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Abstract

This paper address the problem of obtaining from one

web camera and a computer display, a facial reconstruction

of the user within online messaging applications.

In this paper we present a 3D shape recovery in real time

based on the photometric information of a set of 4 images

under varying illumination conditions. Our GPU imple-

mentation provides online realistic 3D face recontructions.

1. Introduction

Enjoy three-dimensional entertainment at home is in-

tend to be one of the new promising communication ser-

vices. The development of digital TV and autostereoscopic

display allow to easily insert stereoscopic technologies at

home. We expect in a near future that every household will

be equipped with such equipments. In that way we designed

a 3D reconstruction application based on cheap and acces-

sible devices that allows users to communicate via online

applications with a 3D perception of their interlocutor, as

shown is Figure 1 by only means of a computer screen and

a web camera.

1.1. 3D reconstruction

There exist various techniques to perform 3D reconstruc-

tion from videos. Some of them can work in real-time and

most of them require several calibrated cameras. Depth

from stereo methods [10] compute a disparity map from

point correspondences. The visual hulls [8] method extracts

the silhouette of the main object of the scene on the images

from every camera. The 3D shape of this object is then ap-

proximated by the intersection of the projected silhouettes.

The plane-sweep algorithm can compute a 3D reconstruc-

tion of the scene in real-time [9] using a discretisation of the

scene with parallel planes.

Figure 1. 3D facial reconstruction.

Some other methods can perform a 3D reconstruction

from a single camera. Optical flow methods [7] analyze

the motion of the object of the scene to recover the 3D in-

formation. Finally, 3D reconstruction can be performed by

Radiometric techniques. These methods require several im-

ages of the same scene under different lighting condition to

extract the 3D shape of the scene. Since our method belongs

to the latter family, we expose the related works on the next

section.

1.2. Previous Work

In the past decades, intense interest in photometric stereo

problem has produced many excellent works for establish-

ing the theoretical part. The idea of photometric stereo, first

introduced by Woodham [12], is to determine the surface



orientation at each point by varying the direction of inci-

dent illumination while holding the same point of view.

The main and difficult part is to find a way to map the

RGB intensity to a normal map. To overcome this issue, ex-

perimental methods have been investigated by Christensen

and Shapiro [1] and Hertzmann and Seitz [6]. They build

for each material surface a look-up table with general re-

flectance properties. The main drawback of these methods

concern the assumption that objects have homogeneous sur-

faces, which is not workable for complex objects. However

they proposed a full segmentation into different materials.

More recently, Hernandez and al. [5] have presented

work on using spatially separated red, green and blue light

sources to estimate a dense depth map from a untextured

non-rigid surface. By using a calibration tool, a mapping

RGB intensity to normal map is provided, and thus, the

depth map is obtained by integration of the normal map.

From the small baseline multi-flash camera used in [2] is

possible to compute first the depth edge. In fact the flash il-

lumination allows to measure the cast shadow width. Based

on this measurement a gradient map field is provided which

is integrated by using a Poisson equation.

As previously seen, the knowledge of the lighting condi-

tions are commonly necessary. Hallinan [4] overcomes the

issue of not knowing the lighting conditions by proposing a

low-dimensional illumination representation of human face

under arbitrary light conditions. Given a set face image, the

lighting conditions are estimated by using principal compo-

nents in an image basis.

Finally, for biochemistry purpose a simple system has

been proposed by Filippini and al. [3] consisting in using a

computer screen as a programmable light source, working

with a web camera which captures the visible absorption

features of samples as chemical image.

The rest of the paper is organized as follows: in Sec-

tion 2, each steps of the 3D geometry recovery from input

images are discussed. Section 3 describe the real time im-

plementation on GPU. Finally the results are presented in

Section 4, and conclusion are discussed in Section 5.

2. Our Approach

In this section we present in details the recovery of the

3D structure of an human face by photometric means. By

using four light sources via the computer screen, as show

the input image in Figure 2, the normal surface map are

estimated by using an image basis issue from the lighting

conditions. And then, the depth map are computed from the

normal surface map integration.

2.1. Lighting from the screen

The computer screen is used as a large programmable

light source area and provides various lighting conditions

(a) Left (b) Top (c) Right (d) Bottom

Figure 2. Input images under varying illumination.

for the photometric reconstruction. The illuminated scene

is captured by a camera attached on the screen and a recon-

struction is performed for every new captured frame. In-

deed, the new image is transfered to the system and added

to the latest captured images set. To optimize the quality of

the reconstruction, every image of the set should be taken

under different lighting condition and the number of im-

ages should be as big as possible. However, using too much

images with a dynamic scene will lead to a latency on the

reconstruction process since every image should correspond

to the same scene geometry. Moreover, using too much im-

ages may increase the computation time and prevent from

real-time rendering. Considering these constraints, using

four input images and hence four lighting conditions seems

to be a good compromise. To ensure enough lighting, the

light source should not be punctual and since the light di-

rection should be roughly known, we choose to illuminate

alternatively every top, right, bottom and left half part of the

screen, as shown on Figure 3.

(a) Left (b) Top (c) Right (d) Bottom

Figure 3. Different lighting conditions on the computer screen.

As mentioned above, the system do not have to wait for

four new views between two consecutive reconstructions.

The latest captured image will update the image set by re-

placing the existing image under the same lighting condi-

tion. Naturally, this approach involves synchronization be-

tween the screen and the camera.

Finally, the ambient light of the scene should be reduced

to the minimum to maximize the screen light contribution.

2.2. Surface normal map

Given an image of a scene, a surface normal map as-

sociates a surface normal vectors to every pixel of the im-

age. As presented by [13], the Singular Value Decomposi-

tion (SVD) can be used to compute a surface normal map

from a set of N images Ij (j = 1...N ) of dimension width

× height. The N input images are converted to grey scale

images and considered as one dimensional arrays. A matrix

A with N rows and width × height columns is defined



such every row of A corresponds to an input image. The

SVD of AA⊤ provides a set of eigen vectors that determines

for every pixel the contribution coefficient of the input im-

ages to create the normal map. According to the big size

of AA⊤, the computation time required for the SVD may

prevent from real-time rendering. An alternative to this ap-

proach is to compute the SVD of A⊤A which is a N × N

matrix. This approach is much faster however the eigen

vector information is common for every pixel of the image.

Since every input image is different, the SVD of A⊤A

will provide N orthogonal eigen vectors. The eigen vector

associated to the biggest eigen value corresponds to the z-

axis. The two next biggest eigen values correspond to two

others orthogonal directions. Since we arranged our light

system to be oriented only in vertical and horizontal direc-

tions, these two eigen values will correspond to the x and y

image axis. We can identify which of the two eigen vectors

corresponds to the x and y axis by comparing the provided

coefficient for every input image. The x axis eigen vec-

tor will provide a high coefficient for the images associated

with the left and right lighting while the y axis eigen vector

will give high values for the top and bottom lighting. To

check the identification, the ith component of the x, y and

z eigen vectors should correspond to the light orientation of

the image of the ith line of A.

(a) X component (b) Y component

Figure 4. Example of normal surface map.

Finally, for every pixel of the camera image, we com-

pute a normal vector. The x component (respectively the y

and z component) is given by the dot product of the x axis

eigen vector (respectively the y and z vector) with the col-

umn of A corresponding to the current pixel as shown in

Figure 4. For the depth map recovery, the normal vectors

should be normalized however since the eigen vectors of

A⊤A are common for all the pixels, some resulting normal

vectors may be null. These vectors should be detected to

avoid mistakes during the depth map recovery process.

2.3. Depth map computation

The depth value z = zi,j of a object at the pixel position

(i, j) can be determined using an iterative scheme under K

iterations k = 1..K using the following equation :

zk+1

i,j =
1

4
[zk

i+1,j + zk
i−1,j + zk

i,j+1 + zk
i,j−1

− pi,j + pi−1,j − qi,j + qi,j−1]
(1)

Where p and q correspond to the normal map in x and y

direction.

As suggested by [11], we choose to solve this equation

using Gauss-Seidel method. Indeed, even if an iterative

method does not guarantee the best accuracy, it presents

the advantage to accept as an initial solution the depth map

of the previous frame, which leads to a fast convergence.

Moreover, Gauss-Seidel relaxation is very well suited to be

implemented on GPU since every pixel can be processed si-

multaneously. Finally, to ensure a constant reference depth

for all the reconstructions, the relaxation process is not ap-

plied on the corners of the depth map (Figure 5).

Figure 5. Depth map.

3. Implementation

For each new reconstruction, a new black and white pat-

tern is displayed on the screen. Then, the scene is captured

by the camera. The camera-screen synchronization is a crit-

ical issue to solve, especially with webcams using streaming

mode. In our system, we used Video for Linux and used a

read method that waits until it receives the queried image.

This approach is not slower than the streaming method and

contributes to an accurate synchronization.

The latest grabbed image is converted in grey scale and

inserted in the matrix A. Since the camera and the screen

are synchronized, we know the image lighting conditions

and thus can insert this image on the corresponding line

of A. Hence, this method prevents from inserting in A two

images with the same light conditions. The A⊤A matrix

does not require a full computation to be updated. Actually,

only one row and one column should be updated and since

A⊤A is symmetric, these row and column can be updated

simultaneously.



The eigen vectors and surface normal maps are com-

puted on the CPU and transfered to the GPU for the relax-

ation step. The Gauss-Seidel iterations are performed off-

screen by the GPU using frame buffer object (FBO). Two

textures are used alternatively to contain the depth map of

the previous iteration or to be attached to the FBO for the

current iteration rendering. The relaxation process uses the

equation presented on section 2.3.

Finally, a dense flat mesh is projected on the screen. Ev-

ery vertex depth is modified according to the depth map us-

ing a vertex program. Then the meshes are multi-textured

with the four input images with a fragment program.

This method does not require any transfer of the depth

map between the GPU and the main memory.

4. Results

We have implemented our system on a PC Intel core duo

1.86 GHz with an nVidia GeForce 7900 GTX. The video

acquisition is performed by one USB Logitech fusion web

camera connected to the computer. With a 320×240 reso-

lution, the acquisition frame rate reaches 15 frames per sec-

ond. All the computations are make within the image size

of 320×240 pixels.

The GPU parallelism computation allows for the depth

map recovery over 100 iterations to obtain a convergent so-

lution with Gauss-Seidel. During our tests, the fps limita-

tions is only due the web camera hardware limitations.

For more accuracy, the subject should be far from the

camera to produce an orthographic projection. A distance

trade-off is made such the subject can receive enough light

from the screen. Figure 6 depicts some 3D reconstruction

performed in real-time.

Figure 6. 3D geometry surface recovery: (left) input image, (right)

3D surface.

5. Conclusion

In this paper we present a real time implementation on

GPU of a 3D facial reconstruction destined to home use

public application by simply using a standard web camera

and the computer screen. By knowing the light conditions,

it’s possible to reconstruct the 3D geometrical surface with

only one webcam.

Thanks to our GPU implementation of the relaxation

step and the multi-texturing blending, this method can reach

real-time rendering.

However a limitation of this method concerns the screen

light contribution that must be predominant over the ambi-

ent light.
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