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Abstract—This paper presents a real-time photometric stereo
method designed for online 3D telecommunications. This method
requires only consumer grade hardware such as a webcam
and a GPU. The lighting conditions are controlled from the
computer screen and the photometric reconstruction is performed
on the GPU. Our method reaches real-time rendering thanks to a
pyramidal integration of the normal maps based on an iterative
scheme. Moreover, we propose a method to relax the constraint
on the synchronization between the light source controller and
the camera.

I. INTRODUCTION

The development of 3D-TV and autostereoscopic displays

is a promising source of entertainment. This new technologies

will probably make 3D telecommunications be a reality at

home in a near future. In that context, we present a method

to recover the 3D structure of an human face by photometric

means. Our method requires only common consumer grade

hardware and is designed to make users communicate with a

3D perception in real-time. Indeed, our method uses the light

of the computer screen to control the lighting environment.

The illuminated scene is captures from a webcam in order to

perform a 3D reconstruction of the scene with a photometric

technique computed on the GPU, as show on Figure 1.

II. 3D RECONSTRUCTION

There exist various techniques that perform 3D reconstruc-

tion from videos in real-time. Most of them require several

calibrated cameras, like Depth from stereo methods [1] that

compute disparity maps using pixel correspondences from two

views. If the cameras are fully calibrated, the link between

the disparity map and the 3D reconstruction is straightforward.

The extension of depth from stereo to more than two cameras,

known as multi-view stereo [2], is ill suited to run in real-time.

The visual hull [3], also known as shape from silhouettes,

extracts the silhouette of a considered subject from every input

image. Then, the 3D shape of this object is approximated

by the union of the projected silhouettes. The plane-sweep

algorithm [4] also requires a set of calibrated cameras, the 3D

reconstruction of the scene can be computed in real-time using

a discretization of the scene with parallel planes.

Some other methods can compute a 3D reconstruction from

a single video stream. Optical flow methods [5] compute a

vector field that describe the apparent motion of objects in the

image. These methods can lead to a 3D reconstruction but fail

if the scene is static.

Fig. 1. 3D photometric reconstruction computed in real-time.

Structured light consists in projecting a known light pattern

on the subject to be reconstructed. A recent state of the art

can be found on [6]. These methods perform accurate 3D

reconstruction however they are ill suited to run in real-time.

Finally, photometric techniques can recover the 3D shape of

a scene from the image intensity (brightness). The photometric

problem can be considered by two approaches: shape from

shading techniques that use only one image (as presented

in [7], [8]) and photometric stereo techniques that require

several images of the same scene under different lighting

condition. Since our method belongs to the latter family, we

expose the related works on the next section.

III. PHOTOMETRIC RECONSTRUCTION : OVERVIEW

First introduced by Woodham [9], the purpose of photo-

metric stereo is to estimate the surface normals of objects by

observing them under different lighting conditions. The sur-

face normal is then integrated to generate a 3D reconstruction.

As an improvement, Mallick et al. [10] presented a pho-

tometric stereo method that handles specular reflectance. To

overcome the problem of the lighting conditions information

that are commonly required, Hallinan [11] or Basri et al. [12]

propose a low-dimensional illumination representation of the

scene under arbitrary light conditions. Woodham [13] intro-

duces one of the first method to reach real-time photometric

reconstruction using three spectrally different light sources

from three distinct positions. In the same way, Hernandez and

al. [14] use spatially separated red, green and blue light sources
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to estimate a dense depth map from a untextured non-rigid

surface. By merging geometric and colorimetric calibration

data, they provide a mapping from color intensity to normal

map. Then, a depth map is obtained by integrating the normal

map.

Malzbender et al. [15] reach real-time photometric recon-

struction using a GPU implementation of a program that

controls a lighting device synchronized with a high speed

video camera. The main contribution of this work is a normal

computation that enhance the shape details.

According to our purpose, i.e. real-time photometric stereo

using consumer grade hardware, we can observe that all these

methods are too dependent to a specific acquisition device or

lack in the speed computation.

IV. PHOTOMETRIC STEREO FROM SCREEN LIGHT

We present a GPU based method to recover the 3D structure

of an human face by photometric stereo means. This method

uses a standard web camera mounted on the computer screen.

The light of the screen is used as the main light source and will

determine the illumination conditions. The camera captures

consecutive images under these different lighting conditions

in order to compute a normal map of the scene that can be

integrated to a depth map and thus a 3D reconstruction.

This paper is an extension of Nozick et al. [16] designed to

run in real-time with only consumer grade hardware. Our main

contribution are:

• a fast, robust and automatic method to retrieve the light-

ing conditions from imperfect illumination data. More

precisely, our method is robust to camera-screen synchro-

nization issues.

• a consequent speed up for the normal map integration

using an iterative pyramidal approach. This method is

especially well suited for an implementation on the GPU.

The rest of the paper is organized as follows: the next sections

detail each step of our method. Section VIII describes the real-

time implementation of the method on GPU. Finally some

results are presented in Section IX and the conclusion is

discussed in Section X.

V. LIGHTING FROM SCREEN

The computer screen is used as a large programmable light

source area and provides various lighting conditions for the

photometric reconstruction (see Figure 2 as an example of four

consecutive lighting setups). The illuminated scene is captured

by a camera attached on the screen and a reconstruction is

performed for every new captured frame. Indeed, the new

acquired image is transfered to the system and inserted to

a “captured images set”. This new image will replace the

oldest image of the set and thus, the system do not have to

wait for a new set of new views between two consecutive

reconstructions, but just update the current set. To optimize the

quality of the reconstruction, every image of the set should be

taken under different lighting condition. A set should contain

Fig. 2. A sample of different input images sequentially displayed on the
screen to produce varying illumination conditions.

at least three images but using more images (ideally, as much

as possible) improves the reconstruction quality. However,

using too much images will increase the computation time

and prevent from real-time performance. Considering these

constraints, using four input images seems to be a good

compromise. Figure 3 depicts a set of four captured images

under four lighting conditions. To ensure enough lighting,

the light source should not be punctual. A lighting condition

possibility can be to sequentially illuminate every top, right,

bottom and left half part of the screen. As we will discuss

in section VI-B, any other light configuration (different from

one image to the other) is acceptable if the camera and the

screen are roughly synchronized. Finally, the ambient light of

the scene should be reduced to the minimum to maximize the

screen light contribution.

Fig. 3. Four images captured under four illumination conditions.

VI. NORMAL MAP COMPUTATION

A. Eigen problem

Consider a set of N images of dimension width × height

representing the same scene under various illumination. The

images are converted to grayscale images and considered as

one dimensional arrays. A matrix A with N rows and width

× height columns is defined such that every row of A

corresponds to an input image.

As presented by Hayakawa [17], the Singular Value Decom-

position (SVD) of A can be used yo compute a surface normal

map. Yuille et al. [18] improved this method by computing

the SVD on the covariance matrix AA⊤ rather than on A.

According to the big size of AA⊤, the computation time

required for the SVD may prevent from real-time rendering.

An alternative approach is to compute the SVD of A⊤A which

is a N × N matrix. This approach is much faster however

the eigenvector information is common for every pixel of the

image.

As for a principal component analysis, the SVD of A⊤A

provides a set of N right eigenvectors associated to a set of

non-negative singular values sorted in decreasing order. As

mentioned in [16], these eigenvectors represent the photomet-

ric principal axis in the image referential. The geometric inter-
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pretation of this eigen-system is to consider the eigenvectors

as the light direction components in each input image. The

three first eigenvectors associated to the three biggest singular

values can be considered as 3D geometric coordinates. In

practical terms, let the SVD of A⊤A give the decomposition

A⊤A = UDV⊤ and let B be the matrix composed by the

3 first predominant eigen-vectors (i.e. the 3 first rows of V⊤).

Let also define the image 3D referential where x-axis and y-

axis define the image plane and the z-axis corresponds to a

depth component.

V⊤ =

[
B
...

]

B =

N light sources
︷ ︸︸ ︷




• • · · · •
• • · · · •
• • · · · •











z

x or y

y or x

The ith column of B can be interpreted as the light direction

on the ith image. The first raw of B, corresponding to the

biggest singular value, represents the z-axis that is always

predominant. The last two rows correspond to the x and y

axis but their associated singular value are usually similar and

thus we can not distinguish which is x-axis and which is y-axis

by just using the SVD. Moreover, the sign of the eigen-vectors

is also undetermined.

B. Light source identification

In this section, we propose a method to solve the SVD

x− y-axis ambiguity using the light source condition. Indeed,

since the images displayed on the screen and the images

acquired by the camera are approximatively synchronized, a

comparison between the light direction proposed by B and the

light direction evaluated on the displayed image can lead to

an axis identification.

Let’s consider for each displayed image the average 2D light

position in the canonical image referential (i.e. every image

coordinate component ranges is [−1; 1]). Then we can define

the matrix L which columns are the N 2D average direction

of the light contribution in the N displayed images, in the

same order than for A.

L =

N displayed images
︷ ︸︸ ︷
[

• • · · · •
• • · · · •

]}
x

y

Now let’s consider the matrix BH corresponding to the two

last rows of B, i.e. the undetermined x and y-axis.

B =

[
· · ·
BH

]

BH =

N light sources
︷ ︸︸ ︷
[

• • · · · •
• • · · · •

]}
x or y

y or x

If each row of L is normalized, one can expect that BH

is a row (and possibly sign) permutation of L since both

L and BH respectively represent the light orientation in the

displayed image and in the captured image. In that perspective,

the matrix P = (L⊤BH)−⊤ should be a permutation of

identity Id2, including the sign variation. In practice, this will

not be completely the case since the display and the camera

are not perfectly synchronized, but the nearby integer matrix

of P, noted P, will be the nearest permutation matrix from

P. Finally, the permutation matrix M that identifies the x, y

and z axis, including the sign correction, can be defined as

follows:

M =

[
02 P

1 0⊤

2

]

Hence, the matrix MB will represent the identified and

signed-corrected eigen-vectors of A⊤A.

C. From Images to Normals

Once the x-y-z-axis are identified, the next step is to

compute the normal map from the grayscale color of the

N captured images and the matrix MB. Let pi = Ai

(the ist column of A) be the photometric contribution of the

pixel i from the N grayscale input images. Then the normal

ni = (nx, ny, nz)
⊤ of the pixel i can computed by:

ni = MBpi

Then, like in any standard photometric stereo method, the

norm of the normal ni at the pixel i corresponds to the

albedo ρi = ‖ni‖ of this pixel. In some cases, it can happen

that ‖ni‖ = 0. This corresponds to a lack of photometric

information, the normal is then set to (0, 0, 1)⊤ and albedo

to 0. For the following parts, we assume that for any pixel i,

we have ‖ni‖ = 1. Figure 4 shows a sample of x-y-normal

maps.

(a) X component (b) Y component

Fig. 4. Example of normal surface map.

VII. DEPTH MAP COMPUTATION

A. Normal map integration

A perfect normal map should fit the integrability constraint

or the zero-curl constraint. In practice, the normal map gen-

erated in section VI-C is noisy and the zero-curl constraint is

usually not satisfied. Petrovic et al. [19] propose a method to

enforce the integrability of the normal map. Another solution

is to integrate the normal map with an iterative method that

conserves the integrability constraint, as proposed by Basri and

Jacobs [12]. Like in Nozick et al. [16], we compute the depth

value z = zi,j of an object at the pixel position (i, j) using an

iterative Gauss-Seidel scheme under K iterations k = 1...K
from the following equation:

zk+1

i,j = 1

4
[zki+1,j + zki−1,j + zki,j+1 + zki,j−1

+nx
i−1,j − nx

i,j + n
y
i,j−1

− n
y
i,j ]
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To ensure a constant reference depth for all the reconstructions,

the relaxation process is not applied on the corners of the depth

map. The final reconstruction will be defined up to scale factor,

as defined in Belhumeur et al. [20].

B. A Pyramidal computation

The depth map computation is a key part to reach real-time

rendering. To speed up the normal map integration, we propose

a pyramidal computation of the iterative process. Indeed, we

apply the first iterations on a depth map image with a very low

resolution in order to obtain a fast estimation of the depth map.

Then, this depth map is refined with a higher resolution for

several iterations. This process is repeated until the maximum

resolution is reached and computed. The iterative equation of

part VII-A becomes :

zk+1

i,j = 1

4
[zki+1,j + zki−1,j + zki,j+1 + zki,j−1

+∆x(nx
i−1,j − nx

i,j) + ∆y(ny
i,j−1

− n
y
i,j)]

where ∆x and ∆y are the numerical steps representing the

pyramid level scale. For a mipmap level l, we get:

∆x = ∆y = 2l

i.e. big for the first iterations and equal to 1 for the last pyramid

level.

This optimization speeds up the integration for two reasons.

First, the convergence speed increases because the first iter-

ations are not accurate, but very fast since ∆x and ∆y are

bigger. Thus, this approach requires much less iterations than

the standard method to reach the same result, as shown in

Figure 5.

(a) 20 iter. (b) 70 iter. (c) 500 iter. (d) 2600 iter.

Fig. 5. Depth map obtained during an iterative normal map integration of an
hemisphere. Our method after 20 iterations (a) and 70 iterations (b). To reach
the same result, the standard method requires respectively 500 iterations (c)
and 2600 iterations (d).

Moreover, the first iterations on small images are much

faster to perform since very few pixels are concerned. Indeed,

even if we compute the same number of iterations as with the

standard method, the pyramidal approach computation time

on an image with the resolution (n × n) is in O(Kn.ln(n))
when the standard one is O(Kn2). We can note that this

approach involves the computation of all levels of mipmap

pyramid, or at least minifying interpolation. However, our

application is designed to be implemented on the GPU, hence

the mipmapping or the minifying interpolation computation is

extremely fast.

Figure 6 presents the depth map computed from the normal

map shown on Figure 4.

Fig. 6. Depth map computed from a normal maps computation.

VIII. IMPLEMENTATION

In our method, the first issue concerns the image to be

displayed on the screen. To ensure correct photometric light

conditions, we display a white area on the border of a black

screen, rotating around the center of the image. The rotation

speed is adapted according to the camera frame rate acquisition

to make a turn in approximatively four acquired frames, since

we decided to use four input images for the reconstruction.

The camera and the screen should be as synchronized as pos-

sible, but inaccuracies are corrected by the light identification

process presented in section VI-B.

Then, for each new reconstruction, the latest grabbed image

is converted in grayscale and inserted in the matrix A. The

A⊤A matrix is updated, but not with a standard matrix

multiplication. Indeed, only one row and one column should be

updated and since A⊤A is symmetric, these row and column

can be updated simultaneously. Then the SVD of A⊤A and

the eigen-vectors identification are computed on CPU. Finally,

the x-y-z normal maps and the albedo image are computed

on the GPU and stored as float textures.

The next step concerns the depth map computation. The

Gauss-Seidel relaxation is very well suited to be implemented

on GPU since every pixel can be processed simultaneously.

Every iteration is performed off-screen by the GPU using

frame buffer objects (FBO). Two textures are used alternatively

to contain the depth map of the previous iteration or to

be attached to the FBO for the current iteration rendering.

The resolution of the FBO varies according to the level of

pyramid. The relaxation process uses the equation presented

on section VII-B. Concerning the normal map textures, we

can note that mipmapping is not required if the interpolation

minify filter is enabled during the texture access.

Finally, a dense flat mesh is projected on the screen (Fig-

ure 7). Every vertex depth is computed from the depth map

using a vertex program. Then, the meshes are textured with

the albedo image using a fragment program. This rendering

method does not require any transfer of the depth map between

the GPU and the main memory.

IX. RESULTS

We have implemented our system on a PC Intel core duo

3.16 GHz with an nVidia Quadro FX 1700. Our program

is implemented in C++, OpenGL and GLSL. The video
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Fig. 7. Textured mesh.

acquisition is performed by one USB Logitech fusion web

camera connected to the computer. With a 320×240 resolution,

the acquisition frame rate reaches 20 frames per second. All

the computations are make within the image size of 320×240

pixels. Figure 8 presents a 3D reconstruction performed in

real-time.

The depth map computation computed with the GPU par-

allelism combined to our pyramidal method usually requires

70 iterations to obtain a convergent solution. During our tests,

the main bottleneck is the camera frame rate limitations.

X. CONCLUSION

In this paper we present a real time implementation on GPU

of a 3D facial reconstruction designed for consumer grade

application by simply using a standard web camera and the

computer screen.

The proposed method is robust to an approximative knowl-

edge of the light conditions and can reconstruct the 3D

geometrical surface with only one webcam.

Thanks to our GPU implementation of the normal map

relaxation, this method can reach real-time rendering.

However a limitation of this method concerns the screen

light contribution that must be predominant over the ambient

light.
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