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Abstract

We give a simple probabilistic description of a transition between two states which
leads to a generalized escort distribution. When the parameter of the distribution
varies, it de�nes a parametric curve that we call an escort-path. The Rényi divergence
appears as a natural by-product of the setting. We study the dynamics of the Fisher
information on this path, and show in particular that the thermodynamic divergence
is proportional to Je�reys' divergence. Next, we consider the problem of inferring
a distribution on the escort-path, subject to generalized moments constraints. We
show that our setting naturally induces a rationale for the minimization of the Rényi
information divergence. Then, we derive the optimum distribution as a generalized
q-Gaussian distribution.

Keywords: Divergence measures, Generalized Rényi and Tsallis entropies, Escort
distributions, q-gaussian distributions
PACS: 02.50.-r, 05.90.+m, 89.70.+c

1. Introduction

In this paper, we give a simple probabilistic description of a transition between
two states, which leads to a parametric curve in the form of a generalized escort
distribution. We call escort-path this parametric curve. In this setting, we show
that the Rényi information divergence emerges naturally as a characterization of the
transition. Along this escort-path, we study the Fisher information. In particular,
we show that the thermodynamic divergence on the escort-path is proportional to
Je�reys' divergence. Finally, we consider the inference of a distribution subject to
moments computed with respect to the escort distribution. First, we show that our
setting leads to a rationale for the minimization of the Rényi information divergence.
Then, we derive the optimum distribution as a generalized Gaussian distribution.
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Before going into the details of the results, we shall present the context and in-
troduce the main de�nitions on our main ingredients, that is the escort distributions,
information divergences, and Fisher information.

Throughout the paper, we will work with univariate probability densities de�ned
with respect to a general measure µ(x) on a set X. For instance, the Shannon-
Boltzmann entropy will be expressed as

H[f ] = −
ˆ
f(x) log f(x)dµ(x). (1)

As particular cases, we have that if X is the real line and µ the Lebesgue measure,
then the expression above corresponds to the di�erential entropy. When the set X
is N or a subset of N and µ the counting measure, then the expression reduces to
the standard discrete entropy. When µ is a probability measure, then the expression
(1) can also be seen as the relative entropy from the measure with density f to the
measure µ.

Let us now turn to the notion of escort distribution. If f(x) is an univariate
probability density with respect to µ(x), then we de�ne its escort distribution of
order q, q ≥ 0, by

fq(x) =
f(x)q´

f(x)qdµ(x)
, (2)

provided that Mq[f ] =
´
f(x)qdµ(x) is �nite. These escort distributions have been

introduced as an operational tool in the context of multifractals [1], [2], with inter-
esting connections with the standard thermodynamics. Discussion of their geometric
properties can be found in [3, 4]. Escort distributions also prove to be useful in source
coding where they enable to derive optimum codewords with a length bounded by
the Rényi entropy [5].

The results presented in this paper are connected to the nonextensive statistical
physics introduced by Tsallis, see e.g. [6]. Indeed, the nonextensive statistical physics
uses a generalized entropy, makes use of escort distributions and exhibit generalized
Gaussians. All these elements will pop up in our construction, which, therefore could
lead to new viewpoints or interpretations in this context. It is particularly remarkable
that the derivation of the maximum Tsallis entropy distributions in nonextensive
thermostatistics requires a constraint in the form of an �escort mean value�, that is
computed with respect to an escort distribution like (2) [7, 8].

One can immediately extend the notion of escort distribution to deal with two
probability densities f(x) and g(x) as follows.

De�nition 1. Let f and g be two densities with respect to a common measure µ,
with g dominated by f . For q ≥ 0 such that Mq[f, g] =

´
f(x)qg(x)1−qdµ(x) < ∞,

we call generalized escort distribution the function

fq(x) =
f(x)qg(x)1−q´

f(x)qg(x)1−qdµ(x)
. (3)

2



We will also denote, when non ambigous, by Eq[.] the statistical expectation with
respect to the generalized escort distribution with index q.

This generalized escort distribution is simply a weighted geometric mean of f(x)
and g(x), and reduces to fq(x) = f(x) for q = 1 and to fq(x) = g(x) for q = 0.
Obviously, if g(x) is a uniform density whose support includes the support of f(x),
then the generalized escort distribution gives back the standard one (2). Actually,
the generalized escort (3) appeared in Cherno� analysis of the e�ciency of hypoth-
esis tests [9], and enables to de�ne the best achievable exponent in the bayesian
probability of error [10, Chapter 11]. As q varies, the generalized escort distribution
de�nes a curve that connects f(x) to g(x) and further. In the general framework of
information geometry [11], the generalized escort distribution (3) coincides with the
geodesic joining f and g in the case of an exponential connection. Such interpretation
also appeared in a work by Campbell [12].

Throughout the paper, we will focus on the generalized escort distribution and
the path it de�nes, that we will call the escort-path.

Distances between probability distributions will be measured by means of infor-
mation divergences. We will use the Kullback-Leibler directed information divergence
which is de�ned as follows.

De�nition 2. Let f and g be two univariate densities with respect to a common
measure µ, with f absolutely continuous with respect to g. The Kullback-Leibler
directed information divergence is given by

D(f ||g) =
ˆ
f(x) log

f(x)

g(x)
dµ(x). (4)

It is understood, as usual, that 0 log 0 = 0 log 0/a = 0 log 0/0 = 0. Note that if
we take g(x) = 1 in the expression above, then we obtain minus the Shannon entropy
H[f ]. Let us also recall that the minimization of the Kullback-Leibler divergence is
a well established inference method, analog to Jaynes' maximum entropy approach
and which is supported in particular by large deviation results [13]. We will also
make use of the Rényi information divergence introduced in [14].

De�nition 3. Let f and g be two probability densities with respect to a measure µ.
If f is absolutely continuous with respect to g, then, for q ≥ 0 such that Mq[f, g] =´
f(x)qg(x)1−qdµ(x) <∞, the Rényi divergence is de�ned by

Dq(f ||g) =
1

q − 1
log

ˆ
f(x)qg(x)1−qdµ(x). (5)

Let us recall that the divergence is always non negative Dq(f ||g) ≥ 0 with the
equality sign i� f = g. By L'Hôpital's rule, the Kullback divergence is recovered in
the limit q → 1. Taking g(x) = 1 in the expression of the Rényi divergence yields
the negative of the Rényi entropy, noted Hq[f ].

We will study Fisher information along the escort-path. Indeed, it is well known
that the Fisher information metric is a Riemannian metric that can be de�ned on a
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smooth statistical manifold [15, 16]. Furthermore, the Fisher information serves as
a measure of the information about a parameter in a distribution. It has intricate
relationships with maximum likelihood and has many implications in estimation
theory, as exempli�ed by the Cramér-Rao bound which provides a fundamental lower
bound on the variance of an estimator [17]. It is also used as a method of inference
and understanding in statistical physics and biology, as promoted by Frieden [18, 19].

De�nition 4. Let f(x; θ) denote a probability density with respect to a measure µ,
where θ is a real parameter, and suppose that f(x; θ) is di�erentiable with respect
to θ. Then, the Fisher information in the density f about the parameter θ is de�ned
as

I[f, θ] =

ˆ(
∂ ln f(x; θ)

∂θ

)2

f(x; θ)dµ(x). (6)

The remaining of the paper is structured as follows. In section 2 we show that
the generalized escort presented above arises naturally in a simple probabilistic de-
scription of a transition between two states. Interestingly, the Rényi information
divergence, and in a particular case the Rényi entropy, emerges as a characterization
of the transition.

In section 3, we study the Fisher information, with respect to q, along the escort-
path. We show in particular that the integral of the Fisher information along the
path, the thermodynamic divergence, is proportional to Je�reys' divergence.

In section 4, we consider the problem of inferring the distribution f(x) in (2)
or (3) on the escort-path when the only available information is given as a mean
value. This mean value is the statistical expectation taken with respect to an escort
distribution: this is the escort mean value used in nonextensive statistics. Di�erent
possible approaches, such as minimizing the directed divergence, or Je�reys diver-
gence or the thermodynamic divergence, reduce to the minimization of the Rényi
information divergence. In this case, the probability distribution that emerges is a
generalized Gaussian distribution, which is particularly important in applications.

2. The escort-path

It has been observed that Tsallis' extended thermodynamics seems particularly
appropriate in the case of deviations from the classical Boltzmann-Gibbs equilibrium.
This suggests that the original MaxEnt formulation ��nd the closest distribution to a
reference under a mean constraint� may be amended by introducing a new constraint
that displaces the equilibrium. The partial or displaced equilibrium can be imagined
as an equilibrium characterized by two distributions, say p0(x) and p1(x). Instead of
selecting the nearest distribution to a reference under a mean constraint, we may look
for a distribution pq(x) simultaneously close, in some sense, to two distinct references:
such a distribution will be localized somewhere `between' p0(x) and p1(x).

4



η

D(p||p1)

D(p||p0)
p0

p1

pq

p

(a) Case η < D(p1||p0)

η
D(p||p1)

D(p||p0)
p0

p1

pq

p

(b) Case η > D(p1||p0)

Figure 1: Constrained equilibrium between states p0 and p1: the equilibrium dis-
tribution is sought in the set of all distributions such that D(p|[p0) = η, and with
minimum Kullback distance to p1. The equilibrium distribution pq , the generalized
escort distribution, is �aligned� with p0 and p1 and intersects the set D(p|[p0) = η.

2.1. Displaced equilibrium

We consider two equilibrium states with respective probability densities p0(x) and
p1(x) with respect to a common measure µ, at some point x in the phase space, and
we look at intermediate states de�ned by the following scenario. The system with
initial state p0, subject to a generalized force, is moved at a distance η = D(p||p0)
from p0, where D(p||p0) is the Kullback-Leibler divergence (or relative entropy) from
p to p0. Then, the system is attracted toward the �nal state p1. Therefore, the
new intermediate equilibrium state, say pq, is chosen as the one which minimizes
its divergence to the attractor p1 while being hold on at the distance η from p0. As
illustrated in Figure 1, the intermediate probability density is located on the �straight
line� p0 − p1 and intersects the circle with radius η centered at p0. More precisely,
the problem can be written as follows:

minp D(p||p1)
s.t. D(p||p0) = η

and
´
p(x)dµ(x) = 1

(7)

where �s.t.� stands for �subject to�, and where the Kullback-Leibler divergence
D(f ||g) is de�ned by (4). The solution is given by the following Theorem.

Theorem 5. Let p1 a probability density function with respect to µ, and p0 a non

negative function. Assume that p1 is absolutely continuous with respect to p0. Let pq
denote the generalized escort distribution with index q ≥ 0

pq(x) =
p1(x)

qp0(x)
1−q´

p1(x)qp0(x)1−qdµ(x)
, (8)
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with Mq(p1, p0) =
´
p1(x)

qp0(x)
1−qdµ(x) < ∞. If Eq

[
log p1

p0

]
is �nite, where Eq [.]

denote the statistical expectation with respect to pq, and if q is chosen such that

D(pq||p0) = η, then the generalized escort distribution (8) is the unique solution of

problem (7).

Proof. Let us evaluate the divergenceD(p||pq). For all densities p satisfyingD(p||p0) =
η, we have

D(p||pq) =
ˆ
p(x) log

p(x)

pq(x)
dµ(x) =

ˆ
p(x) log

p(x)qp(x)1−q

p1(x)qp0(x)1−q
dµ(x) + logMq(p1, p0) (9)

= q

ˆ
p(x) log

p(x)

p1(x)
dµ(x) + (1− q)

ˆ
p(x) log

p(x)

p0(x)
dµ(x) + logMq(p1, p0) (10)

= q D(p||p1) + (1− q)η + logMq(p1, p0) (11)

Observe thatD(pq||p0) = qEq

[
log p1

p0

]
−logMq and thatD(pq||p1) = (1−q)Eq

[
log p1

p0

]
−

logMq so that both divergences exist. Therefore, taking p = pq, the last equality
gives

D(pq||pq) = q D(pq||p1) + (1− q)η + logMq(p1, p0). (12)

Finally, subtracting (11) and (12) yields

D(p||pq)−D(pq||pq) = q (D(p||p1)−D(pq||p1)) .

Since q ≥ 0 and sinceD(p||pq) ≥ 0 with equality i� p = pq, we obtain thatD(p||p1) ≥
D(pq||p1) which proves the Theorem.

It is interesting to note that (8) is nothing else but a generalized version of
the escort or zooming distribution of nonextensive thermostatistics, and that the
corresponding statistical expectations are the so-called escort-means or generalized
averages. Obviously, one recovers a standard escort distribution like (1) when p0(x)
is uniform with respect to µ. This is immediate if µ has a compact support. However,
if one wants to use a uniform measure on the whole real axis, with µ the Lebesgue
measure, then such a measure is no more a probability density since it integrates to
in�nity. In such case, it still possible to modify the formulation to include this case
as well. Indeed, with p0(x) = 1, the expression of the Kullback-Leibler divergence
D(p||p0) becomes nothing but minus the standard entropy

H[p] = −
ˆ
p(x) log p(x)dµ(x).

Therefore, the problem turns into the research of a distribution with a given entropy,
which minimizes the divergence to p1:

minp D(p||p1)
s.t. H[p] = −η

and
´
p(x)dµ(x) = 1.

(13)
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This setting can be illustrated as was done in Figure 1, excepted that the circle now
corresponds to the set of distributions with a given level of entropy. Observe that
neither the Theorem 5 nor its proof require that p0 is a probability density. Therefore
we can take p0(x) = 1 and obtain the solution of (13) as a simple corollary.

Corollary 6. Let pq denote the escort distribution with index q, associated with p1,
de�ned by

pq(x) =
p1(x)

q´
p1(x)qdµ(x)

, (14)

provided that Mq(p1) =
´
p1(x)

qdµ(x) < ∞. If Eq [log p1] is �nite, where Eq [.]
denote the statistical expectation with respect to pq, and if q is chosen such that

H[pq] = −η, then the escort distribution (14) is the unique solution of problem (13).

When q varies, the function η(q) = D(pq||p0) is monotonically increasing, and
particular intermediate values satisfy the implicit relationship D(pq||p0) = η. This
property will be proved in section 3, corollary 10, as a simple consequence of a
result on Fisher information. For q = 0 we have η = 0 and for q = 1, we have
η = D(p1||p0). Accordingly, as q varies, pq traces out a curve, the escort-path, that
connects p0 (q = 0) and p1 (q = 1). In the case q > 1, we have η > D(p1||p0) as
shown in Figure 1b.

Interestingly enough, recent results have shown that the average dissipated work
during a transition can be expressed as a relative entropy [20, 21]. Along these lines,
with an Hamiltonian even in the momenta, the minimization of D(p||p1) may be
understood as a minimization of the average dissipated work for a transition from p
to p1.

2.2. Rényi and Je�reys' divergences as by-products

It is interesting to outline that the Rényi divergence and entropy arise as a by-
product of our construction. Indeed, the minimum of the Kullback-Leibler divergence
can be expressed as follows.

Corollary 7. The minimum divergence is given by

D(pq||p1) =
(
1− 1

q

)
(η −Dq(p1||p0)) (15)

where Dq(p1||p0) is the Rényi information divergence with index q, from p1 to p0.

Proof. By direct calculation from the expression of the solution pq(x), or by a direct
consequence of relation (12).

If p0 is a uniform distribution, then −Dq(p1||p0) = Hq(p1), the Rényi entropy, pq
is the standard escort distribution and (15) becomes

D(pq||p1) =
(
1− 1

q

)
(η +Hq(p1)) .
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Although it is convenient to think of the Kullback-Leibler divergence D(f ||g) (4)
as a distance between f and g, it is not symmetric and does not satisfy the triangle
inequality. Kullback and Leibler themselves introduced a symmetrized version, which
was also considered before by Je�reys. This Je�reys' divergence appears here to be
a simple a�ne function of Rényi information divergence Dq(p1||p0).

Corollary 8. The Je�reys divergence between p1 and the generalized escort distri-

bution pq is given by

J(p1, pq) = D(p1||pq) +D(pq||p1) =
(q − 1)2

q
(Dq(p1||p0)− η) . (16)

Proof. This is a simple consequence of (11), which gives D(p1||pq) = (1 − q)η +
logMq(p1, p0) if p = p1, and of (12) that gives D(pq||p1) = (1− 1

q )η−
1
q logMq(p1, p0).

As an interesting consequence, we see that if one wants to minimize the symmetric
divergence between p1 and pq, subject to additional constraints, then this simply
amounts to the minimization of the Rényi information divergence with the same
constraints. When p0 is uniform, this becomes the maximization of the Rényi entropy,
or equivalently of the Tsallis entropy. It is thus interesting that our setting induces
both an escort distribution and a Rényi divergence (or entropy), and besides with a
common index q. Actually, although these two quantities are essential ingredients in
nonextensive statistical mechanics, their relationships are discussed, e.g. [22].

3. Fisher information along the escort-path

Suppose now that p0(x) and p1(x) depend on a parameter θ. The Fisher infor-
mation metric is based on the Fisher information matrix on a vector parameter θ
attached to a density p(x; θ). This Fisher information matrix has entries

[I(θ)]i,j =

ˆ
p(x; θ)

(
∂

∂θi
log p(x; θ)

)(
∂

∂θj
log p(x; θ)

)
dµ(x).

The derivative of the logarithm of the density with respect to the parameter is
called the score function. The mean of the score function is zero, so that the Fisher
information matrix is the covariance of the score function.

The length of a curve parametrized by t, from 0 to T, is given by

L =
∑
i

∑
j

ˆ T

0

√
dθi
dt

[I(θ)]i,j
dθj
dt

dt.

In the context of thermodynamics, this quantity is called the thermodynamic length
[23, 24, 25]. A related quantity is the thermodynamic divergence, or energy of the
curve, given by

J =
∑
i

∑
j

ˆ T

0

dθi
dt

[I(θ)]i,j
dθj
dt

dt.
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By Jensen's inequality, we have immediately that J ≥ L2. An interesting point,
that outlines the importance of these quantities, is the fact that the thermodynamic
divergence asymptotically bounds the dissipation induced by a �nite time transfor-
mation of a thermodynamic system [26, 24]. Hence, it is interesting here to study
some characteristics of the Fisher information along the escort-path. The general
study of the Fisher information on the escort-path with respect to a general param-
eter θ is interesting in its own right. However, in order to save space, we will focus
here on a special case. Let us still simply mention that when p0 is uniform, the re-
lated Fisher information is the escort-Fisher information which has been considered
in [27, 28, 29].

As we have seen, the generalized escort distribution describes a geometric path,
the escort-path, connecting distributions p0 and p1 for the values q = 0 and q = 1.
Clearly, the densities on the escort-path are characterized by the index q. Hence it is
quite natural to evaluate the distance between two densities on the path, as well as
the Fisher information with respect to q. Let us begin by a general expression of the
Fisher information on the path. Then, we will be able to link this Fisher information
to information divergences on the path.

Theorem 9. Let pq be the generalized escort distribution as in (8). Then, the Fisher

information with respect to q of the generalized escort distribution is given by

I(q) =

ˆ
1

pq(x)

(
dpq(x)

dq

)2

dµ(x) =

ˆ
dpq(x)

dq
log

p1(x)

p0(x)
dµ(x) (17)

provided that Er

[(
log p1

p0

)2]
is �nite for r in a compact neighborhood of q. The

Fisher information with respect to q can also be written as the variance of the log-

likelihood ratio:

I(q) = Eq

[(
log

p1(x)

p0(x)
− Eq

[
log

p1(x)

p0(x)

])2
]
. (18)

Proof. The second order moment condition on the log-likelihood ratio implies, by

Jensen inequality, that both Eq

[∣∣∣log p1
p0

∣∣∣] and Eq

[
log p1

p0

]
are �nite. Let us �rst

consider Mq(p1, p0) =
´
p1(x)

qp0(x)
1−qdµ(x). The integrand is clearly di�erentiable

with respect to q, and this derivative, which is equal to pq log
p1
p0

is continuous and is

absolutely integrable since Eq

[∣∣∣log p1
p0

∣∣∣] is �nite. Furthermore, by the second order

moment hypothesis, the last expression is also locally integrable with respect to q.
This enables to use Leibniz' rule and di�erentiate under the integral sign, which gives

d logMq

dq
=

ˆ
pq(x) log

p1(x)

p0(x)
dµ(x) = Eq

[
log

p1(x)

p0(x)

]
. (19)

Then, by direct calculation, we also have

dpq(x)

dq
= pq(x)

(
log

p1(x)

p0(x)
− Eq

[
log

p1(x)

p0(x)

])
, (20)
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which, inserted in the de�nition of the Fisher information in (17) gives (18).

By (20), we have that

ˆ ∣∣∣∣dpq(x)dq

∣∣∣∣ dµ(x) ≤ Eq [∣∣∣∣log p1p0
∣∣∣∣]+ ∣∣∣∣Eq [log p1p0

]∣∣∣∣ <∞. (21)

Moreover, by the second order moment hypothesis, (21) is also locally integrable with
respect to q. Since

´
pq(x)dµ(x) = 1, then by Leibniz' rule we get that d

dq

´
pq(x)dµ(x) =´ dpq(x)

dq dµ(x) = 0. Finally, the right hand side of (17) is obtained by using (20) and
the fact that

ˆ
dpq(x)

dq

d logMq

dq
dµ(x) =

d logMq

dq

ˆ
dp(x)

dq
dµ(x) = 0.

As a simple consequence, we can now check that η = D(pq||p0) is indeed a
monotone increasing function of q, as announced in section 2.

Corollary 10. Let pq be a generalized escort distribution, with q > 0, and as-

sume that Er

[(
log p1

p0

)2]
< ∞ for r in a compact neighborhood of q. Then η(q) =

D(pq||p0) is a strictly monotone increasing function of q, with

∂

∂q
η(q) = q I(q) > 0 (22)

Proof. Note that η(q) =
´
pq(x) log

pq(x)
p0(x)

dµ(x) = q
´
pq(x) log

p1(x)
p0(x)

dµ(x) − logMq.
Under the second order moment condition, one can di�erentiate under the integral
sign, take into account (19) and it remains

∂

∂q
η(q) = q

∂

∂q

ˆ
pq(x) log

p1(x)

p0(x)
dµ(x) = q

ˆ
dpq(x)

dq
log

p1(x)

p0(x)
dµ(x),

where we recognize the Fisher information in (17). Therefore, taking into account
the fact that both q and the Fisher information are positive, we get (22).

Finally, an important result is that the integral of the Fisher information, the
�energy� of the curve, is nothing but the Je�reys divergence. This result is mentioned
in [30]. Alternatively, this can also be obtained as a consequence of the general
integral representation of the Kullback-Leibler divergence [11, eq. 3.71]. We propose
here a direct proof of the result.

Theorem 11. Let pr and ps be two generalized escort distributions. Assume that

Eq

[(
log p1

p0

)2]
< ∞ for all q ∈ [r, s]. Then, the integral of the Fisher information
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along the escort-path, from q = r to q = s is proportional to Je�reys' divergence

between pr and ps :

(s− r)
ˆ s

r
I(q)dq = J(ps, pr) = D(ps||pr) +D(pr||ps). (23)

With r = 0 and s = 1, we get the integral along the whole path connecting p0 and p1,
that is ˆ 1

0
I(q)dq = J(p1, p0) = D(p1||p0) +D(p0||p1). (24)

Proof. The Fisher information is �nite on the escort path; therefore its integral over
a compact interval is also �nite. Let us integrate the right equality in (17):

ˆ s

r
I(q)dq =

ˆ s

r

ˆ
dpq(x)

dq
log

p1(x)

p0(x)
dµ(x) dq. (25)

Since I(q) is positive and
´ s
r I(q)dq �nite, it is possible to apply Fubini's theorem to

the right hand side of (25), and exchange the order of integrations. Thus, integrating
with respect to q yields

ˆ s

r
I(q)dq =

ˆ
(ps(x)− pr(x)) log

p1(x)

p0(x)
dµ(x). (26)

On the other hand, the divergence D(ps||pr) writes

D(ps||pr) = (s− r)
ˆ
ps(x) log

p1(x)

p0(x)
dµ(x)− logMs + logMr,

and similarly for D(pr||ps). Adding the two divergences and taking into account (26)
give the result (23).

Finally, let θi, i = 1..M denote a set of intensive variables, which are some
functions of the index q. Then, we have that d log p

dq =
∑M

i=1
∂ log p
∂θi

dθi
dq and the Fisher

information with respect to q can be expressed as

I(q) =

ˆ
p(x)

(
d log p(x)

dq

)2

dµ(x) =

M∑
i=1

M∑
j=1

dθi
dq

[I(θ)]i,j
dθj
dq

,

where I(θ) is the Fisher information matrix with respect to θ. Therefore, for the
escort-path we introduced, we obtain that the thermodynamic divergence is nothing
but the Je�reys divergence:

J =

ˆ 1

0
I(q)dq =

M∑
i=1

M∑
j=1

ˆ 1

0

dθi
dq

[I(θ)]i,j
dθj
dq

dq = D(p1||p0) +D(p0||p1). (27)

11



4. Inference of a distribution subject to q-moments constraints

In the last section of this paper, we investigate some relationships between escort-
distributions, information divergences, Fisher information and generalized Gaussians.
Let us return to the model of states transition as presented in section 2 that led us
to the generalized escort distribution (8) as the optimum intermediate between p0
and p1.

Assume that the distribution p1 is not exactly known but that the available
information is given as an expectation under the escort pq. This expectation is the
so-called generalized expectation, or q-average which is largely used in nonextensive
statistics, although it is generalized here with the presence of p0. In our context, it
has the clear meaning of an expectation with respect to the intermediate distribution
pq at a given distance of a reference p0, c.f. Theorem 5, or with a given entropy, c.f.
Corollary 6. Let the observable be given as the absolute moment of order α:

mα,q[p1] = Eq [|x|α] =
´
|x|αp1(x)qp0(x)1−qdµ(x)´
p1(x)qp0(x)1−qdµ(x)

. (28)

Typically, the observable could be a mean energy, where the statistical mean is
taken with respect to the escort distribution. Then, the question that arises is the
determination of a general distribution p1 compatible with this constraint.

One may keep the idea of minimizing the divergence to p1, as in the original
problem (7) which led us to the generalized escort distribution. Since the Kullback
divergence is a directed divergence, we shall keep the notion of direction by minimiz-
ing D(pq||p1) for q < 1 and D(p1||pq) for q > 1. In both cases, the divergence is an
a�ne function of the Rényi divergence Dq(p1||p0), c.f. (15). Therefore, these mini-
mizations are �nally equivalent to the minimization of the Rényi divergence under
the generalized mean constraint.

In the same vein, we may consider the minimization of the symmetric Je�reys'
divergence between pq and p1. We have noticed (16) that this divergence is also an
a�ne function of the Rényi divergence Dq(p1||p0). Therefore, its minimization is also
equivalent to the minimization of the Rényi divergence under the generalized mean
constraint.

Finally, a natural idea is to select the distribution p, thus its escort pq, so as to

minimize the thermodynamic divergence
´ 1
q I(t)dt or

´ q
1 I(t)dt from pq to p, while

satisfying the constraint (28). We have seen that Je�reys' divergence J(p1, pq) is
proportional to the thermodynamic divergence, as indicated in (23). As a conse-
quence, the minimization of the thermodynamic divergence between pq and p1 is
also equivalent to the minimization of the Rényi information divergence Dq(p1||p0).

It is known [6] that the maximization of Rényi entropy subject to generalized q-
moments constraints, or equivalently of Tsallis entropy under the same constraints,
leads to generalized Gaussian distributions. As far as the minimization of the Rényi
information divergence is concerned, a direct proof based on a simple inequality can
be derived along the lines in [31, Appendix 1] or in [32, Proposition 4]. Therefore,
we have the following result.

12



Proposition 12. Among all distributions with a given q-moment of order α as

in (28), the distribution p with minimum thermodynamic divergence, or equivalently

which minimizes Je�reys' or Rényi divergence to its escort, is a generalized Gaussian

distribution given by

p(x) =

 1
Zq(γ)

(1− (1− q)γ|x|α)
1

1−q

+ p0(x) for q 6= 1
1

Z1(γ)
exp (−γ|x|α) p0(x) for q = 1,

(29)

where we use the notation (x)+ = max {x, 0} , and where Zq(γ) is the normalization

factor.

When p0 is uniform the distribution becomes the standard Gaussian distribution,
for α = 2, in the limit case q = 1, by l'Hôpital's rule. This gives the rationale for
the denomination of �generalized Gaussians�. For q < 1, the probability density has
a compact support, while for q > 1, the probability density has heavy tails with
a power-law behavior and is analog to a Student distribution. These generalized
Gaussians appear in statistical physics, where they are the maximum entropy distri-
butions of the nonextensive thermostatistics [6]. In this context, these distributions
have been observed to present a signi�cant agreement with experimental data, and
also to be the analytical solution of actual physical problems [33, 34], [35]. In an
other �eld, the generalized Gaussians are the one dimensional instances of explicit
extremal functions of Sobolev, log-Sobolev or Gagliardo�Nirenberg inequalities on
Rn, with n ≥ 2 [36].

Finally, let us close this paper with the example of a q-variance constraint, i.e.
m2,q[p] = σ2q , with p0(x) = 1 and µ the Lebesgue measure. We have seen that among
all distributions with a given di�erential entropy, the standard escort distribution
pq minimizes the Kullback-Leibler divergence to p, for some value of the index q
(Proposition 6). If p is free but its escort is known to have a given variance, then the
distribution p which minimizes the thermodynamic divergence or Je�reys' divergence
(Proposition 12), or equivalently that maximizes the Rényi entropy, is the generalized
Gaussian (29) with α = 2. In this setting, pq is located at the intersection of the
set of distributions with a given variance and of the set of distributions with a given
Shannon di�erential entropy. When q varies, the optimum distributions follow a path
indexed by q which is nothing but the path followed by the generalized Gaussians,
with compact support for q < 1 and in�nite support for q > 1. In the limit case q = 1,
we obtain a standard Gaussian distribution, which is its own escort distribution, and
that has the maximum entropy among all escort distributions with the same variance.
These situations are illustrated in Figure 2.

5. Conclusions

In this paper, we have presented a simple probabilistic model of transition be-
tween two states, which leads naturally to a generalized escort distribution. This
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Figure 2: Path of distributions with maximum Rényi entropy and �xed q-variance.
For each value of q, the optimum distribution p whose escort pq has a given variance
is a generalized Gaussian. Thus, when q varies, the path followed by p is the manifold
of generalized Gaussians with index q.

generalized escort distribution enables to describe a path, the escort-path, that con-
nects the two states. Then, we have connected several information measures, and
studied their evolution along the escort-path. In particular, we have obtained that
the Rényi information divergence appears naturally as a characterization of the tran-
sition, and that the notion of escort mean values, as used in nonextensive thermo-
statistics, receives a clear interpretation. We have studied the properties and the
evolution of Fisher information along the escort-path. In particular, we have shown
that the thermodynamic divergence on the escort-path is a simple function of Jef-
freys divergence. We have also considered the problem of inferring a distribution
on the escort-path, subject to a moment constraint on its escort. Looking for the
distribution as the minimizer of the thermodynamic divergence, we have shown that
this procedure is equivalent to the minimization of Rényi divergence subject to a
q-moment constraint, which gives a rationale for this approach. Finally, we have
recalled that generalized Gaussian distributions arise as solutions of the previous
problem.

Beyond the intrinsic interest of our geometric construction, which enables to
connect several quantities of information theory, we have also pointed out possible
connections with �nite thermostatistics. Furthermore, we have indicated that our
�ndings interrelates several ingredients of the nonextensive statistics. Let us also
add that the literature usually points out that the standard entropy (or divergence)
is a particular case of generalized Rényi or Tsallis entropies. Our setting suggests
a possible additional layer where the generalized quantities are derived from a con-
struction involving the classical information measures. Therefore, we believe that
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the presented construction, and the series of observations we made can be useful
to workers in this �eld. Future work should consider the extension of this setting
in the multivariate case. In future work, we plan to look for possible connections
with �nite time thermodynamics. We also intend to study the information theo-
retic relationships between generalized moments, Fisher information and generalized
Gaussians.
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