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émanant des établissements d’enseignement et de
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Abstract. At its building, the theoretical new railway line is supposed to be made of perfect
straight lines and curves. This track geometry is however gradually damaged and regularly
subjected to maintenance operations. The analysis of thesetrack irregularities is a key issue
as the dynamic behaviour of the trains is mainly induced by the track geometry. In this con-
text, this work is devoted to the development of a stochasticmodeling of the track geometry
and its identification with experimental measurements. Based on a spatial and statistical de-
composition, this model allows the spatial and statisticalvariability and dependency of the
track geometry to be taken into account. Moreover, it allowsthe generation of realistic track
geometries that are representative of a whole railway network. These tracks can be used in
any deterministic railway dynamic software to characterize the dynamic behavior of the train.

Keywords: Karhunen-Loève Reduction, Polynomial Chaos Expansion, Random fields, Rail-
way Track Geometry.

1. INTRODUCTION

High speed trains are currently meant to run faster and to carry heavier loads, while
being less energy consuming and still respecting the security and comfort certification criteria.
To face these new challenges, a better understanding of the interaction between the dynamic
train behavior and the track geometry is of great concern.

The track-vehicle system being strongly non-linear, this dynamic interaction has there-
fore to be analyzed not only on a few track portions, but on most of the running conditions
that, during its lifecycle, the train should be confronted to.



In reply to these expectations, the measurement train IRIS 320 has been running con-
tinuously since 2007 over the French railway network, measuring and recording the track
geometry of the main national lines. Based on these experimental measurements, this pa-
per develops a methodology to parameterize the physical properties as well as the variability
of the track geometry. This modeling allows the numerical generation of track geometries
that are physically realistic and statistically representative of a whole railway network. These
tracks can be used as the input of a deterministic railway dynamic software to characterize the
stochastic dynamic behavior of the train.

2. STOCHASTIC MODELING OF THE TRACK GEOMETRY

This section is devoted to the description of the track geometry modeling.

2.1. Track parametrization

Let R0 = (O,X0,Y0,Z0) be the inertial reference frame. A railway trackT , of total
lengthStot, is built up of two rails, which can be modeled inR0 as two parallel curves. Let
ONT be the mean position of the new track (without irregularities), which allows us to define
the track curvilinear abscissa0 ≤ s ≤ Stot, such that:

Stot =

∫ Stot

0

√
‖ONT(s)‖2ds. (1)

As it has been presented in Section 1, a double scale parametrization is adopted in
this paper to characterize the track geometry. Each rail position Rℓ/r (ℓ refers to the left
rail whereasr refers to the right rail) is written as the sum of a mean positionM ℓ/r, which
only depends on the curvilinear abscissias, the track gaugeE, the vertical and horizontal
curvaturescV and cH and the track superelevationcL, and a deviation towards this mean
positionIℓ/r, which only depends on the track irregularities vectorX :

Rℓ/r(s) = M ℓ/r (s) + Iℓ/r (s) . (2)

The irregularities appearing during the track lifecycle are of four types (see Figure 1):
lateral and vertical alignment irregularitiesX1 andX2 on the one hand, cant deficienciesX3

and gauge irregularitiesX4 on the other hand, such that:

M ℓ/r(s) = ONT(s)±
E

2
N(s), (3)

Iℓ/r(s) = {X2(s)±X3(s)}B(s) + {X1(s)±X4(s)}N(s), (4)

where(ONT(s),T(s),N(s),B(s)) is the Frenet frame. As the mean line description is chosen
at the building of a new railway line for economical and political reasons, the present work
focus on the description of the modeling of track irregularities vectorX = (X1, X2, X3, X4).



Figure 1. Parametrization of the track irregularities (foreach rail, the mean position is repre-
sented in black, whereas the real position is in grey).

2.2. Theoretical frame

Let (Θ, C, P ) be a probability space. LetH be the space of all the second-order random
variables defined on(Θ, C, P ) with values inR4, equipped with the inner product〈., .〉, such
that for allU andV in H,

〈U ,V 〉 =
∫

Θ

UT (θ)V (θ)dP (θ) = E
{
UTV

}
, (5)

whereE {.} is the mathematical expectation.
In this paper, a local-global approach is introduced, whichimplies that the whole track

geometryT of lengthStot can be seen as the concatenation ofνexp independent track portions
of same lengthS, such thatStot = νexpS. The lengthS plays thus a key role in the modeling
procedure and has to be carefully chosen.

Therefore, we consider in this paper that track irregularities vectorX can be modelled
by a second-orderR4-valued stochastic processX = (X1, X2, X3, X4), indexed bys ∈ Ω =

[0, S], whose realisations are almost surely in the Hilbert spaceL2(Ω,R4) equipped with the
inner product(., .):

(u, v) =

∫

Ω

uT (s)v(s)ds, ∀u, v ∈ L2(Ω,R4). (6)

It is assumed thatX is mean-square continuous, and that its mean valueE {X(s)}
is zero. From the experimental measurements,νexp track portions

{
x1, · · · ,xνexp

}
of same

lengthS are extracted, which defines the maximum available information for the stochastic
modeling. It has to be noticed that gathering all the irregularities in the same vector,X, and
adopting a vectorial approach certifies that the inner dependencies between different irregu-
larity fields are accurately taken into account.



2.3. Truncated Karhunen-Loève expansion

For all (s, s′) ∈ Ω2, let [RXX(s, s′)] = E
{
X(s)XT (s′)

}
be the autocorrelation

matrix of random fieldX. Under the asumptions above,[RXX ] is continuous onΩ × Ω,
positive-definite and can be written as:

[RXX(s, s′)] =
∑

k≥1

λku
k(s) uk T

(s′), (7)

where
(
λk,u

k
)

is an orthonormal basis ofL2(Ω,R4) solution of the Fredholm equation (see
[1] and [2] for further details). The valuesλk are non-negative, and can be arranged in decreas-
ing order:λ1 ≥ λ2 ≥ · · · → 0. The truncated Karhunen-Loève expansion of the stochastic
processX is then:

X(s) ≈ X̂(s) =
Nx∑

k=1

√
λku

k(s)ηk, (8)

ηk =
1√
λk

(
X,uk

)
, (9)

whereNx is related to a chosen value of the normalized mean-square error:

ǫ2 = E
{(

X − X̂,X − X̂
)}

=

∑
k>Nx

λk

E {(X,X)} . (10)

Equations (7) and (8) imply that, for1 ≤ k, ℓ ≤ Nx:

E {ηkηℓ} = δkℓ. (11)

For a given value ofNx, it can be shown that projection basis
{
uk, 1 ≤ k ≤ Nx

}
is

optimal in the sense that it minimizes errorǫ2 among the set of all theNx-elements basis.
Moreover, thanks to this expansion, spatial and statistical correlations are clearly separated.
Whereas

{
uk, 1 ≤ k ≤ Nx

}
emphasizes the predominant track irregularity spatial shapes,

η = (η1, · · · , ηNx
) characterizes the statistical variability ofX. In order to fully describe

track irregularity vectorX, the statistical content ofη, and more specially its joint probability
density function (PDF)pη has to be focused on.

2.4. Polynomial Chaos Expansion

From theνexp track portions
{
x1, · · · ,xνexp

}
, νexp independent realizations, that we

call {η(θ1), · · · ,η(θνexp)}, of η can be deduced as:

∀ 1 ≤ k ≤ Nx, 1 ≤ i ≤ νexp, ηk(θi) =
1√
λk

(
xi,uk

)
. (12)

The fact thatE {X(s)} = 0 and Eq. (11) imply two constraints on joint PDFpη of η:

E {η} = 0, E
{
ηηT

}
= [INx

], (13)

where[INx
] is theNx-dimension identity matrix. Therefore, random variablesη1,...,ηNx

are
statistically orthogonal, but are generally not independent. Two kinds of methods can be used



to build such a PDFpη: the direct and the indirect methods. The indirect methods allow the
construction of the PDFpη of the considered random vectorη from a transformationH of a
known PDFpξ of a random vectorξ =

(
ξ1, ..., ξNg

)
of given dimensionNg ≤ Nη:

η = t (ξ) , pη = T (pξ) . (14)

The construction of the transformationt is thus the key point of these indirect meth-
ods. In this context, the isoprobabilist transformations such as the Nataf transformation (see
[3]) or the Rosenblatt transformation (see [4]) have allowed the development of interesting
results in the second part of the twentieth century but are still limited to very small dimen-
sion cases. Nowadays, the most popular indirect methods arethe polynomial chaos expansion
(PCE) methods, which have been first introduced by Wiener [5]for stochastic processes, and
generalized by Ghanem and Spanos ([6] [7]). The PCE is based on a direct projection of the
random vectorη on a chosen orthonormal basisBorth =

{
ψα(ξ),α ∈ N

Ng
}

of its probability
space, such that:

ξ 7→ ψα(ξ) = Xα1
(ξ1)⊗ ...⊗XαNg

(ξNg
), (15)

wherex 7→ Xαℓ
(x) is the normalized polynomial basis of degreeαℓ associated to the PDFpξℓ

of the random variableξℓ, andα is the multi-index of the multidimensional polynomial basis
elementψα(ξ).

In practical terms, the PCE projection has to be truncated. Two truncation parameters
are usually introduced in this prospect: we defineNg as the maximal size of PCE germξ and
p as the maximal polynomial order of the elements of the orthogonal basisBorth, which allows
us to approximateη by its truncated PCE expansionηchaos(Ng, p):

η ≈ ηchaos(Ng, p) = E {η}+
∑

α∈Ap

y(α)ψα(ξ) = E {η}+ [y]Ψ(ξ), (16)

Ap =

{
α =

(
α1, ..., αNg

)
| 0 < |α| =

Ng∑

i=1

αi ≤ p

}
, (17)

whereN = (Ng + p)!/(Ng! + p!) − 1 is the dimension ofAp. The values ofNg andp have
to be identified according to an analysis of convergence. It can be noticed that the conditions,
defined by Eq. (13) can be rewritten as:

ηchaos(Ng, p) = [y]Ψ(ξ), [y] ∈ Õ =
{
[b] ∈ MNx,N(R) | [b][b]T = [INx

]
}
. (18)

Based on the maximum likelihood principle, and theνexp independant realisations
{η(θi), 1 ≤ i ≤ νexp} of η, a good approach to identify PCE coefficient matrix[y] is to search
it as the result of the maximization problem:

[y] = argmax
[y]∈Õ

L ([y]) , (19)



whereL is the evaluation of the log-likelihood function ofηchaos(Ng, p) at the experimental
points{η(θi), 1 ≤ i ≤ νexp}. AsL is non concave, random maximization algorithms have to
be used to compute numerically[y]. The optimization problem, defined by Eq. (19) is now
supposed to be solved with the advanced algorithms described in [8] and [9].

2.5. Generation of a whole track geometry

Once projection basis
{
uk, 1 ≤ k ≤ Nx

}
and PCE coefficient matrix[y] have been

identified, the irregularity vectorX can be expressed as:

∀ s ∈ Ω, X(s) ≈ X̃ (s, ξ) =

Nx∑

k=1

N∑

j=1

√
λku

k[y]kjΨj(ξ). (20)

The elements
{
uk, 1 ≤ k ≤ Nx

}
and matrix[y] are both deterministic, whereasξ

is a random vector whose distribution is known. Hence, each realization ofξ leads us to
the computation of a realistic and representative track geometry of lengthS. Thanks to the
local-global approach, described in Section 2.2, a whole track geometry of lengthStot =

NT S (NT can be smaller or greater thanνexp),
{
X tot(s), s ∈ [0, Stot]

}
, can therefore be

constructed fromNT copiesX̃(ξ(1)), · · · , X̃(ξ(NT )) of track irregularity stochastic process{
X̃(s, ξ), s ∈ [0, S]

}
, such that:

∀ 1 ≤ n ≤ NT , ∀ s ∈ [S (n− 1) , Sn], Xtot(s) = X̃(s, ξ(n)). (21)

However, for each particular realizationXtot(Θ) of X tot, a particular attention has
to be paid at the interface between the different realizationsX̃(ξ(1)(Θ)), · · · , X̃(ξ(NT )(Θ)).
Indeed, these jonctions have to guarantee the continuity ofthe track irregularity vector and at
least the continuity of its first and second order spatial derivativesẊ

tot
andẌ

tot
, but also the

continuity of their statistical moments to avoid an artificial perturbation for the train dynamics.
This continuity at the jonction between track portions of lengthS is therefore guaranteed by
drawingξ(1)(Θ) according to its chosen distribution,Pξ, and for all2 ≤ n ≤ NT , by drawing
realizationsξ(n)(Θ) according to the conditional probability

PC
ξ

(
X̃(S, ξ(n−1)(Θ)),

˙̃
X(S, ξ(n−1)(Θ)),

¨̃
X(S, ξ(n−1)(Θ))

)

= P
(
ξ(n) ∼ Pξ | X̃(0, ξ(n)(Θ)) = X̃(S, ξ(n−1)(Θ)),

˙̃
X(0, ξ(n)(Θ)) =

˙̃
X(S, ξ(n−1)(Θ)),

¨̃
X(0, ξ(n)(Θ)) =

¨̃
X(S, ξ(n−1)(Θ))

)
.

(22)

Therefore, the proposed stochastic modeling allows us to generate realistic track ge-
ometries of lengthStot = NT S that are representative of the whole considered network.

3. APPLICATION

In this section, the previously described methodology is applied to the characterization
of the track geometry variability of the French high speed line between Paris and Marseille.



Figure 2. Representation of(s, s′) 7→ [RXX(s, s′)]11

This study being confidential, only normalized values are presented.

3.1. Evaluation of the autocorrelation matrix

For this study,νexp = 1850 track irregularity measurements,{xi, 1 ≤ i ≤ νexp}, of
same lengthS have been gathered, which allows us to estimate the autocorrelation matrix
[RXX(s, s′)] as:

[RXX(s, s′)] ≈ 1

νexp

νexp∑

i=1

xi(s)xi(s′)T . (23)

As an illustration, matrix[RXX(s, s′)]11 is represented in Figure 2.

3.2. Karhunen-Loève expansion

The solutions(u, λ) of the Fredholm equation were then computed thanks to a Finite
Element approach. Given acceptable values of truncation for the mean-square errorǫ2 (10%
in our study) of Eq. (10) (for which evolution is representedin Figure 3), truncation parameter
Nx of Eq. (8) is identified:

ǫ2 = 10% ↔ Nx = 452. (24)

From Eq. (12), theνexp realisations{η(θi), 1 ≤ i ≤ νexp} of η are computed. In
Figure 4, the PDF ofη1, η2 andη3 are represented and compared to the normal distribution.
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It can therefore be noticed that the marginal distributionsof η are non-Gaussian: the random
processX is thus non Gaussian. Its joint PDF has therefore to be properly characterized.

3.3. Polynomial Chaos Expansion

As presented in the former section,η is projected on a known truncated polynomial
basis, which is expressed with respect to two truncation parametersNg andp:

η ≈ ηchaos(Ng, p) = [y]Ψ
(
ξ1, ..., ξNg

)
, (25)

where[y] is solution of Eq. (19).
The values ofNg etp have to be identified according to a convergence analysis. Inthis

prospect, the followingL1-log error functionerrk is introduced:

∀1 ≤ k ≤ Nx, errk(Ng, p) =

∫

BIk

|log10 (pηk(x))− log10

(
pηchaos

k
(x)

)
|dx, (26)
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where:

• BIk is a bounded domain which has to be adapted to the values ofηk;

• pηk andpηchaos
k

are the PDFs of the elementsηk andηchaosk (Ng, p) of random vectorsη
andηchaos

k (Ng, p) respectively.

The final values ofNg andp are then deduced from the convergence of the multidimen-
sional error functionerr(Ng, p), which is expressed with respect to the former unidimensional
L1-log error functions:

(Ng, p) = arg min
N∗

g ,p
∗
err(N∗

g , p
∗), (27)

err(Ng, p) =
Nx∑

k=1

errk(Ng, p). (28)

Figure 5 shows the convergence of this error. Hence, the truncation parametersNg and
p are chosen respectively equal to3 and26, such that the size of the PCE basis,N , is equal to
3654.

3.4. Generation of representative track geometries

According to Section 2.5, once deterministic matrix[y] has been computed, one can
generate track geometries that are realistic and representative of the high speed line between
Paris and Marseille. As an illustrution, a particular extract of lengthS of complete track
geometry is represented in Figure 6. This graph has been centered at abscissas = 3S/2,
that is to say at the jonction between the two first track portions. In order to allow a better
visualization of the results, the four components of the track irregularity vector have been
represented in the same graph, but their values have been shifted.
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4. CONCLUSIONS

At a time when the numerical power and the mechanical simulation algorithms pre-
cision keep increasing, the introduction of the simulationin the railway maintenance and
certification would represent an important progress. The numerical characterization of the
track geometry is therefore bound to play a key role in this evolution.

From a sample of track measurements, a complete methodologyto generate realistic
and representative track geometries has been described in this paper.

Coupled with any railway software without requiring an access to the sources codes,
these track geometries makes up a very useful database to analyze the complex link between
the train dynamics and the physical and statistical properties of the track geometry.
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