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ABSTRACT

This dissertation addresses the problem of determining the capacity of wireless networks and

how to operate them. Within this context we present results on Gaussian relay, interference,

and multicast networks.

Two new models for wireless networks are introduced here: the discrete network and the

superposition network. As with a Gaussian network, one can construct either a discrete

network or a superposition network. The discrete network is obtained by simply quantizing

the received signals in the Gaussian model and by restricting the transmit signals to a

finite alphabet. The superposition network, inspired by the Gaussian model, is a noiseless

deterministic network, the inputs and outputs of the channels are discrete, and channel gains

are signed integers.

The capacity of a class of Gaussian relay networks and its corresponding discrete or super-

position network is always within a bounded gap, where the gap is independent of channel

gains or signal-to-noise ratio (SNR), and depends only on the number M of nodes in the

network. More importantly, a near-optimal coding strategy for either the discrete or the

superposition network can be converted into a near-optimal coding strategy for the original

Gaussian network. Hence, both these networks serve as near-optimal digital interfaces for

operating the Gaussian network.

The discrete network is obtained from a Gaussian network by simply quantizing the re-

ceived signals and restricting transmitted signals to a certain finite precision. Since its

signals are obtained from those of a Gaussian network and its transmissions are trans-

mittable as-is on a Gaussian network, the discrete network provides a particularly simple

quantization-based digital interface for operating layered Gaussian relay networks. These

are relay networks in which the nodes are grouped into layers, and only nodes of one layer
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can transmit to the nodes of the next layer. The cut-set upper bounds on the capacities

of the Gaussian and the discrete network are within an SNR-independent bounded gap of

O(M logM) bits. Moreover, a simple linear network code is a near-optimal coding strategy

for the discrete relay network, achieving all rates within O(M2) bits of its cut-set bound,

where the bound is independent of channel gains or SNR. The linear code can be used as-is

on the Gaussian network after quantizing its received signals. It achieves all rates within

O(M2) bits of the capacity for Gaussian relay networks. The linear network code improves

on existing approximately-optimal coding schemes for the relay network by virtue of its

simplicity and robustness, and it explicitly connects wireline network coding with codes for

Gaussian networks.

The approximation of Gaussian networks by other previously proposed deterministic net-

works is also studied in this dissertation, and two main results are presented, one positive

and the other negative. The gap between the capacity of a Gaussian relay network and a

corresponding linear deterministic network can be unbounded. The key reasons are that

the linear deterministic model fails to capture the phase of received signals, and there is a

loss in signal strength in the reduction to a linear deterministic network. On the positive

side, Gaussian relay networks with a single source-destination pair are indeed well approx-

imated by the superposition network. The difference between the capacity of a Gaussian

relay network and the corresponding superposition network is bounded by O(M logM) bits,

where the gap is again independent of channel gains or SNR. As a corollary, multiple-input

multiple-output (MIMO) channels cannot be approximated by the linear deterministic model

but can be by the superposition model. A code for a Gaussian relay network can be designed

from any code for the corresponding superposition network simply by pruning it, suffering

no more than a rate loss of O(M logM) bits that is independent of SNR.

Similar results hold for the K ×K Gaussian interference network, MIMO Gaussian inter-

ference networks, MIMO Gaussian relay networks, and multicast networks, with the constant

gap depending additionally on the number of antennas in case of MIMO networks.
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CHAPTER 1

INTRODUCTION

Computing the capacities of wireless networks is a formidable problem. It has been a central

theme of network information theory, where research has attempted to characterize the

information-theoretic limits of data transmission in various abstract models of networks.

Of equal importance, and also of great interest, has been the problem of construction of

optimal coding schemes that achieve the promised rates. However, except for some examples

of networks such as the MAC channel [1], [2] and the broadcast channel [3], [4], it has so far

not been possible to accurately compute the capacities of even simple networks such as the

relay channel [5], [6] involving a small number of nodes.

While the information theoretic capacity indicates a limit on the rates of communication in

the system, it does not say anything about the optimal strategy for operating these networks.

Even in a simple wireless network, there are a multitude of options and techniques available

for cooperation among nodes, and so it is of great interest to determine optimal or provably

near-optimal operating strategies for wireless networks of interest. This logjam in designing

strategies for wireless networks has motivated the work in [7] where the stringent goals of

network information theory are relaxed by allowing for answers which are within a bounded

gap of the capacity. By bounded gap is meant a constant that is independent of the channel

gains or SNR, and is a function of only the number of nodes in the network.

So motivated, we address the issues both of approximating the capacity of relay and

interference networks, and of developing and rigorously establishing near-optimal coding

strategies to operate the networks. The starting point of the work in this dissertation is the

Gaussian model for wireless networks, and its aim is to develop other models that can serve
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as digital interfaces for operating Gaussian networks. We desire that the new models have

two properties. First, they must well approximate the capacity of the Gaussian network

up to a bounded gap; i.e., the capacity of the Gaussian network and the capacity of the

network constructed with the new model must be within a bounded gap. Second, there

must exist a procedure to adapt near-optimal coding strategies for the new models to derive

near-optimal coding strategies for the original Gaussian network. Such a near-optimal code

will achieve the capacity of the original Gaussian network to within a bounded gap, with

the gap independent of channel gains or SNR. A bounded gap approximation is valid at all

SNRs and is most relevant in the high power or low noise regimes.

We introduce two channel models for wireless networks that have both these properties.

The first model, the discrete model, is derived from the Gaussian model and is obtained

by simply quantizing the received signals and by restricting the transmit signals to a finite

alphabet. The second model is a noiseless deterministic model and is called the superposition

model. This model is inspired by the Gaussian model, and the transmit and received signals

in this model are also restricted to a finite discrete set. We can construct either a discrete

or a superposition network that corresponds to a Gaussian network. Both well approximate

a class of Gaussian networks in the sense described above.

In addition to approximating capacity, it is also of primary interest to determine near-

optimal coding strategies. The above program of approximation also extends to coding

schemes. The discrete network provides a quantization-based digital interface for the class

of layered Gaussian networks. In order to operate the Gaussian network on the discrete

interface, one simply quantizes the received signals and restricts the transmit signals to a

finite alphabet. We construct a simple coding scheme for the layered discrete relay network

called the linear network code, which achieves all rates within O(M2) bits of the capacity of

the discrete network, when there are M nodes in the network. This linear network code is

also near-optimal for the layered Gaussian network and can be used on it operating through

the discrete interface. The linear network code is a generalization of random linear network
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coding for wireline networks [8, 9], or for linear deterministic networks [7]. To the best of

our knowledge, this is the first instance of an explicit connection between network coding for

wireline and noiseless networks and network coding for Gaussian networks, with a bounded

gap guarantee on performance.

The superposition model also serves as a surrogate for Gaussian networks in a stronger

sense. One can rigorously lift any coding scheme from the superposition network to a corre-

sponding coding scheme for the Gaussian network without more than a bounded loss in the

rate. Such a lifting procedure approximation can potentially simplify the construction of

near-optimal coding schemes for Gaussian relay and interference networks. This approxima-

tion permits one to address the alternative, possibly simpler problem of finding the capacity

of the deterministic network and subsequently lifting it to obtain a near-optimal coding

scheme for the original Gaussian relay network of interest.

1.1 Dissertation outline

In Chapter 2, we summarize earlier work on relay networks and interference networks. There

is a rich body of work on both these networks and we mention some of the relevant results.

We survey the work on approximating the capacities of relay networks and on designing

near-optimal coding strategies. The capacity and coding results in network coding are also

surveyed, and in Chapter 5, we relate network coding for wireline networks with coding

for Gaussian networks. We survey the results in approximating the capacity region of the

2 × 2 interference channel. We also mention some results on the capacity region of large

interference networks.

In Chapter 3, we describe the various models used in this dissertation. There are two

aspects of a wireless network that must be modeled. First, we describe the network model,

which is a graph that captures the connectivity in the network. We consider two main

types of networks: relay networks and interference networks. In relay networks there is
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one source, many relays, and a single destination. In interference networks there are many

source-destination pairs. We also define multicast networks. Then we model the wireless

channel. We describe a variety of channel models for the various impairments in a wireless

network. Some of these are noisy models, i.e., the received signal is corrupted by the noise,

while others are noiseless deterministic models where the received signal is a deterministic

function of the transmitted signals. All the models are either derived from or inspired by

the Gaussian model. We introduce two new models in this dissertation: the discrete model

and the superposition model. Both these models serve as near-optimal digital interfaces for

operating certain classes of Gaussian networks, though the discrete model is a more natural

interface since its signals are obtained by simply quantizing the signals in the Gaussian

network. We can construct a discrete network or a superposition network corresponding to

every Gaussian network. We also define the linear deterministic model [7] in this chapter.

Chapters 4, 5, and 6 deal with relay networks. In Chapter 4, the cut-set upper bound is

defined, which is a fundamental limit on the capacity of a relay network. The cut-set bounds

of the Gaussian, discrete, and superposition networks are shown to be within a bounded gap

of O(M logM) bits when the total number of nodes in the network is M . The constant

in the bounded gap is independent of channel gains or SNR, and only a function of the

number of nodes in the network. These results are relevant since the cut-set bound for the

Gaussian relay network is approximately achievable [7]. In later chapters, it is proved that

it is approximately achievable for layered discrete relay networks and for superposition relay

networks. We also prove that the difference between the cut-set bound of the Gaussian and

the corresponding linear deterministic network can grow with SNR. Since the cut-set bound

is the capacity of linear deterministic relay networks, it follows that the linear deterministic

model cannot approximate the capacity of Gaussian networks.

In Chapter 5, the discrete model is shown to provide a quantization-based digital interface

for layered Gaussian networks. First, layered relay networks are defined, and a coding

scheme is constructed for layered discrete relay networks that involves linear operations over
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the binary vectors describing the discrete model. This linear network code achieves rates

within O(M2) of the cut-set bound, and hence within O(M2) of the capacity of the network.

It is proved that the linear code can be used on the layered Gaussian network by simply

quantizing the received signals in the Gaussian network and restricting the transmit signals

to a finite set, i.e., by operating the Gaussian network on the digital interface defined by the

discrete model. The linear code is also near-optimal for the layered Gaussian relay network,

and achieves rates within O(M2) of the cut-set bound. The O(M2) bound is independent

of channel gains or SNR. We extend the results to the MIMO and multicast counterparts,

with the bounded gap then additionally depending on the number of antennas for MIMO

networks.

In Chapter 6, we prove that the superposition model is a near-optimal digital interface for

operating Gaussian relay networks. We prove that any coding scheme for the superposition

network can be “lifted” to the Gaussian network simply by adjoining codewords to create long

codewords, and then pruning the set of long codewords. The loss in the rate of the code due

to this lifting is shown to be at most O(M logM) bits. We also prove that the capacities of

the Gaussian relay network and its superposition counterpart differ by at most O(M logM)

bits. This implies that a near-optimal coding scheme for the superposition network can be

lifted to obtain a near-optimal coding scheme for the Gaussian relay network. We also prove

similar results for MIMO relay networks and multicast networks.

Chapter 7 develops a digital interface for interference networks. We show that the capacity

regions of theK×K Gaussian interference channel and the superposition interference channel

are within a bounded number of bits, independent of channel gains or SNR. Also, similarly

to the case of the relay network, we develop a systematic way to lift any code for the

superposition interference network to the Gaussian interference network, and establish that

it does so with no more than a bounded loss in the rate. We also extend results to the

MIMO counterpart of the interference network.

We conclude in Chapter 8 by summarizing the results of approximating Gaussian networks
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with the discrete and superposition models.

Results in this dissertation have previously appeared in [10], [11], and [12]. Some of the

results are also present in [13].
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CHAPTER 2

SUMMARY OF PREVIOUS WORK

In this chapter, we survey the previous research on relay networks, network coding, and

interference networks.

2.1 Relay networks

The relay channel was introduced by Van der Muelen [5], and certain achievable rates were

determined. Cover and El Gamal [6] subsequently studied the network in detail and devel-

oped two coding schemes which are now known as decode-and-forward and compress-and-

forward. They also provided an upper bound on the capacity of the relay channel, referred

to as the cut-set bound, which was developed in full generality for networks in [14].

The decode-and-forward scheme was extended to networks with many relays in [15] and

[16], and compress-and-forward was extended to larger networks in [17]. All these papers

introduced certain novelties in existing coding schemes, though the best upper bound on

the capacity of relay networks continues to be the cut-set bound. These schemes do not

generally provide a guarantee of near-optimality, in the sense that the gap between the

achievable rates for any of these coding schemes and the cut-set bound could be arbitrarily

high as a function of SNR. So, in effect, it has not been clear whether it is the cut-set bound

that is weak or whether it is the coding schemes that are not exploiting all the features

available in the wireless network.

This impasse motivated the work of [7], which studied coding schemes with provable

guarantees on performance. This was done through the approach of introducing a linear
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deterministic model, where the linearity is over a finite field. The linear deterministic model

captures the broadcast and interference aspects of wireless networks. The capacity of linear

deterministic relay networks was determined to be precisely the same as the cut-set bound,

which was additionally shown to be achievable by random coding at the nodes. Further,

coding schemes were developed for general deterministic relay networks in [7], where the

received signal at a node is a function of the signals transmitted by the neighboring nodes.

The coding schemes for the linear deterministic model motivated the construction of a coding

scheme for Gaussian relay networks in [7] called quantize-map-and-forward (QMF) in which

the relays quantize the received signals, buffer them, and randomly map them to a Gaussian

codeword. QMF is provably near-optimal for relay networks in the sense that it achieves

all rates within a bounded gap of O(M logM) bits from the cut-set bound. This result

also establishes as a corollary that the cut-set bound for the Gaussian relay network is

indeed approximately the capacity of the Gaussian relay network, up to a bounded gap of

O(M logM) bits.

However, the above-mentioned results do not establish the closeness of the capacities of

the linear deterministic network and the Gaussian network. In fact, the linear determinis-

tic model does not approximate the capacity of Gaussian networks in general (see [7] and

Section 3.2.2). The question that therefore arises is whether there is a procedure for con-

structing for every Gaussian relay network a corresponding deterministic network in such a

way that the capacities of the Gaussian and the deterministic network are within a bounded

gap. This has been done in [7] and is shown in this dissertation via different models. In the

truncated deterministic model in [7], the channel gains and inputs are complex valued, while

the complex channel output has integer real and imaginary parts. The model used here, the

superposition model, is a somewhat more discrete model in the sense that channel gains and

inputs are discrete valued.

The QMF scheme for the Gaussian network is certainly inspired by the coding scheme

for the linear deterministic counterpart. But there is no rigorous procedure to design a
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coding scheme for the Gaussian network given a coding scheme for the linear deterministic

network, and consequently also no procedure for lifting codes from one to the other while

preserving near-optimality. Hence it is unclear if a deterministic model only serves to aid the

intuition in the construction of coding schemes for Gaussian networks, or if there is a more

rigorous fundamental connection between the capacities of the deterministic network and the

Gaussian network. More importantly, it is not clear if a coding strategy for a deterministic

model can be explicitly used for designing a coding strategy for the Gaussian network that

achieves comparable performance. We answer these questions in the affirmative and show

that the superposition model does indeed serve as a digital interface for operating Gaussian

relay and interference networks, and codes can be simply lifted to the Gaussian network from

its superposition counterpart. The study of coding schemes for the superposition network

inspired the linear network code for relay networks presented here.

The bounded gap approximation for capacity of relay networks was further improved in

[18] where the authors constructed an extension of compress-and-forward to relay networks

that is approximately optimal. Here the relays are required to perform vector quantization

in order to compress their received signals. In [19], the minimal compression rates for the

relay nodes were computed, and the decoding procedure from [18] was further simplified.

The capacity results for relay networks have spurred research in finding low complexity

coding schemes. In [20], the authors modify the QMF scheme by choosing low-density

parity-check codes for encoding at the source and the relay instead of Gaussian codes. They

present a simplified decoding algorithm based on Tanner graphs and show with simulations

the viability of the proposed technique. In [21], a different approach is taken by constructing

codes that are computationally tractable when compared to QMF. A concatenated code is

presented for the relay network where the outer code is a polar code and the inner code

is a modification of the random Gaussian code from [7]. This approach is shown to have

computational complexity that is near-linear in the block-length of the code. In [22], the

quantization and encoding in QMF is modified by using nested lattice codes at the source
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and relays.

In recent work in [23], the digital interface defined by the superposition model defined

in this dissertation is used to develop a near-optimal coding scheme for a wireless broad-

cast network. In a wireless broadcast network, the source sends independent information

to multiple destinations, with the relays facilitating the process of communication. The au-

thors first solve the problem for the broadcast superposition network, lift it to the Gaussian

network, and combine it with a Marton outer code.

2.2 Network coding

Network coding was introduced in the landmark paper [8]. The max-flow min-cut theorem

was established for wireline networks with a single source and multiple destinations, which

essentially implied that the cut-set bound was the capacity of these networks. The authors

proved that a class of codes called β-codes, which involve random encoding at the source

and intermediate nodes, achieve the capacity of the network with increasing block-length.

There were other important contributions in [8]: namely, the notion of distinguishability of

codewords at the destination, which naturally introduces the notion of cuts in proving the

achievability of the cut-set bound, and the technique of time-parameterizing cyclic networks

to view them as special cases of acyclic networks. Both these techniques were used in the

proofs in [7] and are used in the proof of approximate optimality of linear network codes in

this dissertation.

Later, in [24] and [25], it was established that linear network codes suffice to achieve the

capacity of these networks. In [24], the authors introduced algebraic tools that simplified

the analysis and design of network codes. In [9], it was shown that random encoding at the

source and random linear operations at the relay nodes achieves the capacity of the network

in the limit of increasing block-length of the codewords. In [7], the applicability of random

linear coding to linear deterministic networks was shown, where random encoding by the
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source and random linear encoding by the relays achieves the cut-set bound in the limit as

the block-length tends to infinity.

2.3 Interference networks

Interference networks have received much attention recently, following the results in [26].

In [26], the capacity of the interference channel with two transmitters and two receivers is

determined to within a constant gap of 1 bit. The near-optimal coding scheme in [26] is a

specific choice among the myriad strategies proposed in [27]. A simpler proof of the result

in [26] is provided in [28]. This was independently strengthened in [29], [30], and [31] where

treating the interference as noise is shown to be capacity achieving for a restricted range

of the parameters corresponding to a low interference regime. The capacity region of the

2 × 2 deterministic interference channel was determined in [32]. In [33], it is shown that

the capacities of the linear deterministic interference channel and the Gaussian interference

channel are within a bounded gap. A variant of the discrete superposition model was first

used in [33] in a sequence of networks that reduced the 2× 2 Gaussian interference channel

to a linear deterministic interference channel.

Much less is known for Gaussian interference networks with more than two users. The

number of degrees of freedom of the time-varying interference channel was characterized

in [34] using the idea of interference alignment, and they were characterized for specific

interference channels with fixed gains in [35]. The generalized degrees-of-freedom region of

the fully symmetric many-user interference channel was computed in [36]. In general, the

capacity region of the interference networks with three or more users is unknown, even to

within a constant gap.
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CHAPTER 3

MODELS FOR WIRELESS NETWORKS

In this chapter, we develop models for analyzing the wireless networks of interest. There

are two aspects of a wireless network that we need to model; first, we need to model the

connectivity of the network by a graph, and second, we need to model the wireless channel.

We consider two types of networks depending on whether the network has one or many

source-destination pairs. We describe a variety of channel models that capture the various

impairments in a wireless network.

3.1 Network models

The wireless network is represented by a directed graph (V , E), where V represents the

set of nodes, and the directed edges in E correspond to wireless links. All the links are

assumed to be of a unidirectional nature, where the direction of communication between

two nodes is indicated by the edge connecting them. We consider two types of networks

in this dissertation, relay networks and interference networks. These two networks differ in

their underlying directed graphs.

3.1.1 Relay networks

Relay networks have a single source and a single destination, and a collection of relay nodes

that are facilitators in the process of communication. Here the set of nodes is labeled as

V = {0, 1, . . . ,M}, where node 0 is the source node and node M is the destination. Nodes

1, 2, . . . ,M − 1 are the relay nodes and participate in the process of communication by
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cooperating with the source and with each other to allow the highest rate of communication

from the source to the destination. An example of a relay network is shown in Figure 3.1.

Figure 3.1: A relay network.

Multicast networks

Multicast networks have a single source node that wants to transmit the same information

to a subset of the nodes in the network. The remaining nodes in the network act as relays

and facilitate the communication of information. The set of intended destinations is labeled

as D and D ⊆ V .

3.1.2 Interference networks

In an interference network, there are many sources and destinations. Specifically, we consider

K × K interference networks which consist of K source-destination pairs. We divide the

nodes in V into two sets, the first set {1, 2, . . . , K} consisting of the transmitters and the

second set {1, 2, . . . , K} consisting of the receivers. Though we use the same numbers to

denote the sources and the destinations, it will be clear from the context which node we

are referring to. All the sources are connected to all the destinations, i.e., a particular

destination receives signals from the intended source, but the received signal is corrupted by

transmissions from the remaining sources in the network. In Figure 3.2, we have an example

of a 3× 3 interference network with 3 sources and 3 destinations.
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Figure 3.2: 3× 3 interference network.

3.2 Channel models

Next we need a mathematical model to describe the transmitted and received signals at

every node. We describe various channel models, some of which are noisy where the received

signal is corrupted with noise, while others are noiseless models. All the channel models are

either derived from or inspired by the Gaussian model which is described in Section 3.2.1.

3.2.1 Noisy channel models

The models described in this section are the Gaussian model, which is perhaps the most

popular mathematical model for information-theoretic analysis of networks, and the discrete

model, which is introduced in this dissertation as a model for a wireless network.

Gaussian model

Let the complex number xi denote the transmission of node i and let yj denote the received

signal at the j-th node. Every node has an average power constraint, assumed to be 1

for simplicity. The channel between nodes i and j is parametrized by a complex number

hij = hijR + ıhijI . The channel gain is fixed for the complete duration of communication.

The received signal at node j is

yj =
∑
i∈N (j)

hijxi + zj, (3.1)
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where N (j) is the set of the neighbors of node j, and zj is CN (0, 1), complex white Gaussian

noise independent of the transmit signals.

We will also allow for MIMO relay networks where the nodes have multiple transmit and

receive antennas. Suppose node i has Ti transmit antennas and Ui receive antennas. In

that case, the transmitted signal at each time instant at node i is a Ti-dimensional vector of

complex numbers, and the received vector is Ui-dimensional. Correspondingly, the channel

between two nodes i and j is then described by a collection of channel gains {hklij} where k

and l index, respectively, the transmit antennas at node i and the receive antennas at node

j. The received signal at node j is

ylj =
∑
i∈N (j)

Ti∑
k=1

hklij x
k
i + zlj, l = 1, . . . , Uj, (3.2)

where xki is the signal transmitted from the k-th antenna of node i, and ylj is the received

signal at the l-th antenna of node j. The term zlj is the complex Gaussian noise added to the

received signal at the j-th node. For simplicity of exposition, we restrict a transmit signal

to satisfy an individual power constraint, though our results can be extended to allow for a

total power constraint across all the antennas of a node.

Discrete model

Now we describe a quantization-based digital interface for operating the above Gaussian

network, i.e., for the purpose of defining the coding strategy. It is obtained, as the phrase

above suggests, by quantizing the continuum valued signals received from the Gaussian

network, and by restricting the choice of transmitted signals to lie in a discrete set. The

quantization of the received signals is natural, though we will even discard sign information.

We will call the overall network resulting from the discrete-inputs and discrete-outputs at

each node as the discrete network.

In the language of automata theory, this discrete network can be simulated [37] from
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the Gaussian network, i.e., it uses less information than the original Gaussian network. The

discrete network is obtained by quantizing the received signals and constraining the transmit

signals in a Gaussian network. The received and transmit signals are allowed to take finitely

many values lying in what can essentially be regarded as a quadrature amplitude modulation

(QAM) constellation. Define n to be

n := max
(i,j) ∈ E

max{blog |hijR|c, blog |hijI |c}. (3.3)

The channel inputs (transmit signals) in the discrete network are complex valued, with both

real and imaginary parts taking values from 2n equally spaced discrete points. The transmit

symbol is

x =
1√
2

(xR + ıxI), (3.4)

where

xR =
n∑
k=1

2−kxR(k), (3.5)

xI =
n∑
k=1

2−kxI(k), (3.6)

with each xR(i) and xI(j) in F2. The symbol x can be equivalently represented by the 2n-bit

binary tuple

(xR, xI) = (xR(1), xR(2), . . . , xR(n), xI(1), xI(2), . . . , xI(n)). (3.7)

Note that the above channel inputs satisfy a unit energy constraint at each discrete-time,

and are therefore valid inputs even for the Gaussian network with a unit power constraint.

This property will be helpful in proving the approximate optimality of the linear network

code.

The channel gains are unchanged from the Gaussian model. As in the Gaussian model,
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the channel between two nodes i and j in the discrete network simply multiplies the input xi

by the corresponding channel gain hij. At a receiver, the received signal is defined through

the composition of the following operations:

• First add all the incoming signals by the standard summation over C.

• Then discard the signs of the real and imaginary parts.

• Further discard the fractional portions of the real and imaginary parts and retain only

the integer portion.

• Then quantize the integer portion of the real and imaginary parts by truncating their

binary expansions to n bits of precision, where n is as defined in (3.3).

Thus y = yR+ ıyI is the received signal at a node in the Gaussian model, and we denote the

binary expansions of the integer parts of |yR| and |yI | by
∑∞

k=1 2kyR(k) and
∑∞

k=1 2kyI(k),

respectively. The received signal in the discrete network is then

y
′

:= [y] :=

(
n∑
k=1

2kyR(k)

)
+ ı

(
n∑
k=1

2kyI(k)

)
. (3.8)

As with the transmit signals, y
′

can be equivalently described by the 2n-bit binary tuple

(y
′

R
, y
′

I
) = (yR(1), yR(2), . . . , yR(n), yI(1), yI(2), . . . , yI(n)). (3.9)

We will use the compact notation [·] to represent the overall quantization operation:

y
′

j := [yj] := [
∑
i∈N (j)

hijxi + zj]. (3.10)

It is important to note that each received signal in the discrete network can be obtained

from the corresponding received signal in the Gaussian network by performing elementary

quantization operations (when their transmitted signals are identical, as we intend to be the
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case). In fact, since the transmit signals in the discrete network are valid transmit signals

for the Gaussian network, we use the same notation for the transmit signals in both models.

In a similar way, one also obtains a discrete MIMO network corresponding to a MIMO

Gaussian relay network. In the MIMO discrete network, each transmit and receive antenna

can be treated as a virtual node. As before, every transmit and received signal (corresponding

to every transmit or receive antenna) is quantized to lie in a finite set, and the granularity

of the quantization will take into account all the channel gains between various antennas in

the network. The transmit signals lie in a finite set and can be described by a 2nMIMO-bit

tuple. The receive signals are quantized and described by a 2nMIMO-bit tuple, where

nMIMO := max
(i,j)∈E

max
k=1,...,Ti,
l=1,...,Uj

{blog |hklijR|c, blog |hklijI |c}. (3.11)

3.2.2 Deterministic channel models

In a deterministic model, the received signal is a deterministic function of the transmit

signals. The received signal at the j-th node is

yj = fj({xi}i∈N (j)), (3.12)

where the function fj is determined by the deterministic channel model. The superposition

model and the linear deterministic model are examples of noiseless deterministic models

for wireless networks. These models capture the broadcast and interference aspects of the

wireless channel. The broadcast nature of the wireless medium requires a node to transmit

the same signal on all its outgoing links, though the signal may be attenuated differently

on various links depending on the channel gains. Due to the interference in a wireless

network, the received signal at a node is the superposition of all the signals transmitted

by its neighbors, with the transmit signals attenuated by the corresponding channel gains.
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The deterministic models presented next incorporate these two fundamental aspects of the

wireless medium.

Superposition model

The superposition model is similar in nature to the discrete model. A complex transmit

symbol is given by x = 1√
2
(xR + ıxI), where

xR =
n∑
k=1

2−kxR(k), (3.13)

xI =
n∑
k=1

2−kxI(k), (3.14)

with each xR(i) and xI(j) in F2 and n defined in (3.3).

The real and imaginary parts of channel gains from the Gaussian model are quantized to

integers by neglecting their fractional parts. The quantized channel gain for link (i, j) is

given by

ĥij := sign(hijR)b|hijR|c+ ı sign(hijI)b|hijI |c, (3.15)

with the quantization operation ·̂ as indicated above. Hence quantization of the channel

gain discards the fractional portions of its real and imaginary parts. The channel between

two nodes in the superposition network multiplies the input by the corresponding channel

gain and quantizes the product by neglecting the fractional components of both real and

imaginary parts, i.e., it forms ̂̂hijxi. The outputs of all incoming channels at a receiver

node lie in Z + ıZ. All the quantized outputs are added up at a receiver by the standard

summation over Z + ıZ. The received signal at node j is given by

y
′′

j :=
∑
i∈N (j)

̂̂hijxi. (3.16)
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This model retains the essential superposition property of the wireless channel. Quantiza-

tion of channel coefficients does not substantially change the channel matrix for large values

of the SNR. Also, the effect of noise is captured by constraining the inputs to positive frac-

tions that can be represented by finite bits and by quantization of the channel output. An

important property of the superposition model is that transmit signals in it satisfy a unit

peak power constraint, and are thus also valid for transmission in the Gaussian network.

That is, encoder outputs in the superposition network can also be used in the Gaussian

network.

Linear deterministic model

The linear deterministic model was introduced in [7] as an approximate model to capture

certain aspects of wireless networks. It should be noted that the linearity is with respect

to a finite field. We introduce the model for a point-to-point Gaussian channel and later

extend it to general networks.

Consider a simple AWGN channel

y = hx+ z,

where x satisfies an average power constraint E[|x|2] ≤ 1, and z is complex Gaussian

noise CN (0, 1). The capacity of this channel is C = log(1 + |h|2). Let CD := blog |h|2c

approximately denote its capacity in the high SNR regime. In Figure 3.3(a), we construct

a linear deterministic network of capacity CD with a source that transmits CD bits that are

noiselessly received at the destination. For this example, CD is equal to 4. Alternately, we

can construct a linear deterministic network where the source transmits a binary vector x

(of length at least CD with bits ordered from left to right) and a channel that attenuates

the signal by allowing CD most significant bits to be received at the destination (see Fig-

ure 3.3(b)). Both the networks in Figure 3.3 are equivalent representations of the linear
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(b) Channel allows only CD bits.

Figure 3.3: Linear deterministic model: Two viewpoints.
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deterministic model for the point-to-point Gaussian channel.

In a general Gaussian network, choose all the inputs and outputs of channels to be binary

vectors of length max(i,j)∈Eblog |hij|2c. Each link with channel gain h is replaced by a matrix

that shifts the input vector and allows blog |h|2c most significant bits of the input to pass

through. At a receiver, shifted vectors from multiple inputs are added bit by bit over the

binary field. This models the partially destructive nature of interference in wireless networks.

Modeling the broadcast feature of wireless networks, a node transmits the same vector on all

outgoing links, albeit with different attenuation, and the number of significant bits arriving

at a receiver depends on the channel gain. As an example, consider the Gaussian network

in Figure 3.4(a) and the corresponding linear deterministic network in Figure 3.4(b). Since

the magnitude of the largest channel gain is 3, all inputs and outputs of channels are vectors

in F2 of length blog 3.72c = 3. The transmitted signals of nodes 1 and 2 interfere at node

3, and the received signal at node 3 is given by

y =


0 0 0

1 0 0

0 1 0

x1 +


1 0 0

0 1 0

0 0 1

x2 (3.17)

The channel is simply a linear transformation over the binary field. In the networks in

Figure 3.4, nodes 1 and 2 can listen to the source’s transmission, though the received signal

is attenuated differently at both nodes. The corresponding received signals are

y1 =


1 0 0

0 1 0

0 0 1

x0, (3.18)

y2 =


0 0 0

1 0 0

0 1 0

x0. (3.19)
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(b) Corresponding linear deterministic network.

Figure 3.4: Linear deterministic model of a Gaussian network.
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CHAPTER 4

THE CUT-SET BOUND ON THE CAPACITY OF
RELAY NETWORKS

The information-theoretic capacity of a network is determined in two steps; first by estab-

lishing a converse and proving a upper bound on the capacity, and second by constructing

a coding scheme for the network which achieves any rate below the upper bound. This ap-

proach has been very successful for the point-to-point channel, but has had limited success

for general networks. The rates achievable in networks via coding strategies are usually

much lower than the upper bounds on the capacity. This is especially true for relay net-

works where the only known upper bound on the capacity is the cut-set bound and, for a

long time, the rates achievable by all known coding schemes were arbitrarily lower than the

cut-set bound. Recently it was shown in [7] that the cut-set bound is indeed the capacity

of the relay network up to a constant gap of O(M logM) bits, with the bounded gap valid

for all SNRs. In this chapter, we define the cut-set bound and show that the cut-set bounds

of the Gaussian, discrete, and superposition networks are within a bounded gap of each

other. All the cut-set bounds differ from each other by at most O(M logM) bits, where the

bounded gap is independent of channel gains or the SNR. On the contrary, the linear deter-

ministic network cannot provide this kind of approximation for Gaussian networks since the

difference in the cut-set bounds of the Gaussian and the corresponding linear deterministic

networks can be unbounded. These results have direct implications on approximating the

capacity of the Gaussian relay networks with these models since, as we will see later, the

cut-set bounds for certain classes of all the networks are achievable, either exactly or within

an SNR-independent bounded gap.
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4.1 The cut-set bound for relay networks

The cut-set bound was introduced in [14] as an upper bound on the information-theoretic

capacity of a network. It is a generalization of the max-flow min-cut theorem for networks

and bounds the flow of information across the network. The cut-set bound is applicable

to general networks with multiple sources and destinations. Since we are mainly concerned

with relay networks with a single source-destination pair, we state the bound for this specific

class of networks.

The cut-set bound on the capacity C of a relay network with source 0, destination M ,

channel inputs {xi}, and channel outputs {yj} is

C ≤ max
p(x0,x1,...,xM−1)

min
Ω ∈ Λ

I(xΩ; yΩc|xΩc), (4.1)

where Λ is the set of all partitions of V with 0 ∈ Ω and M ∈ Ωc. Additionally, in the

Gaussian model, the inputs must satisfy an average power constraint, E[|xi|2] ≤ 1,∀i. The

cut-set bound is a fundamental limit on the capacity of the network. Evaluating the above

bound only requires knowledge of the transition probability matrix

p(y1, y2, . . . , yM | x0, x1, . . . , xM−1) (4.2)

describing the input-output relationships in the networks. This bound can be evaluated for

any of the channel modes presented in Section 3.2.

In the case of multicast networks, let D be the set of nodes that are the intended recipients

of the source’s message. Then the cut-set bound for such networks is given by

C ≤ max
p(x0,x1,...,xM−1)

min
D∈D

min
Ω ∈ ΛD

I(xΩ; yΩc|xΩc), (4.3)

where ΛD is the set of cuts in the network that separate the source from the destination D.
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4.1.1 Cut-set bounds for Gaussian networks

In Gaussian networks, the jointly Gaussian input distribution maximizes the cut-set bound

in (4.1). We simplify the computation of the bound by choosing the inputs to be independent

and identically distributed Gaussian random variables. Choosing {xi}’s to be i.i.d. CN (0, 1)

weakens the bound in (4.1) by O(M) bits for any choice of channel gains and yields

min
Ω∈Λ

I(xΩ; yΩc |xΩc) = min
Ω∈Λ

log |I +HΩH†Ω|, (4.4)

where HΩ is the transfer matrix of the MIMO channel corresponding to cut Ω (see [7]).

4.1.2 Cut-set bounds for deterministic networks

Since outputs are a function of inputs in a deterministic network,

I(xΩ; yΩc |xΩc) = H(yΩc |xΩc)−H(yΩc |xΩ, xΩc) (4.5)

= H(yΩc |xΩc). (4.6)

Hence, for deterministic networks, the cut-set bound in (4.1) reduces to

C ≤ max
p(x0,x1,...,xM−1)

min
Ω∈Λ

H(yΩc |xΩc). (4.7)

The above bound is applicable for both superposition networks and linear deterministic

networks. However, for the specific case of linear deterministic networks, we can further

simplify the bound. For linear deterministic networks, the maximum value of the conditional

entropy H(yΩc |xΩc) equals the rank of the transfer matrix GΩ,Ωc associated with the cut Ω [7],

where the rank is determined over an appropriate finite field. An optimal input distribution

is to choose input variables independent and uniformly distributed over the underlying field.
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Hence (4.7) simplifies to

C ≤ min
Ω

rank GΩ,Ωc . (4.8)

For example, in Figure 3.4, rank of GΩ,Ωc over F2, with Ω = {1, 2}, is 5 with

GΩ,Ωc =




0 0 0

1 0 0

0 1 0




1 0 0

0 1 0

0 0 1


0 0 0

0 0 0

0 0 0




1 0 0

0 1 0

0 0 1




.

4.2 Relationships between various cut-set bounds

In this section, we prove a bounded-gap between the cut-set bounds of the Gaussian, discrete,

and the superposition networks. We also prove that the gap between the cut-set bounds of

the Gaussian and the linear deterministic networks can grow unbounded with SNR.

4.2.1 Cut-set bounds of Gaussian and discrete networks

Let CSG be the cut-set bound of the Gaussian network and let CSD be the cut-set bound

of the corresponding discrete network.

Lemma 1. The cut-set bounds of the Gaussian network and the corresponding discrete

network are within a constant gap of O(M logM) bits,

|CSG − CSD| = O(M logM), (4.9)

with the gap independent of channel gains or SNR.
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Proof. The lemma is proved in two steps: CSG ≥ CSD in Section 4.2.1 and CSG−CSD =

O(M logM) in Section 4.2.1. The procedure to prove both inequalities are the same. We

consider a particular cut Ω in the network and choose an input distribution for this cut in

one of the models. Then, in a series of steps, we transform the channel inputs and outputs

of the cut to the corresponding channel inputs and outputs in the other model. We then

bound the loss in the mutual information in this transformation. Repeating this procedure

across all the cuts in the network completes the proof.

CSG ≥ CSD

The transmit signals in the discrete network are a strict subset of the valid inputs for the

Gaussian network, and the received signals in the discrete network are obtained by quantizing

the corresponding received signals in the Gaussian network. Hence, as noted above, any

operation in the discrete network can be simulated on the Gaussian network.

Choose any input distribution for the transmit signals in the discrete relay network. Retain

the same distribution for the inputs in the Gaussian network. Since the received signals in

the discrete network are obtained by quantizing the received signals in the Gaussian network,

for any cut Ω, by the data processing lemma [38],

I(xΩ; yΩc |xΩc) ≥ I(xΩ; y
′

Ωc |xΩc). (4.10)

This proves that CSG ≥ CSD.

CSG − CSD = O(M logM)

We show that the mutual information across a cut in the discrete network is at least as high

as the mutual information across the same cut in the Gaussian network, up to O(M logM)

bits.
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Step 1: Cut-by-cut analysis

The cut-set bound for the Gaussian network is

CSG = max
p(x0,x1,...,xM−1)

min
Ω∈Λ

I(xΩ; yΩc |xΩc) (4.11)

≤ min
Ω∈Λ

max
p(x0,x1,...,xM−1)

I(xΩ; yΩc |xΩc). (4.12)

We consider a particular cut Ω/Ωc in the network. The received signal at the j-th node is

given by

yj =
∑
i∈N(j)

hijxi + zj. (4.13)

The mutual information across the cut, I1 := I(xΩ; yΩc |xΩc), is maximized by the choice

of jointly Gaussian inputs.

Step 2: Positive fractional inputs

Instead of the optimal joint Gaussian distribution for the inputs that maximizes I1, we

choose a different input distribution. Consider an input symbol x = 1√
2
(xR + ı xI), where

xR and xI are independent and uniformly distributed on (0, 1), i.e., xR and xI are positive

fractions. Since E[|x|2] = 1/3, it satisfies the average power constraint for the Gaussian

network’s channel inputs. Each input in the network is chosen independently and with the

same distribution as x, and is denoted by {x(2)
i }. The received signals are denoted by {y(2)

j }.

In Lemma 3 in Section 4.3, it is shown that the loss in the mutual information for this choice

of inputs is O(M). The mutual information of this channel is I2 := I(x
(2)
Ω ; y

(2)
Ωc |x(2)

Ωc ) and

compares to the channel in Step 1 as

I1 − I2 = O(M). (4.14)

Step 3: Quantization of the received signal

Next we quantize the received signal as follows:
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• Retain only the integer portions of the real and imaginary parts, and discard the

fractional portions, which we denote by d
(3)
j . The real and imaginary parts of d

(3)
j have

the same sign as the signal.

• Discard the signs of the real and imaginary parts, which we denote by s
(3)
jR and s

(3)
jI ,

respectively.

We denote the quantized received signal by y
(3)
j . The mutual information across the channel

in Step 2 can be rewritten as

I2 = I(x
(2)
Ω ; y

(3)
Ωc , d

(3)
Ωc , s

(3)
Ωc |x(2)

Ωc ) (4.15)

≤ I(x
(2)
Ω ; y

(3)
Ωc |x(2)

Ωc ) + I(x
(2)
Ω ; d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc ) +H(s

(3)
Ωc ) (4.16)

≤ I(x
(3)
Ω ; y

(3)
Ωc |x(2)

Ωc ) + I(x
(2)
Ω ; d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc ) + 2|Ωc|. (4.17)

Now the fractional part d
(3)
j is given by adding the fractional part of the signal with the

fractional part of the noise.

I(x
(2)
Ω ; d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc ) = h(d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc )− h(d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc , x

(2)
Ω ) (4.18)

≤
∑
j∈Ωc

h(d
(3)
j )− h(z̃

(3)
j ), (4.19)

where z̃
(3)
j is the fractional part of the Gaussian noise. Since d

(3)
j is fractional with E[|d(3)

j |2] ≤

2, its differential entropy is upper bounded by that of a Gaussian distribution with variance

2, and so h(d
(3)
j ) ≤ log(2πe). Since zj is distributed as CN (0, 1), h(z̃

(3)
j ) = O(1). Hence,

I(x
(2)
Ω ; d

(3)
Ωc |x(2)

Ωc , y
(3)
Ωc ) ≤ |Ωc|(log(2πe)−O(1)) = O(M). (4.20)

So, defining I3 := I(x
(2)
Ω ; y

(3)
Ωc |x(2)

Ωc ), we have

I2 − I3 = O(M). (4.21)
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Step 4: Further quantization of the received signal

Next we further quantize the received signal at the end of the previous step by restricting

the binary expansions of its real and imaginary parts to n bits, and denote the result by

y
(4)
j , where

n := max
(i,j)∈E

max{blog |hijR|c, blog |hijI |c}. (4.22)

Note that we have previously quantized the real and imaginary parts to be positive integers.

Denote the discarded part of the received signal by d
(4)
j . The mutual information of the

channel in Step 3 can be rewritten as

I3 = I(x
(2)
Ω ; y

(4)
Ωc , d

(4)
Ωc |x(2)

Ωc ) (4.23)

= I(x
(2)
Ω ; y

(4)
Ωc |x(2)

Ωc ) + I(x
(2)
Ω ; d

(4)
Ωc |x(2)

Ωc , y
(4)
Ωc ) (4.24)

≤ I(x
(2)
Ω ; y

(4)
Ωc |x(2)

Ωc ) + I(x
(2)
Ω ; d

(4)
Ωc |x(2)

Ωc ). (4.25)

We bound I(x
(2)
Ω ; d

(4)
Ωc |x(2)

Ωc ) next. From the definition of n, |hij| =
√

(h2
ijR + h2

ijI) ≤ 2n+1.

Since |x(2)
i | ≤ 1, |∑i∈N(j) hijx

(2)
i | ≤ M2n+1. Hence, the binary expansion of the integer

part of |∑i∈N(j) hijx
(2)
i | has (n + O(logM)) bits. Since d

(4)
j is the portion of the received

signal that exceeds n bits of representation, it is easy to see that at most O(logM) higher

order bits in the binary representation of
∑

i∈N(j) hijx
(2)
i influence d

(4)
j . Therefore, we have

I(x
(2)
Ω ; d

(4)
j |x(2)

Ωc ) = O(logM) and subsequently I(x
(2)
Ω ; d

(4)
Ωc |x(2)

Ωc ) = O(M logM). Now define

I4 := I(x
(2)
Ω ; y

(4)
Ωc |x(2)

Ωc ) and we get

I3 − I4 = O(M logM). (4.26)

Step 5: Quantization of the transmit signals

Next, we restrict the real and imaginary parts of the scaled inputs also to n bits. Let the
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binary expansion of
√

2x
(4)
iR be 0.xiR(1)xiR(2) . . ., so

x
(4)
iR =

1√
2

∞∑
p=1

2−pxiR(p). (4.27)

Similarly denote the binary expansion of
√

2x
(4)
iI . Define

x
′

iR :=
1√
2

n∑
p=1

xiR(p)2−p,

x
′

iI :=
1√
2

n∑
p=1

xiI(p)2
−p.

We will consider the new inputs x
′
i := x

′
iR + ıx

′
iI and let the corresponding received signals

under these inputs be denoted by y
′
j. The mutual information here compares against that

in Step 4 as

I4 = I(x
(2)
Ω , x

′

Ω; y
(4)
Ωc |x(2)

Ωc , x
′

Ωc), (since x
′

i is only a function of x
(2)
i ) (4.28)

≤ I(x
(2)
Ω , x

′

Ω; y
(4)
Ωc , y

′

Ωc|x(2)
Ωc , x

′

Ωc) (4.29)

= I(x
(2)
Ω , x

′

Ω; y
′

Ωc |x(2)
Ωc , x

′

Ωc) + I(x
(2)
Ω , x

′

Ω; y
(4)
Ωc |x(2)

Ωc , x
′

Ωc , y
′

Ωc) (4.30)

= I(x
′

Ω; y
′

Ωc |x′Ωc) + I(x
(2)
Ω , x

′

Ω; y
(4)
Ωc |x(4)

Ωc , x
′

Ωc , y
′

Ωc) (4.31)

≤ I(x
′

Ω; y
′

Ωc |x′Ωc) +H(y
(4)
Ωc |y′Ωc). (4.32)

In (4.31), the first mutual information term is obtained due the Markov chain {x(2)
i } →

{x′i} → {y
′
j}. Since

|hij(x(2)
i − x

′

i)| = |hij||x(2)
i − x

′

i| (4.33)

≤ (2n+1)(2−n) ≤ 2, (4.34)
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we get

|
∑
i∈N(j)

hij(x
(2)
i − x

′

i)| = O(M). (4.35)

Hence the binary representation of the integer part of |∑i∈N(j) hij(x
(2)
i − x

′
i)| will have

O(logM) bits. This results in H(|y(4)
j − y

′
j|) = O(logM), due to which H(y

(4)
Ωc |y′Ωc) =

O(M logM) bits. We obtain

I4 − I(x
′

Ω; y
′

Ωc |x′Ωc) = O(M logM). (4.36)

Now observe that x
′
i and y

′
j are the transmit and receive signals in the discrete network.

Also, {x′i} are i.i.d. and uniformly distributed on their alphabet. In Step 1, we started with

the optimal jointly Gaussian inputs for the cut in the Gaussian network and concluded in

this step with i.i.d. uniform inputs for the discrete network. The total loss in the mutual

information in this transformation is O(M logM). Now define CSD as

CSD := min
Ω∈Λ

I(x
′

Ω; y
′

Ωc |x′Ωc). (4.37)

CSD evaluates the right hand side of the cut-set bound (4.1) for the discrete network for a

specific choice of the input distribution. As a consequence of the above arguments, we have

also proved that CSG − CSD = O(M logM).

The choice of i.i.d. uniform inputs for the discrete network will be useful in Section 5.1.3.

4.2.2 Cut-set bounds of Gaussian and superposition networks

Let CSS denote the cut-set bound of the superposition network.

Lemma 2. The cut-set bounds of the Gaussian network and the corresponding superposition
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network are within a constant gap of O(M logM) bits,

|CSG − CSS| = O(M logM), (4.38)

with the gap independent of channel gains or SNR.

Proof. The proof of this lemma is similar to the proof of Lemma 1. First we prove that

max{CSS−CSG, 0} = O(M logM) and then we prove max{CSG−CSD, 0} = O(M logM).

The basic proof technique is borrowed from Lemma 1 where we compare the mutual infor-

mation across a particular cut Ω in both models and bound the difference. Repeating this

across all the cuts completes the proof of the lemma.

max{CSS − CSG, 0} = O(M logM)

Consider a cut Ω in the network and choose any distribution for the inputs {xi} in the

superposition network. Since {xi}’s satisfy an average power constraint, they are valid

inputs for the Gaussian network. The received signal in the Gaussian network yj can be

rewritten as a function of the received signal y
′′
j in the superposition network, the channel

gains before quantization hij and after quantization ĥij, and the Gaussian noise zj:

yj = y
′′

j +
∑
i∈N (j)

(
(hij − ĥij)xi + frac(̂̂hij xi)

)
+ zj

=: y
′′

j + vj + zj.

By definition y
′′
j is a discrete random variable lying in Z + ıZ. Hence y

′′
j can be recovered

from yj, the integer parts of vj and noise zj, and the carry cj obtained from adding the
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fractional parts of vj and zj. So,

I(xΩ; y
′′

Ωc|xΩc) ≤ I(xΩ; yΩc , v̂Ωc , ẑΩc , cΩc|xΩc) (4.39)

≤ I(xΩ; yΩc |xΩc) +
∑
j∈Ωc

(H(v̂j) +H(ẑj) +H(cj)), (4.40)

where v̂j and ẑi are the integer parts of the respective variables. Note that v̂j, ẑj, and cj are

actually complex numbers whose real and imaginary parts are integers. Now

|(hij − ĥij)xi + frac(̂̂hij xi)| ≤ O(1), (4.41)

hence |vj| ≤ O(M). Therefore, the integer parts of vj can have at most O(logM) bits. We

get H(v̂j) ≤ O(logM). Since zj is distributed as CN (0, 1), H(ẑj) = O(1). Since cj is the

carry, H(cj) = O(1). Substituting in (4.40), we obtain

I(xΩ; y
′′

Ωc |xΩc)− I(xΩ; yΩc |xΩc) = |Ωc|O(logM) (4.42)

= O(M logM). (4.43)

max{CSG − CSS, 0} = O(M logM)

We pick a particular cut Ω in the Gaussian network. Due to the similarities between the

superposition model and the discrete model, we can directly reuse steps from Section 4.2.1

here. Steps (1)− (2) from Section 4.2.1 are directly applicable here.

Step 3: Quantization of the received signal

Next we quantize the received signal by retaining only the integer portions of the real and

imaginary parts and discarding the fractional portions. This step is similar to Step 3 in

Section 4.2.1. The loss in the mutual information is O(M) bits.

Step 4: Quantization of the transmit signal

This step is similar to Step 5 in Section 4.2.1 and the inputs are restricted to take values
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from the same finite alphabet. The quantization of the inputs leads to a loss in the mutual

information of O(M logM) bits.

Step 5: Removal of the Gaussian noise

In this step, we remove the Gaussian noise at the receiver. The capacity of the channel can

only increase if we remove the noise at the receiver, but we need to account for the carry

bits in the received signal. Let the inputs and outputs at the end of Step 4 be given by

{x(4)
i } and {y(4)

j }, respectively, and let the mutual information across the cut in Step 4 be

I4 := I(I(x
(4)
Ω , ; y

(4)
Ωc |x(4)

Ωc )). Denote the noiseless received signals in this step by {y(5)
j } where

y
(5)
j =

∑
i∈N (j)

ĥijx
(4)
i . (4.44)

Let the carry bits that arise from the addition of the fractional parts of the noise and the

signal be denoted by {c(5)
j }. Note that each c

(5)
j has two bits of carry corresponding to the

real and imaginary parts. Also, y
(4)
j and y

(5)
j are discrete signals and lie in Z + ıZ. Given

y
(5)
j and c

(5)
j , we can simulate the effect of the Gaussian noise at the receiver. Hence

I4 := I(x
(4)
Ω , ; y

(4)
Ωc |x(4)

Ωc ) (4.45)

≤ I(x
(4)
Ω , ; y

(5)
Ωc , c

(5)
Ωc |x(4)

Ωc ) (4.46)

≤ I(x
(4)
Ω , ; y

(5)
Ωc |x(4)

Ωc ) +H(c
(4)
Ωc ) (4.47)

≤ I(x
(4)
Ω , ; y

(5)
Ωc |x(4)

Ωc ) + 2|Ωc|. (4.48)

Then if

I5 := I(x
(4)
Ω , ; y

(5)
Ωc |x(4)

Ωc ), (4.49)

we have

I4 − I5 = O(M). (4.50)
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Step 6: Quantization of channel gains

The channel gains are quantized by neglecting their fractional parts as mentioned in the

description of the superposition model in Section 3.2.2. The analysis in this step is similar to

Step 5 in Section 4.2.1, and the magnitude of the difference in the received signals before and

after quantization of the channel gains is O(M). Hence, the loss in the mutual information

across the cut is O(M logM).

At the end of Step 6, we are left with the superposition model and the total loss in the

mutual information is at most O(M logM) bits. This completes the proof of the lemma.

4.2.3 Cut-set bounds of Gaussian and linear deterministic networks

As mentioned in Section 4.1.1, one can compute the cut-set bound for the Gaussian network

up to a bounded gap of O(M) bits by choosing the i.i.d. Gaussian input distribution and,

from Section 4.1.2, one can exactly evaluate the cut-set bound for the linear deterministic

network. In this section, we establish the unboundedness of the difference in the cut-set

bounds of the Gaussian network and the corresponding linear deterministic network. While

comparing the cut-set bounds, we compare the mutual information across cuts in a Gaussian

network with ranks of the corresponding cuts in the linear deterministic network.

It is known that the cut-set bound is the capacity of the linear deterministic network and

the cut-set bound is approximately achievable (up to O(M logM) bits) for Gaussian relay

networks [7]. In fact, Theorem 6 (in Section 5.2.1) is another proof of the later result for

layered Gaussian networks with a bounded gap of O(M2) bits. Hence the unboundedness

result in this section implies that the linear deterministic model cannot approximate the

capacity of Gaussian relay networks and subsequently the capacities of general Gaussian

networks.
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Inability of the linear deterministic model to capture phase

Consider the network in Figure 4.1(a) where the channels marked as ∞ have very high

capacity. We can instead replace the corresponding channel gains with high values so that

the cuts involving these channels do not limit the cut-set bound. So, for the network in

Figure 4.1(a), the cut-set bound is determined by the mutual information across the cut

Ω = {0, 1, 2}.

h

0

3

4
h

h

-h
5

1

2

(a) Gaussian network.

1 

2 4 

3 !log |h|2"

(b) Portion of the corresponding deterministic network.

Figure 4.1: Example of a network where the linear deterministic model of a Gaussian network
does not capture the phase of the channel gain.

The mutual information across Ω is

I(xΩ; yΩc |xΩc) = log |I +HH†|

= 2 log(1 + 2|h|2)

= 4 log |h|+O(1), as |h| → ∞,

with

H =

 h −h

h h

 .
This is the minimum among all cuts and is therefore the cut-set bound of the network.
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In the corresponding linear deterministic network in Figure 4.1(b), the transfer matrix of

Ω = {0, 1, 2} is

G =

 I I

I I

 , (4.51)

where each identity matrix has dimension blog |h|2c. The cut-set bound of the network is

the rank of G, i.e., b2 log |h|c.

The gap between the cut-set bounds of the Gaussian network in Figure 4.1(a) and its

linear deterministic counterpart is 2 log |h|+O(1). Therefore the gap can grow unboundedly

as a function of the channel gain h. The main reason for the unboundedness of the gap is

that the linear deterministic model considers only the magnitude of a channel gain and fails

to capture its phase. Constructing the deterministic model over a prime field larger than F2

does not circumvent this problem.

Inability of the linear deterministic model to capture power

Unfortunately, phase is not the only problem. We construct a Gaussian network with positive

channel coefficients that still cannot be approximated by a linear deterministic network in

the sense that their corresponding cut-set bounds can be very different.

Consider the Gaussian network in Figure 4.2, where h = 2k for k ∈ Z+. The linear deter-

ministic model corresponding to this Gaussian network is the same as that in Figure 4.1(b).

However, the difference in the cut-set bounds of two networks is unbounded.

1.4 h

0

3

4
h

h

h
5

1

2

Figure 4.2: Example of a network where the linear deterministic model does not capture the
power of the channel gain.
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The cut-set bound of the network in Figure 4.2 is

CSG = I(xΩ; yΩc|xΩc)

= 4 log h+O(1) (as h→∞),

with Ω = {0, 1, 2}.

Hence, once again, the difference in the cut-set bounds of the Gaussian network in Fig-

ure 4.2 and its linear deterministic counterpart will be 2 log |h|, which is unbounded in h.

This example demonstrates the inability of the linear deterministic model to capture the

received signal power. Intuitively, the linear deterministic model quantizes all channel gains

to a power of 2, and hence fails to capture the received signal power in certain examples.

One may wonder if taking the channel gains into account and quantizing the gains with

respect to a field larger than F2 will provide a bounded error approximation. However this

reasoning is flawed since then the gap in the capacities would be a function of the chosen

prime and thus, in turn, a function of channel gains.

4.3 Loss of capacity for uniform inputs

In Section 4.2.1, we stated that the loss in choosing uniform inputs for a cut, over Gaussian

inputs, in a Gaussian network is bounded. We prove that statement in this section.

Lemma 3. Consider a cut Ω in a Gaussian network. Then the loss in the mutual information

for choice of fractional inputs (as defined in Step 2 of Section 4.2.1) is O(M).

Proof. Denote the i.i.d. Gaussian inputs by {xGi }. Also denote i.i.d Gaussian inputs dis-

tributed as CN (0, 1/3) by {x̃Gi }. Now consider the fractional inputs defined in Section 4.2.1,

denoted by {xFi }.

We observe some similarities between {x̃Gi } and {xFi }. Both the sets of inputs are i.i.d. and

each input has the same variance in both cases. Hence, the covariance matrix of x̃G = (x̃Gi )
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or xF = (xFi ) is the scaled identity matrix IM×M/3. Denote the received signal in Ωc under

the Gaussian inputs and the fractional inputs by ỹGΩc and yFΩc , respectively. It follows that

the covariance matrices of the vectors (x̃G, ỹGΩc) and (xF , yFΩc) are the same.

Now consider the mutual information I(xFΩ; yFΩc |xFΩc),

I(xFΩ; yFΩc |xFΩc) = h(xFΩ|xFΩc)− h(xFΩ|xFΩc , yFΩc) (4.52)

=
∑
i∈Ω

h(xFi )− h(xFΩ|xFΩc , yF
Ωc) (4.53)

=
∑
i∈Ω

(2 log(1/
√

2))− h(xFΩ|xFΩc , yFΩc) (4.54)

= −|Ω| log 2− h(xFΩ|xFΩc , yFΩc). (4.55)

where (4.53) follows from the independence of {xi}, and (4.54) follows from direct compu-

tation of the differential entropy. Now, for the circular Gaussian inputs

h(x̃GΩ|x̃GΩc) =
∑
i∈Ω

h(x̃Gi ) = log(πe/3)|Ω|. (4.56)

Since, for a given covariance constraint, the conditional entropy is maximized by the Gaussian

distribution with the same covariance [39],

h(xFΩ|xFΩc , yFΩc) ≤ h(x̃GΩ|x̃GΩc , ỹGΩc). (4.57)

Substituting (4.56) and (4.57) into (4.55),

I(xFΩ; yFΩc |xFΩc) ≥ h(x̃GΩ|x̃GΩc)− h(x̃GΩ|x̃GΩc , yGΩc)− |Ω|(log(πe/3) + log 2) (4.58)

≥ I(x̃GΩ ; ỹGΩc |x̃GΩc)−O(M). (4.59)
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Now the mutual information with i.i.d. CN (0, 1) inputs {xGi } is given by

I(xGΩ ; yGΩc |xGΩc) = log |I +HΩH†Ω|, (4.60)

where HΩ is the channel transfer matrix across the cut Ω. Now consider the same cut, but

increase the noise variance at all the received signals from 1 to 3. The mutual information

reduces to log |I +HΩH†Ω/3|. Since the effect of increasing the noise variance is the same as

that of reducing the signal power to 1/3,

I(x̃GΩ ; ỹGΩc |x̃GΩc) = log |I +HΩH†Ω/3|. (4.61)

Comparing (4.60) and (4.61),

I(x̃GΩ ; ỹGΩc |x̃GΩc) ≥ I(xGΩ ; yGΩc |xGΩc)− 3|Ω|. (4.62)

Hence

I(xFΩ; yFΩc |xFΩc) ≥ I(xGΩ ; yGΩc|xGΩc)−O(M). (4.63)

In [7], it is shown that the loss in choosing the inputs to be i.i.d. Gaussian CN (0, 1)

instead of the joint Gaussian distribution is O(M) bits. Therefore the choice of fractional

inputs {xFi } leads to a loss of at most O(M) bits in the mutual information when compared

to the joint Gaussian inputs.
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CHAPTER 5

LINEAR NETWORK CODE FOR RELAY
NETWORKS

In this chapter, we present a simple linear coding scheme for layered Gaussian relay networks

that is approximately optimal. The linear network code is based on the quantization-based

digital interface defined by the discrete model. Our key result consists of three dovetailed

parts. The first part, proved in Section 4.2.1, is that there is no significant loss in the cut-set

bound while modeling Gaussian networks with the discrete network, in that the bit gap

between the cut-set bounds of the two networks is bounded over all SNRs. Therefore any

coding strategy for the discrete network that achieves rates close to the cut-set bound can

be easily converted to a nearly capacity-achieving strategy for the Gaussian relay network

by simply quantizing the signals. This motivates and sets the stage for the problem of

determining nearly capacity-achieving coding strategies for the discrete network, which is

the topic of this chapter. The second result, described in Section 5.1, builds on this first key

result. What we determine is that simple linear network coding on the bits of the en bloc

finite representations of the received signals will suffice for the layered discrete network. The

third part is that this coding strategy for the discrete network can be easily implemented on

the Gaussian network, through simple quantization, and achieves rates within a bounded bit

gap from the capacity. Thereby we obtain both a capacity-approximating discrete network,

a simple linear coding strategy for the discrete network, as well as a natural mapping of

the coding strategy from the layered discrete network to the layered Gaussian network.

Together, the combined results establish a discrete network for both analyzing the original

network, as well as operating it near-optimally through simple quantization. It is therefore

appropriate to call such a discrete network with these two rigorously established properties
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a quantization-based digital interface.

5.1 Linear network code for layered discrete relay networks

The linear network code presented in the sequel achieves all rates within O(M2) bits of the

cut-set bound of the layered discrete relay network, with the constant gap independent of

channel gains or SNR, and only a function of the number of nodes in the network.

5.1.1 Coding scheme for relay networks

Any coding scheme for a relay network requires specification of the source’s codewords, the

functions applied each time to the received signals by the relay nodes, and the destination’s

decoding function.

A (2NR, N) code for a relay network is an encoding function for the source

x0 : {1, 2, . . . , 2NR} → XN ,

where X is the input alphabet of the channel, and a set of encoding functions for relay node

k,

gk,m : Ym−1 → X , for m = 1, 2, . . . , N, k = 1, 2, . . . ,M − 1,

where Y is the alphabet of node k’s received signal. For simplicity of exposition, we assume

that the input alphabets of all the relay nodes are the same, and that so are their output

alphabets. The symbols transmitted by a relay can depend on all the symbols previously

received by the relay. The decoding function of the destination M is given by

gM : YN → {1, 2, . . . , 2NR}.

Let W be a random variable uniformly distributed on {1, 2, . . . , 2NR} that corresponds to
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the message that source 0 wants to communicate. Such a W is mapped to the codeword

x0(W). The average probability of error is given by

Pe = Pr(gM(y
M

) 6= W).

The capacity of the relay network is the supremum of all rates R such that for any ε > 0,

there exists a block length N and a coding strategy for which Pe < ε.

5.1.2 Layered networks

In the coding scheme described above, the encoding functions {gk,m} at relay nodes operate

on a symbol-by-symbol basis and can vary with time. We restrict our attention to layered

discrete networks, for which the encoding functions {gk,m} at the relay nodes can be sim-

plified. In a layered network [7], as the name suggests, nodes are divided into groups or

layers. The nodes of one layer can only transmit to nodes of the subsequent layer. The

source node 0 is the sole node in the zeroeth layer, and the last layer, layer L, contains only

the destination M . All other relays are divided among the intermediate layers. The nodes

in layer k are denoted by Lk. An example with four layers of nodes is shown in Figure 5.1

with L0 = {0},L1 = {1, 2},L2 = {3, 4}, L3 = {5}, and L = 3.

In a layered network we can restrict attention to the following simplified block-by-block

coding scheme, where each block consists of N symbols. Consider a (2NR, N) code for the

relay network, and suppose that the source transmits a codeword of length N , which we

call a “block.” Now let all the relays in L1 buffer their received signals for N time units.

Subsequently each relay generates N -length transmit vectors, i.e., blocks, as a function of

their received vectors. This is possible since only the source transmits to the relays in L1,

and these relays generate their transmit symbols causally as a function of their previous

receptions. Similarly, each node in Lk waits for the nodes in Lk−1 to complete their trans-

missions, buffers the N received signals, and then transmits a block of length N . Finally, the
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Figure 5.1: Example of a layered network.

destination receives the block of N symbols and attempts to decode the source’s transmis-

sion. There is no loss in the capacity in operating on a block-by-block basis. The source can

start the transmission of the next codeword once it completes the transmission of the first

codeword. Also the relays in L1 are full-duplex, they transmit and receive at the same time.

So the relays can continue receiving the next block of symbols while they transmit a block

of symbols. The destination will continue to receive blocks of symbols one after another. In

this way, we achieve a constant rate R of communication in the network.

5.1.3 Linear network codes for the discrete relay networks

The linear network code we propose is constructed on the discrete network. As described in

Section 3.2.1, the transmit and receive signals in the discrete network are quantized to lie in

a finite set of complex numbers consisting of real and complex parts in [0,1], each with only

n bits of precision.

Concerning transmissions, the transmit signal xi = xi,R + ıxi,I has real and imaginary

parts given by

xi,R =
n∑
k=1

2−kxi,R(k), (5.1)

xi,I =
n∑
k=1

2−kxi,I(k). (5.2)
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with each xi,R(i) and xi,I(j) in F2, and where

n := max
(i,j) ∈ E

max{blog |hijR|c, blog |hijI |c}. (5.3)

The received signals in the discrete network {y′j} are obtained by quantizing the received

signals in the Gaussian network. The Gaussian received signal is quantized by discarding the

signs of the real and imaginary parts, further discarding the fractional portions of the real

and imaginary parts and retaining only the integer portion, and finally quantizing the integer

portion of the real and imaginary parts by truncating their binary expansions to n bits of

precision. If yj = yj,R + ıyj,I is the Gaussian received signal, and we denote the binary

expansions of the integer parts of |yj,R| and |yj,I | by
∑∞

k=1 2kyj,R(k) and
∑∞

k=1 2kyj,I(k),

respectively, then the received signal y
′
j in the discrete network is

y
′

j = [yj] :=

(
n∑
k=1

2kyj,R(k)

)
+ ı

(
n∑
k=1

2kyj,I(k)

)
. (5.4)

Hence we regard the received signal in the discrete network as a binary tuple

(yj,R(1), yj,R(2), . . . , yj,R(n), yj,I(1), yj,I(2), . . . , yj,I(n))

of length 2n where each entry is 0 or 1. Similarly, the transmitted signal in the discrete

network can also be so regarded. In the rest of this dissertation, we reserve the phrase “binary

2n-tuple” or “2n-tuple” to describe such a vector, which can be converted in a straightforward

fashion to a complex symbol for transmission, or can be obtained in a straightforward fashion

from a complex symbol that is received.

After N such symbols have been received, there is a 2nN -length binary vector that is the

received block, and similarly there is a 2nN -length binary vector that is the transmitted

block. We will reserve the phrase “binary 2nN -vector” or “2nN -vector” to refer to such a

vector which represents a block of N received symbols, either for block transmission or after
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block reception. We will represent a 2nN -length received or transmitted binary vector at a

node j using an underbar, as in y
′

j
or xj, respectively.

We will employ a linear coding scheme where the transmitted block is simply obtained by

multiplying the received block by a 2nN × 2nN matrix of 0s and 1s.

The overall coding scheme is randomly generated, and is simple to describe.

Source’s codewords

There are 2NR messages. Using a uniform distribution on binary 2n-tuples, the source

randomly generates a set of 2NR codewords, each of length 2nN , where each codeword is

constructed by independently picking N binary 2n-tuples from the uniform distribution.

Note that each codeword corresponds to N complex symbols, which are transmitted over N

discrete time instants. The choices of the rate R and the block-length N are elaborated later

in the proof of Lemma 4 in Section 5.1.4. The source transmits the codeword corresponding

to the particular message that has been chosen for communication.

Relay’s linear mappings

Relay j randomly chooses a 2nN × 2nN binary matrix Aj, by independently picking each

entry as either 0 or 1 with equal probability. This will be the matrix representing the linear

code at node j. The relay buffers N received binary 2n-tuples, and adjoins them to construct

a binary 2nN -vector that constitutes the received block y
′

j
. It then multiplies this binary

2nN -vector by Aj to obtain a binary 2nN -vector xj that constitutes the transmit block.

It splits this binary 2nN -vector into N binary 2n-tuples. Converting each of the binary

2n-tuples back into complex numbers, with the real and imaginary parts, each in [0, 1], and

each of n-bit precision, gives N complex symbols. These N complex transmit symbols are

transmitted by the relay node over N discrete-time instants. An example of the encoding

operation at node j is shown in Figure 5.2.
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Figure 5.2: Linear encoding at node j.

All the M − 1 relays independently construct their binary encoding matrices in a similar

manner as described above.

Next, to define decoding, we define strong typicality of vectors:

Definition 1. A vector x ∈ XN is defined to be ε-strongly typical with respect to a distri-

bution p(x), denoted by x ∈ Tε,p, if

|νx(x)− p(x)| ≤ ε p(x), ∀x ∈ X , (5.5)

where ε ∈ R+ and νx(x) = 1
N
|n : xn = x| is the empirical frequency.

This is extended in the standard way to include joint strong typicality of vectors (see

[38]). Vectors x = (x1, x2, . . . , xN) ∈ XN and y = (y1, y2, . . . , yN) ∈ YN are ε-jointly

strongly typical with respect to the distribution p(x, y), if z = (z1, z2, . . . , zN), where each

zi =

 xi

yi

 is jointly typical with respect to the distribution p(x, y). We employ the

following definitions from [40], slightly modifying them to include the linear operations.

Define a singleton set χ0(w) := {x0(w)} for every message w.

Now consider a node j in L1, the first layer. Define the set of received vectors at node j

associated with a message w as

Y ′j(w) := {y′
j

: (y
′

j
, x0(w)) ∈ Tε,p}, (5.6)

with p denoting the distribution p(x̃0, y
′
j) where x̃0 is uniformly distributed and p(ỹ

′
j|x̃0)
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models the channel from node 0 to node j in the discrete network.

Continuing to consider the node j ∈ L1, we define the set of transmit vectors at node j

that are associated with the message w as

χj(w) = {xj : xj = Aj(y
′

j
), where y

′

j
∈ Y ′j(w)}. (5.7)

Next consider a node j ∈ Lk with k ≥ 2. Noting that any i ∈ N (j) belongs to layer Lk−1,

we recursively (in k) define its set of received vectors at node j associated with message w

as

Y ′j(w) := {y′
j

: (y
′

j
, {xi}i∈N (j)) ∈ Tε,p, for some xi ∈ χi(w), for each i ∈ N (j)}. (5.8)

The distribution p above is p({x̃i}i∈Nj
, ỹ
′
j), where {x̃i}i∈N (j) are independent and uniformly

distributed, and p(ỹ
′
j|{x̃i}i∈N (j)) models the channel from the nodes in N (j) to j in the

discrete network. We also define the set of transmitted vectors at node j associated with

the message w as

χj(w) := {xj : xj = Aj(y
′

j
), for some y

′

j
∈ Y ′j(w)}. (5.9)

Definition 2. We write (y
′

j
, w) ∈ T ε if y

′

j
∈ Y ′j(w).

Decoding at the destination

The destination receives the 2nN -vector y
′

M
, and decodes by searching for a message w such

that (y
′

M
, w) ∈ T ε. If it finds more than one such message or if it finds none, it declares an

error. Else it declares the unique choice as its estimate of the source’s message.

It should be noted that though the relay’s encoding is a linear operation over the block of

2nN -vectors, the end-to-end channel from the binary 2nN -vectors transmitted by the source

50



to the block of binary 2nN -vectors received by the destination is not linear over the binary

field, and we cannot describe decoding as just inverting a binary matrix 2nN ×2nN matrix.

This is because of the truncation operations that are an integral part of the very definition

of the discrete network.

5.1.4 Computing the rate achieved by the linear network code

Next we compute the rate achievable by the linear network code. In (4.37), we defined

CSD as the cut-set bound’s value for the discrete network for a specific choice of the input

distribution.

Lemma 4. The linear network code achieves all rates within a gap of O(M2) bits of CSD

for layered networks, where the O(M2) gap is independent of channel gains or SNR.

Proof.

Probability of error: The probability of error for the coding scheme (see Section 5.1.1 for

the notation) is given by

Pe = Pr(gM(y
′

M
) 6= W) (5.10)

=
1

2NR

2NR∑
w=1

Pr(gM(y
′

M
) 6= w|W = w). (5.11)

As is standard, since Pe is symmetric in the transmitted message, we assume wlog that

W = 1 and evaluate the probability of error when the first codeword is transmitted, Pe|W=1.

Error events: The possible error events at the destination M are

• E0: One of the transmitted or received vectors in the network is not strongly typical.

That is y
′

j
/∈ Tε,p, where p denotes the distribution induced on y

′
j by the uniform

distribution on each xi for i ∈ N (j), and by the conditional probability p(y
′
j|{xi}i∈N (j))

describing the channel in the discrete network from the nodes in N (j) to y
′
j.
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Figure 5.3: Example of a cut Ω in the network in Figure 5.1. Here Ω = {0, 1, 3} and
Ωc = {2, 4, 5}.

• E1: (y
′

M
, 1) /∈ T ε.

• Ew: (y
′

M
, w) ∈ T ε, where w 6= 1.

By applying the union bound,

Pe|W=1 ≤ Pr(E0) + Pr(E1 ∧ Ec
0) + Pr(

∨
w 6=1

Ew ∧ Ec
0 ∧ Ec

1). (5.12)

From Lemma 9 (see Section 5.3), for any ε > 0,

Pr(E0) + Pr(E1) ≤ ε, for N sufficiently large. (5.13)

Therefore,

Pe|W=1 ≤ ε+
2NR∑
w=2

Pr(Ẽw), (5.14)

where Ẽw := Ew ∧ Ec
0 ∧ Ec

1.

Error event Ẽw: Let Lk be the set of nodes in layer k. We say that a node j ∈ Lk is

confused 1 by w if (y
′

j
, w) ∈ T ε for some w 6= 1. The destination is confused by w under Ẽw.

The source is not confused by definition. Hence, under the error event Ẽw, the nodes in the

network get separated into two sets, ones that are confused by w, and others that are not

confused by w. This is a cut in the network; see Figure 5.3 for an example.

1This is similar to the notion of distinguishability used in [8] and [7].
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Figure 5.4: Layers (k − 1) and k in a network. The wireless links connecting the nodes are
not shown. Each oval represents a particular set. The dashed curve in the center divides
the network into Ω and Ωc.

Fix an arbitrary cut Ω, and define the sets (see Figure 5.4)

Fk,Ω := Lk ∩ Ω and Gk,Ω := Lk ∩ Ωc. (5.15)

Let us denote the concatenation of the received 2nN -vectors of nodes at layer ` by y
′

L`
.

Or, in greater detail, if i1, i2, . . . , iq are the nodes, in lexicographic order, that are present

in layer `, then y
′

L`
:= (y

′

i1
, y
′

i2
, . . . , y

′

iq
). Correspondingly, we also define the concatenation

of transmitted vectors at layer ` under y
′

L`
by xL`

(y
′

L`
) := (Ai1(y

′

i1
), Ai2(y

′

i2
), . . . , Aiq(y

′

iq
)).

Thereby we define the concatenated received vectors y
′

L1
, y
′

L2
, . . . , y

′

LL
at the L layers in the

network, and also the corresponding concatenated transmitted vectors. Next we define the

network-wide received vector y
′

V := (y
′

L1
, y
′

L2
, . . . , y

′

LL
), with receptions ordered according

to layers, and lexicographically within layers. The corresponding network-wide transmitted

vector is xV(y
′

V) := (xL1
(y
′

L1
), xL2

(y
′

L2
), . . . , xLL

(y
′

LL
)).
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We now wish to define the subset of network-wide received vectors that are consistent

in the sense of joint typicality with a source message 1. Similar to the definition of Y ′j(w)

in (5.6) and (5.8), we define received vectors at a node j that are associated with message

w, except that we now do it at a layer and across the whole network. We can do this by

exploiting the layered nature of the network where nodes at one layer only transmit to the

nodes in the next layer.

We say a network-wide received vector yV = (y
′

L1
, y
′

L2
, . . . , y

′

LL
) is associated with message

w if for each ` and each node j ∈ L`, (y
′

j
, xL`−1

(y
′

L`−1
)) ∈ Tε,p, where p is the distribution

p(x̃L`−1
, ỹ
′
j), where x̃L`−1

is uniformly distributed, and p(ỹ
′
j|x̃L`−1

) is the conditional distri-

bution describing the channel from transmissions by nodes at layer ` − 1 to node j. We

denote by YV(w) the set of such network-wide received vectors associated with message w,

and denote by χV(w) the set of network-wide transmitted vectors. If the source transmits

message 1, then with high probability, for a sufficiently large N , by the asymptotic equipar-

tition property (AEP) of strongly typical vectors [38], the random network-wide vectors yV

will lie in YV(w).

We note that the codewords corresponding to the messages are random, as are the matrices

{Aj}, due to the random coding strategy. As a consequence, YV are also random, since they

are dependent on the codewords and network coding matrices. Now we proceed to conduct

an analysis under the random coding strategy.

Randomly choose a codeword for each message, and a set matrices {Aj : 1 ≤ j ≤M − 1},

and randomly, with a uniform distribution, pick a network-wide received vector ỹ
′

V from the

set YV(1). For the random coding strategy, define Gwk,Ω as the event that every node in Gk,Ω

is confused by w, i.e., for a node j ∈ Gk,Ω,

({xi(w)}i∈Lk−1
, ỹ
′

j
) ∈ Tε,p, for some xi(w) ∈ χi(w), for all i ∈ Lk−1, (5.16)

with p denoting the distribution p({xi}i∈N (j), ỹ
′
j), where {xi}i∈N (j) are independent and
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uniformly distributed and p(ỹ
′
j|{xi}i∈N (j)) models the channel in the discrete network. Define

Fwk,Ω as the event that no node in Fk,Ω is confused by w. Note that, in (5.16), due to the

random coding strategy, χi(w) is also random.

For a random choice of ỹ
′

V , let P1,w,Ω denote the probability that no node in Ω is confused

by w when 1 is the transmitted message, and all the nodes in Ωc are confused by w. Then,

P1,w,Ω = Pr(
∧
k≥0

Fwk,Ω ∧ Gwk,Ω) (5.17)

=
∏
k≥1

Pr(Gwk,Ω|
k−1∧
l=0

Fwl,Ω ∧ Gwl,Ω) Pr(Fwk,Ω|Gwk,Ω ∧
k−1∧
l=0

Fwl,Ω ∧ Gwl,Ω) (5.18)

≤
∏
k≥1

Pr(Gwk,Ω|
k−1∧
l=0

Fwl,Ω ∧ Gwl,Ω). (5.19)

Now we make two important observations concerning each relay node j’s buffering of N

of its received symbols and multiplication of such a buffered 2nN -vector by the matrix Aj.

First, since the matrix Aj is independently chosen for each relay, all the relay mappings are

independent of each other.

Second, when we randomize over all the linear encodings Aj at relay node j, every transmit

vector xj ∈ χj(w), for any w, is independently and uniformly distributed over the set of

binary vectors of length 2nN . Hence each symbol in a transmit vector xj is independently

and uniformly distributed.

Error event at layer k: Next, define Pk1,w,Ω as the contribution of the k-th layer to the prob-

ability, i.e.,

Pk1,w,Ω := Pr(Gwk,Ω|
k−1∧
l=0

Fwl,Ω ∧ Gwl,Ω). (5.20)

Consider the transmit vectors of node i ∈ Lk−1 given by x̃i = Ai ỹ
′

i
. Under the conditioning

events to determine Pk1,w,Ω, we know that x̃i ∈ χi(w) for i ∈ Gk−1,Ω, and x̃i ∈ χi(1) for

i ∈ Fk−1,Ω. Denote the transmit vector of node i ∈ Gk−1,Ω by x̃i(w) to indicate that it is

the transmit block of a confused node, and denote the transmit vector of node i ∈ Fk−1,Ω
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by x̃i(1), since it is not confused by any other message. Now, by our earlier random choice

of yV from YV(1), we know that the received vector y
′

j
at node j ∈ Gk,Ω, and x̃Gk−1,Ω

(w) =

{x̃i(w)}i∈Gk−1,Ω
are jointly typical. Hence, in order to compute Pk1,w,Ω, we need to compute

the probability that for every node j ∈ Gk,Ω,

({xi(w)}i∈Lk−1
, ỹ

j
) ∈ Tε,p, for some xi(w) ∈ χi(w), for all i ∈ Lk−1, (5.21)

where p is the distribution p(x̃Lk−1
, ỹ
′
j), where {xi}i∈Lk−1

is uniformly distributed, and

p(ỹ
′
j|x̃Lk−1

) is the conditional distribution describing the channel from transmissions by nodes

at layer k − 1 to node j, given that

• x̃Fk−1,Ω
(1) was transmitted by the nodes in Fk−1,Ω,

• x̃Gk−1,Ω
(w) was transmitted by the nodes in Gk−1,Ω, and

• ({x̃i(w)}i∈Gk−1,Ω
, ỹ

j
) ∈ Tε,p, where p is the distribution p({xi}i∈Gk−1,Ω

, ỹ
′
j).

Project χV(w), the set of network-wide transmit vectors, onto the nodes in Lk−1 to obtain

the set χLk−1
(w). Pick Lk−1-wide transmit vectors xLk−1

= {xi(w)}i∈Lk−1
from χLk−1

(w).

If node j checks to see if this choice of xLk−1
will result in (xLk−1

, ỹ
′

j
) lying in Tε,p, and

xi(w) = x̃i(w), for all i ∈ Gk−1,Ω, then, under the conditions listed above, it will find a

positive answer with probability less than

2−NI(xFk−1,Ω
; y
′
j ,xGk−1,Ω

) = 2−NI(xFk−1,Ω
; y
′
j |xGk−1,Ω

), (5.22)

where the uniform distribution on {xi} is used to evaluate the mutual information and

(5.22) is due to the independence of transmit symbols {xi}. The choice of the i.i.d. uniform

distribution for {xi} follows from the discussion following (5.19). Instead, for the set xLk−1
,

if xi(w) 6= x̃i(w) for all i ∈ Gk−1,Ω, then the probability of (5.21) is

2−NI(xFk−1,Ω
,xGk−1,Ω

; y
′
j ,) ≤ 2−NI(xFk−1,Ω

; y
′
j |xGk−1,Ω

). (5.23)
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For all other choices of {xi(w)}i∈Lk−1
∈ χLk−1

(w), when if xi(w) 6= x̃i(w) for node i in a

subset of Gk−1,Ω, the probability of (5.21) is similarly upper bounded by

2−NI(xFk−1,Ω
; y
′
j |xGk−1,Ω

). (5.24)

From Lemma 10 (see Section 5.4), |χLk−1
(w)| = 2O(M)N . So, we apply the union bound

with respect to all the vectors in χLk−1
(w) to get

Pr(node j is confused by w|
k−1∧
l=0

Fwl,Ω ∧ Gwl,Ω)

≤ 2O(M)N 2−NI(xFk−1,Ω
; y
′
j |xGk−1,Ω

). (5.25)

We bound Pk1,w,Ω as

Pk1,w,Ω = Pr(nodes in Gk,Ω are confused by w|
k−1∧
l=0

Fwl−1,Ω ∧ Gwl−1,Ω) (5.26)

≤
∏

j∈Gk,Ω

Pr(node j is confused by w|
k−1∧
l=0

Fwl−1,Ω ∧ Gwl−1,Ω) (5.27)

≤ 2O(M)|Gk,Ω|N 2
−N

P
j∈Gk,Ω

I(xFk−1,Ω
; y
′
j |xGk−1,Ω

)
(5.28)

≤ 2O(M)|Gk,Ω|N 2
−NI(xFk−1,Ω

; y
′
Gk,Ω

|xGk−1,Ω
)
. (5.29)

To obtain the bound in (5.27), we note that under the conditioning events, the nodes in Lk−1

transmit xLk−1
= {xi}i∈Lk−1

. Given a set of transmissions, xLk−1
, the received vectors y

′

j1
and

y
′

j2
at node j1 and j2, respectively, in layer k are conditionally independent. We obtain the

bound by noting that the conditioning events in (5.27) involve many such mutually exclusive

transmissions by the nodes in Lk−1. The bound in (5.28) is from (5.25). With a lexicographic
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ordering of the nodes in Lk as {j1, j2, . . . , j|Gk,Ω|}, the bound in (5.29) is obtained as

|Gk,Ω|∑
l=1

I(xFk−1,Ω
; y
′

jl
|xGk−1,Ω

)

=

|Gk,Ω|∑
l=1

H(y
′

jl
|xGk−1,Ω

)−H(y
′

jl
|xLk−1

) (5.30)

≥
|Gk,Ω|∑
l=1

H(y
′

jl
|xGk−1,Ω

,∪l−1
m=1y

′

jm
)−H(y

′

jl
|xLk−1

,∪l−1
m=1y

′

jm
) (5.31)

= I(xFk−1,Ω
; y
′

Gk,Ω
|xGk−1,Ω

), (5.32)

where (5.31) follows from the Markov chain (∪l−1
m=1y

′

jl
, xLk−1

) → xLk−1
→ y

′
jl

, and that

conditioning reduces entropy.

Back substitutions: Substituting from (5.29) in (5.19), we get

P1,w,Ω ≤ (2O(M)
P

k≥1 |Gk,Ω|N) (2
−N

P
k≥1 I(xFk−1,Ω

; y
′
Gk,Ω

|xGk−1,Ω
)
) (5.33)

≤ 2O(M)|Ωc|N 2−NI(xΩ; y
′
Ωc |xΩc ) (5.34)

= 2O(M2)N 2−NI(xΩ; y
′
Ωc |xΩc ). (5.35)

The bound in (5.34) follows from the steps below and the chain rule for mutual information.

I(xFk−1,Ω
; y
′

Gk,Ω
|xGk−1,Ω

) = H(y
′

Gk,Ω
|xGk−1,Ω

)−H(y
′

Gk,Ω
|xLk−1

) (5.36)

= H(y
′

Gk,Ω
|xGk−1,Ω

)−H(y
′

Gk,Ω
|xV ,∪k−1

`=1y
′

G`,Ω
) (5.37)

≥ H(y
′

Gk,Ω
|xΩc ,∪k−1

`=1y
′

G`,Ω
)−H(y

′

Gk,Ω
|xV ,∪k−1

`=1y
′

G`,Ω
) (5.38)

≥ I(xΩ; y
′

Gk,Ω
|xΩc ,∪k−1

`=1y
′

G`,Ω
), (5.39)

where the (5.37) uses the Markov structure of the layered network,

(xV\Lk−1
,∪k−1

`=1y
′

G`,Ω
)→ xLk−1

→ y
′

Gk,Ω
.
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The probability of the event Ẽw is bounded as

Pr(Ẽw) ≤
∑
Ω∈Λ

P1,w,Ω (5.40)

≤
∑
Ω∈Λ

2O(M2)N 2−NI(xΩ; y
′
Ωc |xΩc ) (5.41)

≤ 2M+1 2O(M2)N 2−N minΩ∈Λ I(xΩ; y
′
Ωc |xΩc ). (5.42)

Finally, substituting the bound for Pr(Ẽw) from (5.42) in (5.14) gives us

Pe|W=1 ≤ ε+ (2NR − 1)2M+1 2O(M2)N 2−N minΩ∈Λ I(xΩ; y
′
Ωc |xΩc ) (5.43)

≤ ε+ 2M+12N(R+O(M2)−minΩ∈Λ I(xΩ; y
′
Ωc |xΩc )). (5.44)

Hence, if R < minΩ∈Λ I(xΩ; y
′
Ωc |xΩc) − O(M2), then Pe|W=1 or Pe can be made arbitrarily

small for a sufficiently large N .

5.1.5 Approximate optimality of the linear network code for layered
discrete networks

Next we prove that the linear network code is approximately optimal for the layered network.

Theorem 5. The linear network coding scheme achieves the capacity of the layered discrete

network up to a bounded number of bits, i.e., the rate R achieved by the coding scheme is

bounded from the capacity CD of the layered discrete relay network by O(M2) bits,

CD −R = O(M2), (5.45)

where the constant gap is independent of channel gains or SNR.

Proof. In Lemma 1, we proved that the cut-set bound of the Gaussian network and its

discrete counterpart are within a bounded gap of O(M logM) bits. In fact, in Section 4.2.1
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we also showed that CSD = CSG−O(M logM), where CSD is the value of the cut-set bound

of the discrete network for the specific choice of the uniform i.i.d. input distribution (see

(4.37)) and CSG is the cut-set bound of the Gaussian network. In Section 4.2.1, we proved

that CSG ≥ CSD, where CSD is the cut-set bound of the discrete network. Therefore,

CSD = CSD −O(M logM). Since CSD ≥ CSD, we have

|CSD − CSD| = O(M logM). (5.46)

From Lemma 4, we know that the linear network code achieves a rate R within O(M2)

bits of CSD. Hence, along with the bound in (5.46), the linear network code achieves rates

within O(M2) bits of the cut-set bound CSD. Since CSD ≥ CD, the theorem is proved.

5.2 Linear network code for layered Gaussian networks

In the earlier sections we proved that the cut-set bounds of the Gaussian and the discrete

relay networks are within a bounded gap of O(M logM) bits. Later we developed a simple

linear coding scheme for the layered discrete network that is approximately optimal. Also,

the discrete model is a digital interface for operating the Gaussian networks; the signals in

the discrete model are obtained by quantizing the signals in the Gaussian model. Combining

these results we obtain a nearly capacity-achieving coding strategy for layered Gaussian relay

networks, which consists of (i) quantizing received signals, and (ii) collecting a block of such

signals and applying linear network coding on the overall vector of bits.

In this section, we prove the optimality of the linear network code for Gaussian relay

networks and later extend this to MIMO Gaussian relay networks, where the nodes can have

multiple transmit and receive antennas, and to multicast networks, where the source can

transmit the same information to a subset of the nodes.
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5.2.1 Approximate optimality of the linear code for layered Gaussian relay
networks

Theorem 6. The linear network coding scheme achieves the capacity of the layered Gaussian

relay network up to a bounded number of bits, i.e., the rate R achieved by the linear network

code is bounded from the capacity CG of the layered Gaussian relay network by O(M2) bits,

CG −R = O(M2), (5.47)

where the constant gap is independent of channel gains or SNR.

Proof. The proof of this theorem simply involves operating the Gaussian network on the

digital interface described by the discrete model. The transmit signals are restricted to

the finite alphabet of the discrete model, and the received signals in the Gaussian network

are quantized to obtain the received signals for the discrete model; see Section 3.2.1 for

details. Then the linear network code is constructed over the layered discrete relay network

as described in Section 5.1.

From Theorem 5, we know that the linear network code achieves all rates within O(M2)

bits of the cut-set bound of the layered discrete relay network CSD. In Lemma 1, we proved

that |CSG − CSD| = O(M logM). Combining these results, and noting that CSG ≥ CG,

we get the statement of the theorem.

The theorem establishes that the discrete model can serve as a digital interface for Gaus-

sian networks, since a coding scheme for the layered discrete relay network involving simple

linear operations is approximately optimal and can be used on the layered Gaussian relay

network. Since the linear network code achieves rates within a bounded bit gap of CSG, the

theorem is also a proof of the near-optimality of the cut-set bound for layered Gaussian relay

networks, though this was proved earlier in [7] for a smaller bounded gap of O(M logM)

bits.
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5.2.2 MIMO relay networks

We can extend the linear network coding scheme to layered MIMO networks, where nodes

have multiple transmit and receive antennas. In (3.2), we defined the received signal in a

MIMO receiver in a Gaussian relay network. We operate the MIMO Gaussian relay network

on the discrete interface as described in Section 3.2.1. The linear network code is defined on

the MIMO discrete relay network. The basic ideas in the coding scheme remain the same,

but with some modifications to accommodate multiple antennas. The details are:

Source’s codewords

The source constructs a set of 2NR codewords of length N . Every codeword is a T0 × N

matrix, where each row of the matrix is transmitted by one of the transmit antennas of

the source. Each entry in the matrix is a complex number from the QAM constellation (or

equivalently, a 2nMIMO-length binary tuple, see Section 3.2.1) that is independently chosen

with the uniform distribution.

Relay’s mappings

Relay j has Uj receive antennas, receives a vector of Uj symbols every instant, and buffers

N such vectors. The received binary tuples are adjoined to construct a 2nMIMONUj-length

binary vector. The relay constructs a 2nMIMONTj × 2nMIMONUj binary matrix Aj,MIMO

where each entry of Aj,MIMO is either 0 or 1. It multiplies the 2nMIMONUj-length binary

vector with Aj,MIMO to obtain a 2nMIMONTj-length binary vector. It splits this vector into

Tj vectors of length 2nMIMON . Each tuple of length 2nMIMON corresponds to N transmit

symbols for a particular transmit antenna.
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Decoding at the destination

Destination collects N received signals and finds a message that is associated with the

received vector; see the decoding procedure in Section 5.1.3 for details. If it finds more than

one message that satisfies this condition or if it finds none, it declares an error else it declares

the unique transmitted message.

Let the maximum number of transmit or receive antennas in the network be Tmax.

Theorem 7. The linear network coding scheme achieves the capacity of the layered MIMO

Gaussian relay network up to a bounded number of bits, i.e., the linear code achieves all

rates R bounded from the capacity CG,MIMO of the layered Gaussian relay network as

CG,MIMO −R ≥ O(M2Tmax). (5.48)

The constant in the bounded gap is independent of channel gains or SNR.

Proof. The steps in the proof are essentially the same as that of Theorem 6:

1. Operate the MIMO Gaussian relay network on the digital interface defined by the

discrete model.

2. First we prove that the cut-set bound on the capacity of the MIMO Gaussian relay net-

work and the MIMO discrete network are within a bounded gap ofO(MTmax logMTmax)

bits. Here, the proof of Lemma 4 can be reused by a simple observation. While eval-

uating the cut-set bound, we can view each transmit and receive antenna as a virtual

node. Hence the total number of nodes in the network is at most MTmax which gives

us the necessary bound.

3. The coding scheme achieves all rates within O(M2Tmax) bits of the cut-set bound of

the discrete MIMO network evaluated for a specific choice of the input distribution.
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Here the input distribution is i.i.d. across all the transmit antennas in the network

and is uniform over the alphabet. The arguments in the proof of Lemma 4 carry over

to MIMO networks by noting that due to multiple transmit and receive antennas, the

receive and transmit signals are complex vectors instead of scalars. In the proof, the

value of |χi(w)| for MIMO networks will be different than before. For MIMO networks,

the bound on H(y
′

L2
|xL1

) in (5.63) increases to Tmax|L1|O(N). Due to this, the bound

on |Ψ(w)| is 2O(MTmax)N . With this, we get the required bounded gap of O(M2Tmax)

from the cut-set bound.

4. Then it is straightforward to prove near-optimality of the linear code for MIMO Gaus-

sian networks; see Theorem 6.

5.2.3 Multicast networks

In a multicast network, the source node wants to communicate the same information to

a subset of the nodes (instead of a single destination as in the previous sections). The

remaining nodes which are not the intended recipients act as relays. Let D be the set of

nodes that are the intended recipients of the source’s message. Then the cut-set bound on

the capacity CG,Mult for such networks is given by

CG,Mult ≤ max
p(x0,x1,...,xM−1)

min
D∈D

min
Ω ∈ ΛD

I(xΩ; yΩc |xΩc), (5.49)

where ΛD is the set of all cuts in the network that separate the source from the destination

D. We can extend the linear network code from Section 5.1.3 to this class of networks,

with the only difference being that all the intended destinations in D decode the source’s

transmission. In a layered multicast network, the destinations in D can be spread across the

various layers in the network.
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Theorem 8. The linear network coding scheme achieves the capacity of the multicast layered

Gaussian network up to a bounded number of bits, i.e., the linear network code achieves any

rate R which is bounded from the capacity CG,Mult of the multicast layered Gaussian network

as

CG,Mult −R = O(M2). (5.50)

The constant in the bounded gap is independent of channel gains or SNR.

Proof. The proof of this theorem resembles that of Theorem 6. We give a general outline of

the proof and skip the details.

1. Operate the multicast Gaussian network on the digital interface defined by the discrete

model.

2. First we prove that the cut-set bounds on the capacity of the multicast Gaussian

network and the multicast discrete network are within a bounded gap of O(M logM)

bits. Though the cut-set bound for multicast networks is slightly different from that

of relay networks, the proof of Lemma 4 can be reused by individually comparing the

cut-set bound between the source and each destination in D.

3. Then we prove that the coding scheme achieves all rates within O(M2) bits of the

cut-set bound of the discrete network, when the cut-set is evaluated for i.i.d. uniform

inputs. We re-use the proof of Lemma 4, with the only difference being that multiple

destinations want to decode the source’s transmission instead of a single destination.

4. With the above arguments, we can prove the equivalent of Theorem 5 for layered

multicast networks. Then, with the same arguments as in the proof of Theorem 6,

we can prove the near-optimality of the linear code up to O(M2) bits for the original

layered multicast Gaussian network.
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5.3 Probability of the error event E1

Lemma 9. The probability of the events E0 or E1: (y
M
, 1) /∈ T , for any ε > 0, is bounded

by

Pr(E0) + Pr(E1) ≤ ε, for N sufficiently large. (5.51)

Proof. The proof of this lemma involves repeated application of the AEP for strongly typical

vectors (see [38]).

Suppose the source transmits the codeword x0(1). From the AEP of strongly typical vec-

tors, the received signal y
′

j
for a node in layer 1 is jointly typical with x0(1), with probability

exceeding 1− ε1, for a sufficiently large N , for any positive ε1. Hence, with high probability,

(y
′

j
, w) ∈ T for j ∈ L1. Node i in L1 subsequently transmits a message vector xi = Aiy

′

i
,

with xi ∈ χi(1). Then, the received vector y
′

j
at a node in L2 satisfies (by AEP of strongly

typical vectors)

(y
′

j
, {xi}i∈N (j)) ∈ Tε,p, (5.52)

with probability exceeding 1−ε2, for a sufficiently large N , for any positive ε2. In (5.52), the

joint typicality of the vectors in Tε is with respect to the joint distribution p({xi}i∈N (j), y
′
j),

where {xi}i∈N (j) are independent and uniformly distributed, and p(y
′
j|{xi}i∈N (j)) models

the channel in the discrete network. Hence, with high probability, (y
′

j
, 1) ∈ T for j ∈ L2.

Subsequently, each node in L2 transmits a message vector from χj(1).

We carry out this analysis across all the layers in the network, and obtain that the received

signal in Lk satisfies (y
′

j
, 1) ∈ T with probability exceeding 1− εk, for a sufficiently large N ,

for any εk > 0. The error event E1 occurs if the received vector at the destination is not

associated with message 1, and this will not occur (with high probability) if all the received

vectors at the intermediate relay nodes are associated with 1. Hence, we get

Pr(E1) ≤
∑
k

εk, for a sufficiently large N, (5.53)
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where the summation is over the number of layers.

Similarly to the above arguments, we can prove that the transmit and received message

vectors in the network are strongly typical, with probability exceeding 1−ε0, for a sufficiently

large N , for any ε0 > 0. Hence

Pr(E0) ≤ ε0. (5.54)

Since {εk} are arbitrary positive numbers, for any ε > 0,

Pr(E0) + Pr(E1) ≤ ε, for a sufficiently large N. (5.55)

5.4 Bounding the size of the typical set

Lemma 10. The size of the set |χLk−1
(w)| (with the notations as given in the proof of

Lemma 4) is 2O(M)N , where the size is independent of channel gains or SNR.

Proof. Consider the set YV(w) of network-wide received vectors associated with the message

w, defined in the proof of Lemma 4. For every yV ∈ YV(w), we can define a network-wide

transmitted vector, associated with the message w, as

xV(y
′

V) := (xL1
(y
′

L1
), xL2

(y
′

L2
), . . . , xLL

(y
′

LL
)). (5.56)

Define χV(w) to consist of all such network-wide transmitted vectors associated with message

w.
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Consider the relay nodes in L1 and let us bound the conditional entropy H((y
′
i)i∈L1|x0):

H(y
′

L1
|x0) ≤

∑
i∈L1

H(y
′

i|x0) (5.57)

=
∑
i∈L1

H([h1ix0 + zi]|x0) (5.58)

≤
∑
i∈L1

H(z
′

i, ci), (5.59)

where z
′
jn is the integer part of the Gaussian noise2 and cjn is the carry from adding the

fractional parts of the signal and the noise. Since zj is distributed as CN (0, 1), H(z
′
j)

is independent of channel gains or SNR and H(z
′
j) = O(1). Also H(cj) = O(1), hence

H(y
′
L1
|x0) = |L1|O(1).

Let YL1(w) be the projection of YV(w) onto the nodes in L1. For a sufficiently large N ,

by the AEP of strongly typical vectors, the size of YL1(w) is

|YL1(w)| = 2NH(y
′
L1
|x0) = 2N |L1|O(1). (5.60)

Since every set of transmit vectors in χL1(w) is associated with a received vector in YL1(w),

the size of χL1(w) is also bounded by

|χL1(w)| ≤ 2N |L1|O(1). (5.61)

Now, similarly to (5.57)–(5.59), we can bound

H(y
′

L2
|xL1) ≤

∑
j∈L2

H(y
′

j|xL1) (5.62)

= |L2|O(1). (5.63)

Let us fix a set of transmit vectors xL1
∈ χL1(w); then consider a set of received vectors y

′

L2

2zjn is a complex number lying in Z + ıZ corresponding to the integer portion of the real and imaginary
parts of the complex noise zj .

68



for the nodes in L2 such that

(y
′

j
, {xi}i∈N (j)) ∈ Tε,p, for all j ∈ L2. (5.64)

The distribution p is p({x̃i}i∈Nj
, ỹ
′
j), where {x̃i}i∈N (j) are independent and uniformly dis-

tributed, and p(ỹ
′
j|{x̃i}i∈N (j)) models the channel from the nodes in N (j) to j in the discrete

network. For a fixed xL1
, the size of the set of received vectors y

′
L2

that satisfy the above is

given by (for a sufficiently large N , by the joint AEP of strongly typical sequences)

2NH(y
′
L2
|xL1

) ≤ 2NL2O(1). (5.65)

Define YL1,L2(w) as the projection of YV(w) onto the nodes in L1 and L2. Now every set of

vectors in YL1,L2(w) can be obtained by first fixing a set of received vectors y
′

L1
in YL1(w),

determining the transmit vectors generated from it as xL1
(y
′

L1
), and finding a set of received

vectors y
′

L2
that are jointly typical with this set xL1

(y
′

L1
), as in (5.64). By counting the

number of vectors across the layers, the size of YL1,L2(w) is bounded by

|YL1,L2(w)| ≤ (2NL1O(1))(2NL2O(1)) = 2N(L1+L2)O(1). (5.66)

With the bound, obtained similarly to (5.59),

H(y
′

Lk
|xLk−1

) ≤ |Lk|O(1), (5.67)

we extend this argument across all the layers in the network. The size of YV(w) can be

bounded as

|YV(w)| ≤ 2N
PL

`=1 |L`|O(1) = 2NO(M). (5.68)
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Since each network-wide transmit vector in χV(w) is a function of a vector in YV(w),

|χV(w)| = 2NO(M). (5.69)

Since χLk−1
(w) is the projection of the set χV(w) onto the nodes in Lk−1, the size of χLk−1

(w)

is bounded by the size of χV(w). Hence, the lemma is proved.
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CHAPTER 6

LIFTING CODING SCHEMES FOR THE
SUPERPOSITION NETWORK TO THE GAUSSIAN

NETWORK

In Chapter 4, we proved that the cut-set bounds of the Gaussian and the superposition

networks are within a bounded gap of O(M logM) bits. In this chapter, we show that

the superposition network can be a surrogate for Gaussian networks. We describe a simple

procedure to lift any coding scheme for the superposition network to the Gaussian network by

pruning the set of codewords. This lifting procedure reduces the rate of the code by at most

O(M logM) bits. Later in this chapter, the capacities of the Gaussian relay network and

the superposition relay network are shown to be within a bounded gap of O(M logM) bits.

Both these constant gaps are independent of channel gains or SNR. Since the superposition

network well-approximates the capacity of the Gaussian network and also allows for lifting

of coding strategies to the Gaussian network, near-optimal codes for the Gaussian relay

network can be constructed by first constructing near-optimal codes for the superposition

network and later lifting them to the Gaussian network. Hence the superposition network

also serves as a digital interface for operating Gaussian networks.

6.1 Lifting codes from the superposition model

A coding strategy for either the Gaussian or superposition relay network specifies codewords

transmitted by the source, a mapping from the received signal to a transmit signal for every

relay node, and a decoding function for the destination (see Section 5.1.1). For the sake of

simplicity of exposition, we assume that the graph describing the network is acyclic and that

the relays employ time-invariant encoding functions. Later, in Section 6.1.2, we mention how
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to handle more general encoding functions.

We describe how to lift a coding strategy for the superposition network to a strategy

for the Gaussian network. Consider a (2NR, N) code for the superposition network with

zero probability of error, for a certain N . The probability of error can be reduced to zero

due to the deterministic nature of the network (see Section 6.1.2). Denote the block of N

transmissions at node j in the superposition network by an N -dimensional transmit vector

xj, and similarly the received vector by y
′

j
. All signals in the superposition network are a

(deterministic) function of the codeword x0 transmitted by the source.

Next, we build a (2mNR,mN) code, denoted by C0, for the superposition network, with

every mN -length codeword constructed by adjoining m codewords from the old code, for

a large m. This is again a rate R code since it simply uses the old code m times on the

superposition network. We can visualize the construction of codewords in C0 by referring to

Figure 6.1. In the (2mNR,mN) code, node j

1. breaks up its received signal, denoted by y
′

j
, into m blocks of length N ,

2. applies the mapping used in the (2NR, N) code on each of the m blocks to generate m

blocks of transmit signals,

3. and adjoins m blocks of transmit signals to construct a new transmit signal, denoted

by xj, of length mN .

Transmit signal in the (2mN(R−κ
′
R), N) code

Figure 6.1: Relationship among the signals transmitted by node j.

As shown in Figure 6.1, the relationship between various signals associated with the trans-

mission of node j is akin to packetization in computer networks.
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A subset of the codewords of C0, defined below, forms the set of codewords of the code for

the Gaussian relay network.

Pruning the set of codewords: Node j has a finite set of ε-strongly typical y
′

j
’s (see [38])

in the code for the superposition network. We randomly, i.e., independently and uniformly,

pick a 2−m(Nκ+2η) fraction of them and denote the resulting set by Sj. Later in (6.6), κ > 0 is

defined as a function only of the number of nodes in the network and not the channel gains,

while η > 0 is specified later and can be made arbitrarily small. We repeat this pruning

procedure for all the nodes.

Denote the intersection of the inverse images of Sj in C0, for j = 1, 2, · · · ,M , by CG.

Transmission of any vector in CG results in the received vector at node j belonging to Sj in

the superposition network. The set of codewords for the Gaussian network is formed by CG.

Encoding and decoding procedure in the Gaussian network: The source in the Gaussian

network transmits a codeword x0 from CG. Assume throughout that node 1 can listen, i.e.,

has a link, to the source. Node 1 receives a noisy signal and decodes to a vector in S1. We will

specify in Section 6.1.2 how this decoding is to be done. Then, using the encoding function

from C0, it constructs its transmit signal. All relay nodes operate in a similar way. Finally,

the destination decodes its noisy reception to a signal in SM , and maps it to a codeword by

simply using the decoding function from C0.

Note that we are operating the Gaussian network over the digital interface naturally

defined by the signals transmitted and received in the corresponding superposition network.

We summarize the main result concerning the lifting procedure in Theorem 11.

Theorem 11. Consider a Gaussian relay network with a single source-destination pair and

(M − 1) relay nodes, and consider a code for the superposition model of the network that

communicates at a rate R.

Then, the lifting procedure and the digital interface defined by the superposition model yield
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a code for the original Gaussian network that communicates at a rate R− κR, where

κR := M(log(6M − 1) + 10). (6.1)

It should be noted that κR does not depend on the channel gains. Therefore, Theorem 11

provides a lifting procedure that attains a rate in the Gaussian network within a bounded

amount of R at any SNR.

6.1.1 A genie-based argument

Before delving into the details of the proof, we start with a genie-based argument explaining

the ideas behind the proof of Theorem 11. The theorem is subsequently proved in detail in

Section 6.1.2. The arguments presented next are not a proof of the theorem, but are the

basis of our understanding of the relationship between the Gaussian and the superposition

model, and motivate the search for a technique to lift a code from the superposition network

to the Gaussian network.

Consider the relay network in Figure 3.1. For simplicity, assume node 1 transmits a symbol

x1 and node 2 transmits a symbol x2 (instead of a block of symbols each) from the alphabet

for the superposition network. In the superposition model of the relay network, node 3

receives

y
′′

3 = ̂̂h13x1 + ̂̂h23x2,

where ĥ13 and ĥ23 are the quantized channel gains (see Section 3.2.2), and it receives

y3 = h13x1 + h23x2 + z3
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in the Gaussian relay network. Rewriting y3, we get

y3 = y
′′

3 + (h13x1 − ĥ13x1) + (ĥ13x1 − ̂̂h13x1)

+ (h23x2 − ĥ23x2) + (ĥ23x2 − ̂̂h23x2) + z3

=: y
′′

3 + v3 + z3. (6.2)

Here we have replaced the actual values of the channel gains with appropriate variables. By

definition y
′′
3 lies in Z + ıZ. Hence y

′′
3 can be recovered from y3, the quantized values v̂3 and

ẑ3, respectively, of v3 and z3, and the quantized carry c3 obtained from adding the fractional

parts of v3 and z3, with

c3 := ̂(v3 − v̂3) + (z3 − ẑ3). (6.3)

So,

y
′′

3 = ŷ3 − v̂3 − ẑ3 − c3,

and

H(y
′′

3 |y3) ≤ H(v̂3) +H(ẑ3) +H(c3). (6.4)

Now, let

v3 = w13 + w23,

where

wk3 := (hk3xk − ĥk3xk) + (ĥk3xk − ˆ̂hk3xk), k = 1, 2.

Since |hk3 − ĥk3| ≤
√

2 and |xk| ≤ 1, the magnitude of v3 is less than 2(2
√

2). The

quantized values v̂3R and v̂3I lie in {−5,−4, . . . , 5}, and H(v̂3) ≤ log(22). The real and

imaginary parts of the carry lie in {0,±1}, hence H(c3) ≤ 3. Since z3 is distributed as
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CN (0, 1), from Lemma 15 in Section 6.3, H(ẑ3) ≤ 6. Adding up all the entropies and

substituting in (6.4), we get the upper bound

H(y
′′

3 |y3) ≤ 14.

These computations can be repeated for all the nodes in the Gaussian network. In general,

if there are M incoming signals at a relay node j, then the magnitude of vj is less M(2
√

2),

where vj is similarly defined, as in (6.2), with respect to the signal received by node j. Hence,

v̂jR and v̂jI will lie in the set {−3M + 1,−3M + 2, . . . , 3M − 1};then

H(y
′′

j |yj) ≤ H(v̂j) +H(ẑj) +H(cj) (6.5)

≤ log(6M − 1) + 10,

where cj is defined, as in (6.3), with respect to the signal received by node j. Let

κ := log(6M − 1) + 10 (6.6)

be a function of the total number of nodes and independent of channel gains (or SNR). Now

we use a code designed for the superposition network in the Gaussian network. If there were

a genie providing H(y
′′
j |yj) bits of data corresponding to the received signal to node j in

every channel use, then node j can recover y
′′

j
from y

j
. Since the genie provides at most κ

bits to every node, it provides a total of at most Mκ =: κR bits per channel use.

Hence, with the genie’s aid, a code designed for the superposition network can be used

in the Gaussian network at any SNR. Our proof below prunes a fraction of the codewords

representing the information that the genie would have provided, so that the decoding can

work even without the genie.
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6.1.2 Proof of Theorem 11

Zero probability of error

Consider the (2NR, N) code for the superposition network and assume that it has an average

probability of error δ, where 0 ≤ δ < 1/2. Since the superposition network is a noiseless

network, each codeword is either always decoded correctly or always decoded incorrectly.

Since δ < 1/2, less than half of the codewords are always decoded incorrectly. Discarding

them results in a code where all codewords can be successfully decoded, with a small loss

in the rate. So, without loss of generality, we assume that the (2NR, N) code (and thus also

the (2mNR,mN) code) for the superposition network has zero probability of error.

The random variable corresponding to the codeword, x0, has a uniform distribution with

H(x0) = NR, and induces a distribution on the remaining variables in the network.

Operating over blocks of length mN

In the (2mNR,mN) code, we assume that every node buffers mN of its received symbols,

eventually constructing a transmit signal of length mN , and transmits it over the next mN

channel uses. For the layered network in Figure 3.1, this is possible since nodes can be

grouped into levels such that only nodes at one level communicate with another level. For

example, nodes 1 and 2 in Figure 3.1 can buffer their reception until node 0 completes its

transmission, then construct their transmit signals, and transmit to nodes 3 and 4 over the

next mN channel uses. For a general network, we need to differentiate between signals

received by a node at various time instants to account for causality in construction of their

transmit signals. This requires slightly modifying the procedure (see Section 6.1.2).

Pruning the code with respect to node 1

Each y
′′

j
(or xj) in C0 is generated by n independent samples from the distribution of y

′′

j
(or

xj). Choose ε > 0. For a sufficiently large m, node 1 has a collection of at most 2m(H(y
′′
1

)+ε2)
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and at least 2m(H(y
′′
1

)−ε2) ε-strongly typical received vectors in the superposition network

corresponding to C0 (see [38]), where ε2 > 0. As ε → 0, ε2 → 0. With η set to ε2, we

construct S1 by randomly selecting a 2−m(Nκ+2η) fraction of this collection. We do this by

choosing a subset uniformly among all the subsets of the appropriate size. The set |S1| can

be upper bounded as follows (see (6.5)–(6.6)):

|S1| ≤ 2m(H(y
′′
1

)+ε2) 2−m(Nκ+2η)

≤ 2m(H(y
′′
1

)−H(y
′′
1
|y

1
)−ε2) = 2m(I(y

′′
1

;y
1
)−ε2).

Similarly, we can show that |S1| ≥ 2m(H(y
′′
1

)−Nκ−3ε2).

For a large n, the number of codewords in C0 jointly ε-strongly typical with a partic-

ular y
′′

1
can be bounded independently of the chosen y

′′

1
(see [38]). The desired set has

2m(H(x0|y
′′
1

)±ε2) codewords for a particular y
′′

1
, i.e., transmission of one of those codewords in

the superposition network results in node 1 receiving the chosen y
′′

1
(see Figure 6.2). Due to

the deterministic nature of the channel, the sets of codewords in C0 jointly typical with two

different vectors in S1 form disjoint sets. To construct C0,1, we pick the set of all codewords

in C0 that are jointly ε-strongly typical with some vector in S1. We have

|C0,1| =
∑

y′′
1
∈S1

(number of codewords in C0 jointly

ε-strongly typical with y
′′

1
)

≤
∑

y′′
1
∈S1

2m(H(x0|y
′′
1

)+ε2)

≤ 2m(H(y
′′
1

)−Nκ−ε2) × 2m(H(x0|y
′
1
)+ε2) (6.7)

= 2m(H(x0,y
′′
1

)−Nκ) (6.8)

= 2m(H(x0)−Nκ), (6.9)
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where (6.9) follows sinceH(y
′′

1
|x0) = 0. Similarly, we can show that |C0,1| ≥ 2m(H(x0)−Nκ−4ε2).

C0

y
′

1

Set of y
′

1
’sCodewords

S1

with each y
′

1

jointly ε− typical
2mH(x0|y′

1
) codewords

Figure 6.2: Graphic representation of pruning with respect to node 1.

If the source transmits a codeword from C0,1 in the Gaussian network, then the signal y
1

received by node 1 can be regarded as a noisy version of the signal y
′′

1
it would have received

in the superposition network, as shown in (6.2). Therefore, we define a channel with input

y
′′

1
and output y

1
. Node 1 decodes by finding a vector in S1 that is jointly weakly ε-typical

with the received vector in the Gaussian network.1 Since |S1| ≤ 2m(I(y
′′
1

;y
1
)−ε2), decoding is

successful with block error probability less than ζ, where ζ → 0 as n→∞.

Further pruning the set of codewords with respect to node 2

There are 2m(H(y
′′
2
|y′′

1
)±ε2) vectors in the set of y

′′

2
’s at node 2 that are jointly ε-strongly typical

with a particular y
′′

1
∈ S1. Since we constructed S2 by randomly choosing a subset containing

a 2−m(Nκ+2ε2) fraction of the set of all y
′′

2
’s, for a large n, there are 2m(H(y

′′
2
|y′′

1
)−Nκ±3ε2) vectors

in S2 jointly ε-strongly typical with each y
′′

1
∈ S1. Hence, there are 2m(H(y

′′
1
,y
′′
2

)−2Nκ±6ε2)

jointly ε-strongly typical vectors in S1 × S2 with high probability (whp) as n→∞.

Now, 2m(H(x0|y
′′
1
,y
′′
2

)±ε2) codewords in C0 are jointly ε-strongly typical with each ε-strongly

typical tuple in S1×S2 (see Figure 6.3). We iterate the procedure in the previous subsection

by collecting the codewords in C0 which are jointly ε-strongly typical with the ε-strongly

typical tuples in S1 × S2, and denote this set by C0,1,2. Naturally, C0,1,2 is a subset of C0,1.

As in (6.7)–(6.9), we obtain |C0,1,2| is about 2m(H(x0)−2Nκ±7ε2) whp.

1Since y
1

is a continuous signal, we use weak typicality to define the decoding operation. Note that
strongly typical sequences are also weakly typical; hence sequences in S1 are weakly typical.
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Figure 6.3: Pictorial representation of further pruning with respect to node 2.

If the source transmits a codeword from C0,1,2, then nodes 1 and 2 can correctly decode

to vectors in S1 and S2, respectively, with high probability for a large n, since |Sj| ≤

2
m(I(y

′′
j

;y
j
)−ε2)

for j ∈ {1, 2}.

Further pruning with respect to the remaining nodes

The same procedure is repeated with respect to the remaining nodes in the network. In

the end, we obtain a collection of at most 2m(H(x0)−MNκ+εM ) and at least 2m(H(x0)−MNκ−εM )

codewords whp, denoted by C0,1,··· ,M =: CG, where εM > 0. Note that εM → 0 as ε → 0.

Transmission of a codeword in CG results in the received signal at node j in the superposition

network belonging to the set Sj.

Now, if CG is used on the Gaussian network with encoding and decoding procedures at

all nodes as described above, then the destination can decode to the transmitted codeword

whp. Thus, on the Gaussian network, CG achieves the rate

H(x0)/N −Mκ− εM/M = R−Mκ− εM/M

= R− κR − εM/M, (6.10)

where εM can be made arbitrarily small.
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Interleaving the codewords for general networks

As mentioned in Section 6.1.2, we need to slightly modify the lifting procedure for relay

networks which have irregular level sets that do not permit straightforward buffering of

received symbols at a node. In this case, codewords in C0 are constructed by adjoining N

blocks of m symbols each, where the first block x0(1) consists only of the first symbols of m

codewords of the (2NR, N) code, the second block x0(2) consists only of the second symbols

of the same codewords, and so on. The source transmits x0(t)’s in the order of increasing t.

In the (2NR, N) code, let y
′′
j (t), t = 1, . . . , N , denote the t-th symbol received by node

j. We adjoin the t-th received symbols from m uses of the code to construct y
′′

j
(t). Since

xj(t) is the t-th symbol transmitted by node j and is a function of {y′′j (p)}t−1
p=1, node j can

construct xj(t), the vector consisting of the t-th transmit symbols from m uses of the code,

after receiving {y′′
j
(p)}t−1

p=1. Essentially, we interleave the symbols from m uses of the same

code to ensure that the nodes can buffer their receptions.

In order to lift the coding scheme to the Gaussian network, we prune C0 by randomly

picking a 2−m(κ+2η)-fraction of the set of ε-strongly jointly typical (y
′′

j
(t))t, for all j, and

collecting the codewords jointly ε-strongly typical with them to form CG. In the Gaussian

network, each node buffers its reception for m time units, decodes to the appropriate y
′′

j
(t),

constructs xj(t + 1), and transmits it over the next m time units. The destination decodes

individual m-length blocks to get y
′′

M
(t), t = 1, 2, . . . , N , and decodes to a codeword in CG

after de-interleaving {y′′
M

(t)}.

This completes the proof of Theorem 11.

6.2 Discrete superposition model as an interface for Gaussian

networks

Next, we prove that the superposition model serves as a near-optimal interface for operating

Gaussian networks.
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Theorem 12. The capacity of a Gaussian relay network and the corresponding superposition

network are within a bounded gap of O(M logM) bits. Also, the cut-set bound is the capacity

of the superposition relay network up to a bounded gap of O(M logM) bits. Furthermore,

the bounded gaps are independent of channel gains or SNR.

Proof. We know that the expression in the cut-set bound when evaluated for the restricted

choice of product input distributions is achievable for a general deterministic network [7]. In

Lemma 2, we proved that the cut-set bounds of the Gaussian and the superposition network

are within a gap of at most O(M logM) bits. This also proves that the cut-set bound of the

superposition network (evaluated for a product distribution) is approximately its capacity.

To make this rigorous:

• Start with the optimal input distribution for the superposition network.

• Then, as in Section 4.2.2, consider a particular cut and convert the optimal distribution

to an input distribution for the Gaussian network with a loss of at most O(M logM)

bits.

• Next replace this with the optimal joint Gaussian distribution for the inputs in the

Gaussian network, with no loss in the mutual information.

• Then, choose the i.i.d. Gaussian distribution for the inputs with a loss of at most

O(M) bits in the mutual information across the cut [7].

• Finally, as in Section 4.2.2, reduce this to a product distribution for the superposition

network with a loss of at most O(M logM) bits.

Hence, when the cut-set bound expression is evaluated for the choice of the product distri-

bution for the superposition network, it is at most O(M logM) bits lower than the cut-set

bound with the optimal distribution.
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Now, the cut-set bounds of the Gaussian and superposition networks are within a bounded

gap of O(M logM) bits and are also achievable up to a bounded gap of O(M logM) bits.

This proves the theorem.

In this chapter, we described a simple lifting procedure to translate any code for the

superposition network into a code for the Gaussian relay network. The lifting procedure

applies to any coding scheme for the superposition network and, in particular, to a near-

optimal scheme. Since the capacities of the Gaussian and superposition networks are within

a bounded gap, a near-optimal scheme for the superposition network can be lifted to obtain a

near-optimal coding scheme for the Gaussian network, thereby proving that the superposition

model can be used as a digital interface for Gaussian relay networks. We can construct an

approximately-optimal linear network coding scheme for the superposition network along

lines similar to the linear network code for the discrete Gaussian network presented earlier;

but we skip this to avoid repetition.

6.2.1 MIMO relay networks

MIMO relay networks can be handled by treating each transmitted/received signal as a col-

lection of vectors, where the size of the collection depends on the number of transmit/receive

antennas (see Section 3.2.1 for the details). We state the counterpart of Lemma 11 and The-

orem 12 for MIMO relay networks.

Theorem 13. Consider a relay network where every node has a maximum of Tmax transmit

or receive antennas. The capacity of the Gaussian relay network and the capacity of the

superposition relay network is within a bounded gap of O(TmaxM log(TmaxM)) bits.

Furthermore, a coding scheme for the superposition MIMO relay network can be lifted to

the Gaussian MIMO relay network with a loss of O(TmaxM log(TmaxM)) bits in the rate.

Both the bounded gaps are independent of channel gains or SNR.
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Proof. The arguments in the proofs of Lemma 11 and Theorem 12 can be reused here.

A simple way to derive the above results is to replace each antenna at a transmitter or

receiver by a virtual node. Now there are a total of at most O(TmaxM) virtual nodes in the

network. The bounds in the theorem follow by replacing M with TmaxM in Theorem 12

and Lemma 11. In order to lift the code from the superposition MIMO network to the

Gaussian relay network, we need to prune the source’s codebook with respect to all the

virtual nodes.

6.2.2 Multicast networks

We defined multicast networks in Section 3.1.1. We can also operate multicast Gaussian

networks on the digital interface defined by the superposition model. This is summarized in

the theorem below.

Theorem 14. The capacities of the multicast Gaussian network and the multicast superpo-

sition network are within a bounded gap of O(M logM) bits. Furthermore, a coding scheme

for the multicast superposition network can be lifted to the Gaussian multicast relay network

with a loss of at most O(M logM) bits in the rate.

Proof. In order to prove the bounded gap in the capacities of the two networks, we first

prove that the cut-set bounds are within a bounded gap. Here we can reuse the proof of

Lemma 2. Now the cut-set bound is approximately achievable for the multicast Gaussian

network, and it is achievable within a bounded gap for the multicast superposition network

if we evaluate the expression in the cut-set bound for the choice of product distributions [7].

With arguments similar to those in the proof of Theorem 12, we can complete the proof of

the bounded gap of O(M logM) bits between the capacities of the two networks.

The key to lifting a coding scheme from the superposition to the Gaussian network is that

all the intended destinations in a multicast network are decoding the same data. Hence if
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we prune the source’s codebook with respect to all the nodes, as in the proof of Theorem 11,

then the pruned code can be decoded on the Gaussian network. We skip the details.

We can extend the above theorem to the case when the nodes have multiple transmit and

receive antennas.

6.3 Maximum entropy

Lemma 15. Let x be a random variable whose domain is Z + ıZ, with E[|x|2] ≤ 1. Then

the entropy of x is bounded as H(x) ≤ 6.

Proof. The entropy of x can be bounded as

H(x) = H(xR + ıxI)

≤ H(xR) +H(xI).

Now

H(xR) = H(sign(xR), |xR|2)

≤ H(sign(xR)) +H(|xR|2)

≤ 1 +H(|xR|2).

Let z = |xR|2. The domain of z is the set of non-negative integers. Since E[|x|2] ≤ 1,

we have E[z] = E[|xR|2] ≤ 1. If E[z] < 1, then p(z = 0) > 0. Since the alphabet of z

is countably infinite, there is always a k ∈ Z+ with p(z = k) < p(z = 0), with p(z = k)

possibly zero. Now mixing the probability distribution of z by replacing each of p(z = 0)

and p(z = k) by the average of the two probabilities will increase the entropy (see [38]), and

will also increase the mean. Hence the entropy of z, subject to E[z] ≤ 1, is maximized when

E[z] = 1. For a given mean, the geometric distribution maximizes the entropy among all
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discrete distributions (see [38]). Since the entropy of a geometric random variable over the

non-negative integers with unit mean is 2, H(|xR|2) = H(z) ≤ 2.

Hence H(xR) ≤ 3. Similarly, we can prove that H(xI) ≤ 3. Combining the two bounds,

we get the statement of the lemma.
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CHAPTER 7

A DIGITAL INTERFACE FOR GAUSSIAN
INTERFERENCE NETWORKS

In this chapter, we prove that the capacity regions of the Gaussian interference channel

and the superposition interference channel are within a bounded number of bits, with the

bound independent of channel gains or SNR. This result was proved for the case of 2 × 2

interference channel (and a slightly different deterministic model) in [33]. Also, similarly

to the case of the relay network, we develop a systematic way to “lift” any code for the

superposition interference network to the Gaussian interference network, and establish that

it does so with no more than a bounded loss in the rate. We could present similar results

relating the capacity region and codes for the discrete interference network with those of the

Gaussian interference network, but we skip them.

1 

2 

K 

1 

2 

K 

…
 

…
 

Figure 7.1: K ×K interference network.

7.1 General code for interference networks

Consider the K × K interference network shown in Figure 7.1. Consider a block code for

the interference network, either the Gaussian version or the superposition version. Such
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a (2NR1 , 2NR2 , . . . , 2NRK , N) code for the interference channel is defined by an encoding

function for each source

xk : {1, 2, . . . , 2NRk} → XN , for k = 1, 2, . . . , K,

where X is the input alphabet of the channel, and a decoding function for each destination

gk : YNk → {1, 2, . . . , 2NRk}, for k = 1, 2, . . . , K,

where Yk is the output alphabet of the channel at destination node k. LetMj be a random

variable uniformly distributed on {1, 2, . . . , 2NRj}, for each j, corresponding to the message

that source j wants to communicate to destination j. Mj is mapped to the codeword

xj(Mj). The average probability of error is given by

Pe = Pr(gk(yk) 6= Mk, for some k),

where y
k

is the signal received by destination k. The capacity region is the collection of all

rate tuples R such that for any ε > 0, there exists a blocklength N for which Pe < ε.

All rate vectors in the capacity region are referred to as achievable rate vectors. The next

lemma states the equivalence between achievable rate vectors and a collection of multi-letter

mutual information terms.

Lemma 16. A rate vector R lies in the capacity region of the K ×K interference channel

if and only if there exists a blocklength N , and a collection of independent random variables

{xk, k = 1, 2, . . . , K} such that

Rk <
1

N
I(xk; yk), for k = 1, 2, . . . , K, (7.1)

where y
k

is the received signal at the k-th receiver.
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Proof. Suppose we are given a set of distributions {p(xk)} on input vectors of length N .

Consider the k-th source-destination pair and construct a collection of 2mNR codewords for

the k-th source where each codeword is constructed by independently picking m vectors, each

of length N , with the distribution p(xk), and appending them to get codewords of length

mN . All the sources similarly construct their set of codewords. The k-th destination decodes

by looking for a codeword potentially transmitted by the k-th source jointly typical with its

reception. Using standard random coding arguments (see [38]), the probability of error can

be made arbitrarily small by considering large enough m. This proves the achievability of

the rate.

For proving the converse, fix a (2NR1 , 2NR2 , . . . , 2NRK , N) code and observe

NRk = H(Mk)

= I(Mk; yk) +H(y
k
|Mk)

≤ I(Mk; yk) + 1 + PeNRk (7.2)

≤ I(xk; yk) + 1 + PeNRk, (7.3)

where we used Fano’s lemma in (7.2) and the data processing inequality in (7.3). Since the

rate Rk is achievable, Pe can be made arbitrarily small for sufficiently large N . On dividing

both sides of (7.3) by N , we get the converse.

7.2 A digital interface for Gaussian interference networks

The main result of this section is the following theorem.

Theorem 17. Consider the K×K interference channel described above. The capacity region

of the Gaussian interference channel and the superposition interference channel are within

a bounded gap, where the gap is independent of channel gains or SNR.
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If RG is a rate vector in the capacity region of the Gaussian interference channel, then

there is a rate vector RDS in the capacity region of the superposition interference channel

such that

|Rk,G −Rk,DS| ≤ κI , for k = 1, 2, . . . , K, (7.4)

where

κI := 6K + log(144K + 1). (7.5)

Conversely, a coding scheme for the superposition interference channel corresponding to

a rate vector RDS can be lifted to the Gaussian interference channel to obtain an achievable

rate vector RG with a loss of at most κ
′
I bits, where

κ
′

I := log(6K − 1) + 10. (7.6)

Proof. We prove the theorem in a series of steps. First, using Lemma 16, we convert any

achievable rate tuple for either the Gaussian or superposition network into a set of mutual

information terms. Then, by analyzing these mutual information terms, we prove that any

coding scheme for the Gaussian channel can be transformed into a coding scheme for the

superposition channel and vice versa, with at most a bounded loss in the rate. This will

contain the proof of the lifting procedure to translate any coding scheme for the superposition

interference channel to the Gaussian interference channel, again with at most a bounded loss

in the rate. The proof of the theorem is split over Sections 7.2.1, 7.2.2, and 7.2.3.

7.2.1 Capacity(Gaussian interference channel) ⊆ Capacity(superposition),
to within O(logK) bits

We convert a coding scheme for the superposition interference channel to a mutual infor-

mation expression using Lemma 16, and bound the loss in the mutual information when

transforming the superposition model to the Gaussian model. The proof below contains all
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the ideas on lifting a code from the superposition model to the Gaussian model, and we

explicitly mention them in Section 7.2.3.

Pick any coding scheme for the superposition interference channel which achieves the rate

tuple (Rk,S)k. From Lemma 16, we know that this corresponds to a collection of mutual

information terms {I(xk; y
′′

k
), k = 1, 2, . . . , K}. Note that here xk corresponds to the input of

the k-th source in the superposition interference network, and y
′′

k
corresponds to the output of

the k-th destination in the superposition network. Now, we use the same input distribution

on the Gaussian interference network and show that the mutual information corresponding

to the rate of the k-th source does not decrease by more than a bounded amount. The same

arguments will be applicable to the remaining mutual information terms.

Since every element of the vector xk satisfies a peak power constraint, it also satisfies an

average power constraint. Hence it can be used as an input to the Gaussian channel to get

y
k

=
K∑
j=1

hjk xj + zk. (7.7)

We know that

y
′′

k
=

K∑
j=1

̂̂hjk xj, (7.8)

where ĥjk is the quantized channel gain. Hence, we have

y
k

=: y
′′

k
+

K∑
j=1

wjk + zk

=: y
′′

k
+ vk + zk, (7.9)

where wjk is defined as

wjk := (hjk − ĥjk)xj + (ĥjk xj −̂̂hjk xj).

By definition y
′′

k
is a vector of entries from Z + ıZ. Hence y

′′

k
can be recovered from y

k
,
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the quantized values of vk and zk, and the vector of carries ck obtained from adding the

fractional parts of vk and zk. So,

I(xk; y
′′

k
) ≤ I(xk; yk, v̂k, ẑk, ck)

≤ I(xk; yk) +H(v̂k) +H(ẑk) +H(ck), (7.10)

where v̂k and ẑk are defined as quantized integer portions of vk and zk. Similarly to the

arguments preceding (6.5), we get

H(v̂k) ≤ N log(12K − 2),

H(ck) ≤ 3N,

H(ẑk) ≤ 6N.

In (7.10), I(xk; yk) corresponds to N times the rate Rk,G achieved on the Gaussian interfer-

ence channel by the k-th source. Therefore we get

Rk,G ≥ Rk,S − log(6K − 1)− 10

≥ Rk,S −O(logK).

7.2.2 Capacity(superposition interference channel) ⊆ Capacity(Gaussian
interference channel), to within an additive constant

Next we prove that the capacity region of the superposition interference network is at least

as large as that of the Gaussian interference network, minus a constant number of bits.

From Lemma 16, we know that we can replace any achievable rate vector (Rk,G)k for the

Gaussian interference channel by a collection of mutual information terms {I(xk; yk), k =

1, 2, . . . , K}. We perform a series of approximations to convert the mutual information

I(xk; yk) corresponding to the rate of the k-th source to a mutual information term for the
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superposition interference channel, incurring a loss no greater than a bounded amount.

The received signal at the k-th receiver in the Gaussian interference channel is

y
k

=
K∑
j=1

hjk xj + zk, (7.11)

with the transmitted signals satisfying an average unit power constraint.

Note that xk = (xk1, xk2, . . . , xkN) and each xkm can be split into its quantized part x̂km

(see (3.15) for the definition of the quantization operation) and fractional part x̃km, where

x̃km := xkm − x̂km.

We discard x̂km and retain x̃km. Since xkm satisfies a unit average power constraint, x̃km

also satisfies a unit average power constraint. Define

ỹ
j

:=
K∑
k=1

hjk x̃k + zj. (7.12)

Denote the discarded portion of the received signal by

y̆
j

:=
K∑
k=1

hjk x̂k. (7.13)

Comparing the mutual information corresponding to the j-th source-destination pair for
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channels (7.11) and (7.12), we get

NRGj = I(xj; yj)

≤ I(xj; ỹj, y̆j)

≤ I(x̃j, x̂j; ỹj, y̆j)

= I(x̃j, x̂j; ỹj) + I(x̃j, x̂j; y̆j|ỹj)

= I(x̃j; ỹj) + I(x̃j, x̂j; y̆j|ỹj) (7.14)

≤ I(x̃j; ỹj) +H(y̆
j
)

≤ I(x̃j; ỹj) +
K∑
k=1

H(x̂k), (7.15)

where (7.14) follows because x̂j → x̃j → ỹ
j

form a Markov chain, and (7.15) holds because y̆jn

is a function of {x̂kn} from (7.13). It is proved in Lemma 15 in Section 6.3 that H(x̂km) ≤ 6;

hence we get

I(x̃j; ỹj) ≥ I(xj; yj)− 6KN. (7.16)

Since x̃kmR and x̃kmI lie in (−1, 1), we obtain positive inputs by adding 1 to each. This

is equivalent to adding
∑

k hjk(1 + ı) to ỹjm. Denoting by ν the vector of (1 + ı)’s, we also

divide by 2
√

2 throughout to get

(ỹ
j

+
∑
k

hjkν)/2
√

2

=
∑
k

hjk(x̃k + ν)/2
√

2 + zj/2
√

2. (7.17)
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Note that

I(x̃j; ỹj) = I

(
x̃j,

x̃j + ν

2
√

2
; ỹ

j

)
= I

(
x̃j,

x̃j + ν

2
√

2
; ỹ

j
,
ỹ
j

+
∑

k hjkν

2
√

2

)

= I

(
x̃j + ν

2
√

2
;
ỹ
j

+
∑

k hjkν

2
√

2

)
.

To avoid introducing new notation, for the rest of the proof we abuse notation and denote

the left hand side of (7.17) by y
j
, (x̃k + ν)/2

√
2 by xk, and zj/2

√
2 by zj, for all j.

With the new notation, |xkm| ≤ 1, with positive real and imaginary parts, and zjm is

distributed as CN (0, 1/8).

The features of the model that we next address are

1. channel gains are quantized to lie in Z + ıZ,

2. real and imaginary parts of the scaled inputs are restricted to

n := max
(i,j)∈E

max{blog |hijR|c, blog |hijI |c}

bits,

3. there is no AWGN, and

4. outputs are quantized to lie in Z + ıZ.

Let the binary expansion of
√

2xkmR be 0.xkmR(1)xkmR(2) . . ., i.e.,

xkmR =:
1√
2

∞∑
p=1

2−pxkmR(p).

The received signal in the superposition channel only retains the following relevant portion

95



of the input signals:

y
′′

k
=

∑
j

̂̂hjk x
′
j, (7.18)

where ĥjk is the quantized channel gain and

x
′

kmR :=
1√
2

n∑
p=1

xkmR(p)2−p,

x
′

kmI :=
1√
2

n∑
p=1

xkmI(p)2
−p.

To obtain (7.18) we subtracted δk from y
k
, where

δk :=
K∑
j=1

(
hjk(xj − x

′

j) + (hjk − ĥjk)x
′

j + (ĥjk x
′

j −̂̂hjk x
′
j)

)
+ zk (7.19)

=:
∑
j

wjk + zk

=: vk + zk.

To bound the loss in the mutual information in the superposition network from the original

Gaussian interference network, we have

I(xk; yk) ≤ I(xk; yk, y
′′

k
, δk)

= I(xk; y
′′

k
, δk)

= I(xk; y
′′

k
) + I(xk; δk|y

′′

k
)

= I(x
′

k; y
′′

k
) + h(δk|y

′′

k
)− h(δk|y

′′

k
, xk)

≤ I(x
′

k; y
′′

k
) + h(δk)− h(δk|y

′′

k
, xk, vk)

= I(x
′

k; y
′′

k
) + h(δk)− h(zk)

= I(x
′

k; y
′′

k
) + I(vk; δk).
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By bounding the magnitudes of the terms in (7.19), we get |wjkm| ≤ 3
√

2. So, I(vk; δk)

is the mutual information of N uses of a Gaussian MISO channel with average input power

constraint less than (3
√

2)2K ≤ 18K and

I(vk; δk) ≤ N log(1 + 18K/(1/8))

< N log(1 + 144K). (7.20)

Note that I(x
′

k; y
′′

k
) is the mutual information between the input and output of the j-th

source-destination pair in the superposition interference channel. By Lemma 16, this mutual

information translates into an achievable rate Rk,S = I(x
′

k; y
′′

k
)/N . By accumulating the

losses in transforming the inputs for the Gaussian channel into the corresponding inputs for

the deterministic channel, we obtain

Rk,S ≥ Rk,G − (6K + log(1 + 144K)) (7.21)

≥ Rk,G −O(K). (7.22)

7.2.3 Lifting codewords to the Gaussian interference network

Since the construction of a digital interface and the procedure of lifting codewords from the

superposition interference channel to the Gaussian interference channel was implicit in the

proof of the above lemma, we summarize the procedure below:

• Consider any coding scheme for the superposition interference channel that achieves a

rate tuple (Rk,S)k with probability of error ε. Using Lemma 16, it can be converted to

a collection of mutual information terms {I(xk; y
′′

k
)}, where the k-th term corresponds

to the rate of the k-th source-destination pair, and a collection of independent input

distributions {p(xk)}, where the k-th distribution corresponds to the input distribution

for the k-th source. The input distribution p(xk) is over N -length vectors, where N is
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the length of the codewords for the superposition interference channel.

• We construct an mN -length codeword for the k-th source by picking m vectors inde-

pendently with the distribution p(xk) and adjoining them. We construct 2mN(Rk,S−O(K))

codewords this way. This set forms the (2mN(Rk,S−O(K)),mN) code for the j-th source

in the Gaussian interference network. Similarly to the lifting procedure for the relay

network, we can visualize the construction of codewords in the (2mN(Rk,S−O(K)),mN)

code by referring to Figure 6.1.

• In the Gaussian interference channel, with joint typical decoding, the k-th decoder can

recover the codeword transmitted by the k-th source with probability of error less than

ε, as we allow m to tend to ∞. This is essentially proved in Section 7.2.1.

Therefore, we can operate the Gaussian interference channel on the digital interface defined

by the signals transmitted and received in the superposition interference channel. Now we

know that the capacities of both the networks are within a bounded gap. Hence, if we choose

a near-optimal coding scheme for the superposition interference network, we can transform

it by following the above procedure for lifting codewords and obtain a near-optimal digital

interface for operating the Gaussian interference network.

7.2.4 MIMO interference networks

The results in Theorem 17 can be extended to K × K interference channels where each

transmitter and destination have multiple antennas. Once again, the constant determining

the bounded gap is a function of the number of nodes in the network, as well as the number

of transmit and receive antennas at the various nodes.

Theorem 18. Consider the K × K MIMO interference channel, where every node has

a maximum of Tmax antennas. The capacity region of the Gaussian MIMO interference

channel and the superposition MIMO interference channel are within a bounded gap of κI,T
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bits, where

κI,T := 6TmaxK + Tmax log(144TmaxK + 1). (7.23)

Furthermore, a coding scheme for the superposition MIMO interference channel can be

lifted to the Gaussian MIMO interference channel with a loss of κ
′
I,T bits in the rate, where

κ
′

I,T := Tmax(log(6TmaxK − 1) + 10). (7.24)

Proof. The proof of this theorem is similar to that of Theorem 17. We can treat each

transmitting antenna and receiving antenna as a virtual node. For proving (7.23), we note

that in this case there are at most KTmax virtual transmitters that contribute 6TmaxK

to the bound. Since there are Tmax virtual receivers at every node and each one con-

tributes log(144TmaxK + 1) to the bound, the total contribution of the virtual receivers

is Tmax log(144TmaxK+1). Adding up the two contributions, we get the bound in (7.23) (see

Section 7.2.2 for the details). The bound in (7.24) can be similarly proved. Each of the Tmax

virtual receivers at a particular receiver contributes log(6TmaxK−1)+10 to the bound, with

a total contribution of Tmax(log(6TmaxK − 1) + 10) due to all the virtual receivers at a node

(see Section 7.2.1 for the details).
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CHAPTER 8

CONCLUSIONS

In this dissertation, we have presented the discrete and superposition networks that approxi-

mate the capacities of certain Gaussian networks and provide a digital interface for operating

them. Our models have two important properties. First, the capacities of the Gaussian net-

work and the corresponding discrete or superposition network are within a bounded gap,

where the bound is independent of channel gains or SNR. Second, near-optimal coding

schemes for the discrete or the superposition network can be naturally lifted to obtain near-

optimal coding schemes for the Gaussian network. Both these properties together prove

that the discrete and superposition models are near-optimal digital interfaces for a class of

Gaussian networks.

8.1 Approximating Gaussian networks with the discrete model

The discrete network is a quantization-based digital interface for the class of layered Gaussian

relay networks. These are networks where the nodes are arranged into groups or layers such

that only nodes of one layer can transmit to nodes of another layer. We proved that a simple

linear coding scheme for such layered discrete networks achieves rates within a bounded gap

of O(M2) bits from the cut-set bound, where the bound is independent of channel gains

or SNR. The transmit signals in the discrete network satisfy a unit power constraint, and

hence are valid transmit signals for the Gaussian network. Also, the received signals in the

Gaussian network are obtained by quantizing the received signals in the Gaussian network.

Hence, the Gaussian network can be easily operated on the digital interface defined by the
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discrete network. The same linear coding scheme can be used on the layered Gaussian

network, and is near-optimal for the Gaussian network.

Our overall near-optimal strategy for a Gaussian relay network can be summarized as

follows. The number n of bits of precision is chosen as the logarithm of the largest real or

imaginary part of any channel gain. Then by simple quantization and truncation, we create

a purely discrete network. This discrete network is operated in an en bloc fashion. At each

node, received signals are buffered for a block, on the basis of which the transmit signals in

the next block are generated. The coding strategy is particularly simple. Linear network

coding is performed by simply multiplying the buffered vector by a square random binary

matrix. The resulting long vector is broken into symbols for use in the next block. A similar

strategy can be used for MIMO nodes, and also for multicast relay networks.

The above strategy has the advantage that it employs a simple coding strategy requiring

minimal signal processing at the relays. We note that most codes for relay networks do

require considerable signal processing by the relay nodes consisting of non-linear operations

such as compression, decoding, etc.

Each relay performs scalar quantization followed by a simple matrix multiplication. Non-

linearity is thus introduced into the code due to quantization. Introducing some non-linearity

is unavoidable due to the inability of linear codes to achieve the capacity within a constant

gap in the Gaussian relay network.

The random matrix interleaves all the bits and perhaps increases the complexity of the

decoding algorithm at the destination. It is an interesting problem to simplify this by

constructing explicit encoding matrices for the relays that preserve the properties of a random

matrix. This might help us construct a graphical model for describing the channel from

the source to the destination and lead to a low-complexity code for relay networks that is

decodable with iterative message passing algorithms.

The linear network code is a robust scheme in the sense that the relay need not know the

channel gains on either the incoming or the outgoing links. Since the transmit and receive
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signals are quantized to binary tuples of length 2n, all the nodes only need to know the

global parameter n.

The quantization requirements of the linear network code are completely defined by the

parameter n, which therefore also determines the resolution of the analog-to-digital conver-

tor (ADC) and the digital-to-analog convertor (DAC) for operating the network within a

bounded gap from the network capacity.

For a general Gaussian network with many sources, many destinations, relays, and any

data transmission requirements, one can similarly construct the corresponding discrete coun-

terpart and prove that the capacity region of the corresponding discrete network is contained

in the capacity region of the Gaussian network. The converse, however, remains to be proved:

that the capacity region of the original Gaussian network is contained in that of the discrete

network, up to a constant gap.

8.2 Approximating Gaussian networks with the superposition

model

We have proved that the superposition network serves as a near-optimal digital interface

for designing codes for the Gaussian relay network and the Gaussian interference network.

Hence, we have transformed the problem of designing near-optimal codes for the Gaussian

network into one of designing near-optimal codes for the discrete counterpart. Also, the

problem of computing the capacity of the Gaussian network is reduced to a combinatorial

problem of computing the capacity of a discrete network. In the case of the relay network,

even though we already know near-optimal coding schemes for the network, it may still be

helpful to construct simple codes for its superposition counterpart. Such simple schemes can

be directly translated, via the lifting procedure proposed earlier, to construct simple coding

schemes for the original Gaussian network. In the case of the Gaussian interference network,

computing the capacity region of the 3× 3 superposition interference channel will yield the
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capacity region of the original Gaussian network to within a constant, and will improve our

understanding of larger practical interference networks. We have not been able to prove

the near-optimality of the superposition model in approximating the capacity of a general

Gaussian network.

One of the main problems in network information theory is computing the capacity region

of a large network with many sources, many destinations, and arbitrary data transmission

requirements. Currently, this appears to be no more than a distant possibility. As suggested

by [7], a possibly simpler aim is to approximate a general network with a deterministic

model, perhaps with the superposition model.

Determining the Shannon capacity of relay networks and constructing codes and protocols

that achieve them is a long-standing problem in network information theory. Recently

progress has been made by relaxing the stringent goals of information theory, and instead

solving a possibly tractable problem of determining the capacity region within a bounded

gap. The models and the codes presented here are steps towards constructing simple near-

optimal schemes for wireless networks. A better understanding of the limits of approximating

Gaussian networks with such models will help us in computing the fundamental limits of

wireless networks with many users, and may also help in designing coding schemes for them.
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