly transverse loading. The
deflection of the thick beam will be only 1/16 of that of the four
thin beams since the deflection of any beam is inversely proportional
to the square of its thickness (see Equation 3.2). The maximum
bending stress in the thick beam will be one-fourth of that in the

four thin beams since the bending stress of any beam is inversely
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Fig. 4.5. Friction effect of roof bolting (3).
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proportional to its thickness (see Equation 3.4) (Fig. 4.6.B and
Fig. 4.6.E). The difference between the two situations results

in the slip along the individual layer interfaces. Figure 4.6.C
shows that there is no discontinuity in shear stress distribution
from top to bottom of the thick layer, while Fig. 4.6.F shows that
the shear stress in each thin layer being maximum at the neutral
axis drops to zero at the outer fiber, i.e., at the interface.
Since the maximum shear stress, (Txy)max’ at any section is
directly proportional to the span and is indepe;dent of the thick-~

ness, i.e.,

3wl
Txydmax = & (4.38)

(

the maximum shear stress of each thin layer at the neutral axis is
still equal to that of the thick layer even though the shear stress
is nonexistent at the interface. It should also be noted that the
shear stress acts horizontally as well as vertically, as shown in
Fig. 4.6.G.

The foregoing discussion illustrates the major function of the
roof bolting, that is, to increase the shear resistance along the
interface, inhibiting slip and reducing the bending stress (4,30).
If sufficient shear resistance is provided to prevent slip between
the layers, then the four-member layer will behave as a single beam
of the same total thickness. In order to achieve this, the required
shear resistance should be of such magnitude that it can offer the

shear stress of magnitude aa', bb' and cc' at three levels in
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cross section xlxz, which are necessary to cause the shear stress
to be continuous (Fig. 4.6.F)(4). For mechanical roof bolting,
this very shear resistance is caused by the clamping force due to
the tensioning of roof bolts. Since all layers are clamped
together under the bolt tension which is perpendicular to the
bedding plane, the associated frictional (shear) force will create
a shear resistance to slip along the interface. Therefore the
individual layers being “puilt up" into a single thick layer will
have less flexure and smaller bending stress than that of original
ones; in other words, the stability of the roof strata is increased.
It is important to note that in the above discussion the
assumption of the same material in each layer is merely made for
illustration. For general application, there is no such limitation.
As long as the deflection of each layer is smaller than or equal to
that of the overlying layers, this reinforcing mechanism is
applicable. From the discussion made in Chapter 3, the immediate
roof of strata sequence C belongs to this category. Also, this
type of reinforcement mechanism can be applied to strata type B if
the strata sequence after strata combination is of such an order.
In this analysis, it is assumed that the frictional resistance
is only caused by the clamping force due to tensioning of the roof
bolts. The effect of the bolt itself is neglected. This is
reasonable for mechanical bolting, because the bolt is only
anchored at two ends with the remaining part of the bolt separated

from the wall of the borehole. It is also assumed that the
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coefficient of friction along the interface between the bedding
planes is constant. In addition, the small deflection theory is
applicable and employed (51).

Based on the foregoing discussion, the theoreticl equations
with regard to the friction effect are derived as follows:

For simplicity of illustration, a two-layer beam bolted by
four bolts is considered (Fig. 4.7). Fir_st, the shear flow, Q,
i.e., the shear force per unit length (47) in the interface of the

two layers is determined:

A (4.39)

where V = shear force at any section

statical moment of area of lower (or upper) layer

-
n

around the neutral axis of the whole section, i.e.

Jfarea y dA
fghj

I_ = moment of inertia around the neutral axis of the
whole section, i.e., j'y2 dA

Since for a fixed-end beam subject to uniformly transverse
loading, the shear force varies from maximum at two ends to zero at
the center of the span (Fig. 4.3 and Fig. 4.7), the proper location
or spacing of the roof bolts should be such that more bolts need to
be installed toward the ends of the beam while no bolt is necessary
at the center of the span (30,33,52,53). Furthermore, in order to

have each bolt subject to equal shear force which is required for
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maintaining the equilibrium of the force system on both sides of
each bolt, the "equal shear force" concept should be considered in
the determination of proper bolt spacing.

Based on the foregoing discussion and the principle of
geometric similarity, the equations related to the segment of
equal shear force and bolt spacing can be derived as follows:

(1) one bolt in half of the span (i.e., two bolts in

a row)

|
|

Fig. 4.8. Equal shear force diagram, one bolt.

Since each bolt is subjected to equal shear force on both sides,

i.e., Area ABDE = Area BCD, or Area BCD = ! Area ACE, which can be

expressed as

»
>

~
L}

ol

03

(4.40)
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or

a= il: @ (4.41)

Triangle BCD is similar to triangle ACE. From the similarity

of geometry,

%
L/2

olm

(4.42)

Substituting Equation 4.42 into Equation 4.41 and rearranging,

we get
2% = &2 (4.43)
or
- g - 00rd (4.44)
=9 G 2

In this case, there is only one segment of equal shear force.
The distance between the center of the span and the left end of

this segment is L/2, i.e. Xg = L/2

(2) Two bolts in half of the span (i.e., four bolts in

a row)

/

Fig. 4.9. Equal shear force diagram, two bolts.
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In this case, there are two segments of equal shear force in
half of the span, i.e., Area CEG = Area ACGJ. From the previous
discussion, we get XEl = (%)5 (%). Similarly, since Area DEF =

Area CDFG, we get Xy = (%)’f gy =1 &.

In area ACGJ, since Area BCGH = Area ABHJ, then

ateglbied x ) =30 +e)0.209F (445

or

@@+ e)g = 50 + ) (0.299)L “.46)

e Ja1 - L
Since ¢ = /2 Ve get e = 0.707b(2)

. 007G + g
Also, from ST »ve get a = (0.707b + bg)
2z
Substituting e and a into Equation 4.46, we get
2
1.414 bg + bg” = 0.25 b
Solving for this equation, we get
- L
g = 0.159 (2)

Furthermore

- - L Ly - L
Xpp = Xgy + 8= 0.707 (3) +0.159 (3) = 0.866 (3)

u

& & (4.47)
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The derivation of XE and XB for more than two bolts (in half of

the roof span) can be obtained in a similar way.

Therefore, for N bolts in a row, the following equations are

obtained:

(1) Segment of equal shear force

- (2 gk i=
X = C§ V3 i=1,2, ..., N/2 (4.48)

where XEi is the distance between the center of the span

and the rib end of the i-th segment.

(ii) Bolt spacing in each row

R e T LTS e 7} (4.49)

It should be noted that the number of segment of each shear

force is equal to that of the bolts in each row.

For the case shown in Fig. 4.7, the corresponding in and xBi

are obtained from Equations 4.48 and 4.49, respectively; they are

Xm = 0.354L; Xgy = 0.5L and Xpy = 0.25L, XBZ = 0.433L

Based on the principle of geometric similarity, the shear

force, Vx at any section can be determined by

XEX
Vx = vmax ) (4.50)
where Vmax = maximum shear force at two ends

xEx = distance between the center of the span and the con-

cerned interval of equal shear force
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0.354L

In the case shown in Fig. 4.7, \7x = vmax AP) = 0.708 vmax'
The average shear flow, Qave’ for the farthest segment is
o =wz-1t Oz .51
ave 2 :
where Q;, ) _ , = shear flow at X;. - ; it is equal to
N/2 -1 B2 - 1)
Vay2ry 'a
I

z

Q, = shear flow at X, ; it is equal to
N H
& o) ~

Vw2 Ta
I
z

By multiplying Qave by the length in that segment, the average

shear force, FSA’ in that segment is obtained

F (4.52)

L
= Qul7 - ¥ ]
SA ave' 2 E(N/Z—l)

Since each bolt is subjected to equal force, FSA in Equation
4.52 is actually valid for any other interval.
The required bolt tension, PB, is, therefore, obtained by

dividing FSA by the coefficient of friction along the interface, u,
Py = ESA/u (4.53)

For the case shown in Fig. 4.7, Py = 0.146 Q. L/u.
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It should be noted that the procedure for determining the bolt
spacing and bolt tension described above can also be applied to the
roof strata made up of multiple layers with different material
properties and thicknesses. However, under this condition, several
points must be carefully considered in order to achieve proper
results. First, for roof strata made of different material proper-
ties, the equivalent unit weight of all bolted layers is used in
Equation 4.38. The equivalent unit weight of n layers of different

material properties and thicknesses, ;, is defined as (22)

= Wity buyt, b b e s
t, +ty F ...+ E :
175 n
n
kZL e b
- ‘2‘ - (4.55)
t
P

Second, the equivalent (or transformed) cross-sectional areas
instead of the original ones should be used in the analysis (see
Fig. 4.10) (44,47,54). After a beam of several materials is reduced
to an equivalent beam of one material, the previous formulae
(i.e., Equations 4.38 through 4.53) and the equations for calculating
the deflection and bending stress for beam of one material still
apply. The transformation of a section is accomplished by changing
the dimensions perpendicular to the axis of symmetry of the various
materials in the ratio of their elastic moduli (47). For example,

if an equivalent section in terms of material 1 is required, the
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dimensions corresponding to material 1 do not change. The horizontal
dimensions for material 2 are modified by a ratio C, where C =
EZ/EI’ Fig. 4.10. On the other hand, if the transformed section is
to be in terms of material 2, the horizontal dimension of material 1
is changed by a ratio Cl = E1/E2. where C1 = 1/C. In this research,
the transformed section is usually in terms of material 1, i.e.,
the material in the lowest stratum. Because in order to apply
friction effect, the stiffness of the lowest stratum is generally
larger than or equal to that of its upper strata. Moreover, for a
beam of transformed section, the static moment of area, IA’ and
moment of inertia, I about the neutral axis of the new cross
section can be determined by utilizing the theorem of parallex
axis (47,54).

4.2.2 Failure Criteria for Bolted Strata

The failure criteria for roof strata reinforced by friction
effect through roof bolting is basically the same as that of the
bolted roof by suspension effect. Therefore, Equations 4.36 and
4,37 are also utilized for evaluating the stability of roof strata.
However, it should be noted that only the uppermost layer and the
lowermost layer in the equivalent beam is considered in this
evaluation. The reason for this is that since all layers are
bolted such that they behave as a single layer, then, only the
outerfiber of the beam, which is most critical to the flexural
stability will be taken into consideration.

In this case, the maximum bending stress, Og» in Equations

4.36 and 4.37 is obtained from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

&

(4.56)

Qa
w
n
o
o
(S

where MB is the maximum bending moment at the ends, resulting from
the total weight of all the bolted layers. The effect of horizontal
stress is included in the determination of MB. Furthermore, for a
beam of various materials, the bending stress in each layer of the
actual beam can be determined by multiplying those obtained for

the transformed section by Ei/Et’ where Ei is the Young's modulus
of the i-th layer and EC is the Young's modulus for the very layer
on which the transformation of section is based; In this research,
E: is the Young's modulus of the lowest layer in the equivalent

beam.
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CHAPTER 5

ANALYSIS OF BOLTING PATTERN AND BOLT TENSION

5.1 General

Adequate design of bolting pattern and bolt temsion are the
most important aspects in the success of mechanical roof bolting.
Yet, in spite of the widespread use of roof bolts as a primary
support system in the underground mining, there is still no
consensus regarding the design criteria for the bolting pattern and
bolt tension at which roof bolts should be installed to reinforce
the mine roof safely and economically. The common practices are
largely based on empirical rules, which obviously tend to either
overdesign or underdesign.

Since the function of roof bolting is so closely related to the
strata behavior, it is advisable to carry out the analysis of
bolting pattern and bolt tension under different strata types. For
example, in an immediate roof which contains a competent layer
within the length of the bolt, the reinforcement mechanism through
roof bolting is mainly due to the suspension effect. In this case,
roof bolts must be long enough to be anchored at the competent layer
so that the suspension effect can be achieved. The bolt spacing in
this case should be determined in conjunction with the result of
suspension effect. On the other hand, if there is no competent
layer in the immediate roof, the bolt spacing should be determined

based on the friction effect. In this case, for example, there is
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no need to install any roof bolt in the center of the roof span.
With regard to bolt tenmsion, which is an extremely important factor
for mechanical bolting to be effective, it should also be determined
based on the function of roof bolting in that specific strata.
Furthermore, the proper bolt tension should be the smaller of (a)
60% of anchorage capacity, or (b) 60% of the yield load of the bolt
in pure tension (15). In practice, since the yield strength of the
bolt is generally larger than the anchorage capacity, the anchorage
capacity is usually an important factor for the determination of

bolt tension.

5.2 Bolt Spacing and Bolt Tension in Suspension Effect

In the analysis of bolting pattern for the immediate roofs to
which the suspension effect applies, the bolt length is a fixed
constant equal to the minimum distance required to reach the
anchoring horizon (or stratum). According to the Federal Law
(CFR30) (55), the bolt length should be such that at least 12 inches
(30.5 cm) anchored in the stronger strata to suspend the immediate
roof. 1In order to be effective, therefore, in this research, it is
required that the bolt should be of such a length that it can be
anchored at least 12 inches (30.5 cm) in that anchoring horizon of
the bolted strata.

The determination of row spacing is mainly controlled by the
anchorage capacity. It will be discussed in Section 5.4. In the
following section, analysis of bolt spacing along the span will

first be discussed.
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In Chapter 4, the reinforcement mechanism of suspension effect
has been investigated. The equations for determining the deflection,
transferred bolt load, maximum bending moment, and maximum bending
stress have been derived (see Equations 4.1 through 4.28, 4.36, 4.37
and those listed in Appendix I). Among them, the equations related
to the transferred bolt load, maximum bending moment and maximum
bending stress (Equations 4.9, 4.15 through 4.28, 4.36, 4.37 and
those in Appendix I) are of importance in the determination of bolt
spacing and bolt tension because they are directly related to the
stability of the bolted roof strata.

In all of those equations the locations of the bolts are
expressed in terms of X, i.e., the locations of the bolts are
variable. 1In order to find out what is the optimum (or adequate)
bolt spacing and bolt tension, comparisons between various bolt
locations (or bolt spacings) should be made for various number of
bolts. To achieve this goal, a hypothetical coal mine is used
for illustration. The strata sequence, material properties, and
in-situ horizontal stress of the immediate roof in this mine is shown
in Table 5.1. The roof span is 20 ft. (6.1 m). In the following
comparisons, only the first and the third layers are considered
because the former is the lowest and thinnest while the latter
is the anchoring layer. These two layers are considered to be
most critical to the stability of the bolted strata.

5.2.1 Comparisons Between Various Bolt Spacings

The investigations into the adequate bolt spacings are made

for various number of bolts, ranging from one to six bolts. When
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Table 5.1. Strata Properties

for An Example Mine

Stratum Thickness Horizontal Stress Young's Modulus Unit Weight
Number 6 3 3 3
in. (cm) psi (MPa) x 10" psi (x 10~ MPa) 1b/in~ (g/cm”)
3 48 (121.6) 300 (2.1) 2.19 (15.10) 0.0982 (2.72)
2 24 ( 60.8) 300 (2.1) 0.90 ( 6.21) 0.0932 (2.58)
1 18 ( 45.6) 300 (2.1) 0.72 ( 4.96) 0.0652 (1.80)

(44



103

only one bolt is installed, the location of the bolt is a fixed value,
i.e., at the center of the roof span. For two and three bolts, the
bolt locations are shown in Fig. 5.1 and Fig. 5.2, respectively. For
four bolts, 8 series of bolt locations are considered (Fig. 5.3
through Fig. 5.10). 1In each series, the location of one bolt is
fixed while that of the other one varies (only half of the span is
considered since the bolt location is symmetric with respect to
mid-span). Therefore in total, there are 36 cases of bolt

locations.

For five bolts, the bolt locations are almost the same as those
for four bolts except that there is one more bolt installed at the
center of the roof span. In addition, there is one more case‘iﬁ
which the spacings between the bolts are equal, Fig. 5.11. In
a similar way, the analysis of bolt spacing for six bolts is made.
However, in each series, the locations of two bolts are kept
constant while the third one is changed. In total, 84 cases of
bolt locations are investigated. But only 5 major arrangements
of bolt locations, which are representative of the other patterns,
are shown in Fig. 5.12.

The results of comparisons in bending stress and bolt load
for different number of bolts with various bolt spacings are shown
in Table 5.2 through Table 5.22. In these tables, o represents

max

the maximum bending stress of the unbolted roof stratum, and

%81

Opq refer to the maximum bending stress for the roof stratum after

B.
bolting, T indicates the transferred bolt load for that layer, and
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Fig. 5.2. Various locations of three bolts.
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Fig. 5.7. Various locations of four bolts, Series 5.
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Table 5.2. Bending Stress and Bolt Load for One Bolt

Stratum O ax op Tlc

Number psi psi lbs
3 59.0 86.1 16670
1 105.9 35.0 -

Table 5.3. Comparisons Between Bending Stress and Bolt Load--Two

Bolts

Case 1 2 3 4 5
X’f/L 0.1 0.2 0.3 0.333 0.4
%1 -15.3 2.5 17.6 22.0 29.4
(psi)

953 105.5 98.7 92.8 91.1 88.3
(psi)

T 79450 38110 24750 22230 18750
(1bs)

TZl 39725 19055 12375 11115 9375
(1bs)

*X1 is the distance of the first bolt (counting from the rib end)
to the rib. L is the roof span.
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Table 5.4. Comparisons Between Bending Stress and Bolt Load--
Three Bolts

Case 1 2 3 4 5

X’lf/L 0.1 0.2 0.25 0.3 0.4
gy (psi) 7.0 14.0 17.5 21.0 27.9
9p3 (psi) 97.0 94.3 92.9 91.5 88.8
T (lbs) 40010 27920 25000 22780 19380
T31 (1bs) 13020 8682 8335 8682 13020
TBC (1bs) 13960 10560 8335 5417 -6669

*Xl is the distance of the first bolt (counting from the rib end)
to the rib. L is the roof span.
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Table 5.7. Comparisons Between

Bending Stress and Bolt Load--Four Bolts,

Series 3
Case 1 2 3 4 5 6
91 (psi) 16.5 16.4 15.3 13.8 12.3 11.1
983 (psi) 93.29 93.33 93.8 94.3 94.9 95.4
T (1bs) 25090 25210 26540 28290 30070 31540
TAl (1bs)-19310 -4572 1405 5039 7548 9226
17180 11870 9109 7486 6543

TAZ (1bs) 31850

L11
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Table 5.8. Comparisons Between Bending Stress and Bolt Load--
Four Bolts, Series 4

Case 1 2 3 4 5

oy (@si)  17.2 17.1 16.4 15.4 14.4
g3 (psi)  93.02 93.03 93.32 93.7 94.1
T (lbs) 25070 25090 25770 26670 27500
T,, (bs) 9579 407 4364 6668 8099
T, (1bs) 22110 12140 8523 6668 5652

Table 5.9. Comparisons Between Bending Stress and Bolt
Load--Four Bolts, Series 5

Case 1 2 3 4

951 (psi) 18.75 18.82 18.4 17.8
953 (psi)  92.40 92.37 92.5 92.8
T (lbs) 24080 24030 24350 24770
T41 (lbs)  -1684 4231 6565 7834
Ty (1bs) 13720 7783 5610 4548
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Table 5.10. Comparisons Between Bending Stress
and Bolt Load--Four Bolts, Series 6

Case 1 2 3
91 (psi) 21.08 21.3 21.11
Op3 (psi) 91.5 91.4 91.5
T (1bs) 22700 22590 22680
Ty (1bs) 4918 7322 8307
T,y (1bS) 6434 3971 3034
Table 5.11. Comparisons Between Table 5.12. Comparisons
Bending Stress and Bolt Between Stress
Load--Four Bolts, and Bolt Load--
Series 7 Four Bolts,
Series 8
Case 1 2 Case 1
951 (psi) 24.0 24.4 oy (psi) 27.6
93 (psi) 90.3 90.2 gy (psi) 89.0
T (lbs) 21170 20990 T (lbs) 19550
Tlol (1bs) 10510 9953 T41 (1bs) 15450
T[02 (1bs) 71 541 ’l?l‘2 (1bs) -5678
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Table 5.16. Comparisons Between Bending Stress and Bolt Load--
Five Bolts, Series 4

Case 1 2 3 4 5

op; (psi)  16.1 16.1 15.7 15.2 14.6
O3 (psi)  93.4 93.4 93.6 93.8 94.0
T (lbs) 26050 26050 26330 26780 27320
T, (1bs) 2604 4688 5890 6885 7802
Tsy (1bs) 6001 4688 4702 5708 9625
Tg, (1bs) 8835 7293 5150 1594 ~7533

Table 5.17. Comparisons Between Bending Stress and Bolt Load--
Five Bolts, Series 5

Case 1 2 3 4
o51 (psi) 18.2 18.3 18.2 17.9
Op3 (psi) 92.6 92.6 92.6 92.7
T (1bs) 24500 24400 24500 24720
TS]. (1bs) 6001 6535 7112 7716
Ts, (1bs) 2604 2778 3473 5953
TSC (1bs) 7293 5779 3334 -2620
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Table 5.18. Comparisons Between Bending Stress
and Bolt Load--Five Bolts, Series 6

Case 1 2 3
o1 (psi) 20.8 21.0 21.1
op3 (psi) 91.6 91.5 91.5
T (1bs) 22890 22720 22710
Tgp (1bs) 9414 8431 8425
Tgy (1bs) ~946 575 1932
Tg, (1bs) 5953 4714 1994

Table 5.19. Comparisons Between Bending
Stress and Bolt Load--
Five Bolts, Series 7

Case 1 2

9g1 (psi) 23.9 24.3
gy (psi) 90.4 90.3
T (lbs) 21240 21040
"‘.‘51 (1bs) 13010 10500
Tsy (1bs) -5032 -2972
Ts, (1bs) 5286 5975
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Table 5.20. Comparisons Between Table 5.21. Comparisons Between
Bending Stress and Bending Stress and
Bolt Load--Five Bolt Load--Five
Bolts, Series 8 Equally Spaced Bolts
Case 1 Case 1
g1 (psi) 27.5 951 (psi) 14.2
933 (psi) 89.0 953 (psi) 94.2
T (lbs) 19590 T (1lbs) 27780
T51 (1bs) 17140 TSX (1bs) 5557
T52 (lb‘s) ~11460 '}'J52 (1bs) 5557
TSc (1bs) 8232 TSC (1bs) 5557

Table 5.22. Comparisons Between Bending Stress and Bolt Load--Six

Bolts

Case 1 2 3 4 5

ogy (s 12.0 12.5 13.0 13.5 15.7
gy (psi)  95.0 94.9 9.7 9.4 93.6
T (1bs) 31090 30220 29310 28580 26370
Tg, (1bs) 5512 3763 2967 4763 6125
Ty, (1bs) -14220 2459 12470 4763 -4076
Tgy (1bS) 24250 8887 -779 4763 11130
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T represent the transferred bolt loads for the first

1o Tarr oo T3
through the sixth bolts (see their definitions in Chapter 4). It
should be pointed out that only the transferred bolt load for the
third layer (i.e., anchoring layer) is shown because it is actually
the bolt tension of the bolt at that location.

(1) Two Bolts

From Fig. 5.1 and Table 5.3 it can be seen that when bolts are
installed closer to the ribs, the maximum bending stresses are
reduced while the bolt loads are increased. Although the smaller
is the bending stress, the better is the stability of the roof
strata, the bolt load shouldn't be too large. Otherwise anchorage
failure will occur. Furthermore, since the bending stresses in
case 3 and case 4 are pretty small as compared to that of the
unbolted layer (see Table 5.2), and their corresponding bolt loads
are much smaller than those of the bolts close to the ribs, they
are better than other cases. Comparisons between them show that
case 4 not only provides the best overall coverage of the exposed
roof, thus minimizing the risk of roof falls between the bolts. It
also has the smaller bending stress. Therefore, with two bolts in
a row, case 4, i.e., bolts with equal spacing is most adequate
for the design of roof bolting pattern.

Figure 5,13 shows the bending stress in the first and the third
layers in various cases. It is seen that the extent of decrease
in the bending stress for the third layer is not as much as the
extent of increase in the bending stress for the first layer when

bolt spacing varies from case 1 to case 5.
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(2) Three Bolts

From Fig. 5.2 and Table 5.4 it can be seen that when the
bolts are installed closer to the ribs, the bending stresses are
decreased while the bolt loads are increased. For case 3 and
case 4, although the degree of decrease in bending stress is not asv
much as that of case 1 and case 2, the bending stresses in those two
cases have been decreased to pretty small values. Moreover, their
bolt loads are much smaller than those of case 1 and case 2.
Comparison between case 3 and case 4 shows that case 3 has the
smaller bending stress and the bolt load is equal for each bolt
Considering each bolt and its surrounding rock as a reinforcement
unit, each unit is subjected to an equal vertical force on both
sides of the bolt. But for other cases, unequal vertical forces
act on both sides of the bolts, which are not desirable from the
viewpoint of equilibrium of force system. In addition, equal bolt
loads with equal spacing is also good for the installation and
inspection. Therefore, it is concluded that case 3 (i.e., equal
spacing of the bolts) is the best for the design of roof bolting
system.

Figure 5.14 shows the bending stress in the first and the third
layers for various cases. It can be seen from the figure that the
difference in the bending stresses of the third layer is quite
small among various cases. For the bending stress in the first
layer, although it has the same trend as that in Fig. 5.13, the

extent of the increase is less than that of the two bolts.
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(3) Four Bolts

For four bolts in a row, there are 8 series of various bolt
locations (Fig. 5.3 through Fig. 5.10). The results of comparisons
in the bending stress and bolt load among various series are shown
in Table 5.5 through 5.12.

Although there are 36 sets of results corresponding to 36
cases of bolt spacing, their trends in the bending stress and bolt
load are similar. This trend can be represented by Fig. 5.15 and
Fig. 5.16. In Fig. 5.15, the relationship between the bending
stress and X1/L ratio for the first layer is shown. It can be
seen that the bending stress of the last case increases with the
X1/L ratio. But the bending stress of the first case first decreases
when XI/L is less than 0.15 then increases with the XllL ratio.
This may be explained as follows: since in the first case of each
series, the distance between the two bolts (only half of the span
is considered) is constant (i.e., 0.05 L) but the distance between
them and the ribs are variable. When the distance between those
two bolts and the ribs is less than 0.2 L, the bending stress of the
first layer is larger when the bolts are closer to the ribs. How-
ever, when the distance between these two bolts and the ribs is
larger than 0.2 L, the closer are the bolts to the mid-span, the
larger is the bending stress of the first layer. Figure 5.16
shows the relationship between transferred bolt load, T, and XZ/L
ratio. It can be seen that the transferred bolt load is independent

of X2/L ratio when X2/L is less than 0.3, but increases with XZ/L
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ratio when X2/L is greater than 0.3. This implies that when one
bolt is fixed and the other one is moving closer to the mid-span,
a larger bolt load is needed for the stratum.

After careful comparisons between all the cases, case 4 in
series 4 (i.e., equal spacing between the bolts) is considered as
the best one for the design of bolt spacing. The major reason is
that it is the only one case in which not only the bolt load is
equal for each bolt but also the bolts are equally spaced. Although
in a few cases, the bolt loads are equal for each bolt but the bolts
are not equally spaced (see Fig. 5.17). All other cases have
different bolt loads for bolts in different locations. In addition,
the bending stress of the first layer in this case is pretty small,
which is good for the stability of the bolted roof strata. Further-
more, the bolt tension is only 6668 1lbs. (3027 Kg) for each bolt,
which is also desirable from the viewpoint of anchorage capacity.

(4) Five Bolts

With five bolts in a row, there are 37 cases of bolt locations.
Among them, 36 cases are of the same bolt location as those of
four bolts except that an additional bolt is used at the center of
the roof span. The results of the comparisons between bending
stresses and bolt loads for different cases are shown in Tables 5.13
through 5.20. There is one more case in which the spacing between
the bolts is equal. The result of this case is shown in Table 5.21.

From Tables 5.13 through 5.20 it can be found that the trend
in the bending stress and bolt load is similar for all the cases.

This trend is plotted in Fig. 5.18 and Fig. 5.19. In Fig. 5.18 the
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relationship between bending stress and Xl/L ratio for the first
layer is shown. Comparing this figure with Fig. 5.15, it can be
seen that the general trend is the same between four and five bolts.
The only difference is that in Fig. 5.18 when XllL is less than
0.15 the bending stresses afe approximately equal, but in Fig.

5.15 the bending stress decreases. Figure 5.19 shows the relation-
ship between the transferred bolt load, T, and XZ/L ratio. The
trend is similar to that in Fig. 5.16. But the transferred bolt
loads in Fig. 5.19 are larger than that in Fig. 5.16 when XZ/L

is less than 0.3.

Table 5.21 shows the result of five equally spaced bolts.
Comparing Table 5.21 with Tables 5.13 through 5.20, again, it is
found that only in this case the bolt load is equal for each bolt
and the bolts are equally spaced. Moreover, since in this case,
the bending stress is pretty small and the load for each bolt is
only 5557 1lbs. (2523 Kg), it is determined that equal spacing in
five bolts will provide the best design.

(5) Six Bolts

With six bolts in a row, a total of 84 cases of bolt locations
are investigated. After a prudent inspection, only the result of
five major cases are shown in Table 5.22.

After careful comparisons among the resuits of those five
cases, case 4 (i.e., equal spacing) is chosen as the most adequate

bolt spacing based on the following reasons: First, the load for
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each bolt is equal while for other spacings the difference in bolt
load is quite large. Second, both the bending stress and the
magnitude of the bolt load (i.e., 4763 lbs. or 2162 Kg) are pretty
small, which are good for the stability of the roof strata and
anchorage capacity.

After an extensive study about the bolt spacing for various
bolt locations for different number of bolts, it is concluded that
the bolt spacing with equal distance will yield the best results
from both theoretical and practical (i.e., installation and
inspection of bolts) viewpoints. In the computer program which
will be described in Chapter 6, equal spacing of the bolts is

utilized to analyze the optimum bolting pattern and bolt tension.

5.2.2 Determination of Bolt Tension in Suspension Effect

The determination of adequate bolt tension in the immediate
roof which is reinforced by suspension effect depends on the numbers
of the bolted layers, the flexural rigidity of each layer, the
number of bolts in each row, and the pattern in which roof bolts are
installed.

The equations for the bolt tension of one to six bolts have
been derived in Chapter 4 and Appendix I. However, in those equa-
tions the locations of bolts are variable. According to the results
detailed in the previous section, it has been concluded that for
any number of bolts, equal spacing will provide the best result.
Therefore, the optimum bolt tension for any number of bolts can be
determined by substituting equal spacings in the corresponding

equations in Chapter 4 and Appendix I
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It should be pointed out that although the determination
of bolt tension for any number of bolts has been made, how many
bolts should be used is yet to be determined. Since the more bolts
are installea, the more cost and labor will be required, it is
advisable to choose the smaller number of bolts as
long as the stability of the bolted roof strata is maintained. In
the design of bolting system, a smaller number of bolts is tried
first. If it can provide the stability of the roof strata, then it
will be used. Otherwise, the next higher number of bolts will be
tried. The more detailed procedure for determining the adequate
number of bolts for any specific immediate roof will be described

in Chapter 6.

5.3 Bolt Spacing and Bolt Tension in Friction Effect

For the immediate roofs which are reinforced by the friction
effect, the bolt spacing in each row should be determined based
on the "equal shear force" concept. The equation for determining
the bolt spacing has been derived in Chapter 4 (see Equation 4.49).
The equations for determining the bolt tension are given in
Equations 4.50 through 4.53. It should be pointed out that for any
specific immediate roof reinforced by friction effect, both the
bolt spacing and bolt tension are dependent on the number of bolts
for each row. However the number of bolts in each row is mainly
controlled by the anchorage capacity of the rock. The higher
the anchorage capacity the higher the bolt tension can be applied,

which, in turn, means a smaller number of bolts is needed. As long
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as the number of bolts in each row is determined, the corresponding

bolt spacing and bolt tension will also be found.

5.4 Determination of Row Spacing

The principle for determining the row spacing for specific
bolting pattern is the same for suspension effect and friction
effect. Therefore, the analysis of adequate row spacing for both
reinforcing effects is carried out in this section.

From the analysis of reinforcement mechanism made in Chapter 4,
it is found that the row spacing is not explicitly expressed in
those derived equations. But it is directly related to the bolt
tension and anchorage capacity. The larger the bolt tension, the
smaller is the row spacing and vice versa. However, the bolt
tension can't exceed the allowable anchorage capacity (i.e., 60% of
anchorage capacity). Therefore, it is advisable to choose the
allowable anchorage capacity as the adequate bolt tension, then

find the adequate row spacing by the following equation

b (5.1)

w5

where SA = adequate (final) row spacing

PA = allowable anchorage capacity
Py = bolt tension
b = unit width of the beam, or the assumed row spacing

In the computer program which is developed for designing the

bolting pattern and bolt tension, Equation 5.1 is adopted for
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determining the adequate row spacing for the immediate roof which

is either reinforced by suspension effect or friction effect.
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CHAPTER 6

PROCEDURE AND APPLICATION OF COMPUTER PROGRAM

6.1 General

One of the objectives of this research is to develop a computer
program, from which the optimum roof bolting system with regard to
bolting pattern and bolt tension for any specific coal mine roof can
be obtained.

The reason for developing the éomputer program is obvious.
First, during the analysis of the flexural behavior of the generalized
immediate roof and reinforcement mechanisms of the mechanical roof
bolting, many complicated equations have been derived. By using
the computer, not only the computation time can be saved, but also
the results of the analyses can be guaranteed with high accuracy.
Second, due to the complicated conditions of the generalized immediate
roof (such as arbitrary strata sequence, different material proper-
ties and strata thicknesses), variable geometrical information about
the opening and multiple parameters of roof bolting (i.e., bolt
spacing, bolt length and bolt tension), a complete analysis may not
be feasible without utilizing the computer programming.

Based on the results of the analyses in Chapter 3 through
Chapter 5, the computer program for the analysis of the flexural
behavior of a generalized immediate roof and the design of optimum
roof bolting system is developed. The program is written in

FORTRAN IV language, which can be applied to most types of computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

The characteristic of this program lies in its simplicity for the
users. As long as the geological and geometrical information about
any immediate roof is used as the input, the desired output informa-
tion, i.e., either an optimum bolting pattern and bolt tension or a

stable unbolted roof, can be obtained.

6.2 Procedure and Description of the Program

In order to apply this caﬁputer program, it is necessary to
understand the general procedure adopted in the program. The
general procedure of the computer program is shown in Fig. 6.1. The
whole program is given in Appendix II. It can be seen from Fig.
6.1 that this computer program consists of three major parts:
(1) analysis of the flexural behavior of the immediate roof, (2)
reinforcement by suspension effect, and (3) reinforcement by
friction effect. The procedure of analysis of the flexural behavior
of the immediate roof has been depicted in Chapter 3. The procedures

about the reinf by ion effect and friction effect

will be described in the following sections.

6.2.1 Procedure for Reinf t by S ion Effect

The general procedure for reinforcement by suspension effect
is shown in Fig. 6.2. As shown in this figure, three subprograms
are used; namely, COE123, COE45 and COE67. Subprogram COE123 is to
carry out the reinforcement analysis by one, two, and three bolts.
Subprogram COE45 is to analyze the reinforcement by four and five

bolts. Subprogreim COE67 is utilized for the reinforcement analysis
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INPUT DATA
L, B, us E, t, w,
Crs Cp, Ppr 0y

for-each stratum

l

ANALYSIS OF FLEXURAL
BEHAVIOR OF IMMEDIATE
ROOF

OUTPUT

v, o for

IMMEDIATE ROOF

each stratum

REINFORCEMENT BY REINFORCEMENT BY
FRICTION ‘EEFECT SUSRENSION EFFECT]

OUTPUT

+ BOLT SPACING
» BOLT LENGTH
» BOLT NUMBER
« BOLT TENSION

Fig. 6.1. TFlow chart of general procecure of computer program.
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COMPUTATION OF R FOR
EACH STRATUM

CALL COE45

NOTE:

Is
two bolts
gtable?

Is Ye
three bolts >

1. SAl, SA2, ...
SA5 are row
spacings for
one bolt, two
bolts, «..
five bolts;
respectively.

Yes

2. B = Assigned
row spacing

Is Yes, No,

four bolt
stable?

No

(continued)
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Is
five bolts
stable?

Is
six bolts
stable?

Yes

=

OPTIMUM BOLTING PLAN

Bolt Spacing, Bolt
Length, Bolt Number,
Bolt Tension

Fig. 6.2. Flow chart of procedure of suspension effect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

by six and seven bolts. In this research, however, only six bolts
are considered in subprogram COE67. The reason for six bolts is that
the width of the entry (or opening) in the United States is seldom
larger than 20 ft. (6.1 m) (56). Under this condition, even if

six bolts are installed, the spacing between the bolts will probably
be smaller than 3 ft. (0.91 m). Since the current 4 x 4-ft.

(122 x 1.22-m) pattern is in many cases overdesigned, it is,
therefore, determined to consider at most six bolts for the rein-
forcement by suspension effect.

It can also be seen from this figure that the procedure for
evaluation of stability of the bolted roof starts from one bolt to
six bolts. The reason can be explained as follows: As long as the
requirement for the stability of the bolted roof is met, the less
is the number of bolts installed, the more cost will be reduced.
Throughout all the analysis of reinforcement by roof bolting, this
principle is adopted. .

With regard to the spacing between the rows of bolts (or row
spacing), an adequate value, B, is assumed in the beginning. After
the reinforcement analysis is done, the calculated row spacing,

SA, will be compared with B. Whenever the value of SA is smaller
than that of B, the number of bolts will be changed to the next
higher one. Therefore, the final (or optimum) bolting plan will be
determined only when both stability condition and adequate row
spacing are satisfied. It should also be noted that the spacing
of bolts in each row is determined within the analysis of the

reinforcement itself.
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6.2.2 Procedure for Reinforcement by Friction Effect

The general procedure for reinforcement by friction effect
is shown in Fig. 6.3. There are three subprograms used in this
part of reinforcement analysis; namely, FRIC!, FRICM and FRSPAC.
The subprogram FRIC1 is utilized for the analysis of friction effect
when the immediate roof is of strata type C, i.e., each stratum
deflects more than that of its underlying stratum and combined into
one equivalent stratum. The subprogram FRICM is used to carry out
the reinforcement analysis of friction effect when the strata
sequence of the immediate roof is of such an order that the
deflections of all the strata are equal and therefore multiple strata
instead of one combined stratum need to be reinforced by friction
effect. It should be pointed out that the reinforcement mechanism
is the same for FRICl and FRICM. The major difference is the
different number of layers involved and the corresponding determina-
tion of the neutral axis, statical moment of area, and moment of
inertia for the bolted strata. The subprogram FRSPAC is used for
determining the bolt spacing in each row based on the "equal shear
force" concept which has been described in Section 4.2.1. The
principle for determining the row spacing is basically the same as
that for suspension effect; i.e., the row spacing obtained should be

larger than or equal to that of the assigned adequate spacing, B.

6.3 Application of Computer Program
After the general procedure and description of the computer

program, the next step is to know how to apply it. To this end,
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CALL
FRICM

Ic=2x1
SAS = SA(I)

No
100 Continue

OPTIMUM BOLTING PLAN

Bolt Spacing, Bolt
Length, Bolt Numbe:
Bolt Tension

Fig. 6.3. Flow chart of procedure of friction effect.
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the easiest way is to describe how the data is inputted and what
is the result of the output. After that, illustrative examples

will be demonstrated to show what are the input and output.

6.3.1 Description of Input Data and Output Result

The first card in the input data is the number of layers in the
immediate roof to be reinforced. Since it is essential to know how
many layers in the immediate roof so that the proper bolting pattern
and bolt tension can be determined. In the computer program, it is
represented by the variable N and read in with the format I2. The
second card reads in the variables, XL, B, and US, which répresent
the roof span, assigned row spacing and coefficient of friction in
the interface, respectively. Those three data are read in with the
format 3F10.4. The next card to be read in is the information about
each stratum. They are: (1) Young's modulus, E, (2) thickness,
t, (3) unit weight, w, (4) in-situ horizontal stress, HS, (5)
tensile strength, TENSH, (6) compressive strength, COMSH, and (7) allow-
able anchorage capacity (if any), PA' Those seven data are read
in with the format E10.3 and 6F10.4. The number of cards for each
stratum depends on how many number of strata is read in the first
card. For example, if the immediate roof is made up of six strata,
then six cards need to be read in. The reading sequence starts from
the lowest stratum. These are all the necessary input data to be
read in for the determination of optimum bolting plan for any

specific immediate roof.
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The output of this computer program consists of two major parts.
The first part shows the information of input data and the results
of analysis of the flexural behavior of the immediate roof, from
which the user can check the input data and understand what is the
flexural behavior of the immediate roof in terms of deflection and
bending stress. If the strata combination procedure occurs, it will
also be shown in this part. The second part is the result of
reinforcement analysis through roof bolting. The result depends on
the type of reinforcement mechanism. If it is for suspension
effect, the parameters and coefficients employed in the analysis
are first listed. Next to that is the optimum bolting system
including number of bolts per row, bolt spacing along the span and
along the entry (or row spacing), bolt length and bolt tension. If
the bolted roof fails, then instead of the bolting plan, the
statement "Bolted roof is unstable" and the corresponding stresses
are printed out. If it is for friction effect, the printout
includes the neutral axis, the number of the stratum that requires
the largest shear flow, and the bolt spacing based on "equal shear
force" concept, followed, in the last part, by the optimum bolting
plan or the failure condition, which is of the same form as that
for suspension effect.

It should also be mentioned that the unit of both input data

and output result are exp d in English System b it is

most commonly used in the United States.
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6.3.2 Illustrative Examples

In this section, two examples are used to illustrate what is
the input data and output result for two immediate roofs reinforce‘d
by suspension and friction effect, respectively.

(1) Example 1 - reinforcement by suspension effect

Table 6.1 shows the strata sequence and material properties
for, and in-situ horizontal stress in the immediate roof for a
hypothetical underground coal mine A. The width of the opening is
20 ft. (6.1 m). If the designed row spacing is 4 ft. (1.22 m),
what is the proper bolting pattern and bolt tension at which the
roof bolts should be installed?

First, the necessary input data are read into the computer.
The first card reads in N = 3. The second card reads in XL =
240.0 in. (6.1 m), B = 48.0 in. (1.22 m), and US = 0.0. The third
through the fifth card read in the following information, respectively.

E t W
6 3 3 3
x 10° psi (x 10° MPa) in. (cm) 1b/in (g/em”)

Card 3 0.72 (4.96) 18 (45.6) 0.0652 (1.80)
Card 4 0.90 (6.21) 24 (60.8) 0.0932 (2.58)
Card 5 2.19 (15.10) 48 (121.6) 0.0982 (2.72)
HS TENSH COMSH PA
psi  (MPa) psi  (MPa) psi  (MPa) 1bs (kg)

Card 3 300 (2.1) 71.5 (0.5) 1447  (10.0) 7000  (3178)
Card 4 300 (2.1) 88 (0.6) 2133 (14.7) 7500  (3405)

Card 5 300 (2.1) 250 (1.7) 6270  (43.2) 8000  (3632)
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Table 6.1. Strata Sequence and Material Properties for, and Horizontal Stress in the Immediate Roof, Hypothetical Mine A

Stratum  Thickness Horizontal Stress Young's Modulus Unit Weight Tensile Strength Compressive Strength Anchorage Capacity

Number i
in- (cm) psi (MPa) x 10% pst (x 10 wpa) 1/ind  (g/en) psi (4Pa) psi (MPa) 1bs (Kg)

3 48 (121.6) 300 @.1) 2.19 (15.10) 0.0982  (2.72) 250 .7 6270 (43.2) 8000 (3632)

2 2 (60.8) 300 2.1 0.90 (6.21) 0.0932  (2.58) 88 (0.6) 2133 14.7) 7500 (3405)

1 18 (45.6) 300 2.1 0.72 ( 4.96) 0.0652  (1.80) 7.5 ©.5) 1447 (10.0) 7000 (3178)

—

I

=
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After the computer program is executed, the results (i.e.,
adequate bolting plan) are printed out (Table 6.2).

(2) Example 2 - reinforcement by friction effect

In this example, the strata sequence and material properties
for, and in-situ horizontal stress in, the immediate roof for a
hypothetical coal mine B is shown in Table 6.3. The width of the
opening is 20 f£t. (6.1 m). The coefficient of friction is 0.8
along the interfaces of the bedding planes. If the row spacing is
designed to be 3 ft. (1.22 m), what is the proper bolting pattern
and bolt tension for the roof bolting system to be used in this
mine?

At first, the necessary input data are read in. The first card
reads in N = 4. The second card reads in XL = 240.0 in. (6.1 m),
B = 36.0 in. (0.91 m), and US = 0.8. The third through the sixth
card read in the following information, respectively.

E t w

x 106 psi (x 10° MPa) in.  (cm) 11:»/1.:\3 (g/c.ms)

Card 3 1.00 (6.90) 12 (30.5) ) 0.0982 (2.72)
Card 4 0.90 (6.21) 10 (25.4) 0.0961 (2.66)
Card 5 0.72 (4.96) 12 (30.5) 0.0961 (2.66)
Card 6 0.86 (5.92) 8 (20.3) 0.0961 (2.66)
HS TENSH COMSH PA

psi  (MPa) psi (MPa) psi  (MPa) lbs (Kg)
Card 3 300 (2.1) 250 (1.7) 6270  (43.2) 8000 (3632)
Card 4 300 (2.1) 71.5 €0.5) 1447 (10.0) 7000 (3178)
Card 5 300 (2.1) 71.5 (0.5) 1447 (10.0) 7000 (3178)

Card 6 300 (2.1) 151.5  (1.1) 1800  (12.4) 7500 (3405)
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Table 6.2. Adequate Bolting Plan for Hypothetical Mine A

No. of Bolts Along the Span 4

Bolt Spacing Along the Span, in. 48.00
Bolt Spacing Along the Entry, in. 57.59
Bolt Length, in. 66.00
Bolt Tension, lbs. 8000.00
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the Immediate Roof, Hypothetical Mine B

Table 6.3. Strata Sequence and Material Properties for, and Horizontal Stress in
Stratum Thickness Horizontal Stress Young's Modulus Unit Weight Tensile Strength Compressive Strength Anchorage Capacity
Number
. (em) psi (Hpa) x10% pst  (x 107 MPa)  1b/1n®  (glend) psi [C) psi Qa) 1bs (Ke)
4 8 (20.3) 300 2.1 0.86 (5.92) 0.0961  (2.66) 151.5 (1.1) 1800 (12.4) 7500 (3405)
3 12 (30.5) 300 2.1) 0.72 (4.96) 0.0961  (2.66) 7.5 0.5) 1447 (10.0) 7000 (3178)
2 10 (25.4) 300 2.1 0.90 (6.21) 0.0961  (2.66) 7.5 0.5) 1447 (10.0) 7000 (3178)
1 12 (30.5) 300 2.1 1.00 (6.90) 0.0982  (2.72) 250 .7 6220 (43.2) 8000 (1632)
-
o
w
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The proper bolting plan for this hypothetic mine is printed

out as shown in Table 6.4.
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Table 6.4. Adequate Bolting Plan for Hypothetical Mine B

No. of Bolts Along the Span
Bolt Location from the Center, in.
Row Spacing, in.

Bolt Length, in.

Bolt Tension, lbs.

34.64

12
60.00 77.46

41.02

42.00

7500.00

91.65

103.9

114.9

6ST
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CHAPTER 7

DEVELOPMENT OF DESIGN CRITERIA FOR ADEQUATE
BOLTING PATTERN AND BOLT TENSION

7.1 Development of Nomographs for Determining the Adequate Bolting

Pattern and Bolt Tension

Based on the results in prévious chapters, a computer program has
been developed for the determination of proper bolting pattern and
bolt tension under which the mechanical roof bolts should be
installed to reinforce the immediate roof. As stated in Chapter 6,
there are several major characteristics in this computer program,
such as simplicity of input data, higher accuracy, and wide ranging
applications. With the application of this computer program, proper
bolting pattern and bolt tension for most underground coal mines can
be determined. From now on the practice of roof bolting systems
with regard to bolting pattern and bolt tension can be accomplished
scientifically rather than by the empirical rules.

Although the computer program developed in this research is
efficient and powerful, there still exists a need to develop the
nomographs for the determination of proper bolting pattern and bolt
tension. The reason is quite simple. Because in order to use the
computer program, a computer must be available. However, for many
small coal mines, it may not be feasible to utilize the computer.
Under this condition, it is desirable to use design nomographs for

quick yet still accurate estimation. In the following sectionms,
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the nomographs for determining the proper bolting pattern and bolt
tension are presented. It should be noted that some assumptions
have been made in deriving these nomographs, which should be under-
stood and satisfied in the application to the prototype so that
accurate results can be obtained. .

7.1.1 Nomographs for the Strata Types Reinforced by

Suspension Effect

For the strata type to which the suspension effect applies,
several nomographs are derived for the determination of proper
bolting pattern and bolt tension. Figure 7.1 is for the evaluation
of the stability of the unbolted strata. This nomograph is derived
based on Equations 3.24 and 3.25. Figure 7.2 and Figure 7.3 are
used for the determination of maximum bending stress in the bolted
strata for the supported and supporting (or anchoring) strata,
respectively. These two nomographs are derived based on Equations
4.21, 4.36 and 4.37. Figure 7.4 shows the nomograph for the
determination of proper bolt number and bolt tension. This
nomograph is derived based on Equation 4.9. In order to apply
these nomographs, Table 7.1, Figures 3.14, 3.15 and some of the
Figures 7.5 through 7.10 are used. In addition, Equation 4.35 is used
to determine the R value for each stratum.

The procedure for applying these nomographs is described as
follows:
Step 1: Determine the maximum bending stress of unbolted

stratum from Fig. 7.1 by following the dotted line
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o for Various Number of Bolts, Equal Bolt Spacing

Table 7.1.
No. of
Bolt 1 2 3 4 5 6 7 8
o 0.5 0.333 0.25 0.2 0.167 0.143 0.125 0.111

Note: o values are calculated based on equations in Appendix I.
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Maximum bending stress, x 10 psi

e 4
A A AR

g i
(3 ] 15

Fig. 7.1. Nomograph for the determination of maximum bending
stress in the unbolted strata.
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Maximum bending stress, X 1G psi

Nomograph for the determination of maximum bending stress in the bolted roof -

supported data.

Fig. 7.2.
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Maximum bending stress, x 10% psi
1 2 3 4 5 6 _7 8 910 12 15

Fig. 7.3. Nomograph for the determination of maximum bending stress
in the bolted roof - supporting strata.
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Fig. 7.5. Relationship between B and u for various number of bolts.
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Fig. 7.6. Relationship between K and R for various B values
for supported strata.
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Fig. 7.7. Relationship between K and R for various B values for
supporting data.
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Fig. 7.8. Relationship between maximum bending stress and total
upper-fiber stress for various horizontal stresses.
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Maximum bending stress,Omax, x10° psi
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Fig. 7.9. Relationship between maximum bending stress and total
lower-fiber stress.
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Fig. 7.10. Relationship between u and S.
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abcde (the u factor and F factor can be found from
Figures 3.14 and 3.15, respectively).

Step 2: Based on the result of Step 1, find the total upper-
fiber stress and total lower-fiber stress of each
st;ratum from Fig. 7.8 and Fig. 7.9, respectively.

Step 3: Compare the total upper-fiber stress with the tensile
strangth of the rock and compare the total lower-
fiber stress with the compressive strength of t};e
rock. If the strengths are larger than stresses then
the stratum is stable; otherwise, the stratum will
fail. If the stratum is stable, there is no need to
install any roof bolt; if the stratum will fail, roof
bolts are necessary to reinforce the roof. In the
latter case, go to the next step.

Step 4: Find the maximum bending stress of the bolted stratum
from the nomographs in Fig. 7.2 and Fig. 7.3 for the
supported and supporting strata, respectively. It is
obtained by following the dotted line abcdef. In this
step the determination of K factor is very important
(see the definition of K in p. 76). In order to
determine K, Fig. 7.6 and Fig. 7.7 are used for the
supported and supporting strata, respectively. In
these two figures, the R values are determined from
Equation 4.35. In order to determine R, S factor

must be found first, which can be determined from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

Fig. 7.10. It should be noted that in order to
determine the proper number of bolts this step must
be repeated for various number of bolts starting
from one bolt.

Step 5: The same as that in Step 2 except that the maximum
bending stress in this step is for the bolted
stratum.

Step 6: Compare the total outer-fiber stresses with the
strengths of the rock. When the stresses are less
than the strengths, the stratum is stable. Choose
the smallest number of bolts which can provide the
stability.

Step 7: From the result of Step 6, find the corresponding bolt
tension in Fig. 7.4 by following the dotted line
abcdefg. Compare the bolt tension with the anchorage
capacity. If the former is less than the latter, the
bolt number is adequate; otherwise, try the next
larger number of bolts. The final selection of bolt
number is obtained when the corresponding bolt
tension is less than the anchorage capacity.

An example is given below to illustrate these procedures.

Example Problem

An immediate roof is made up of three layers. The roof span
is 20 ft. The physical and mechanical properties for these three

layers are listed as follows:
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Stratum E t w H C, C P
Number 6 3 s T A
(x 10° psi) (in) (Ib/in”) (psi) (psi) (psi) (lbs)
3 2.19 36 0.0982 300 250 6270 8000
2 0.90 12 0.0932 300 88 2133 7500
1 0.72 6 0.090 300 72 1447 7500

The stratum number increases from the lower to the upper strata. Is
this roof stable without roof bolting? If not, what is the proper
bolt number in each row? Assuming the bolt tension is equal to the
anchorage capacity of the uppermost layer, i.e., 8000 1lbs. Also,
the row spacing is assumed to be 4 ft.
Step 1: From Fig. 3.14, find u values for the three layers.

They are u = 1.41, uy = 0.63, uy = 0.14. From Fig.

3.15, find F values for the three layers. They are

F1 = 1.17, F2 = 1.03, F3

find the maximum bending stress for the three layers.

= 1.00. Then from Fig. 7.1,

They are 500 psi, 230 psi and 80 psi, respectively.

Step 2: Based on the result of Step 1, find the total upper-
fiber stresses for the three layers from Fig. 7.8,
i.e., 200 psi, 70 psi, and -220 psi, and find the
total lower-fiber stresses for the three layers from
Fig. 7.9, i.e., 800 psi, 530 psi, and 380 psi,
respectively.

Step 3: Compare the result from Step 2 with the strengths of the
three layers. It is found that tenmsile failure will
occur for the lowest layer. Therefore, it is necessary

to install the roof bolts.
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Step 4: Find S values for the three layers from Fig. 7.10,
i.e., 1.25, 1.04, and 1.00. Then from Equation 4.35
determine the R values for the lowest and highest
layers, i.e., -0.988 and 0.446. Next, from Fig. 7.5
through Fig. 7.7 find the K values for these two
layers for various number of bolts. Finally, from
Fig. 7.2 and Fig. 7.3 find the maximum bending
stresses of both layers for various number of bolts.

Step 5 &
Step 6: Based on the result of Step 4 and Fig. 7.8 and Fig. 7.9,

it is found that the roof strata are stable when
only one bolt is installed.

Step 7: In Fig. 7.4, starting from one bolt, find the
corresponding bolt tension. It is found that
although one bolt can provide the roof stability,
the bolt load, 9080 lbs, is larger than the anchorage
capacity, i.e., 8000 1b. When two bolts are installed
the bolt load is 6060 lbs, which is less than the
anchorage capacity. Therefore two bolts in a row is
adequate for this case.

Although by using these nomographs, the proper bolt tension
and bolt number (or bolt spacing) can be obtained immediately, it
cannot deal with any type of strata with the same accuracy. For
strata type A, i.e., each stratum deflects independently, it can
yield very accurate results. But for strata type B, i.e., some
strata need to be combined to one equi\‘lalent stratum, these

nomographs can barely give approximate estimation.
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7.1.2 Nomographs for the Strata Type Reinforced by
Friction Effect

The reinforcement mechanism by friction effect has been
investigated in Section 4.2. The basic concept in this function
is to build up a single thick layer from individual thin layers,
resulting in decreased bending stress of the "welded" layer and,
thus increasing the stability of the roof strata.

In order to determine the proper bolt number (or bolt spacing)
and bolt tension for the strata type which is reinforced by the
friction effect, two nomographs are used (Fig. 7.1 and Fig. 7.11).
As stated in the previous section, Fig. 7.1 is derived based on
Equations 3.24 and 3.25. But Fig. 7.11 is based on the following

equation:

2P u
Cx=h=n— (7.1)
Yy wb L

Equation 7.1 is derived based on Equations 4.39, and 4.50 through
4.53.
The procedure for applying these nomographs is described as
follows:
Step 1
through
Step 3: These are the same as those for suspension effect.
Step 4: Based on the summation of the strength and horizontal

stress, determine the required stratum thickness

that will not fail. The procedure is by following
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the dotted line ed and abed in Fig. 7.1. The
intersection of these two dotted lines is the
fequired stratum thickness, i.e., the thickness
of thick stratum which is welded by individual
thin iayers. From this thickness, the number

of layers which need to be welded can be obtained
by dividing it with thfa average thickness of the
thin layer. It should be pointed out that in this
case, the maximum bending stress in Fig. 7.1 is
actually the allowable maximum bending stress.

Step 5: Fig. 7.11 is used to find the bolt spacing by
following the dotted line abcdefg. In this figure,
the horizontal axis represents the y value, which
is dependent on the bolt spacing and bolt number.
For bolt number ranging from one to ten (consider
only the half span) the corresponding y values
are given in Table 7.2. The vertical axis in Fig. 7.11
represents the C value, which is the obtained ratio of the
distance of the farthest segment of equal shear force
(see Equation 4.48) to the half span. First, start
with one bolt in the half span. By following the
dotted line abcdefg, the corresponding Cx value is
obtained.

Step 6:  Compare the Cx value from Step 5 with the CB values

in Table 7.3. Cy is the ratio of the distance of the
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farthest segment of equal shear force to the half

span (CB values for one through ten bolts in half

span are listed in Table 7.3). If Cx is less than

the corresponding CB’ then try two bolts. This

procedure is repeated until Cx is larger than or equal

to the corresponding CB'
Step 7: From the final CB in Step 6, the corresponding

number of bolts can be determined. Also, the

corresponding bolt spacing can be determined from

Equation 4.49.

An example is given below to illustrate these steps.
Example Problem
An immediate roof is made up of two thin layers. Each layer

is of same thickness and material property. The physical and
mechanical properties for each layer are: E = 0.9 x 10° psi,
t = 6.0 dn., w=0.09 Ip/in’, H_ = 300 psi, L = 240 in., B, =
8000 1bs, CT = 88 psi, and Cp = 2133 psi. Find out: (a) are
these two layers stable (i.e., no failure) without roof bolting?
(b) if not stable, how many bolts in a row should be installed?
Assume row spacing to be 36 in. and bolt tension to be 8000 lbs.
Step 1: First, from Fig. 3.14, find u = 1.27, and find F = 1.13

in Fig. 3.15. Then from Fig. 7.1, find maximum bending

stress which is 490 psi.
Step 2: From Fig. 7.8, find the total upper-fiber stress which

is 190 psi. From Fig. 7.9, find the total lower-fiber

stress which is 790 psi.
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Step 3: Comparing 190 psi with Cp = 88 psi and 790 psi with
Cp = 2133 psi it is found that tensile failure will
occur at the upper fiber. In order to prevent the
failure, roof bolting is required.

Step 4: The summation of tensile strength of the rock and the
horizontal stress is 388 psi. Based on this, find the
required thickness of combined roof layers from Fig.
7.1 which is about 9 in. Since the total thickness
of the two thin layers is 12 in., these two layers
will be stable if they are reinforced by roof bolts.

Step 5

through

Step 7: In Fig. 7.11, starting from one bolt, find the Cx
value and compare it with the corresponding CB value
in Table 7.3. Find the smallest number of bolts
that can provide the roof stability, i.e., six bolts
(in half span). This can be seen from the result

listed below (the results of one through four bolts

are omitted)

Bolt No. 5 6
C. 0.437 0.484
X
Cy 0.447 0.408
Therefore, based on the ab tioned pr dures, it is

found that the roof strata are unstable without roof bolting. The
proper bolt numbers in a row is 12 in order to achieve successful

reinforcement.
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It should be noted that in the above-mentioned procedure, the
anchorage capacity, unit weight of rock stratum, row spacing, and
coefficient of friction along the interfaces must be known in
advance. Also, there are two assumptions made in this approach:
First, the equivalent unit weight of all bolted strata is adopted.
The equation for the equivalent unit weight is shown in Equation
4.55. Second, the material property (mainly Young's modulus), is
assumed to be the same for all the bolted strata. Since in the
nomograph, it‘s almost impossible to consider the transformed cross
section for various layers made from different material properties.
7.2 Influence of Strata Sequence on Bolting Pattern and Bolt

Tension

In Chapter 3, the effect of strata sequence on the flexural
behavior of the immediate roof has been investigated and in Chapter
4, it has shown that the strata sequence plays a very important
role in the reinforcement mechanism for roof bolting. In this
section, the influence of the strata sequence on the determination
of bolting pattern and bolt tension will be analyzed.

As stated before, the strata sequence of the immediate roofs
can be divided into three strata types. Therefo;e, three types of
strata sequence are used in this analysis. The same models which
were used'in Chapter 3 are adopted. The material properties and
strata sequence of the three models are shown in Table 3.1. A
horizontal stress of 300 psi (2.1 MPa) is uniformly applied to each

stratum. The total outer-fiber stresses in the lowest layer for
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the three models and the corresponding strengths are shown in
Table 7.4. It can be seen in this table that among the three
strata types, type A is the only one that will fail. In order to
prevent failure in this strata type, a proper roof bolting system
is necessary. By using the computer program developed, the proper
bolting pattern and bolt tension are determined and shown in
Table 7.5.

In strata type A, the anchoring horizon (or layer) is at the
uppermost location in the strata sequence. What will be the
difference in bolting pattern and bolt tension if this layer is
not in the uppermost location, i.e., in the lower levels of the
strata sequence? Three models are analyzed for this purpose.

The material properties and strata sequence for the three models
are shown in Table 7.6. The proper bolt number, bolt spacing, and
row spacing for the three models are shown in Fig. 7.12 through
Fig. 7.14, respectively. It should be pointed out that the bolt
tension is the same for all three models, i.e., 8000 lbs (3632 Kg).
From these figures it can be seen that for the strata type which is
reinforced by suspension effect the strata sequence influences greatly
on the bolt number, bolt spacing, and row spacing. Furthermore,
when the anchoring horizon is closer to the roofline, the proper
bolt number is decreased while both bolt spacing and row spacing
are increased.

For the immediate roof which is composed of thinly laminated
layers, the reinforcement mechanism is by friction effect. The

proper bolting pattern and bolt tension in this case is illustrated
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Table 7.4. Total Outer-Fiber Stresses and Strengths for Three
Strata Types

Strata o, C [+
Tu T TL P
Type pei psi psi psi Stable Unstable
A 237 71.5 -837" 1447 1
B -56 71.5 ~544 1447 1%
c -131 250 ~470 6270 v

Table 7.5. Proper Bolting Pattern and Bolt Tension for Strata Type A

No. of bolts along the span 5

Bolt spacing along the span, in. 40.00
Bolt spacing along the entry, in. 49.00
Bolt length, in. 60.00
Bolt tension, lbs. 8000.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwlad Jnoypm pajiqiyosd uononpoidal Jayung “Jaumo JybuAdoo sy jo uoissiwiad yim peonpoidey

Table 7.6. Material Properties and Strata Sequence for Three Models
Stratum Thickness Young's Modulus Unit Weight
Model  Number in. (em x10% psi  x 10°¥Pa)  Wp/in®  (g/end)
6 36 (91.4) 2.19 (15.10) 0.0982 (2.72)
5 12 (30.5) 2.19 (15.10) 0.0982 (2.72)
A 4 12 (30.5) 0.90 ( 6.21) 0.0932 (2.58)
3 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)
2 6 (15.2) 0.90 ( 6.21) 0.0932 (2.58)
1 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)
6 12 (30.5) 2.19 (15.10) 0.0982 (2.72)
5 36 (91.4) 2.19 (15.10) 0.0982 (2.72)
B 4 12 (30.5) 0.90 ( 6.21) 0.0932 (2.58)
3 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)
2 6 (15.2) 0.90 (6.21) 0.0932 (2.58)
1 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)
6 12 (30.5) 2.19 (15.10) 0.0982 (2.72)
5 12 (30.5) 0.90 (6.21) 0.0932 (2.58)
c 4 36 (91.4) 2.19 (15.10) 0.0982 (2.72)
3 12 (30.5) 0.72 ( 4.96) 0.0961 (2.66)
2 6 (15.2) 0.90 ( 6.21) 0.0932 (2.58)
1 6 (15.2) 0.72 ( 4.96) 0.0961 (2.66)

[4:18
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Fig. 7.12. Bolt number for different strata sequence.

Bolt Spacing, in
>

Strata Sequence

Fig. 7.13. Bolt spacing for different strata sequence.

3
H
ol

Strata Sequence

Fig. 7.14. Row spacing for different strata sequence.
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by the following example. Assuming an immediate roof is made
of six thin layers. The material properties for each layer are
the same. They are: Young's modulus = 0.90 x 106 psi (6.21 x
10% MPa), thickness = 6 in. (15.2 cm), unit weight = 0.0932 1b/in>
(2.58 g/cm3), tensile strength = 88 psi (0.6 MPa), compressive
strength = 2133 psi (14.7 MPa), and allowable anchorage capacity =
7500 1bs (3405 Kg). The coefficient of friction of the interfaces
is assumed to be 0.8. The roof span is 20 ft. (6.1 m). A
horizontal stress of 300 psi (2.1 MPa) is uniformly applied to
each stratum. Under this condition, temsile failure will occur
at each stratum if roof bolts are not installed. Because the total
upper~fiber stress, 204 psi (2.4 MPa)(which can be obtained either
from Fig. 7.1 or by the computer program) is larger than the tensile
strength of the rock, 88 psi (0.6 MPa). Therefore reinforcement
by roof bolting is necessary. By employing the analyses of friction
effect, the proper bolting pattern and bolt tension are determined
and shown in Table 7.7. From this table it can be seen that 16 bolts
are needed in a row to achieve the friction effect, which, as
compared to 5 bolts in Table 7.5, is obviously too large.
7.3 Comparison of Bolting Patterns by Suspension and Friction
Effects
In order to confirm the concept that to achieve friction effect
a large number of bolts is necessary, a comparison study is made in
the following example.
Assume an immediate roof is made of three layers, of which

the material properties and strata sequence are shown in Table
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Table 7.7. Proper Bolting Pattern and Bolt Tension for a
Hypothetical Coal Mine

No. of bolts along the span 16
Bolt location from the center, in. 30.0 52.0 67.1 79.4 90.0

99.5 100.2 116.2

Row spacing, in. 53.65
Bolt length, in. 36.00
Bolt tension, lbs. 7500.00
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7.8. It can be seen that the lower two layers are of the same
material properties while the third (or the uppermost) layer is
thick and competent. In the first case, only the lower two layers
are bolted by friction effect. Since the third layer is thick and
strong, it can support itself without roof bolting. In the ;econd
case, all three layers are bolted by suspension effect with the
anchorage at the third layer. Table 7.9 shows the comparison of
bolting pattern and bolt tension between the two cases. It can be
seen that if the immediate roof is supported by suspension effect
only one bolt is necessary. But if the immediate roof is reinforced
by friction effect, 12 bolts are needed. Also, the row spacing is
larger while the bolt length is longer for the former.

Based on the results of these analyses, it is concluded that
in order to achieve the reinforcement by friction effect it is
necessary to install a larger number of bolts. This was also
confirmed by other investigators (30, 32, 57). Since more bolts
are needed, more time and cost will be spent. Therefore, it is
cheaper to reinforce the mine roof by suspension effect if competent

layer is within the distance of bolt length.

7.4 Case Study

To illustrate the practical application of the design criteria
developed, nine field cases from 8 mines are discussed in this
section. They are: Moss No. 4; McClure No. 2; Splashdam No. 1;
White Pine Unit 44 and Unit 12; Keystone #5 Mine C; and Meigs No.
2; and Nemacolin. Table 7.10 lists the actual and predicted bolting

patterns and bolt tensions.
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Table 7.8. Material Properties and Strata Sequence for a
Hypothetical Mine

Stratum Thickness Young's Modulus Unit Weight
Humber in. (cm) x 106 psi  (x 103 MPa) lb/in3 (g/cma)
T3 36 (91.4) 2.19 (15.10) 0.0982 (2.72)
2 6 (15.2) 0.90 ( 6.21) 0.090 (2.49)
1 6 (15.2) 0.90 ( 6.21) 0.090 (2.49)

Table 7.9. Comparisons of Bolting Pattern and Bolt Tension in Two

Cases
Case Bolt Row Spacing Bolt Tension Bolt Length
No. No. in. (cm) 1bs (Kg) in. (em)
2 1 62.58 (159) 8000 (3632) 30 (76)
1 12 39.51 (100) 8000 (3632) 12 (30.5)
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Table 7.10. Actual and Predicted Bolting Patterns and Bolt Tensions for Nine Cases

Bolt Spacing, in.

Row Spacing, in.

Bolt Tension, lbs.

Bolt Length, in.

Mine Seam Encry
Name DT?z? "tg:? Actual Predicted  Actual  Predicted Actual Predicated  Actual  Predicted
Moss No. & 900 20 48 8 48 48.3 6000-8000 6800 > 48 50 58
MeClure No. 2 700 20 48 120 48 174.6 6000-8000 6800 > 48 % 58
Splashdam No. 1 800 20 60 & 30% 60 48 48.57 6000-8000 6800 > 43 61 58
White Pine 4 b
Unit 12 1475 20 8 £ 8 £ 6000-8000 £ 72 £ 59
Unit 44 1200 20 48 £ 8 £ 6000-8000° £ 72 £ 59
Keystone #5 650 20 w8 120 8 117.0 6000-8000 6800 30 & 48 17 60
Mine C 300 22 60 & 12° . u8 32.3 6000-8000° 6400 72 59 6
Meigs No. 2 234 20 8 60 48 s5.7 250011800 7200 48 8 9% 84 62
Nemacolin 450 18 48 & 36° 60 48 8.2 5000-6800 6000 72 33 64
Zcentral three bolts are 60 in.-spaced and two rib bolts are 30 in. from ribs
Passuned data
Ccentral three bolts are 60 in.-spaced and two rib bolts are 12 in. from ribs and inclined at 45°
9bolted roof fail
Ccentral three bolts are 48 in.-spaced and two rib bolts are 36 in. from ribs
®
&
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It should be pointed out that data collection is a big job.
After exhaustive search in the published literature and personal
communications with some mining engineers, the data for these nine
cases are obtained. However, some information are still lacking.
For example, the in-situ horizontal stress is only available for
White Pine case. In order to carry out this study, however, the
in~situ horizontal stresses for other cases are assumed to be 3
times the vertical stresses (6,32,63), which are much larger than
those estimated by the Poisson's effect of the overburden weight.
Because in most active underground coal mines, the measured large
horizontal stresses (usually using borehole deformation gage)
reflect the active tectonic forces associated with the mountain
building process. In addition, the anchorage capacities ranging
from 7000 to 12000 lbs (3178 to 5448 Kg) are assumed for different
rocks in the anchoring horizons (1). With these assumptions in
mind, the results should not be considered to be absolutely
correct. Nevertheless, it demonstrates the validity of the criteria
developed.

It can be seen from Table 7.10 that in most cases, the actual
bolt spacing and row spacing are less than that of the predicted
values except Mine C. In other words, the general 4 x 4-ft.

(1.22 x 1.22-m) spacing are a little overdesigned. For Mine C,

the predicted bolt spacing and row spacing are less than that of
the actual data. This may be due to the fact that two inclined

bolts are anchored above the abutments. With regard to bolt

tension and bolt length, the predicted values are largely very
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close to the actual data. Only for Keystone #5 and Nemacolin

the predicted bolt lengths are a little shorter than those of
actual values. The reason is that in the computer program the bolt
length is only required to be 12 inches (30.5 cm) anchored at the
anchoring horizon. But in real installation, the bolts are seldom
of these short lengths.

The results of White Pine deserve more attention. In this mine
due to the high in-situ horizontal stress, 4000 psi (28 MPa), cracks
appear close to the ribs in the roof (which resemble shear failure),
although the roof bolts are installed (59). This is also confirmed
by the predicted results. Therefore there is no bolting pattern
and bolt tension for the predicted values.

In conclusion, the common practices of bolting pattern are
generally a little overdesigned as compared to the predicted
results from the design criteria developed on the condition that

no geological defects exist in the immediate roof strata.
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CHAPTER 8

CONCLUSIONS >

For the first time, the design criteria for mechanical roof
bolting system with regard to bolting pattern and bolt temsion
have been developed. The practice of roof bolting system will no
longer be based on empirical rules. The proper bolt spacing, row
spacing, bolt length and bolt tension for any immediate roof in
horizontally bedded strata can be obtained immediately either by
using the computer program or nomographs developed in this
dissertation. Since mechanical roof bolting systems are widely
used in underground coal mines, it is hoped that this development
can lead to maximum safety with minimum cost.

In order to reinforce the mine roof safely and economically,
the flexural behavior of a generalized immediate roof should first
be understood. Based on the strata sequence, the strata in the
immediate roof are divided into three types (see Chapter 3). The
flexural behavior of the three strata types are investigated in
terms of the following effects: roof span, horizontal stress,
thickness and Young's modulus of the lowest stratum. The results
of this investigation not only gives us a clear picture of the
flexural behavior of the unbolted roof, it also provides the basis
for the analysis of the reinforcement mechanism by mechanical roof
bolting in the immediate roof. For some strata (such as strata

type A), it must be reinforced by roof bolting; otherwise roof
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failure will occur. On the other hand, there is no need to install
any roof bolt for some other strata (such as strata type C) because
it is strong enough to support itself. A nomograph (Fig. 7.1) is
derived, from which the stability of any roof stratum can be
evaluated. The step-by-step prucédure for roof bolting design is
described in Section 7.1.1.

In some underground openings where high in-situ horizontal
stress exists, the buckling of thin strata is apt to occur. A
nomograph (Fig. 3.14) is derived, from which any roof stratum
whether buckles or not can be determined. If the buckling of roof
stratum does occur, then reinforcement by roof bolting alone cannot
overcome this problem. Rather it may be necessary to cut away
that stratum or support with other methods or change the mine
layout.

The reinforcement mechanism by mechanical roof bolting in
horizontally bedded strata is either by suspension effect or
friction effect depending on the strata sequence of the immediate
roof. If the strata sequence of the immediate roof is of such an
order that each stratum deflects more than tha‘t of its upper
stratum, the suspension effect is valid. If the strata sequence
of the immediate roof is of such an order that the deflection of
each stratum is larger than or equal to its underlying stratum,
then the friction effect is valid. However, it should be noted
that the strata sequence mentioned earlier is not limited to the
original sequence only. It can also be applied to the strata after

strata combination as long as the final sequence meets the requirement.
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In the immediate roof which is reinforced by suspension
effect, the major function of roof bolting is to transfer parts
of the weights of the weaker (or thinner) strata to the competent
(or thicker) ones. Through proper bolt tension, all the bolted
strata are constrained to ha&e equal deflections at the bolt
locations. The equations for the deflection, maximum bending
stress, transferred bolt load, etc. are derived based on the beam-
column theory. All the equations related to suspension effect
are shown in Section 4.1 and Appendix I. In any immediate roof
which is reinforced by suspension effect, the maximum bending
stress and deflection of the supported stratum are decreased,
whereas those of the supporting (or anchoring) stratum are
increased. The extent of decrease (or increase) depends not only
on the flexural rigidity of the stratum itself but also on those
of other strata within the bolt length. This phenomenon can be
seen from Equations 4.3, 4.9 and 4.21. An important factor, R,
which represents the relative flexural rigidity of the stratum in
question to other bolted strata, is derived in Equation 4.9. If R
is negative, the stratum will receive support from other competent
stratum. In other words, parts of the weight of this stratum will
be transferred to the competent stratum through roof bolting.
Under this condition both the maximum bending stress and deflection
are decreased (see Equations 4.21 and 4.3, respectively). If R
is positive, the stratum will offer (or provide) support to other
weak stratum. In other words, parts of the load (or weight) from

other weak strata will be transferred to this stratum, increasing
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the maximum bending stress and deflection of this stratum. It is
important to point out that the load (or weight) transfer is
limited. Because whenever the maximum bending stress of the
competent stratum is increased to such an extent that the total
outer-fiber stress of this stratum is larger than the inherent
strength of the roof rock, the stratum will fail and the suspension
effect disappears.

The basic concept in the reinforcement mechanism by friction
effect is to build up a single thick layer from several thin layers.
Since the maximum bending deflection of any stratum is
inversely proportional to the square of beam thickness, and the
bending stress is inversely proportional to the thickness, the
deflection and bending stress of the "welded" thick stratum are
decreased, thereby increasing the strata stability. In order to
build up a single thick layer, the slip between the interfaces
of all the thin layers must be prevented. In mechanical roof
bolting, this is made by the clamping force due to the temsioning
of the roof bolts.

With regard to proper bolting pattern and bolt tension for
any specific immediate roof, the following conclusions are made
based on the analysis in Chapter 5:

For the immediate roof which is reinforced by suspension
effect, the bolt length should be anchored at least 12 in. in the
anchoring horizon and the bolt spacing should be of equal distance.
For the immediate roof which is reinforced by the friction effect,

the bolt spacing should be based on the "equal shear force" concept,
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i.e., each bolt is subject to equal shear force on both sides.

The actual location of each bolt can be determined from Equation
4.49. With regards to row spacing, there is no difference between
suspension and friction effects. It is mainly controlled by the
anchorage capacity, with larger row spacing for higher anchorage
capacity. The bolt tension for both suspension and friction
effects can be determined from the computer program developed.
However, the bolt tension cannot exceed the anchorage capacity.
Therefore, it is advisable to choose allowable anchorage capacity
as the maximum bolt tension.

An efficient computer program as well as several design
nomographs have been developed for the determination of proper
bolting pattern and bolt tension. The application of the computer
program is described in Chapter 6 while the procedures of using
the nomographs are illustrated in Chapter 7.

The strata sequence of the immediate roof not only affects
the flexural behavior but also influences the bolting pattern and
bolt tension. Figure 7.12 through Figure 7.14 show the influence
of different strata sequence on the bolt number, bolt spacing, and
row spacing for three models. As it can be seen from these figures
when the anchoring horizon is closer to the roofline, the bolt
number is decreased while both bolt spacing and row spacing are
increased. Since the strata sequence in real situation can be
arbitrary, the corresponding bolting pattern and bolt tension may

also be changed.
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Table 7.9 shows the result of the comparisons in bolting pattern
and bolt tension between suspension and friction effects. It
seems that it is unfeasible to reinforce the immediate roof by
friction effect because it needs a much larger number of bolts than

that by suspension effect to achieve the reinforcement. Therefore,

it is d that reinf t by friction effect is only

applicable when the immediate roof is made up of very thin layers
and there is no competent layer located within the bolt length.
Case studies from nine sites in 8 mines are made. The results
indicate that most bolting patterns used in general practice are a
little overdesigned. In order to obtain an optimum design of roof
bolting system with regard to bolting pattern and bolt tension, the
required information such as detailed geologic column, anchorage
capacity, and the material properties (e.g., tensile and compressive
strengths) should be obtained first. In addition, any geologic
anomaly and the in-situ horizontal stress should be determined so
that mine layout may be modified in advance. Otherwise roof
failure may occur even roof bolts are installed.
Although the developed design criteria developed in this
dissertation are very helpful and efficient in the determination
of the roof bolting systems in terms of bolting pattern and bolt
tension. There are some limitations which should be understood
and satisfied in their applications. For example, all bolts are
of equal lengths and are vertically installed into the roof.

For futher research is is advisable to carry out the analysis in
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which the roof bolts are of unequal lengths, i.e., roof bolts are
not anchored at the same horizon, which is advisable for preventing
anchorage failure for the whole bolted strata. Also, the inclined
bolts anchored above the abutments seem to have better reinforcement
in preventing the shear failure at the ribs and need more detailed
study. With regard to friction effect, the coefficient of friction
is assumed to be constant for all the interfaces. In reality, it
may not be true, hence it is also recommended to perform further
research in which different coefficients of friction exist for

interfaces between different roof strata.
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APPENDIX I

DERIVATION OF EQUATIONS FOR SUSPENSION EFFECT

1. Introduction
As stated in Chapter 4, the deflection of a bolted roof stratum,
Vg is equal to the sum of the deflection of the unbolted stratum, v,

and the additional deflection due to bolting, Av,

VB=v+Av (A.1.1)

While the deflection of the unbolted stratum is constant for
each specific stratum (because the self weight of each stratum is
constant), the additional deflection due to bolting varies with the

number of bolts, location of bolts, and bolt load for each bolt.

2. Deflection and Moment for Unbolted Stratum

The deflection of an unbolted roof stratum subjected to uniform
transverse loading (due to self weight) and axial loading (due to
horizontal stress) is found by superimposing the deflection produced
by the uniform load and the deflection produced by the two equal

moments applied at the ends (42) (Fig. 3.1)

4 2
v=—9L 1‘[cos(u - 2ux/L) _ 17 - —34 L 5 x(L - %)
16 E I u cos v 8EILu

2
+M°L

8EI 2
u” cos u

[cos(u - 2 : Xy — cos u] (A.1.2)
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For a fixed—end beam subject to uniform transverse loading and

axial loading, the bending moment at both ends is (42):

2
- - 4LT X
M, = 12" tan u/u (4.1.3)
where X(u) = Njn_l;:ﬂ (A.1.4)

Let m = x/L and substituting Equation A.1.3 into Equation A.1.2

and rearranging, the following equation is obtained

4 4 u X(u) A_(u) -
__9L _ X
Ve g eI W tan u (4.1.5)
4
4L
W ET x (8.1.6)
where
2 2
nx(U) _ 122 cos(u - 2um)sec u = 2 = 4 u”(m - m7)] 4.1.7)
5u
A (u) = 2[cos(u = 2 um) - cos u] (A.1.8)
x u cos u
u X(u) )\x(u)
5. = 5 nx(u) - —— (A.1.9)

At the center of the span, i.e., x = L/2 Equation A.15 and A.16 can

be represented as

4
- _9%L _ 4w X(u) A(w)
veEggE T "™ Tanu (4.1.10)
4
9L
e ET S (A.1.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



205

3. Deflection and Moment and Transferred Bolt Load for the

Bolted Roof Stratum

3.1 One Bolt at the Center of the Roof Span

My, |m el
# n poe"

Fig. A.l

The deflection of a fixed-end beam subject to a concentrated bolt
load at the mid-span and a horizontal force (p) simultaneously is

(42) (Fig. A.1):

, 3
Tlc L” sin 2um M'Bl 2

16E1u3ccsu Bl’.qu 8 E uzcosu

[cos(u = 2um) - cos u] (A.1.12)

The bending moment M‘Bl at the built-in ends is obtained from the
condition that the rotation of the ends produced by the concentrated
load is eliminated by the moments acting at the ends, i.e., the slope

at the ends is zero (42).

L
161-:1)‘(“) +MBI S famt. o (4.1.13)

From Equation A.1.13, MBl is obtained,
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T, L
S Au)
Mg = 8 tan u/u (4.1.14)
where A(u) =#-_cos_® (A.1.15)
u cosu

By substituting Equation A.1.14 into Equation A.1.12 and

rearranging,
3
L A (@) Aw)
“TorEr A T e (8-1.16)
T1c L2
=193 E T Gx (A.1.17)
where
A (W) AW
G, =4 X () -3~ (A.1.18)
SELE - oy
X () =——g— (A.1.19)

u

At the center of the roof span, i.e., x = L/2, the following

equations are obtained based on Equations A.1.16 through A.1.19.

At x = L/2,
3
T, L 2
T _3Dwit,
T192EI {4 X(u) tan u/u * (A.1.20)
Tlc L3
“T2E1® (a.1.20)
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where

abn? a.1.22)

6 =4 X() - tan u/u

It is found that at x = L/2, G is equal to S in Equation A.l.11.

This can be proven easily by proper substitution. The transferred

bolt load for one bolt at the center of the roof span has already

been presented in Chapter 4. Therefore, it will not be repeated

here.
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3.2 Two Bolts at Symmetric Locations

M:;\d — % __)l"'n l'l'm EV':H

ly
Fig. A.2

The deflection of a fixed-end beam subject to two concentrated
bolt loads at symmetric locations and a horizontal force simultaneously

is (Fig. A.2):

T, 13
21 sin(2 uml) cos(2um - u) ml
vEET L 3 - -l
8 u” cosu 4u
uy, 1 2
+g5T 53— —leos(u - 2um) - cos u]  (A.1.23)
u cos u

The slope (rotatior) of the ends produced by the two concentrated

loads is eliminated by the moments acting at the ends, i.e.,

T21 sin 2 u(l - ml) _ T21(1 - ml) T2‘ sin(2 uml)
P sin 2 u P P sin 2 u

ST otrEiow P (8-1.26)

Rearranging Equation A.1.24,

- T21 L [cos(u ~ 2 uml) - cos u, (A.1.25)
Mp2 = " Zutanu cos u ! e
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Substituting Equation A.1.25 into Equation A.1.23 and rearranging,

T L3
v = 21 [sin(Z uml) cos(2um ~ u) _ _ml 1
EL 8 u3 cos u 4o
3
TZ]. L

3 [cos(u - 2 uml) - cos u]
4EIu sin2u

[cos (u - 2 um) - cos u] (A.1.26)

The deflection at the mid-span can be obtained by substituting

m = 1/2 into Equation A.1.26

3 3
T Y i@ uml) _ _ml Ty L
VeI b3 Py L S
8u” cosu 4u 4 EIu sin2u
[cos(u = 2 uml) - cos ul[l ~ cos u] (A.1.27)

The transferred bolt load for two bolts at symmetric locations
is discussed as follows:
First, determine the deflection at the bolt locations. Based

on Equation A.1.26, it is obtained that

1,, 1
21 (sin(Z uml) cos(2 uml ~ u) _ _ml 1
EI 2

v
2 Bu3 cos u 4 u

Ty ¥ 2
————3-——-—-——[cos(u - 2 uml) - cos u] (A.1.28)

4EIu sin2u
According to Equations 4.2 to 4.4, the deflection at the bolt

location due to bolt load is equal to the deflection due to the self
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weight of the roof stratum multiplied by R. Therefore, from

Equations A.1.16 and A.1.28, the following equation is obtained.

4 3
Rq L8y _ T21 L JL.s:l.n(z uml) cos(2 uml - u) _ ml

384 EI EI 8u3ccsu 4u2

_ [cos(8 ~ 2 uml) - cos u]z} (A.1.29)

4 u” sinu

where S, is the S_ value for x at x = xl.
21 x

From Equation A.1.29, T21 is determined,

_ ,R qL 591 sin(2 uml) cos(2 uml - u) ml
Ty, = € /¢ -—
21 384
8 u” cosu 4 u
[cos(u = 2 uml) - cos l.l]2
- ) (A.1.30)

l»uasinZu

Based on Equation 4.9, the o value under this condition is

obtained as

_ 521, sin(2 uml) cos(2 uml - w) _ _ml
0, = G/ - —7%
21 384
u” cos u 4 u
[cos(u - 2 uml) - cos u]2
- : ) (A.1.31)
4u” sin 2 u
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3.3 Three Bolts; One Bolt at Center, Two Folts at Symmetric Locations

Tay Tac  Tar

e ~
P

Fig. A.3
The deflection of a fixed-end beam subject to a concentrated

bolt load at the center, two bolt loads at symmetric locations and

a horizontal force simultaneously is (Fig. A.3):

3 3
_ T3:: L sin(2 um) m T31 L sin(2 uml) cos(2 um - u)
VB - —) ¥ —V— [——————
EI 3 2 EI 3
16 u” cosu 8 u 8 u” cosu
2
L
nl E’g——z—[cos(u - 2 um) - cos u]

(A.1.32)

The slope at the ends produced by three concentrated loads is

eliminated by the moments at the ends, i.e.,

L2 T.
3c Mu) + 31[cos(u - 2 uml) - cos 1y
T6ET " P cos u

MB3 L tan u
=- . _rant . A
+ TET u 0 (A.1.33)
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By rearranging Equation A.1.29, }153 is obtained as follows:

L
My - o em e u[TBC(l - cos u) -2 T31(cos u

- cos(u - 2 uml))] (A.1.34)

Substituting Equation A.1.34 into Equation A.1.32 and rearranging

3 3
- T3 L sin (2 um) m Ty B sin(2 uml) cos(2 um - u)
vegr 3 v e
16 u” cosu 8 u 8 u” cosu
3
- _}11_2] +—é’—-——(2 TSI(COS u - cos(u - 2 um)
4 u 8u  EIsinu

- T3c(1 - cos u)] = [cos(u - 2 um) - cos u]
(A.1.35)

The deflection at the mid-span can be obtained by letting

m = 1/2 in Equation A.1.35 and rearranging

v = L3 I [tanu-u_(l-cus u)2
8E1u3 3c 2 sin 2 u

[sin(Z uml) _ 2 uml

* Ty cos u

2(cos u = cos(u ~ 2 uml)) (1 - cos u)
+ sl o 2 1} (A.1.36)

The derivation of equations for the transferred bolt loads ds

presented as follows:
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First, find the deflections at the bolt locations due to
transferred bolt loads, i.e., Va1 and Vaer Since Ve has already been
derived in Equation A.1.36, only Vap need to be determined. Based on

Equation A.1.35, V3p is obtained as

3
ain(l uml) sin(2 uml) cos(2 uml - u)

16u cos u 8u3cosu

ml I..3
-] + ——1I2 Tal(ccs u - cos(u - 2uml)

louz 8u3EIsin2u

- T3c(1 - cos u)][cos(u - 2 uml) - cos u] (A.1.37)

Then, based on Equations 4.2 through 4.4 and Equations A.1.36

through A.1.37, the following equations are obtained.

4
Rql S31

{T [sin(2 uml) _

2 cos u

384 EI BEIu

_ {1 - cos uw)[cos(u = 2 uml) - cos u]1
sin 2 u

sin(2 uml) cos(2 uml - u)
cos u

+T3[ - 2 uml

_ 2[cos(u = 2 uml) - cos u]Z]} (A.1.38)

sin 2 u

R Ll‘s= L3 (r [tanu-u_(l-cosu)1
384 E I 8E1u3 3c sin 2 u
sin(2 uml) _
+ T31[-~~——-‘:os o 2 uml

+ 2[cos u - cosgu - 2uml)]({ - cos u)” (A.1.39)
sin 2 u
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Based on the Cramer's rule, T31 and T3c can be determined by

solving two simultaneous Equations A.1.38 and A.1.39.

T31 = R q L(AL*K2 - A2°K1)/(A1-B2 - A2-Bl) (A.1.40)

T3c = R q L(K1*B2 -~ K2+B1)/(Al-B2 - A2-Bl) (A.1.41)

ag; = (AL°K2 - A2:K1)/(AL*B2 - A2-B1) (A.1.42)

a4y, = (K1-B2 - K2:B1)/(AL+B2 - A2-B1) (A.1.4.3)
where

1 [sin(Z uml) _ unl - (1 -~ cos u)[cos(u = 2 uml) - cos u]]

A2 =

2 cos u sin 2 u
[sin(Z uml) _ 2 wml + 2[cos u = cos(u = 2 umi)](1 - cos u),
o cos u sin 2 u N

cos u

B2 ='l_3[51n(2 uml) cos(2 uml - u) _ 2 uml
u

_ 2[cos u - cos(u - 2 uml)]z]

sin 2 u
-5
K =35
S
31 .
K2 =178
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3.4 Four Bolts at Symmetric Locations

Ta1 Ta2 Taz Ta1

7 7

T X AU

4 4

A 7 X
P v 2 P

7| e— x2 —>|

|

| L }

ly

Fig. A.4

The deflection of a fixed-end beam subject to four bolt loads
at symmetric locations and a horizontal force simultaneously is

(Fig. A.4):

13
_ 41 sin(2 uml) cos(2 um -~ u ml
v = _F._I_[ g |

8u3 cos u Auz

sin(2 um2) cos(2 um - u) _ _m2 1
8 u” cosu 4 v
2
L
+MB“——2——[cos(u - 2 um) - cos u] (A.1.44)
BETI 2
u cosu

The slope at the ends produced by four concentrated loads is

eliminated by the moments acting at the ends, i.e.,
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Tl.l sin 2 u(l - ml) _ T41(1 - ml) qul sin(2 uml)

P sin 2 u P Psin 2 u

T, ml T o sin 2 u(l - m2) _ T,,(1 = m2)’

4
TTr YT Pemzu 3
T42 sin(2 um2) _ T42 m2 R M'Bla tan u _ 0 @145
P sin 2 u P 2EI u ot
Rearranging Equation A.1.45, MBA is obtained as
_ L cos(u = 2 uml) - cos u
Mp4 = " 7w ten u(TAI( cos u )
cos(u = 2 um2) - cos u
T s )1 (A.1.46)

Substituting Equation A.1.46 into Equation A.1.44 and rearranging

L
V= ———

It [singz uml) cos(2 um - u) _ 2ml
8EI 41 2

cos u u

2[cos(u = 2 uml) - cos ul[cos(u - 2 um) - cos ul,
- 1

u3 sin 2 u

T [sin(Z um2) cos(2 um ~ u) _ 2 m2
+ T42 3 2
u” cos u u

_ 2[cos(u - 2 um2) - cos ullcos(u - 2 um) - cos u]])

u” sin 2 u

(A.1.47)
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The deflection at the mid-span can be found by letting

m = 1/2 in Equation A.1.47,

v B (p s uml) 2 m2
ge1 4l 3 P
u cos u u

2{cos(u = 2 uml) - cos u][l - cos ul,
- 1

u” sin 2 u

sin(2 um2) _ 2 m2
+ ‘I42[— —

u” cos u u

_ 2[cos(u - 2 um2) ~ cos u]fl - cos u]” (A.1.48)

u” cos u

With the same procedure as for the case of three bolts, the

transferred bolt loads, i.e., T,; and T,y are derviced as follows:

T,, =R 4 L(K1-B2 - K2-B1)/(AL+B2 - A2:B1) (A.1.49)
Ty = R4 L(AL+K2 - A2.K1)/(Al+B2 - A2:B1) (A.1.50)
ay, = (K1:B2 - K2-B1)/(Al1-B2 - A2:Bl) (A.1.51)
oy, = (ALK2 ~ A2:K1)/(AL-B2 - A2-B1) (A.1.52)
where
AL = l_lsin(Z uml) cos(u = 2 uml) _ 2 uml
3 cos u

u

_ 2[cos(u - 2 uml) - cos u]z1
sin 2 u N
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sin(2 uml) cos(u — 2 um2)

3[ cos u - 2 uml
u
_ 2[cos(u - 2 uml) - cos ullcos(u = 2 um2) - cos u]]
sin 2 u
BL = _1_[sin(2 uml) cos(u — 2 um2) _ 9 unml

cos u
u

_ 2[cos(u - 2 uml) - cos u]fcos(u = 2 um2) - cos u]]
sin 2 u

l_a[sin(z um2) cos(u - 2 um2) _ 2 um2

B2 cos u
u

_ 2[cos(u - 2 um2) - cos u]zl
sin 2 u

s
Y
Kl =78
S
- 42
K2 = 78
541’ 542 = Sx factors for the first bolt and second bolt,

respectively.
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3.5 Five Bolts; One Bolt at Center, Four Bolts at Symmetric Locations

Ty Tz Te Tz Tst

eI

|‘— xz———»l

Iy

Fig. A.5

The deflection of a fixed-end beam subject to one bolt load at
the center, four bolt loads at symmetric locations and a horizontal

force simultaneously is (Fig. A.5):

7, 13
v = 5¢c [sin(Z um) in(2 uml) cos(2 um - u)
EI 16u3cosu Bu2 EIL 8u3cosu
T L3
_ _ml 1+ 52 [sin(Z um2) cos(2 um ~ u) _ _m2 1
4 u2 E1 8 u” cosu 4 u2
s 1*
+ m[cos(u - 2 um) - cos u] (A.1.53)

The slope at the ends produced by five concentrated loads is

eliminated by the moments at the ends, i.e.,
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2
T5c L

cos(u - 2 uml) - cos u
16 EI t ]

cos u

T
A + 2t

[cos(u - 2 um2) - cos uy

cos u
L
MBS tan u _
*SET e o o (A.1.56)

Rearranging Equation A.l.54, M'BS can be obtained as

L - - - -
MBS_ % sin u[Tsc(l cos u) 2 T51(cos u - cos(u = 2 uml))

-2 Tsz(cos u - cos(u - 2 um2))] (A.1.55)

Substituting Equation A.1.55 into Equation A.l.54 and rearranging

3 3
~T5e I sin(2 um) m o, 551 % sin(2 uml) cos(2 um - u)
vegr L3 i de Sant
16 u” cosu 8 u 8 u” cosu
T, 13
ml 52 sin(2 um2) cos(2 um - u) m2
- ==l + 55— E - =3l
2 EI 3 2
u 8 u” cos u 4 u
L3
+ —2 TSl(cns u - cos(u - 2 uml))

8u ETsin2u

+2 T52(°°s u - cos(u - 2 um2)) - Tsc(l - cos u)]

(A.1.56)

The deflection at the mid-span can be obtained by substituting

m = 1/2 into Equation A.1.56 and rearranging
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L ) [tan u-u_(1-cos u)Z]
8ETI u3 5c sin 2 u
s [sin(2 uml) 2 uml + 2(cos u - cos(u = 2 uml)) (1 - cos u)]
51" cos u sin 2 u
+T52[sin(2 um2) _ 2 um2 + 2(cos u - cosgu - 2 um2))(l - cos u)”
cos u sin 2 u

(A.1.57)

The derivation of the equations for the transferred bolt loads
in this case can be done by following the similar procedure as for the
case of three bolts and four bolts, except that three simultaneous

equations, instead of two, need to be solved.

T. =R q L{[K1(B2+C3 - B3+C2) - K2(B1+C3 ~ B3+Cl)

5¢

+ K3(B1-G2 - B2-C1)]/[A1(B2-C3 ~ B3-C2)

- A2(B1C3 - B3+Cl) + A3(B1-C2 - B2+C1)]} (A.1.58)
Tg = R q L{[AL(K2-C3 - K3C2) - A2(K1-C3 - K3:Cl)

+

A3(K1+(2 - K2+C1)]/[Al(B2+C3 - B3+C2)

A2(B1-C3 - B3-Cl) + A3(Bl-(2 - B2-C1)]} (A.1.59)

T52 = R q L{[AL1(B2°K3 - B3-K2) - A2(BL*K3 - B3-Kl)

+

A3(B1°K2 - B2+K1)]/[A1(B2:C3 - B3+C2)

- A2(B1+(3 - B3:Cl) + A3(B1-C2 - B2-C1)]} (A.1.60)
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o, = [K1(B2-C3 - B3+C2) - K2(B1+C3 - B3+Cl)
+ K3(B1+C2 - B2-C1)]/C5D (A.1.61)
gy = [A1(K2:C3 - K3:C2) - A2(K1-C3 - K3-C1)
+ A3(K1+C2 - K2.C1)]/C5D (A.1.62)
= [Al(B2-K3 - B3-K2) - A2(B1-K3 - B3-Kl)

+A3(B1-K2 - B2+K1)]/C5D (A.1.63)

where

C5D = A1(B2+C3 - B3+C2) - A2(B1+C3 - B3+Cl) + A3(B1-C2 - B2+Cl)

Al:l_[tanu—u_(l—-cosu)zl
3 2 sin 2 u
u
_ 1 sin(2 uml) _ _ (1 - cos u)[cos(u - 2 uml) - cos ul,
A2 = u3[ Zcos u U™ sin 2 u :
A3 = 1_[51\1(2 um2) _ wn2 - (1 - cos u)[cos(u - 2 um2) - cos ul}
u3 2 cos u sin 2 u
sin(2 uml) _ , el + 2[cos u - cos(u - 2 uml)](1 - cos u)]
cos u sin 2 u

sin(2 uml) cos(u - 2 uml)
cos u

- 2 uml

B2 =

_ 2[cos(u ~ 2 uml) - cos u]2,
sin 2 u :
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sin(2 uml) cos(u - 2 um2)
cos u

- 2 uml

_ 2[cos(u = 2 uml) ~ cos ullcos(u — 2 um2) - cos u]]
sin 2 u

_I_[Sin(z um2) 2 um2 + 2[cos u ~ cos(u - 2 um2)](1 - cos u)]

cos u sin 2 u

Ccl =

2 = 1 [sin(z uml) cos(u - 2 um2) ~ 2 uml
u3 cos u
_ 2[cos(u - 2 um2) - cos u][cos(u - 2 uml) ~ cos u]]
sin 2 u

cos u

o3 = 1_3[sin(2 um2) cos(u - 2um2) _ 2 um2
u

_ 2[cos(u = 2 um2) - cos u]z-.
sin 2 u :

Kl =

©n

K2 = ==

K3 = ==

S, factors for the first bolt and second bolt,

respectively.
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3.6 Six Bolts at Symmetric Locations

Tt Tz Tes Tes Tz Tar

GHEREERE

P \ 0X1-a|

t——Xz——4

«— X3 —»,

: |

Y

Fig. A.6

The deflection of a fixed-end beam subject to six concentrated

bolt loads and a horizontal force simultaneously is (Fig. A.6):

[sin(Z um2) cos(2 um - u) m2
= .2
8 u” cosu 4 u

1,13
63 sin(2 um3) cos(2 um - u) m3
+ [ e = . ]
EI 3 7
8 u” cosu 4 u
mel?
*3E1 2 [cos(u - 2 um) - cos u]  (A.1.64)
u” cos u

The slope at the ends produced by six concentrated loads is

eliminated by the moments acting at the ends, i.e.,
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Tﬁl sin 2 u(l - ml) _ T61(1 - ml) . T61 sin(2 uml) _ T61 ml
P sin 2 u P Psin 2 u P
. T, sin 2 u( 1 - m2) _ T6Z(l - m2) . Tga sin 2 u(l - m3)
P sin 2 u P P sin 2 u
_ T63(1 - m3)+ T63 sin(2 um3) _ T63 m3
P P sin 2 u P
o35 _tanu g (4.1.65)
2EI u o

Rearranging Equation A.1.65, MBé is obtained as

- L (T cos(u = 2 uml) - cos u
M6 =~ 7y tan ul 61" cos u )

(cos(u - 2 um2) - cos u

+ T62 cos u
cos(u - 2 um3) - cos u
F T o a )1 (A.1.66)

Substituting Equation A.l.66 into Equation A.l.64 and rearranging,

_ L3 r [sin(Z uml) cos(2 um - u) _ 2 ml
VEBET el 3 2
u” cos u u

_ 2[cos(u - 2 uml) - cos u]lcos(u - 2 um) - cos u]}

u” sin 2 u

+ T

[sin(2 um2) cos(2 um - u) _ 2 m2
62 2

u” cos u u

_ 2[cos(u - 2 um2) - cos ullcos(u ~ 2 um) - cos u]}

u” sin 2 u
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sin(2 um3) cos(2 um - u) _ 2 m3
2

+ Tgsl 3
u cos u u

_ 2[cos(u —2um3) - cos ul[cos(u - 2 um) - cos u]1}
1

u” sin 2 u

(A.1.67)

The deflection at the mid-span is obtained by substituting

m = 1/2 into Equation A.1.67,

1 sin(2 uml) _ 2 ml _ 2[cos(u = 2 uml) - cos ul[l - cos ul,
Vo= (T, [ -~ 1
8EI 61" 3 2
u” cos u u u” sin 2 u
,T [sin(2 um2) _ 2 m2 _ 2[cos(u - 2 um2) - cos ul[l - cos ul,
62" 3 2 3 . :
u” cos u u u” sin 2 u
sin(2 um3) 2m3 2[cos(u - 2 um3) - cos ul[l - cos ul,
1z umd) 2w 1

3
u” cos u u u” sin 2 u

(A.1.68)

The derivation of the transferred bolt loads in this case can be
obtained by following the same procedure as for the case of five bolts

in the previous section.
T61 =R q L{[K1(B2+C3 - B3-C2) - K2(B1-C3 - B3+Cl)
+ K3(B1-C2 - B2-C1)]/[A1(B2-C3 - B3:C2)

~ A2(B1+C3 - B3+Cl) + A3(Bl-C2 - B2-C1)1} (A.1.69)
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T62 = R q L{[A1(K2°C3 - K3+C2) - A2(K1*C3 - K3+Cl)

+ A3(K1+C2 ~ K2+C1)]/[A1(B2+C3 - B3-C2)
- A2(BL-C3 - B3+Cl) + A3(B1-C2 - B2:C1)]} (A.1.70)
Tgq = R q L{[A1(B2°K3 - B3-K2) - A2(B1-K3 - B3-K1)

+ A3(B1-K2 - B2¢K1)]/[A1(B2-C3 - B3-C2)

- A2(B1+C3 - B3-Cl) + A3(B1-C2 - B2:C1)]} (A.1.71)
gy = [K1(B2:C2 - B3:C2) - K2(B1+C3 - B3-Cl)

+ K3(B1-C2 - B2+C1)]/C6D (A.1.72)
gy = [AL(K2:C3 - K3-C2) - A2(K1+C3 - K3-Cl)

+ A3(K1-C2 - K2-C1)]/C6D (A.1.73)
tg = [AL(B2°K3 - B3-K2) - A2(B1'K3 - B3+Kl)

+ A3(B1+K2 - B2-K1)1/C6D (A.1.74)

where

C6D = Al(B2-C3 - B3-C2) - A2(B1-C3 - B3+Cl) + A3(B1:C2 - B2-Cl)

l_[sin(z uml) cos(2 uml - u)
3 cos u

Al = - 2 uml

u

_ 2[cos(u - 2 uml) - cos u]2,
sin 2 u 4
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[sin(Z uml) cos(2 um2 - u)

S A e .~ - 2 uml

cos u

_ 2[cos(u - 2 uml) - cos u][cos (u -2 um2) - cos u ]

sin 2 u .

=L
A3 = =5

u

sin(2 uml) cos(2 um3 - u)
cos u

- 2 uml

_ 2[cos(u - 2 uml) ~ cos ul[cos(u - 2 um3) - cos uj,
sin 2 u :

S

sin(2 uml) cos(2 um2 - u)
cos u

Bl - 2 uml

_ 2[cos(u = 2 uml) ~ cos u] [cos(u = 2 um2) - cos u],
sin 2 u 4

B2 =

13{sin(2 um2) cos(2 um2 - u) _ 2 um2

cos u
u

_ 2[cos(u - 2 um2) - cos u]z]
sin 2 u

sin(2 um2) cos(2 um3 - u)
cos u

B3 = - 2 um2

_ 2[cos(u — 2 um2) - cos ullcos(u - 2 um3) - cos u]]
sin 2 u

1
C1=—3[

u

sin(2 uml) cos(2 um3 - u)
cos u

- 2 uml

_ 2[cos(u - 2 uml) - cos u][cos(u - 2 um3) - cos u]]
sin 2 u

1 [sin(z um2) cos(2 um3 - u) _ 2 um2
3 cos u

C2 =
u

_ 2[cos(u - 2 um3) - cos ul[cos(u = 2 um2) - cos u},

sin 2 u N
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sin(2 um3) cos(2 um3 - u)
cos u

-2 um3

_ 2[cos(u - 2 um3) - cos u]zl

sin 2 u

S,

- 61
Kl = 3
S

62

=7
S

63

K3 =178

561’ SGZ’ SB3 = Sx‘ factors for the first, second and third

bolt, respectively.
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APPENDIX IT
COMPUTER PROGRAM FOR THE REINFORCEMENT

ANALYSIS OF MECHANICAL ROOF BOLTING
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*
*
»*

IN
IN

W=UNIT WEIGHT OF EACH LAYER,

IN

B=WIDTH OF ROOF LAYER OR BOLT SPACING,
FFICIENT OF FRICTION ALONG THE BEDDING PLANE

N=LAYER NUMBERS OF IMMEDIATE ROOF

# DEVELOPMENT OF DESIGN CRITERIA FOR MECHANICAL ROOF BOLTING

»
E=YOUNG'S MODULUS OF EACH LAYER.PSI

XL=ROOF SPAN,
T=THICKNESS OF EACH LAYER.

US=COEl

»

VLVLVLLLLLLLL

UNBOLTED ROOF

LB/IN

RIZONTAL STRESS,
STRESS AT THE END OF THE BEAM.

F=PARAMETER WITH HORIZONTAL STRESS
'U=TOTAL UPPER-FIBER STRESS AT THE END OF THE BEAM,

RESS_AT_THE _END

OMENT AT THE END

A _OF EACH LAYER,
T
M
G

LOAD OF EACH LAYER,

UNBOLTED ROOF

UNBOLTED ROOF

WER-FIBER STRESS AT THE END OF THE BEAM,

O~ O oIl s 000

ROOF DUE TO

P&
BOLTED ROOF DUE TO

IN.
1
TRATUM,
STRATUM, IB
BOLTED ROOF DUE TO

T!
0l
3
LB

I STRESS OF THE UPPER FIBER.
STRESS OF THR LOWER FIBER.
B
B
31
)
Tl
1
R
0
E
I
1
1
0.
1
vt
1
0,
0
¢
1

TY_OF THE_ANCHOR
[E END OF THE BEAI

CTION EFFEC
BL=MAXIMUM

OO
G
SOLVLOBO]

COMSHL=COMPRESS
PA=ANCHORAGE C,
PAU=ANCHORAGE

VO=SHEAR FORC
BL=BOLT LENGTH.

Tl

1

1

0

Al

1

1

)

4;

C

1

1

1

)

AR 0T O ottt -
OB INDETIILLIE

LUULVUVLLLUVLVLUOY
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857575 $I2:9%ARagtss oN8 < YsdTTaTensT
23572% 95395557080aR540 1 oF “T5adgnanene
SigNOTS GRETNRNAS XEAHNGIHO0 Sl SeeoQ e OmOH

WD) HS(I), TENSH(I), COMSH(I). PA(CT)

INPUT OF MATERIAL PROPERTIES, GEOMETRY AND HORIZONTAL STRESS OF

FLEXURAL BEHAVIOR OF IMMEDIATE ROOF

=
@ o
E] o
@ ALm o~
L = et ol
S _ Jv_ zX —ok =
g z *_z weix e
3 ST ~.z @ %
P R L Tt
W SUFLONDI wOe~—
b DD = ) Ol
7 Rt peot iol e ot}
o BEBEGE—E  WEIh R
Q SLoIodIWT_ LT ~nn
W OEQXOIFEZIBaL~min
£ SEsEeaiEl SEncTT
E WOWOWCES~OWOvEE—
~ ELELELILZATLSOW
FR -
SRT D O
vuLLLL
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CALCULATION OF PARAMETERS WITH HORIZONTAL STRESS

*#T(I)#u2)

#2) /(5. #U(I)#%4)
<
v

CALCULATION OF TAU1, XMO, SIGM1, SIGMTU, SIGMTL, V2L OF EACH LAYER

BEFORE COMB INATION

vuow

0 T=1,N)

@
3
@
<
a
£
5
K
el

F(I), SIGMTU(I), SIGMTL(I

L ‘Ef 12X, T/, 12K, ‘WY 12X, ‘GY. 12X, ‘EIS’, 10X, ‘TENSH’, BX

PA’)
‘XMO‘, 10X, ‘SIGMi‘, BX, ‘TAU1‘, 9X, ‘V2L‘, 10X, ‘F’, 12X, ‘SI

TL )
I0C1), SIGM1(I), TAUL(I), VRL(I)

EC(I), T(I), W(I),G(I),EISCI), TENSH(I), COMSH(I), PA(I), I=
3X, /7(D11. 4, 2X))

3X/8(D11.4,2X))

2%,
IeM
(XM

3
1)
e
I
NG|
S
4)
0,
8x
0
0,
7)
0,
’g
2)
0,
75
0,
2)
0,
16
0,

w=Taas WO-DI -0 IOI .0 IHI~INI

FXOOB>OROL30E (3oL ILOILILILI0
w <« - N aNO0O
] w 3@ S b=

)
I
.LE.vaL(I-1)) GO TO 30

~~ZJ

2)40, 50, 40

R —
T~GUONE 1
AnIINUD> F LG

e

B Couuou i o=

S A EU—E- Y EL—

L

KC=NUMBER OF COMBINATION FOR WHOLE ROOF STRATA
T_COMBINING OR NOT

KC=1

STRATA COMBINING PROCESS
10 K=1
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ING OR NOT
0, 60, 50
CALCULATION OF DEFLECTION OF COMBINED LAYER

a
H
®
w 5
& =
& E
8 o
& a
£ « 2
8 =
= ¢ =1
& < N
2 S s
~a
] 8 25
g %2
- Z .
s a Sxai
z 2 ]
= g 23
s 8 asa
£ w Zoin
H !
g & R
S N
o B
a & a8
~ 2 E @ 223
ool & ¥ e
jor N g z o
-~ @on w b ]
-3 ane y = 2%
a7 Wow & a & a aas ~
T yop s 2 2 8 % a
- oS o g St o
o] 2R e B ou Z EY @
& us 8 5 b~ a e ~-2
a5 g E 3 °2 g <A o]
ric) 5t 2 3 - 5 ~ a% oot
e % 3 & Io —m ~~ 8 a 273 1y
b w83 £ 32T ot 2 X -3
88 gaC 8 5 A3 L T S Fal g B
Wi ooEeS @ .3 wE oo LB £ oras g2 e}
Y CThuy a2 4E x-S o aa & 32
BB~—clisos B S8 _rNagfa T ~Bo~ o W "%e T Sz
CEEABRY OF CoantX @ik SPES U erafs~n® S )
2z 51~ o S R s an a2
DR i 83 SaRTiBRC PTG BT PEYNTASESR o Shandeann
ot 2 GRLLOTEAISLATC RS EEEEE0009% §  ~oTote
55 ta 2 SEEthhees
20! o] 2 Ceruifed
fhucs 3% a _sPiiiss
e 32 2 215400
i o & FAzzEzIges
55 e et el et Kiwterc etwtet 1o e Bl e T
20 38 WEraETEoILr RSl loruuutSER- 8 3 2aormit
B o
3 8
2
o vou e © o wou
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1X,D13. 4, 4X, ‘W, 1X, D13. 4, 1X, ‘GT*, 1X

g

g

@

=S

=

5.
- 22
= o8
2 i
8 328
‘-l xaa
£ on B
g I g
w~ @i e

). SEIS(I): TT(I1), QA(I), I=1, K)

+4X, ‘V2L’, 10X, ‘QT“, 12X, ‘W', 11X, ‘SEIS’, 10X, ‘T*, 12X, ‘G

Rz
]
S=z88
Eiags
IO Loy 1 oY
e oy )
EEls SRS et £ HDMWMWFFN

<

3

©

2, K
IF(V2L(I). LE. V2L(I-1)) L=sL+1

DO 108 1=
108 CONTINUE

CHECK NEW LAYERS NEED COMBINING OR NOT

IF(L.EG.K) 60 TO 100

vou

(I)##2)#F (1)

3) (TAUL1(I), XMOCI), SIGM1(I), SIGMTU(I), SIGMTL(I),V2L(I), I=

AT (1HO, 3X/6(D11. 4, 2X))

N OF TAUI, XMO, SIGM1, SIGMTU, SIOMTL, V2L OF LAYERS AFTER
FAILURE CRITERIA FOR UNBOLTED ROOF

0, 3X, “TAU1‘, 9X, ‘XMO‘, 10X, ‘SIGM1‘, 7X, ‘SIGMTU", 7X, ‘SIGMTL*,

b

IF(V2L(I). EQ. V2L(I-1)) KK=KK+1
6,83) IDCT

DO 713 I=2. N
713 Ci
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83 _FORMAT (1HO, 3X, 'TENEILE FA!LURE AT TOP FIBER, AND SHEAR FAILURE AT
1BOTTOM!, 5X, ‘LAYER NO.
60 10 75
a1 IDT=1
WRITE(L,84) IDT
a4 EEN%T§éND' 3X, ‘TENSILE FAILURE AT TOP FIBER',5X, ‘LAYER NO. ‘., 2X, I2)
82 IDC=1
WRITE (6, 85)
951§DRNAT(1HO. 3)(: 'SHEAR FAILURE AT BOTTOM FIBER‘, 5X, ‘LAYER NO. ‘) 2X, I2
75 WRITE(é&, 51)
51 FORMAT(1HO, 3X, ‘SIGMTU’, 15X, ‘TENSH ', 16X, ‘SIGMTL /, 16X, ‘COMSH ‘)
WRITE (&, 58) SIGMTU(I), TENSH(I), SIGMTL(I), COMSH(I)
58 FORMAT (1HO, 2X. 4(D11. 4, 10X))
KC=KC+1
41 CONTINUE
Gl w0 1o 42
52 FORMAT(1H1. //3X, ‘UNBOLTED ROOF IS STABLE')
IF(K.EG, 1) GO TO 4
¢ GO TO 333
E FRICTION EFFECT
E FRICTION EFFECT FOR ONE EQUIVALENT LAYER
444 CALL FRIC1(SUMTT1.TT1,N1,SUMTF1,BE1,ET1, B, AE1, YD1, AY1, SUMAL, SUMAY1
A, SUHE‘I VCI: SMIZC1, YF1, XIAL, 1ZC1, IC1, SUMIAL, I, J, X1, V0. V1, GS1, QSM1, V
AS1, T S, U1, XMB., SIGBL, S10BU, VL1, SMETT1, CB1, F1, 81, XF1, ZETAL, ALDAL
A, HS, XB. CB2, BL)
CAL C{J, XB, I, XL, CB1,CB2)
SIG . #HS(1)+8I1GBU
SIQTL=—1 #HS(1)-SIGBL
IF (TE! , GE. SIGTU. AND. COMSHL. GE. DABS(SIGTL)) GO TO 715
WRITE (&, 424)
WRITE(&, 719) TENSHU, SIGTU, CDHGHL, SICTL
719 _FORMAT(1HO, 2X, 'TENSHU ', IX Dll 4,1X, ‘SIGTU, 1X, D11. 4, 1X, ‘COMSHL “, 1X
1,D11.4, 1X, ‘SIGTL', 1X, D11,
715 3SI}E(Z1;IA)
716 FORMAT(1H1, //3X, ‘BOLTED ROOF IS STABLE')
DO 520 J=1, 10
§A1(J)=PAU/TB1(J)#B
seo SIS o
IF(SA1(J).GE. B) GO TO 540
530 CONTINUE
540 Ji=2x%J
TBS=TB1(J)
SAS=SA1 (J)
WRITE(&, 408) J1
WRITE(&, 409) (XB(J, 12), I2=1,J)
WRITE(&,413) SAS
WRITE(&, 425) BL
g
SEOlF'?RHAT(lND.QX. ‘SIGTU’, 10X, 'SIGTL, 9X, ‘V2L1, BX, ‘TENSHU ', 7X, ‘COMSHL
WRITE(&, 570) SIGTU, SIGTL, V2L1, TENSHU, COMSHL
5§70 FORMAT(1HO. 2X, 5(D11. 4, 2X))
WRITE(6, 735)
S FORMAT(1H1)
717 60 TO 415
E FRICTION EFFECT FOR MULTIPLE LAYERS
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