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A SURVEY OF MISSION OPPORTUNITIES TO
TRANS-NEPTUNIAN OBJECTS - PART 7: UTILIZATION OF A

DELTA-VEGA MANEUVER

Colter W. Russell,1 Christopher J. Busic,2 Andrew M. Farris,3 Jeongmin A.
You,4 Raj V. Patel,5 and James E. Lyne6

Trans-Neptunian Objects have gained interest in lieu of the success of the New
Horizons mission. This paper seeks to further the design possibilities for such
missions by offering sixteen trajectories to TNO’s by incorporating a
Delta-VEGA maneuver, which allows for increased payload mass. These
trajectories were simulated using Spaceflight Solution’s Mission Analysis
Environment software, which allowed for constraining of mission parameters for

optimization. The trajectories were made to have a C3 below 40 , minimized𝑘𝑚2

𝑠2

transit time, and minimized ΔV. Results are visualized in Figures 3-6 as well as
Table 1, which contain all relevant descriptive parameters.

NOMENCLATURE

C3 = Characteristic energy
ΔV = Change in velocity
mo = Initial mass of vehicle
mf = Mass of vehicle post-flight
Isp = Specific impulse
go = gravitational acceleration

INTRODUCTION

Launched in 2006, the New Horizons mission to Pluto and Kuiper Belt object 2014 𝑀𝑈
69

has been, as of this paper's writing, the only spacecraft launched with the intent of exploring a
trans-Neptunian object (TNO). The results of the successful January 1, 2019 flyby of the TNO
have sparked a myriad of studies such as that by S. A. Stern et al., which highlight the unique
orbital and geological characteristics of the body, as well as postulate the origins of such objects.13

The insight provided by these results, combined with the ever-increasing catalog of TNO’s
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spanning the Kuiper Belt region, are likely to inspire interest in additional missions to such
objects. As such, the creation of mission profiles utilizing a myriad of trajectory strategies in the
coming decades is warranted, and research into trajectory design possibilities for TNO’s has been
previously outlined by our research group in Mcgranaghan,1 Gleaves,2 Kreitzman,3 Baskaran,4

Johnson,5 and Peralta6 under the mentorship of J. E. Lyne.
As a derivative of these previous works, this research proposes a suite of flyby mission

profiles which include the implementation of a Delta-V Earth Gravity Assist (ΔVEGA) maneuver
to sixteen TNO’s. The objects were selected due to either their unique physical characteristics or
proximity to our Solar System in the coming decades. While the ΔVEGA was first suggested by
Stancati et al. as a means of lowering characteristic energy requirements for trips to the outer
planets,13 little has been written regarding their application to missions to Kuiper Belt objects. As
such, this maneuver was integrated into our trajectory creation strategy with the intent of:
decreasing required characteristic energy (C3), decreasing overall mission ΔV requirements, and
increasing available spacecraft mass. While coming at the expense of increased transit time over
previous approaches investigated, the ΔVEGA trajectories offer future mission planners a diverse
design space in which various spacecraft/launch vehicle combinations could be employed due to
the greater possible spacecraft mass at their disposal. As was the case in previous papers
produced by this group, the large heliocentric distances of the TNO’s selected would render
photovoltaic cells impractical, and a radioisotope thermo-electric generator (RTG) would be used
as the power source for such missions.

The primary scientific goals of any of the candidate missions proposed in this piece are,
at minimum, similar to that of the New Horizons Mission: 1) characterization of the global
geology and morphology of the target planet, 2) mapping its surface composition and
temperature, and 3) evaluation of any possible atmosphere. Therefore, a baseline set of
instrumentation of such spacecraft would include a visible and infrared imager/spectrometer, an
ultraviolet imaging spectrometer, a telescopic camera, an energetic plasma spectrometer and a
solar wind and plasma spectrometer. This being said, the additional mass afforded by the
implementation of a ΔVEGA allows for additional mission goals if desired, and could incorporate
(as was done in this paper) the inclusion of multi-target missions the Ice Giants of our Solar
System or the use of one or more impact probes at primary or secondary objects of interest.

SCIENTIFIC BACKGROUND
TNOs are typically found in the Kuiper Belt and the more distant Oort Cloud. Kuiper

Belt Objects include Pluto, as well as a series of other larger bodies such as Haumea, Gonggong,
Makemake, and Quaour. Trans-Neptunian objects are important objects of study as they contain a
variety of unique materials that can give a better understanding of the formation of the Solar
System. Organic materials as well as water ice can be found on the surface of these bodies, and
having the opportunity to study the effects of deep-space conditions on organic compounds is a
point of interest. Additionally, many of these bodies have interesting orbits, with some reaching a
semi-major axis of 500 AU, as evidenced by Sedna. Table 1 below shows the physical and orbital
characteristics of select TNOs that were examined in this survey.

An example of interesting characteristics in TNOs is evidenced by Lempo and Huamea,
which are trinary systems. Trinary systems are rare occurrences among known TNOs, with a total
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of three TNOs known to have more than two components: Haumea and Lempo as well as Pluto.
Additionally, studies into Haumea have shown that it is a rapidly rotating object that has resulted
in it having an oblong shape. Beyond these objects, Quaour is another interesting body since it
has a higher density than the other bodies examined in this survey. Sedna has an extremely
elliptical orbit that is also extremely large, with a semi-major axis of 495 AU. Overall, the bodies
explored in this paper have a variety of interesting characteristics that warrants further study, as it
would provide valuable scientific information about the formation of our solar system and the
interactions within it.

Table 1. TNO Trajectory- Related Parameters.

Body Diameter (km)
Semi-Major

Axis (AU)
Eccentricity

Inclination
(deg)

Geometric
Albedo (%)

Mass (1020

kg)
Density
(g/cm3)

Gonggong 1252±43 67.5 0.5 30.6 13±1 17.5 1.75±.07

Haumea 2100x1680x1074 43.2 0.19 28.2 80.4±9.5 40.1 2.6

Huya 458.0±9.2 39.7 0.28 15.5 8.3±0.4 - >1.43

Ixion 1065±165 39.6 0.24 19.6 14.1±1.1 - -

Lempo 393.1±26.8 39.5 0.23 8.42 7.9±1.3 .128±.001 .542±.317

Makemake 1502x1430 45.56 0.158 29 77.0±2.0 30.1 1.7±.3

Orcus ~1500 39.4 0.22 20.6 23.1±1.8 6.35±.02 1.53±.15

Quaoar 1200±200 43.5 0.03 8 12.7±1.0 13-15 2.18±.43

Salacia 901±45 42.2 0.11 23.9 4.4±0.4 4.92±.07 1.50±.12

Sedna ~1500 495 0.85 11.9 41±39 - -

Varuna 900±140 43 0.05 17.2 12.7±4.2 - .992±.086

2002 AW197 890±120 47.4 0.13 24.4 11.2±1.2 - -

2002 MS4 934±47 42 0.14 17.7 5.1±3.6 - -

TRAJECTORY ANALYSIS
Trajectory Software and Visualization

Heliocentric trajectories to the various target bodies were designed using Space Flight
Solutions’ Mission Analysis Environment (MAnE) tool This software implements a routine.𝐴

known as the Heliocentric Interplanetary High-thrust Trajectory Optimization Program
(HIHTOP), which seeks to identify missions between two or more solar system bodies that are
optimum with respect to some predetermined criterion, subject to the satisfaction of specified
constraints and end conditions Additionally, the trajectory visualization tool built into MAnE.𝐴

allowed for better initial parameter estimation of Earth departure and planetary flyby dates,
allowing for mission profiles to converge to acceptable criteria in a more timely fashion.

Initial Trajectory Design Using ΔVEGA

The starting point for the trajectory design process was referencing previous missions to
the outer Solar System and Kuiper Belt, including Voyager 1 and 2, Pioneer, Galileo, Cassini and
New Horizons.16-19 These references revealed the success of utilizing multi-planet swingby
architectures similar to that of the Cassini and Voyager missions, as well as designs incorporating
single planetary flybys at either Jupiter or Saturn. Unlike the previous work of McGranaghan et
al., which eliminated Venus-Venus-Jupiter Gravity Assist (VVJGA) multi-planet swingbys due to
undesirable performance characteristics, it was hypothesized that incorporating a Jupiter Gravity
Assist (JGA) in addition to the ΔVEGA maneuver would minimize the required ΔV of the
spacecraft The result would be an Earth-Earth-Jupiter (EEJ) trajectory, that would allow for.1
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secondary (EEJx) and primary (EEJxy) targets to be reached. This potential mission structure was
first tested on trajectories to Sedna, and once successful was subsequently applied to the
remaining TNO’s of interest.

Once the general trajectory architecture was decided upon, attention could then be
brought towards determining specific constraints on mission profiles. While certain constraints
and/or end conditions varied on a profile-by-profile basis, some universal criteria were
established in order to develop initial results:

1) The intended launch date of any proposed mission must be at least eight years after the
writing of this paper, and before 2060. The lower bound constraint was made in reference
to the New Horizons mission, which took approximately eight years to manifest into a
launch-ready spacecraft.

2) The characteristic energy of any proposed mission must remain below 40 . This𝑘𝑚2

𝑠2

constraint was made after referring to the market-available launch vehicles present on the
NASA Launch Vehicle Tool, in conjunction with the desire to increase the available
spacecraft mass from the 476 kg New Horizons vehicle.18,B

3) The geocentric declination of the asymptote (DLA) of any proposed mission must remain
within 28.5°. This decision is grounded in the fact that these are the reasonable DLA±
bounds for a mission sent to orbit from the Kennedy Space Center in Cape Canaveral.

4) The Earth passage distance of any proposed mission cannot be less than 1.05 Earth radii
during the ΔVEGA maneuver. This constraint was made in reference to the spacecraft
Messenger, which travelled at the aforementioned Earth passage distance.

5) The Jupiter passage distance of any proposed mission cannot be less than 2.2 Jovian radii
during the Jupiter swingby. This constraint was made in reference to the radiation
shielding research conducted by J. G. Stewart, who concluded that this distance, travelled
by Pioneer 10 and 11, could be achieved given proper spacecraft shielding.12

6) Proposed TNO missions must have a transit time (time of flight) of less than thirty years.
While arbitrary, the intuition behind placing this limit was one of concern for high
turnover of staff monitoring the project over time, and out of courtesy to allow those who
started the project to see it through to completion.

With these fundamental criteria established, initial trajectories for each TNO were created
and analyzed for other constraining criteria that could be established to provide improvement to
individual mission profiles.

Trajectory Optimization Techniques

After a quality target has been established, the optimization process begins to reduce C3,
ΔV, and transit time while keeping healthy passage distances and DLA values. Multiple
techniques are used to do this. The first and most trivial is the movement of the dates of arrival
and departure at each leg of the trajectory. Oftentimes, the best mission design consists of a space
burn that is on the opposite side of its trajectory relative to Earth. This allows for the best use of
ΔV to change the overall trajectory. This can be seen in the 2002 MS4 trajectory in figure 1.
Secondly, the position of Jupiter is very important to the burns required to send the spacecraft to
the correct location. The most common position for Jupiter is when it is in almost the same
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angular position as the optimized space burn. However, experimenting within a year of this
location leads to the most optimized trajectory because the location of the TNO matters to this
optimization process as well. It is specifically important that the TNO is in the correct inclination
relative to Jupiter so that the required swingby does not need to be too close to Jupiter to change
its path. It is also sometimes helpful to try a trajectory when Jupiter makes a full revolution
around the Sun. This could put the TNO in a much more favorable position.

The other major technique used to improve trajectories is the addition of hard constraints
on some of the departure ΔVs, flight times and arrival and departure excess speeds. Using this
technique, a target ΔV could be set for the space burn and powered swingby burn. Flight times
were important to constrain because MAnE would try to optimize to the minimum ΔV, which
happened to also be when the time of flight was the longest. Although you might be able to get to
a target TNO with little to no ΔV, the transit times as high as 40 years are not reasonable in this
application. Constraining the arrival excess speed was also a way to drive down the flight time.
This constraint usually drives up the ΔV required at Earth, whereas the flight time constraint
might change the point and time of the TNO flyby. The departure excess speed constraint was
specifically used to dictate the C3 of the trajectory. Constraining this to a low value and then
seeing the effects on the other parameters was important to finding the correct combination of
parameters.

All in all, the key to optimizing these trajectories was the use of trial and error with all of
these techniques. As local minimums were found, it was important to investigate parameters
around the ones optimized to to see if there are lower minimums in the design space. This is
especially important if the solution space converges to an unusable solution due to high ΔV, C3 or
transit times. Using a combination of these techniques allows for further exploration of the
solution space in this case to find a usable alternative. A visualization of the trajectory resulting
from the application of this optimization scheme can be seen in Figure 1 below.
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Figure 1. Optimized mission to 2002 MS4

TRAJECTORY RESULTS

Launch Vehicle Selection

Prior to calculation of critical mission parameters such mass on target for TNO’s, it was
decided that the Atlas V 551 would be the simulated launch vehicle of choice. This decision was
derived from the fact that this version of the Atlas V possesses the greatest mass-to-orbit
capabilities (aside from an Expendable Falcon Heavy, whose capabilities are superfluous given
our findings), as well as it being a standard of comparison to previous work done within our
group Referring once again to NASA Launch Vehicle Tool, the capable payload mass as a.2

function of C3 can be described as seen in Figure 2 below:

Figure 2. Mass vs. C3 Plot for the Atlas-V (551) Rocket.

Due to the frequency in which this curve would be referenced, a second-order fit for
initial payload mass as a function of C3 was created to represent the available data seen in Figure
2, which can be defined as:

m(C3) = 0.5763 - 106.9 (C3) + 6033 (1)∗(𝐶3)2 ∗

The curve fit in Equation (1) had an R-squared value of 0.9988, thus indicating that the
calculated values involving initial spacecraft mass would reflect the truth values to a high degree.

Single Body Missions

Within this paper, the term “single body mission” refers to a mission that launched from
Earth, followed an EEJ trajectory, and then concluded its mission by performing a flyby of a
specific TNO. Of the sixteen mission profiles presented in this paper, fifteen of them are
considered to be single body missions. It was known from the outside of this design problem that
a thirty day launch window would be created around our mission profiles as a means of testing
the rigidity. This simulates the real-world possibilities of launch movement forward or backward
within a calendar month from inclement weather, launch vehicle technical difficulties, etc. The
resulting parameters of interest from applying a launch bucket to seven of the fifteen single body
mission trajectories can be seen in Figures 3-6 below.
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Figure 3. C3 vs. Days Before/After Nominal Launch Date for Various TNO Trajectories.

Figure 4. DLA vs. Days Before/After Nominal Launch Date for Various TNO Trajectories.
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Figure 5. ΔV vs. Days Before/After Nominal Launch Date for Various TNO Trajectories.

Figure 6. Spacecraft Mass on Target vs. Days Before/After Nominal Launch Date for Various
TNO Trajectories.

At the time of this abstract writing, the remaining profiles require further analysis, but
initial results have proven promising enough to include them in the total count of missions this
paper seeks to discuss. One can see that the above trajectories satisfy the desired mission criteria
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of C3 and DLA. The observed arrival at each TNO are consistent with the observed arrival𝑉
∞

excess speed of 13.78 achieved during the New Horizons flyby15. As for the simulated ΔV𝑘𝑚
𝑠

values, it should be noted that the values presented do not include the initial velocity to leave
Earth’s orbit (generally an additional 4.5 ), as it was assumed this would be handled by the𝑘𝑚

𝑠

heavy lift vehicle. This being said, these values are still well below that of the 8.92 observed𝑘𝑚
𝑠

during New Horizons, and is a product of the fact that HIHTOP optimized around minimizing
this parameter.

This leaves discussing the calculations involved with determining the possible mass on
target for a given TNO trajectory, which started with tabulating the maximum possible initial
spacecraft mass by utilizing the C3 data available in Table 1 and the second-order fit described in
Equation (1). Following this calculation, the fundamental rocket equation shown in Equation (2)
was used to calculate final spacecraft mass, or possible mass on target to the TNO.

= (2)𝑚
𝑓

𝑚
𝑜
𝑒
− Δ𝑉

𝐼
𝑠𝑝
𝑔
𝑜

Where denotes the initial spacecraft mass, denotes the final space mass, ΔV𝑚
𝑜

𝑚
𝑓

denotes the net change in velocity experienced by the spacecraft, denotes the specific impulse𝐼
𝑠𝑝

of the main spacecraft engine, and denotes the gravitational constant of the Earth. Given𝑔
𝑜

current industry standards, the specific impulse of the spacecraft’s main engine was
conservatively simulated at 300s, and could be modified if desired. The primary takeaway from
the implementation of a ΔVEGA maneuver is in the fact that nearly all optimized TNO
trajectories could carry approximately four times the mass of that required on for the New
Horizons mission (476 kg), opening new possibilities to the kinds of experimentation and
instrumentation that could be incorporated.

With the launch window proving to have an inconsequential impact on the performance
characteristics of interest, the correlating trajectory parameters from the “best-case” launch date
for each of the seven TNO trajectories can be seen in Table 1 below.

Table 2. TNO Mission and Trajectory- Related Parameters.

Target Mission Launch
Date

DLA
(deg)

C3
(km2/s2)

ΔV
(km/s)

Time of
Flight
(years)

𝐸
𝑟

(Earth
Radii)

Rf
(Jovian
Radii)

Arrival
V∞

(km/s)

Mass
on

Target
(kg)

2002 MS4 EEJ2002 10/18/2037 20.6 28.15 1.32 16.7 1.05 2.70 14.98 2220

Ixion EEJI 11/17/2038 13.1 27.46 1.14 14.8 1.10 10.79 11.80 2399

Makemake EEJM 7/19/2034 10.3 29.55 1.72 18.0 1.05 3.21 16.02 1883

Salacia EEJSa 1/15/2029 -9.3 27.16 1.23 18.4 1.05 6.26 13.0 2339

EEJSa 2/27/2042 -21.7 28.18 1.62 18.2 1.10 10.49 13.3 2005

Sedna EEJSe 2/24/2042 -21.8 28.94 0.96 25.5 1.05 2.63 15.97 2469

EEJNSe 1/17/2041 -10.5 27.25 0.62 29.2 1.05 2.20 14.88 2876

Varuna EEJV 7/13/2032 11.5 26.96 1.38 22.5 1.20 7.87 9.42 2245
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Of equal importance to launch bucket analysis is the study of how the desired
performance characteristics vary as a function of the transit time, as one could have a mission
profile that favorably trades off a decrease in ΔV for an increase in time of flight. An example of
implementing this technique to the best-case Ixion trajectory can be seen in Figure 7 below:

Figure 7. C3 and ΔV vs. Transit Time for Ixion Best-Case Mission Profile

While there is no evident trade-off present between the two parameters for this trajectory
set, the merits of the transit time procedure warrant its application to the remaining simulated
missions, and will be done as the results of this study are finalized in the coming months. A final
area of interest is describing the relationship between Earth and Jovian passage distance with
increasing transit time. These parameters follow the known trend of varying as the duration of the
trajectory is modified, and specifically will increase with time if not constrained.

Multi-Body Missions

Some missions may have the opportunity for a split of probe to approach a secondary
target. The selection of targets is based on total ΔV increase and time of flight to the secondary
target. This idea was started late in the process of this experiment, so only one trajectory has some
proposed secondary targets. For the EEJ-Salacia trajectory, a split off probe to Neptune is
considered. Three different options to neptune were proposed, two of which being an orbiter
mission. A probe would split off before the Jupiter flyby, and approach Jupiter in a different way.
This makes it possible to approach another target without too much increase in total ΔV. An
example of that mission is shown below. As Vinf at Neptune increases, the opportunity to orbit
decreases. All or none of the below trajectories may be included in the final paper as this is just
an example of what could be done for a multi body mission. Future missions may incorporate a
split off before the second Earth passage so that there is a greater margin for error in the space
flight. Doing this would also open up more split off options and would not require a flyby of
Jupiter.
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Figure 8. Multi-Body Mission to Salacia and Neptune.

INITIAL CONCLUSIONS

This inspection was successful at the investigation in the use of a ΔVEGA maneuver. It is
shown that the trajectories in this paper have improved upon the trajectories previously
researched by our group by lowering the C3 to a small enough value to largely increase the throw
mass of the launch vehicle used to get out of Earth's orbit. This allows for more mass on board the
spacecraft for science, a smaller launch vehicle and/or more targets out of a single trajectory.
These improvements allow for an abundance of science to be conducted and the opportunity of
shorter launch times at the cost of more propellant on board the spacecraft.

CONTINUING WORK

A top priority moving forward for the research group is completing the optimization of
the eight remaining TNO’s of interest. This includes conducting both launch bucket and transit
time analysis on these mission profiles, and discern if shifting the nominal trajectory date is
necessary. Upon completion of these trajectories, more multibody missions will be pursued in an
attempt to further diversify the launch opportunities presented in this piece. With the large throw
masses calculated in Table 1, multiple New Horizons sized spacecrafts will be able to be sent to
more than one target. Another option will be the design of missions that split off, likely prior to
encountering Jupiter, that then continue independently to other planets for exploration with
orbiters, landers or atmospheric probes. Finally, if time permits, an extension of the work done by
J. G. Stewart regarding Jovian Radiation effects on spacecraft will be conducted and applied
directly to our intended missions, in an effort to prove robustness of the trajectories created.
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