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Decidability of geometricity of regular

languages⋆
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8049, 5 boulevard Descartes, 77454 Marne-la-Vallée, France.

2 Université de Rouen, LITIS, Avenue de l’Université - BP 8, 76801
Saint-Étienne-du-Rouvray Cedex, France.

Abstract. Geometrical languages generalize languages introduced to
model temporal validation of real-time softwares. We prove that it is
decidable whether a regular language is geometrical. This result was
previously known for binary languages.

1 Introduction

A geometrical figure of dimension d is a connected set of sites in the lattice of
dimension d which is oriented in the following sense: it has an origin O such that
for any site P of the figure, there is a directed path with positive elementary
step from O to P , a positive elementary step incrementing exactly one coordinate
by 1. Finite geometrical figures are called animals [10].

A geometrical language is the set of finite words over a d-ary alphabet whose
corresponding Parikh points are the sites of a geometrical figure. It is called the
geometrical language of the figure. Geometrical languages were introduced by
Blanpain et al. in [2] and have applications to the modeling of real-time task
systems on multiprocessors (see [8], [2]). The definition of geometrical figures
implies that all geometrical languages are prefix-closed (i.e. the prefix of any
word of the language also belongs to the language).

Conversely, for any language of finite words over a d-ary alphabet, one can
associate a set of sites corresponding to the Parikh points of the words of the
language, the i-th coordinate of the Parikh point of a word counting the number
of letters ai contained in the word. If the language is prefix-closed, the figure
that it defines is geometrical. It turns out that a prefix-closed language is al-
ways contained in the language of its geometrical figure but this inclusion may
be strict, the geometrical languages being exactly the languages satisfying this
property.

Studying properties of a geometrical language may help to obtain properties
of its geometrical figure and get information on the task systems that it models.

⋆ This work is supported by the French National Agency (ANR) through ”Programme
d’Investissements d’Avenir” (Project ACRONYME n◦ANR-10-LABX-58).



It is also interesting from the language theory point of view. A main subclass
of these languages is the one of regular geometrical languages. From this point
of view, geometricity is a strong property which can be weakened. The class of
semi-geometrical languages contains languages such that any two words with the
same Parikh image define the same left residuals.

We consider the class of regular languages and address the algorithmic pro-
blem of checking whether a regular language is geometrical (or semi-geometrical).
It is already known from [5] that it is decidable in polynomial time whether a
regular binary language is geometrical. If n is the number of states of the min-
imal deterministic automaton accepting the language, an O(n3)-time algorithm
is obtained for extensible binary languages in [4], while an O(n4)-time algo-
rithm works for all binary languages in [5]. Two-dimensional geometry is used
to prove the correctness of these algorithms. For alphabets in higher dimension,
a non-polynomial algorithm has been obtained in the case where the minimal
automaton of the language has one strongly connected component [3]. An ex-
ponential algorithm in [2] reduces the decidability of geometricity of a regular
language to solving a system of Diophantine equations. Nevertheless, the system
may be not linear in the general case and solving such a system is known to be
undecidable.

In this paper, we give a decision scheme for all regular languages. The algo-
rithm is nevertheless exponential and the existence of a polynomial algorithm to
decide the geometricity of a ternary regular language for instance is still open.
The problem may be NP-complete but this question is not addressed in the pa-
per. Our solution uses only elementary automata theory and classical semilinear
set theory to reduce the problem to a system of linear Diophantine equations.
For binary alphabet, we show that a polynomial-time algorithm may be derived
from the general solution. The algorithm is simpler that the O(n4)-algorithm
obtained in [5] but it has a worst-case time complexity of O(n6).

The paper is organized as follows. The second section recalls the definitions
and main properties of geometrical languages. Section 3 recalls some semilinear
set theory [12] useful for Section 4, where the decision procedures are exposed.

2 Geometrical languages

Let d be a positive integer representing a dimension. Let x = (x1, . . , xd), y =
(y1, . . , yd) be two points in N

d, we say that x ≺i y (or simply x ≺ y) if there
is exactly one dimension index 1 ≤ i ≤ d such that xi + 1 = yi and xj = yj for
j 6= i.

Let x, y be two points in N
d. We call a directed path from x to y a finite

sequence of points (z(i))0≤i≤k contained in N
d such that z(0) = x, z(k) = y, and

z(i) ≺ z(i+1) for 0 ≤ i ≤ k − 1.

A geometrical figure is either the empty set or a set of points in N
d containing

the null point (0, . . , 0) and such that there is a directed path consisting of points
belonging to the figure from the null point to any point of the set. Equivalently,



for any nonnull point y in a nonempty geometrical figure, there is a point x in
the figure such that x ≺ y.

Let A = {a1, . . , ad} be a finite alphabet of cardinal d. The set of words on
the alphabet A is denoted by A∗. The Parikh point associated to a word w of
A∗ is the point (x1, . . , xd) in N

d such that xi is the number of occurrences of
the letter ai in w.

A language L over A is a subset of A∗. We say that a language is prefix-closed
if any prefix of a word of the language belongs to the language.

The geometrical figure associated to a language L, denoted fig(L), is the set
of Parikh points associated to the set of all prefixes of words of L. Conversely,
the language associated to a geometrical figure F , denoted lang(F ), is the set of
words whose Parikh points belong to the figure. It is a prefix-closed set.

Let L be a prefix-closed language. We say that L is a geometrical language
if L is the language associated to some geometrical figure. By extension, if L is
not prefix-closed, it is geometrical if the set of its prefixes is geometrical. Hence
we shall only consider prefix-closed languages.

If F is a geometrical figure, we have F = fig(lang(F )). If L is a prefix-closed
language, we have L ⊆ lang(fig(L)) but the converse is not true as is shown in
the example below.

Example 1. Let L1 be the language {aabbb, aabba, bbaaa, bbaab}. The set of pre-
fixes of L1 is a geometrical language in dimension 2 whose geometrical figure F1

is pictured in Figure 1. The figure contains the points (0, 0), (0, 1), (0, 2), (1, 0),
(2, 0), (2, 1), (1, 2), (2, 2), (2, 3) and (3, 2).

Let now L2 be the language {ab, b}. The set of its prefixes is {ε, a, ab, b}. It is
not geometrical. Indeed the geometrical figure F2 associated to L2 contains the
points (0, 0), (0, 1), (1, 0), (1, 1). Thus the language associated to F2 contains
the word ba which is not a prefix of a word in L2.

a

b

a

b

Fig. 1. The geometrical figures F1 (on the left) and F2 (on the right).

Proposition 1. A prefix-closed language L is geometrical if and only if L =
lang(fig(L)).



Proof. If L is prefix-closed and geometrical, then there is a geometrical figure F
such that L = lang(F ). We get lang(fig(L)) = lang(fig(lang(F ))) = lang(F ) = L.
Conversely, if L = lang(fig(L)), it is a geometrical language by definition.

In [4] is introduced the notion of semi-geometricity as follows. If u is a word
and L a language, u−1L denotes the set of words w such that uw belongs to L.
A prefix-closed language L is said semi-geometrical if u−1L = v−1L for any
two words u, v of L having the same Parikh point. It is proved in [4] that a
geometrical language is semi-geometrical but the converse is false.

Proposition 2 ([4]). A prefix-closed language which is geometrical is semi-
geometrical.

Proof. Suppose that L = lang(F ) for some geometrical figure F . Let u, v ∈ L

having the same Parikh point. Let w be a word such that uw ∈ L. Then the
Parikh point associated to uw belongs to F and the Parikh point associated to
any prefix of vw belongs to F . Since L = lang(F ), L contains the word vw.
Hence u−1L ⊆ v−1L and thus u−1L = v−1L.

A characterization of the geometricity of prefix-closed languages was obtained
in [4] as follows.

Proposition 3 ([4]). A prefix-closed language L over A = {a1, . . , ad} is geo-
metrical if and only if (uai)

−1L = (vaj)
−1L for any words u, v in L and letters

ai, aj such that uai and vaj have the same Parikh point.

Proof. Suppose that L = lang(F ) is geometrical and w a word such that uaiw ∈
L. Hence the Parikh point associated to any prefix of uaiw belongs to F . Since
the uai and vaj have the same Parikh point and u, v ∈ L, the Parikh point
associated to any prefix of vaj belongs to F . It follows that the Parikh point
associated to any prefix of vajw belongs to F . As L = lang(F ), it contains the
word vajw. Hence uaiw ∈ L if and only if vajw ∈ L.

Conversely, let us assume that, for any word w, any words u, v ∈ L, any
indexes i, j, we have uaiw ∈ L if and only if uajw ∈ L. Let F = fig(L). Let
s = s1 · · · sn be a word of length n such that the Parikh point of any prefix of
s belongs to F . Let us show that s belongs to L. Since the Parikh point of s1
belongs to F , we have s1 belongs to L. Let us assume that the prefix s1 · · · sk
of s belongs to L. As the Parikh point x of s1 · · · sksk+1 belongs to F and since
F = fig(L), we get that x is the Parikh point of a word t = t1 · · · tktk+1 in L. Set
u = t1 · · · tk, ai = tk+1, v = s1 · · · sk, aj = sk+1. Since uai ∈ L, we get vaj ∈ L

and thus s1 · · · sksk+1 belongs to L. By recurrence, we obtain that s belongs
to L.

Note that the proof also shows that L is geometrical if uai ∈ L if and only
if vaj ∈ L for any words u, v in L such that uai and vaj have the same Parikh
point.



3 Semilinear sets

In this section, we present some definitions and known results about semilinear
sets that will be useful in Section 4. We recall some results from [9] and [6]
about rational sets of commutative monoids (see for instance [12, 3.3]) or [13,
7.4], [14]), and also [15], [7], [11] for complexity results).

Let (M,+) be a commutative monoid. A linear set of M is a set of the form
u + V ⊕, where u ∈ M , V is a finite subset of M and V ⊕ is the submonoid
generated by V , i.e. the set of linear combinations over N of elements in V .
Hence, if V = {v1, . . , vn}, a linear set is a set of the form

{u+ x1v1 + · · ·+ xnvn | xi ∈ N, vi ∈ V }.

A semilinear set is a finite union of linear sets, hence of the form

r⋃

i=1

(ui + V ⊕
i ).

The set of rational subsets of M contains the finite parts and is closed by
the operations union, +, and ⊕. It is known that the rational subsets of M are
exactly its semilinear sets.

Proposition 4. (see [12, Proposition 3.5]) Let M be a commutative monoid. A
subset of M is rational if and only if it is semilinear.

Furthermore, the construction of a semilinear expression from a rational ex-
pression is effective.

We will consider the case where (M,+) is (Zd,+). Checking whether a semi-
linear set of Zd is empty or not is known to be decidable. It can be first reduced
to the problem of checking whether a linear set is empty or not, which is de-
cidable and NP-complete. A proof of the following Proposition can be found for
instance in [12, Lemma 3.10] or in [13, Proposition 7.17].

Proposition 5. It is decidable whether the equation

x1u1 + · · ·+ xkuk = c,

where ui, c ∈ Z
d, has a solution in N

k.

In [16] is proved that, if a solution exists, then there is one with coefficients
bounded above by (k + 1)M1, where M1 is the maximum of the absolute values
of all sub-determinants of a d × (k + 1) matrix made of the coefficients of ui

and c.

4 Regular geometrical languages

In this section, we address the problem of checking whether a regular language is
geometrical. We do not make any restrictions on the dimension or on properties
of the regular language or on its minimal deterministic automaton.



We consider a regular prefix-closed language L on the alphabetA = {a1, . . , ad}.
It is accepted by a unique minimal finite complete deterministic automaton
A = (Q,E, q0, T ), where Q is the set of states and E the set of edges. The
unique initial state is q0 and the set of final states is T . If L is the full language,
we have Q = F = {q0}. Otherwise, Q has a non final sink state qs and all states
but qs are final since L is prefix-closed. We denote by δ(q, u) the state ending
the unique path labeled u starting at q.

By definition of the semi-geometricity, we get from Proposition 2 the following
characterization of semi-geometrical regular prefix-closed languages.

Proposition 6 ([4]). A regular prefix-closed language L is semi-geometrical if
and only if δ(q0, u) = δ(q0, v) for any two words u, v of L having the same Parikh
point.

It also follows directly from Proposition 3 the following characterization of
geometrical regular prefix-closed languages.

Proposition 7 ([4]). A regular prefix-closed language L is geometrical if and
only if δ(q0, uai) = δ(q0, vaj) for any words u, v in L such that uai and vaj have
the same Parikh point.

The main result of the paper is the following.

Proposition 8. It is decidable whether a regular prefix-closed language is geo-
metrical (resp. semi-geometrical).

Proof. Let A = (Q,E, q0, T ) be the minimal deterministic complete automaton
accepting the language L. We consider the automaton B = (Q×Q,E′, (q0, q0), T×
T ) labeled on Z

d, where the edges are defined as follows. There is an edge

(p, q)
(0,..,

i

↓

+1,..,

j

↓

−1,..0)
−−−−−−−−−−−→ (p′, q′)

with +1 positioned at the index i and −1 at the index j, whenever there are two
edges in A

p
ai−→ p′ and q

aj

−→ q′.

There is an edge

(p, q)
(0,..,0)
−−−−→ (p′, q′)

whenever there are two edges in A

p
ai−→ p′ and q

ai−→ q′.

The automaton B accepts a regular set of Zd.
By construction, there is a path in B from (q0, q0) to (p, q) labeled by the null

vector of Zd if and only if there are two words u, v with the same Parikh point
such that δ(q0, u) = p and δ(q0, v) = q. Let B(p,q) denote the regular subset of

Z
d of labels of paths of B from (q0, q0) to (p, q). Thus checking whether L is



semi-geometrical consists in checking whether there exists no pair of states (p, q)
with p 6= q and p, q final, such that B(p,q) contains the null vector.

Similarly, there is a path in B from (q0, q0) to (p, q) labeled by the Z
d-vector

x(i,j) = (0, . . , 0,−1, 0, . . , 0,+1, 0, . . , 0) (with −1 positioned at the index i and
+1 at the index j) if and only if there are two words u, v such that δ(q0, u) = p

and δ(q0, v) = q, and such that uai and vaj have the same Parikh point. Thus
checking whether L is geometrical consists in checking whether, when B(p,q)

contains x(i,j) for some pair of states (p, q) with p 6= q and p, q final, we have
δ(p, ai) = δ(q, aj).

As a consequence both geometricity and semi-geometricity can be reduced to
check whether the regular language B(p,q) of Z

d contains a given point of Zd. If we
find such a language B(p,q) containing x(i,j), we check whether δ(p, ai) = δ(q, aj)
and conclude that L is not geometrical if this condition does not hold.

We know from Section 3 that any set B(p,q) is semilinear, and the effective
construction of Proposition 5 can be performed a finite number of times to
decide whether B(p,q) contains some vector x(i,j). Thus both geometricity and
semi-geometricity are decidable.

The time complexity of the algorithm is exponential. Indeed, the automaton
A being given, the construction of B can be done in polynomial time. Finding
a rational expression of a set B(p,q) is exponential (the size of the expression
itself can be exponential). Finding a semi-linear expression from a rational ex-
pression is a polynomial step. Finally, solving a linear Diophantine equation is
exponential.

Example 2. We consider again the language L2 = {ab, b}. The set of its prefixes
{ε, a, ab, b} is accepted by the minimal deterministic complete finite automaton
A pictured in the left part of Figure 2. The automaton B constructed in the
proof of Proposition 8 is pictured in the right part. We have B(2,3) = {(1,−1)}.
It contains (1,−1) and δ(2, b) 6= δ(3, a). As a consequence L2 is not geometrical.
It is semi-geometrical since neither B(2,3) nor B(3,2) contains the null vector.

1 2 3 4
a b a, b

b

a

a, b

1, 1

2, 3

3, 2

2, 2

3, 3

(1,−1)

(−1, 1)

(0, 0)

(0, 0)

Fig. 2. The automaton A (on the left), where the final states are colored, accepting
the set of prefixes of L2, and the automaton B (on the right). Only the final states of
B are represented.



We now come to the particular case of a two-letter alphabet A = {a, b}. It is
proved in [5] that it is decidable in polynomial time whether a regular binary
language is geometrical. An O(n3)-time algorithm is obtained for an extensible
binary language in [4], an O(n4)-time algorithm works for all binary languages
in [5]. We give below another polynomial-time algorithm for deciding the geo-
metricity of binary regular languages which is based on the construction used in
the proof of Proposition 8. It also uses an algorithm of [1] for computing the clo-
sure of an automaton under some rewriting rules. This algorithm has an O(n6)
time complexity which is worse than the complexity of the algorithm given in
[5], but it is simpler.

Proposition 9. ([5]) It is decidable in polynomial time whether a regular prefix-
closed language on a two letter alphabet is geometrical (resp. semi-geometrical).

Proof. Let A = (Q,E, q0, T ) be the n-state minimal deterministic complete au-
tomaton accepting the language L. We first construct an automaton B′ over Z

which plays the same role as the automaton B in the proof of Proposition 8 but
has its labels in Z

d−1. Let B′ = (Q × Q,E′, (q0, q0), T × T ) labeled on Z. The
edges of B′ are defined as follows. There is in B′ an edge

(p, q)
+1
−−→ (p′, q′) if p

a
−→ p′ and q

b
−→ q′ are edges of A,

(p, q)
−1
−−→ (p′, q′) if p

b
−→ p′ and q

a
−→ q′ are edges of A,

(p, q)
0
−→ (p′, q′) if p

ℓ
−→ p′ and q

ℓ
−→ q′ are edges of A,

where ℓ = a or ℓ = b.
Let B′

(p,q) denote the regular subset of Z of labels of paths of B′ from (q0, q0)

to (p, q). There is a path in B′ from (q0, q0) to (p, q) labeled by −1 if and only if
there are two words u, v such that δ(q0, u) = p and δ(q0, v) = q and such that uai
and vaj have the same Parikh point. Thus checking whether L is geometrical
consists in checking whether when B′

(p,q) contains −1 for some pair of states

(p, q) with p, q final, we have δ(p, ai) = δ(q, aj). Note that B′
(p,q) contains −1 if

and only if B′
(q,p) contains 1. Adding an extra initial edge labeled 1 reduces the

problem to checking whether B′
(p,q) contains 0.

The automaton B′ is an n2-state non-deterministic automaton labeled in the
subset X = {−1, 0, 1} of the group Z. By definition, the number of transitions
of B′ is at most 4n2. We say that the pair of consecutive edges of B′

s
ℓ
−→ t

m
−→ u,

is reducible if ℓ+m ∈ X.
We construct an automaton C which is a closure of B′ in the following sense.

Whenever there is a reducible pair of consecutive edges of B′ as above, we add
in C the edge

s
ℓ+m
−−−→ u.



This construction is an instance of the algorithm used in [1] for computing the
set of descendants of a regular set for Thue systems of a certain type. The
rewriting rules that we consider are given by pairs of words in X∗ ×X∗ which
are ((−1)1, 0), (1(−1), 0), (00, 0), (01, 1), (10, 1), ((−1)0,−1), (0(−1),−1).

The computation of the automaton C can be done as follows. We keep a queue

of edges of C containing initially the edges of B′. For each edge e = s
ℓ
−→ t of this

queue, we consider the edges f = t
m
−→ u following e and the edges g = u

m
−→ s

preceding e, in order to check whether ef of fe is a reducible pair of edges. In

that case, we add a new edge in the queue s
ℓ+m
−−−→ u (or u

ℓ+m
−−−→ t).

The number of edges of C is at most 3n4 and each edge is added and removed
only once in the queue. Whenever an edge (s, ℓ, t) is removed, the edges going
out of t and coming in s are checked. There are at most 6n2 such edges. Thus
the time complexity the algorithm is O(18n6).

We claim that there is a path in B′ from s to t labeled by 0 if and only if
there is an edge in C from s to t labeled by 0. Indeed, by construction, if there
is an edge in C from s to t labeled by 0, then there is a path in B′ from s to t

labeled by 0. Conversely, let

s
ℓ1−→ s1

ℓ2−→ . .
ℓr−→ sr = t

be a path in B′ labeled by 0 of minimal length. This path contains no consecutive
reducible pair of edges as factor since otherwise we could get a shorter path
labeled with the same label, origin and end. As a consequence the factors (−1)1,
1(−1), 01, 10, 0(−1), (−1)0, or 00, are forbidden in the sequence ℓ1 . . ℓr. This
implies that all ℓi are equal. Since ℓ1 + · · ·+ ℓr = 0, we get r = 1 and ℓ1 = 0.

The algorithm can be implemented as follows. Let ℓ ∈ X. We set B′
ℓ[s, t] =

true if there is an edge (s, ℓ, t) in B′ and B′
ℓ[s, t] = false otherwise. We define the

matrices Cℓ similarly.
A pseudocode for computing the matrices Cℓ from the matrices B′

ℓ is given
in the procedure Closure below.

Closure (transition matrices B′

ℓ)

1 for all ℓ ∈ X

2 do Cℓ ← B′

ℓ

3 edgeQueue ← the edges of B′

4 while edgeQueue is nonempty

5 do remove an edge s
ℓ
−→ t from edgeQueue

6 for all states u, all m such that l +m ∈ X,
7 do if Cℓ+m[s, u] = false
8 then Cℓ+m[s, u]← true

9 add s
ℓ+m
−−−→ u to edgeQueue

10 if Cℓ+m[u, t] = false
11 then Cℓ+m[u, t]← true

12 add u
ℓ+m
−−−→ t to edgeQueue

13
14 return Cℓ



Example 3. We consider the language L3 = {ab, ba}∗. The set of its prefixes is
accepted by the deterministic complete finite automaton A pictured in the left
part of Figure 3. The automaton B′ constructed in the proof of Proposition 9 is
pictured in the right part of the figure. The closure automaton C of B′ is pictured
in Figure 4. Since C has no edge labeled by 0 from (1, 1) to either (2, 3) or (3, 2),
the language L3 is a geometrical language.

3 1 2
a

bb

a
1, 1 2, 33, 2

2, 2

3, 3

00

0 0

1

−1−1

1

Fig. 3. The automaton A (on the left) accepting the set of prefixes of L3 = {ab, ba}∗,
and the automaton B′ (on the right). Only the final states are represented.

1, 1 2, 33, 2

2, 2

3, 3

00

0 0

1

−1−1

1

0

0

0

00

1

−1

1

−1

−1

1

−1

1

00

Fig. 4. The automaton C which is the closure of the automaton B′.
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