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ABSTRACT

In this paper, we propose a new approach for estimating depth
maps of stereo images which are prone to various types of
noise. This method, based on a parallel proximal algorithm,
gives a great flexibility in the choice of the constrained cri-
terion to be minimized, thus allowing us to take into account
different types of noise distributions. Our main objectiveis to
present an iterative estimation method based on recent con-
vex optimization algorithms and proximal tools. Results for
several error measures demonstrate the effectiveness and ro-
bustness of the proposed method for disparity map estimation
even in the presence of perturbations.

Index Terms— Proximity operator, total variation, tight
frame, proximal algorithms, convex optimization,ℓp-norm,
Kullback-Leibler divergence.

1. INTRODUCTION

Given any two images of the same scene acquired by stereo-
scopic cameras, it can be seen that a degree of similarity exists
between the two views. Indeed, the pixel at positionx in the
left imageIL corresponds to a pixel at positionx − u in the
right imageIR: the disparity of those pixels is denoted byu.
The matching problem amounts to searching for the disparity
field u which minimizes an error measure. Consequently, we
can express the stereo matching problem as :

minimize
u

J(u), (1)

where,

J(u) =
∑

(x,y)∈D

φ(IL(x, y)− IR(x− u(x, y), y)) (2)

andφ is assumed to belong toΓ0(R) which is the class of
a proper lower-semi continuous convex function fromR to
]−∞,+∞]. D ⊂ Z

2 is the considered finite image domain.

The recovery of the depth estimation has been increasingly
used in a variety of fields such as movies, web networks, 3D
reconstruction and computer games. During the last decades,
various methods have been introduced in disparity estimation,
especially in computer vision [1]. Stereo matching algorithms
are generally classified into two categories: feature basedand
area based ones. Feature based methods match the feature
elements between two images [2], while area based methods
perform matching between pixels. Currently, the associated
problems are often solved using discrete optimization tech-
niques based on a global approach. Algorithms such as dy-
namic programming [3], graph cuts [4] and variational meth-
ods [5] were proposed. Note that variational-based dispar-
ity estimation methods demonstrated excellent performance
compared with the state-of-the-art.
In [5], a convex energy function approximation ofJ is derived
and minimized subject to various convex constraints (mod-
eled by convex sets(Ci)1≤i≤m) arising from prior knowl-
edges and observed data. The optimization problem (1) to
be solved then becomes

minimize
Liu∈Ci,i∈{1,...,m}

J(u), (3)

where (Li)1≤i≤m are linear operators. However, the em-
ployed algorithm requires not only the strict convexity of the
criterion to be considered but a quadratic form of it.

This paper describes a new DDE (Dense Disparity Es-
timation) approach that generalizes the convex optimization
approximation presented in [5]. The proposed method is
based on some proximity operator (prox) properties and then,
it is no longer limited to strictly convex quadratic criteria.
Therefore, explicit expressions of theprox of some norms
such asℓ1-norm and more generallyℓp-norm withp > 1 or
the Kullback-Leibler divergence allow us to apply such prox-
imal algorithms to our disparity map estimation problem. By
allowing a rich choice of distance functions, the proposed
technique is well-suited for dealing with different types of
noise corrupting the observed data, such as Poisson noise,



salt and pepper noise or Gaussian noise.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the basis tools employed in our approach.
Section 3 lays out the problem statement. Results on the Mid-
dlebury dataset1 are provided in Section 4. Finally, some con-
clusions are drawn in Section 5.

2. BACKGROUND

We will now present some tools which are useful in the solu-
tion of our minimization problem. In what follows, we will
focus on the definition of the proximity operators, total varia-
tion and tight frames.

2.1. Proximity operator

The proximity operator of a convex function is a natural ex-
tension of the projection operatorPC onto a nonempty closed
convex setC ⊂ R

N [6, 7, 8]. The projectionPCy of a point
y ∈ R

N ontoC is the solution to the problem:

minimize
x∈RN

ιC(x) +
1

2
‖x− y‖2 (4)

whereιC ∈ Γ0(R
N ) is the indicator function ofC.

In a seminal paper [9], Moreau proposed the following exten-
sion of the notion of projection by replacing the functionιC
by an arbitrary functionf ∈ Γ0(R

N ). Then, the problem can
be rewritten as

minimize
x∈RN

f(x) +
1

2
‖x− y‖2 . (5)

This problem admits a unique solution which is the proximity
operatorproxfy of f aty.
Proximity operators have very attractive properties [7] that
make them particularly well-suited to design iterative mini-
mization algorithms. In Table 1, we summarize some of them
that will be needed to obtain closed form expressions of the
required proximity operators.

2.2. Total variation

LetH andV be two spatial convolution operators correspond-
ing respectively to the computation of horizontal and vertical
discrete gradients. Then, a discrete version of the total vari-
ation (TV) for which proximity tools can be applied is the
following [10, 11]:

TV(u) =
∑

(x,y)∈D

√
|Hu(x, y)|2 + |V u(x, y)|2. (6)

It should be noticed that, in our simulations, we apply peri-
odic convolutions, which means that the operatorsH andV
are diagonalized by a Fast Fourier Transform.

1http://cat.middlebury.edu/stereo/newdata.html

f(x) proxfx

φ(x− z), z ∈ R
N z + proxφ(x− z)

φ(x/ρ), ρ ∈ R \ {0} ρ proxφ/ρ2 (x/ρ)

φ(Lx), semi-orthogonal, x+ ν−1L⊤(proxνφ(Lx)− Lx)

L ∈ R
M×N , LL⊤ = νI, ν > 0

ιC(x) =

{

0 if x ∈ C

+∞ if x /∈ C
PCx

χ > 0, α > 0
{

−χ ln(x) + αx, if x > 0

+∞ if x ≤ 0

x− α+
√

|x− α|2 + 4χ

2

Table 1. Some proximity operator properties (I denotes the
identity matrix) [7].

2.3. Tight frame

Frame representations [12] and more precisely tight frame
representations have been widely used during the last decade.
Such transforms can be described by an analysis frame oper-
atorF and a synthesis frame operatorF⊤. F is said to be a
tight frame whenF⊤F = νI, whereν > 0.
A simple example of a tight frame is the union ofm orthogo-
nal wavelet bases [13], thus leading to a tight frame represen-
tation withν = m.
In this paper, we will restrict our attention to the union of4
shifted orthonormal Haar bases over1 resolution level.

2.4. PPXA+ Algorithm

Many algorithms have been formulated in the literature to
solve optimization problems like (1). In our case, we use the
Parallel Proximal Algorithm (PPXA+) [14] which is a flexible
tool. PPXA+ (algorithm 1) allows us to minimize a convex
criterionJ on some closed convex constraint sets(Ci)1≤i≤m.
It consists of computing, in parallel, the projections ontothe
different convex sets(Ci)1≤i≤m and the proximity operator
of the criterionJ .
Suppose that the following assumptions hold.

•
∑m

i=1 L
⊤
i Li + I is an invertible matrix.

• ∃ ǔ ∈ R
K such that(∀i ∈ {1, . . . ,m}) Liǔ ∈ ri(Ci)

andǔ ∈ ri(dom J).2

• (λn)n∈N is a sequence of relaxation parameters such
that (∀n ∈ N) λ̃ ≤ λn+1 ≤ λn < 2, whereλ̃ ∈]0, 2[.

Then, the sequence(un)n∈N generated by Algorithm 1 con-
verges to a solution to Problem (3), provided that such a solu-
tion exists.

2dom J is the domain ofJ and the relative interior of a setC is denoted
by riC.



[Initialization]
(w1, ..., wm) ∈]0,+∞[m,γ > 0
(zi,0)1≤i≤m+1 ∈ R

N1 × . . .× R
Nm × R

K

Q = (
∑m

i=1 wiL
⊤
i Li + γI)−1

u0 = Q(
∑m

i=1 wiL
⊤
i zi,0 + γzm+1,0)

For n = 0, 1, . . . do
For i = 1, . . . ,m do

pi,n = PCi
(zi,n)

end For
pm+1,n = prox J

γ
(zm+1,n)

cn = Q(
∑m

i=1 wiL
⊤
i pi,n + γpm+1,n)

For i = 1, . . . ,m do
zi,n+1 = zi,n + λn(Li(2cn − un)− pi,n)

end For
zm+1,n+1 = zm+1,n + λn(2cn − un − pm+1,n)
un+1 = un + λn(cn − un)

end For

Algorithm 1: Constrained version of PPXA+.

3. APPLICATION TO THE DISPARITY
ESTIMATION PROBLEM

3.1. Problem statement

In the class of convex optimization methods in stereo vision,
an interesting approach that was shown to be competitive with
other state-of-the-art methods, was proposed in [5]. It is based
on a subgradient projection method. In what follows, we will
adopt the same problem formulation and then we will solve it
using the tools described in Section 2.
The functionJ defined in (2) is nonconvex despite the con-
vexity of the functionφ. To alleviate this problem, we pro-
pose to perform a Taylor expansion of the nonlinear term
IR(x−u(x, y), y) around an initial estimatēu(x, y). We have
then:

IR(x− u(x, y), y) ≃ IR(x− ū(x, y), y)− (u(x, y)

− ū(x, y)) IxR(x− ū(x, y), y) , (7)

whereIxR is the horizontal gradient of the right image.
Based on (2) and (7), we deduce that:

J(u) =
∑

(x,y)∈D

φ(T (x, y) u(x, y)− r(x, y)) (8)

where

T (x, y) = IxR(x− ū(x, y), y), (9)

r(x, y) = IR(x− ū(x, y), y) + ū(x, y) T (x, y)− IL(x, y).
(10)

Since the occluded image areas (denoted byO) yield very
large disparity errors, they will be discarded in the expression

of the similarity criterion. This is performed by rewritingJ
as:

J(u) =
∑

(x,y)∈D\O

φ(T (x, y) u(x, y)− r(x, y)) (11)

The proposed PPXA+ algorithm provides an efficient solution
to solve this problem. Our main contribution here lies in the
various choices that can be made for the error measure. As
already mentioned, the algorithm is based on iterating com-
putations of the proximity operator ofJ and projections onto
convex sets related to constraints. We will first give the ex-
plicit forms of the proximity operators of interest in this work
which correspond to error measuresJ taken asℓp−norms or
Kullback-Leibler divergence.

3.2. Error measures

3.2.1. ℓp-norm

Based on Table 1, it can be deduced that

ũ(s) =proxγ−1φ(T (s)·−r(s))ū(s)

=
1

T (s)

[
proxγ−1|T (s)|2φ(T (s)ū(s)− r(s)) + r(s)

]

wheres = (x, y). Then the proximity operator ofγ−1|T (s)|2φ
with φ = | · |p andξ̄(s) = T (s)ū(s)− r(s), is [15]:
proxγ−1|T (s)|2φ(·)(ξ̄(s)) =





sign(ξ̄(s))max(ξ̄(s)− γ−1|T (s)|2, 0), if p = 1;
ξ̄(s)

2γ−1|T (s)|2+1 , if p = 2;

sign(ξ̄(s))

√
1+12γ−1|T (s)|2|ξ̄(s)|−1

6γ−1|T (s)|2 , if p = 3;

( µ+ξ̄(s)
8γ−1|T (s)|2 )

1

3 − ( µ−ξ̄(s)
8γ−1|T (s)|2 )

1

3 , if p = 4,

where µ =
√

ξ̄(s)2 + 1
27γ−1|T (s)|2 .

(12)

3.2.2. Kullback-Leibler divergence

One can note that (7) can be rewritten as

IR(x− u(s), y) = r(s) + IL(s)− u(s)T (s)

= r̃(s)− u(s)T (s) = ζ(s). (13)

Then, the criterion to be minimized takes a form slightly dif-
ferent from (11):

J(u) =
∑

(x,y)∈D\O

Φ(IL(s), ζ(s)) (14)

where Φ(IL(s), ζ(s)) is the Kullback-Leibler divergence
function given by:



Φ(IL(s), ζ(s)) =














IL(s) ln
(

IL(s)
ζ(s)

)

+ ζ(s)− IL(s), if (IL(s), ζ(s)) ∈ ]0,+∞[2

ζ(s), if IL(s) = 0, ζ(s) ≥ 0

+∞, otherwise.
(15)

The properties in Table 1 allow us to re-express the proxim-
ity operatorũ(s) at ū(s) of the functionγ−1Φ(IL(s), r̃(s) −
T (s) ·) as:

(∀s ∈ D \ O)

ũ(s) =
1

T (s)

(
r̃(s)− proxγ−1|T (s)|2Φ(IL(s),·)

(
ζ̄(s)

))

whereζ̄(s) = r̃(s)− ū(s)T (s). If IL(s) ∈ ]0,+∞[, then

proxγ−1|T (s)|2Φ(IL(s),·)(ζ̄(s))

= proxγ−1|T (s)|2(−IL(s) ln(·)+·)(ζ̄(s))

=
ζ̄(s)− γ−1|T (s)|2

2

+

√
|ζ̄(s)− γ−1|T (s)|2|2 + 4γ−1|T (s)|2IL(s)

2
.

Furthermore, it can be shown that the above expression re-
mains valid ifIL(s) = 0. Let us now turn our attention to the
convex constraints that can be introduced.

3.3. Convex constraints

The motivation behind introducing these constraints is to in-
corporate additional prior knowledge about the solution.

First, we will constrain the range values of the disparityu

by setting a first constraint:

S1 = {u | umin ≤ u ≤ umax} . (16)

Then, we can impose an upper bound on the total variation
measure. Indeed, this constraint allows us to recover piece-
wise and homogeneous areas with sharp edges:

S2 = {u | TV(u) ≤ τu} . (17)

Finally, one can introduce some prior information on the
wavelet coefficients of the disparity. Based on Section 2.3,
we can represent the associated constraint in terms of Besov
spaceB1

1,1 semi-norm as:

S3 =
{
u |

∑

j≥1,k∈Z2,o∈{H,V }

|cBj,k,o(u)| ≤ κ
}
. (18)

One can link these constraints(Si)1≤i≤3 to some convex sets
(Ci)1≤i≤3 by noticing thatS1 = C1, S2 = L−1

2 (C2) where

L2 =

[
H

V

]
, andS3 = L−1

3 (C3) with L3 = F . The pro-

jection ontoC1 is straightforward. The projections onto the
convex setsC2 andC3 were implemented using the iterative
projection algorithm proposed in [16].

4. SIMULATION RESULTS

The objective of this section is to present numerical results
obtained with the proposed method for a variety of synthetic
stereo noisy images. In [17], we provided some comparisons
with the state-of-the-art DDE method presented in [5]. We
briefly report the results of the application of our approachto
the standard Middlebury stereo dataset. The objective of this
first experiment is to demonstrate the validity of the proposed
method without any perturbation. Fig. 1 shows the stereo
image pairs considered in this work, namely Corridor, Saw,
Teddy and Cones, along with their ground truth images. Our
method allows us to compute a smooth disparity map with ac-
curate depth discontinuities as also shown by the preliminary
results in [17]. We specify in each case the considered error
measure and constraints (the choice was made according to
the best performances). We evaluate our method using two
error measures between the computed fielduc and the ground
truth fielduref :

SNR = 10 log10
( ∑

s∈D |uref(s)|2∑
s∈D |uc(s)− uref(s)|2

)
, (19)

MAE =
1

N

∑

s∈D

|uc(s)− uref(s)|, (20)

whereN is the number of pixels.
In the presence of noise, we evaluate our method using dif-
ferent kinds of perturbation. To introduce a significant noise
variation, we modified the left and the right images by using
theimnoise function in Matlab. Fig. 2 shows the computed
disparity maps from the noisy stereo pairs. As we can see,
our method is less affected than DDE by noise changes and
provides accurate depth maps.

We display in Fig. 2 results obtained with the proposed
error measures (ℓ1-norm for salt and paper noise, Kullback-
leibler divergence for Poisson noise and quadratic norm for
Gaussian noise). Different constraints were also taken into
account: we chose the one that leads to the best results ei-
ther for DDE or PPXA+. As shown in the last column, our
approach outperforms the DDE method [5], which proves the
effectiveness of our method even in the presence of Gaus-
sian noise. Furthermore, as we can see in the first and second
columns, numerical values and visual comparisons on the ob-
tained disparity maps confirm that our PPXA+ algorithm pro-
duces good estimates in the presence of other kinds of noise.
Finally, Fig. 3 displays the MAE with respect to the Pois-
son noise intensityα (a smallerα corresponding to a higher
noise). PPXA+ algorithm outperforms the DDE approach es-
pecially when the noise intensity is high.

5. CONCLUSIONS

An efficient proximal method that deals with disparity esti-
mation problems has been proposed in this paper. Being very
flexible, it allows us to minimize various criteria (not neces-
sarily differentiable nor strictly convex), which can be useful



Corridor [umin, umax] = [2, 11] C1 + C3, ℓ1-norm, SNR=20.20 dB, MAE=0.28

Saw [umin, umax] = [4, 18] C1 + C2, Kullback-Leibler, SNR= 21.25 dB, MAE= 0.34

Teddy [umin, umax] = [10, 50] C1 + C2, ℓ2-norm, SNR=22.29 dB, MAE= 0.84

Cones [umin, umax] = [5, 55] C1 + C3, ℓ3-norm, SNR= 24.78 dB, MAE= 0.68

Fig. 1. From top to bottom: Corridor, Saw, Teddy, Cones. From left to right: left reference images, ground truth images,
PPXA+ results.

when perturbations are present during image acquisition. The
effectiveness of the proposed approach was demonstrated on
different stereo image pairs, while taking into account differ-
ent kinds of perturbations. In the future, we plan to extend
our approach to the case where illumination variations exist.
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