
Algorithms for Three Versions of the Shortest Common

Superstring Problem

Maxime Crochemore, Marek Cygan, Costas S. Iliopoulos, Marcin Kubica,

Jakub Radoszewski, Wojciech Rytter, Tomasz Walen

To cite this version:

Maxime Crochemore, Marek Cygan, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski,
et al.. Algorithms for Three Versions of the Shortest Common Superstring Problem. A. Amir,
L. Parida. CPM, 2010, New-York, United States. Springer, pp.299-309, 2010, LNCS. <hal-
00742040>

HAL Id: hal-00742040

https://hal-upec-upem.archives-ouvertes.fr/hal-00742040

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00742040


Algorithms for Three Versions
of the Shortest Common Superstring Problem

Maxime Crochemore1,3, Marek Cygan2, Costas Iliopoulos1,4,
Marcin Kubica2, Jakub Radoszewski2, Wojciech Rytter2,5, and

Tomasz Waleń2

1 King’s College London, London WC2R 2LS, UK
maxime.crochemore@kcl.ac.uk, csi@dcs.kcl.ac.uk

2 Dept. of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

[cygan,kubica,jrad,rytter,walen]@mimuw.edu.pl
3 Université Paris-Est, France

4 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Perth WA 6845, Australia

5 Dept. of Math. and Informatics,
Copernicus University, Toruń, Poland

Abstract. The input to the Shortest Common Superstring (SCS) prob-
lem is a set S of k words of total length n. In the classical version the
output is an explicit word SCS(S) in which each s ∈ S occurs at least
once. In our paper we consider two versions with multiple occurrences,
in which the input includes additional numbers (multiplicities), given in
binary. Our output is the word SCS(S) given implicitly in a compact
form, since its real size could be exponential. We also consider a case
when all input words are of length two, where our main algorithmic tool
is a compact representation of Eulerian cycles in multigraphs. Due to
exponential multiplicities of edges such cycles can be exponential and
the compact representation is needed. Other tools used in our paper are
a polynomial case of integer linear programming and a min-plus product
of matrices.

1 Introduction

The algorithmic aspects of the SCS problem are thoroughly studied in theoretical
as well as in practical computer science. In this paper we consider two variations
of the SCS problem related to the number of occurrences of input words: Uniform
Multiple Occurrences SCS (SUM-SCS) and Multiple Occurrences SCS Problem
(MULTI-SCS). Our algorithms use several interesting combinatorial tools: Eule-
rian cycles in multigraphs, shortest paths via matrix multiplication and integer
linear programming with a constant number of variables.

The SCS problem and its variations are studied in their own and also from
the point of view of computational biologists. Recent advances, based either on
sequencing by synthesis or on hybridisation and ligation, are producing millions



2 M. Crochemore et al.

of short reads overnight. An important problem with these technologies is how
to efficiently and accurately map these short reads to a reference genome [12]
that serves as a framework. The Genome Assembly Problem is as follows: given
a large number of short DNA sequences (often called “fragments”) generated by
a sequencing machine like the ones mentioned above, put them back together
to create a representation of the chromosome that sequences were taken from
(usually a single organism). There are several software tools for this (called
assemblers), to name a few: Celera Assembler [13] (mostly long reads), SSAKE
[16], SHARCGS [5], SHRAP [14], Velvet [17]. When the problem of genome
assembly arisen, computer scientists came up with the above abstraction of the
SCS Problem, which they showed to be NP-hard [8], and developed several
efficient approximation algorithms for it (see for example [1–3, 7, 15]). However,
the SCS problem actually does not address the following issue of the biological
Genome Assembly Problem — multiple occurrences of the fragments in the
assembly. The shortest common superstring algorithms result in a shortest word
but ignore repeated occurrences. In our paper we consider some variations of
the problem in which we deal with multiple occurrences. First we consider a
special case of SCS in which all fragments are of length 2. It happens that
even this simple version is nontrivial in presence of multiplicities. Then a special
case of constant number of words in S is considered. It is also nontrivial: we
use sophisticated polynomial time algorithms for integer linear programs with
constant number of variables.

Definitions of problems.
Let S = {s1, s2, . . . , sk} be the set of input words, si ∈ Σ∗. In all the problems
defined below, we assume that S is a factor-free set, i.e. none of the words si is
a factor of any other word from S. Let n denote the total length of all words in
S. Let #occ(u, v) be the number of occurrences (as a factor) of the word u in
the word v. We consider three problems:

SUM-SCS(k):
Given a positive integer m, find a shortest word u such that

∑k

i=1
#occ(si, u) ≥ m .

MULTI-SCS(k):
Given a sequence of non-negative integers m1, m2, . . . ,mk, find a shortest
word u such that: #occ(si, u) ≥ mi for each i = 1, 2, . . . , k.

MULTI-SCS2(k):
A special case of the MULTI-SCS(k) problem where all input words si are
of length 2.

We assume, for simplicity, that the binary representation of each of the numbers
in the input consists of O(n) bits, i.e. m = O(2n) in SUM-SCS(k) and mi =
O(2n) in MULTI-SCS(k). Moreover, we assume that such numbers fit in a
single memory cell in the RAM model, and thus operations on such numbers
can be performed in constant time (if this is not the case, one would need to



Three Versions of the Shortest Common Superstring Problem 3

multiply the time complexities of the algorithms presented here by a polynomial
of the length of binary representation of numbers). Also, the total size of input
data in each of the problems is O(n).

By finding the SCS in each of the problems we mean computing its length
and its compressed representation which is of size polynomial in n, that can be
used to reconstruct the actual word in a straightforward manner in O(ℓ) time,
where ℓ is the length of the word (this could be a context-free grammar, a regular
expression etc).

2 Preliminaries

Let the overlap ov(s, t) of two non-empty words, s and t, be the longest word y,
such that s = xy and t = yz for some words x 6= ε and z. We define ov(s, t) = ε

if s = ε or t = ε. Also, let the prefix pr(s, t) of s, w.r.t. t, be the prefix of s

of length |s| − |ov(s, t)| — therefore s = pr(s, t)ov(s, t). For a given set S =
{s1, s2, . . . , sk} of words, the prefix graph of S is a directed graph with labeled
and weighted edges defined as follows. The set of vertices is {0, 1, 2, . . . , k, k +
1}; vertices 1, 2, . . . , k represent the words s1, s2, . . . , sk and 0, k + 1 are two
additional vertices called source and destination, each of which corresponds to
an empty word s0 = sk+1 = ε. The edges are labeled with words, and their
lengths (weights) are just the lengths of the labels. For all 0 ≤ i, j ≤ k + 1,
i 6= k + 1, j 6= 0, there is an edge (si, sj) labeled with pr(si, sj). Note that, for
a factor-free set S, the concatenation of labels of all edges in a path of the form
0 = v1, v2, v3, . . . , vp−1, vp = k + 1, i.e.

pr(sv1
, sv2

)pr(sv2
, sv3

) . . . pr(svp−1
, svp

) ,

represents a shortest word containing words sv2
, sv3

, . . . , svp−1
in that order. The

prefix graph can easily be constructed in O(k ·
∑k

i=1
|si|) time, using the prefix

function from the Morris-Pratt algorithm [4]. However, this can also be done in

the optimal time complexity O(
∑k

i=1
|si| + k2) — see [9].

Let A and B be matrices of size (k + 2) × (k + 2) containing non-negative
numbers. The min-plus product A ⊕ B of these matrices is defined as:

(A ⊕ B)[i, j] = min{A[i, q] + B[q, j] : q = 0, 1, . . . , k + 1} .

We assume that the reader is familiar with a basic theory of formal languages
and automata, see [10].

3 MULTI-SCS2(k) problem

First, let us investigate a variant of the MULTI-SCS(k) problem in which all
input words si are of length 2. Note that in such a case n = 2k. It is a folklore
knowledge that MULTI-SCS2(k) can be solved in polynomial time when all
multiplicities mi are equal to one. We prove a generalization of this result for
the MULTI-SCS2(k) problem:



4 M. Crochemore et al.

Theorem 1. The MULTI-SCS2(k) problem can be solved in O(n2) time. The
length of the shortest common superstring can be computed in O(n) time, and
its compact representation of size O(n2) can be computed in O(n2) time. (The
real size of the output could be exponential.)

Proof. Let us construct a multigraph G = (V,E), such that each vertex corre-
sponds to a letter of the alphabet Σ, and each edge corresponds to some word
si — (u, v) ∈ E if the word uv is an element of S. Each word si has a given
multiplicity mi, therefore we equip each edge e ∈ E corresponding to si with
its multiplicity c(e) = mi. Using this representation the graph G has size O(k)
(|E| = k, and |V | = O(k) if we remove isolated vertices). We refer to such an
encoding as to a compact multigraph representation.

Any solution for the MULTI-SCS2(k) problem can be viewed as a path in
some supergraph G′ = (V,E ∪ E′) of G, passing through each edge e ∈ E at
least c(e) times. We are interested in finding the shortest solution, consequently
we can reduce the problem to finding the smallest cardinality multiset of edges
E′ such that the multigraph (V,E ∪ E′) has an Eulerian path. To simplify the
description, we find the smallest multiset E′ for which the graph (V,E ∪E′) has
an Eulerian cycle, and then reduce the cycle to a path (if E′ 6= ∅).

MULTI-SCS2(k) can be solved using the following algorithm:

1: construct the multigraph G = (V, E)
2: find the smallest cardinality multiset of edges E′ such that G′ =

(V, E ∪ E′) has an Eulerian cycle
3: find an Eulerian cycle C in G′

4: if E′ 6= ∅ then

5: return path P obtained from C by removing one edge from E′

6: else

7: return C

As a consequence of the following Lemma 1, the smallest cardinality multiset
E′ can be computed in O(|V | + |E|) time. The compact representation of an
Eulerian cycle can be computed, by Lemma 2, in O(|V | · |E|) time. This gives us
an O(|V | · |E|) = O(n2) time algorithm for the MULTI-SCS2(k) problem. ⊓⊔

Lemma 1. For a given compact representation of a directed multigraph G =
(V,E), there exists an O(|V | + |E|) time algorithm for computing the smallest
cardinality multiset of edges E′, such that the multigraph G′ = (V,E ∪ E′) has
an Eulerian cycle.

Proof. In the trivial case, when G already has an Eulerian cycle, we return
E′ = ∅. Let C1, C2, . . . , Cq (Ci ⊆ V ) be connected components in the undirected
version of the multigraph G. For each component we compute its demand Di

defined as follows:

Di =
∑

v∈Ci

max(indeg(v) − outdeg(v), 0)



Three Versions of the Shortest Common Superstring Problem 5

where indeg(v) (resp. outdeg(v)) is the in (resp. out) degree of a vertex v. Let
the demand of the vertex v be defined as d(v) = |indeg(v) − outdeg(v)|. Let
V +(Ci) (resp. V −(Ci)) be the set of vertices v ∈ V (Ci), such that indeg(v) >

outdeg(v) (resp. indeg(v) < outdeg(v)). We describe an algorithm that computes
the smallest cardinality multiset E′ of the size:

|E′| =

q
∑

i=1

max(1, Di) .

First, let us observe that an edge e = (u, v) ∈ E′ can have one of the following
contributions:

– if u, v ∈ Ci then e can decrease the demand Di by at most 1,
– if u ∈ Ci and v ∈ Cj (i 6= j, with Di > 0 and Dj > 0) then e merges Ci, Cj

into a single component with demand at least Di + Dj − 1,
– if u ∈ Ci and v ∈ Cj (i 6= j, with Di = 0 or Dj = 0) then e merges Ci, Cj

into a single component with demand at least Di + Dj .

To construct the optimal set E′, we use the following algorithm (see Fig. 1):

1: E′ = ∅
2: first we connect all components:
3: while number of components > 1 do

4: let Ci, Cj be two different components
5: if Di 6= 0 then let u be a vertex from the set V +(Ci), otherwise from V (Ci)
6: if Dj 6= 0 then let v be a vertex from the set V −(Cj), otherwise from V (Cj)
7: add to E′ a single edge (u, v) (with c((u, v)) = 1)
8: from now on we have only one component C in G, we reduce its demand to 0:
9: while V +(C) 6= ∅ do

10: let v+ ∈ V +(C), v− ∈ V −(C)
11: add to E′ an edge (v+, v−) with multiplicity min(d(v+), d(v−))
12: return E′

Observe that if a component Ci admits Di > 0 it means that both sets
V −(Ci) and V +(Ci) are nonempty. In the first phase we add exactly q− 1 edges
to E′. In the second phase we reduce the total demand to 0, each iteration of
the while loop reduces the demand of at least one vertex to 0. Hence we add at
most O(|V |) different edges in the second phase. If we store E′ using a compact
representation, its size is O(|V | + |E|) and the above algorithm computes it in
such time complexity. ⊓⊔

Lemma 2. For a given compact representation of a directed Eulerian multi-
graph G = (V,E), there exists an O(|V | · |E|) time algorithm for computing the
representation of an Eulerian cycle in G.

Proof. The Eulerian cycle can be of exponential size, therefore we construct its
compressed representation. Such a representation is an expression of the form

π = w
p1

1 w
p2

2 . . . w
pℓ

ℓ ,



6 M. Crochemore et al.

b

a c

d

5 110

17 10

3

20

3

(a)

b

a c

d

5 510

20 10

5

20

3

(b)

Fig. 1. (a) Multigraph G = (V, E) for a set of words S = {ad, ac, ba, bb, bc, ca, db, dc}
with a sequence of multiplicities (mi)

8
i=1 = (17, 3, 5, 3, 1, 20, 10, 10). It consists of a

single component C with V +(C) = {a, b} and V −(C) = {c, d}. (b) Eulerian multigraph
G′ = (V, E ∪ E′) obtained from G by adding the following minimal multiset of edges:
E′ = {(a, d) · 3, (a, c) · 2, (b, c) · 4}

where wi is a path in G, and pi is a non-negative integer. We say that an
occurrence of v ∈ wi is free if pi = 1. The algorithm is a slight modification of
the standard algorithm for computing Eulerian cycles in graphs, see Fig. 2 and
3.

Function EulerianCycle(G) {assume G is an Eulerian multigraph}
1: find any simple cycle C in G

2: let cmin = min{c(e) : e ∈ C}
3: let π = C1 Ccmin−1 { so that each v ∈ V (C) has a free occurrence }
4: for all e ∈ C do

5: decrease c(e) by cmin, if c(e) = 0 remove e from E(G)
6: for all strongly connected components Wi of G do

7: let vi be any common vertex of V (C) and V (Wi)
8: let πi = EulerianCycle(Wi)
9: insert cycle πi to π after some free occurrence of vertex vi

10: return π

We can find a simple cycle in the Eulerian graph G in O(|V |) time by going
forward until we get to an already visited vertex. Each cycle removes at least
one edge from E, so the algorithm investigates at most |E| cycles. A simple
implementation of lines 6-9 yields O(|V | · |E|) time complexity per recursive
step, however, with a careful approach (G not decomposed to Wi explicitly, π

implemented as a doubly-linked list) one can obtain O(|V |) time complexity of
these lines. Thus the time complexity and the total size of the representation π

is O(|V | · |E|). ⊓⊔



Three Versions of the Shortest Common Superstring Problem 7

C

viπi

Fig. 2. Construction of an Eulerian cycle by algorithm EulerianCycle(G)

b

a c

d

5 510

20 10

5

20

3

Fig. 3. Eulerian multigraph obtained for a set of words S = {ad, ac, ba, bb, bc, ca, db, dc}
with a sequence of multiplicities (mi)

8
i=1 = (20, 5, 5, 3, 5, 20, 10, 10). The com-

pressed representation of an Eulerian cycle can have the following form:
(a→d→b)(b→b)3(b→a)(a→d→b→a)4(a→c→a)5(a→d→b→c→a)5(a→d→c→a)10,
which corresponds to a word adb(b)3a(dba)4(ca)5(dbca)5(dca)10

4 MULTI-SCS(k) problem for k = O(1)

Let us consider a prefix graph G of S = {s1, s2, . . . , sk}. In order to solve the
general MULTI-SCS(k) problem, it suffices to find the shortest path π from 0
to k + 1 in G that passes through each vertex i ∈ V (G), for 1 ≤ i ≤ k, at least
mi times. We assume that k = O(1).

Let us treat G as a (deterministic) finite automaton A: 0 is its start state,
k + 1 is its accept state, and an edge from i to j in G is identified by a triple
(i, j, |pr(si, sj)|) which represents its starting and ending vertex and its length.
Let Γ ⊆ {0, . . . , k+1}×{0, . . . , k+1}×(Z+∪{0}) be the set of triples identifying
all edges of G. Each path from 0 to k + 1 corresponds to a word (from Γ ∗) in
the language accepted by A.

Let α(A) be a regular expression corresponding to the language accepted
by A — its size is O(1) and it can be computed in O(1) time [10] (recall that
k = O(1)).

Definition 1. We call two words u, v ∈ Γ ∗ commutatively equivalent (notation:
u ≈ v) if for any a ∈ Γ , #occ(a, u) = #occ(a, v). We call two regular languages



8 M. Crochemore et al.

L1, L2 commutatively equivalent (notation: L1 ≈ L2) if for each word u ∈ L1

(u ∈ L2) there exists a word v ∈ L2 (v ∈ L1) such that u ≈ v.

Lemma 3. The regular expression α(A) can be transformed in O(1) time into
a regular expression β(A) such that:

L(β(A)) ⊆ L(α(A)) and L(β(A)) ≈ L(α(A)) (1)

and β(A) is in the following normal form:

β(A) = B1 + B2 + . . . + Bk

where Bi = Ci,1Ci,2 . . . Ci,li and each Ci,j is:

– either a ∈ Γ ,
– or (a1a2 . . . ap)

∗, where ar ∈ Γ .

Proof. The proof contains an algorithm for computing β(A) in O(1) time.
In the first step we repetively use the following transformations in every

possible part of α(A) until all Kleene’s stars contain only concatenation of letters
from Γ (all letters in the transformations denote regular expressions):

(

γ(δ + σ)ρ
)∗

→ (γδρ)∗(γσρ)∗ (2)

(γδ∗σ)∗ →
(

γδ∗σ(γσ)∗
)

+ ε . (3)

Since then, it suffices to repetively use the following transformation to obtain
the required normal form:

γ(δ + σ)ρ → (γδρ) + (γσρ) . (4)

It is easy to check that each of the transformations (2)–(4) changes the regular
expression into another regular expression such that the language defined by the
latter is a commutatively equivalent sublanguage of the language defined by the
former. ⊓⊔

Let us notice that, due to the conditions (1), from our point of view β(A)
may serve instead of α(A) — for each path generated by the expression α(A)
there exists a path generated by β(A) such that the multisets of edges visited in
both paths are exactly the same (thus the paths are of the same length).

To compute the result for β(A), we process each Bi (see Lemma 3) separately
and return the minimum of values computed. When computing the result (the
shortest path generated by it that visits each vertex an appropriate number of
times) for a given Bi, the only choices we might have are in those Ci,j ’s that are
built using Kleene’s star. For each of them we introduce a single integer variable
xj that is used to denote the number of times we take the given fragment of the
expression in the path we are to construct. For a given set of values of variables
xj , it is easy to compute, for each vertex y of the graph, how many times it is
visited in the word, representing a path, generated by Bi:

#(y, Bi) =

li
∑

j=1

#(y, Ci,j)



Three Versions of the Shortest Common Superstring Problem 9

and what is the total length of the word:

len(Bi) =

li
∑

j=1

len(Ci,j) .

If Ci,j = a, for a = (v, w, ℓ) ∈ Γ , then

#(y, Ci,j) = δwy len(Ci,j) = ℓ

and if Ci,j = (a1a2 . . . ap)
∗, where ar ∈ Γ for 1 ≤ r ≤ p, then

#(y, Ci,j) = xj ·

p
∑

r=1

#(y, ar) len(Ci,j) = xj ·

p
∑

r=1

len(ar) .

Here δxy denotes the Kronecker delta: δx,x = 1, and δx,y = 0 for x 6= y.
If values of the variables are not fixed, we can treat #(y,Bi) and len(Bi) as

(linear) expressions over those variables. Our goal is, therefore, to minimize the
value of len(Bi) under the following constraints on variables xj ∈ Z:

xj ≥ 0

#(y,Bi) ≥ my for y = 1, 2, . . . , k .

But this is exactly an integer linear programming problem (see Example 1). For
a fixed number of variables and constraints it can be solved in polynomial time
in the length of the input, see Lenstra’s paper [11], and even in linear time in
terms of the maximum encoding length of a coefficient, see Eisenbrand’s paper
[6].

Example 1. Assume that S = {s1, s2}, m1 = 2010, m2 = 30. Note that the
set of symbols in the regular expressions α(A) and β(A) is Γ ⊆ {0, . . . , 3} ×
{0, . . . , 3} × (Z+ ∪ {0}). Let

Bi = (0, 1, 0)(1, 1, 7)∗(1, 2, 3)
(

(2, 1, 2)(1, 1, 7)(1, 2, 3)
)∗

(2, 3, 5)

be a part of the expression β(A) for which we are to compute the shortest path
satisfying the occurrence conditions.

Observe that we can interpret our task as a graph problem. We are given
a directed graph having a form of a directed path (a backbone) with disjoint
cycles attached, in which vertices are labeled with indices from the set {0, . . . , 3}
and edges are labeled with lengths, as in Fig. 4. In this graph we need to find
the length of the shortest path from the vertex labeled 0 to the vertex labeled
k + 1 = 3 visiting at least m1 = 2010 1-labeled vertices and at least m2 = 30
2-labeled vertices.

In the integer program we introduce two variables x1, x2 that uniquely de-
termine a word generated by Bi:

(0, 1, 0)(1, 1, 7)x1(1, 2, 3)
(

(2, 1, 2)(1, 1, 7)(1, 2, 3)
)x2

(2, 3, 5) .



10 M. Crochemore et al.

0 1 2 3

1 1

0 3 5

7 7

23

Fig. 4. Labeled graph corresponding to Bi from Example 1. The variables x1 and x2

from the integer program correspond to the number of times the loop (1 → 1) and the
cycle (2 → 1 → 1 → 2) are traversed in the shortest path

The integer program for this example looks as follows:

x1, x2 ≥ 0

1 + x1 + 2x2 = #(1, Bi) ≥ m1 = 2010

1 + x2 = #(2, Bi) ≥ m2 = 30

and we are minimizing the expression

len(Bi) = 0 + 7x1 + 3 + 12x2 + 5 .

To recompute the actual SCS, we choose the one Bi that attains the globally
smallest value of len(Bi). Note that solving the integer program gives us the
values of variables xj , from which we can restore the corresponding word v

generated by the regular expression Bi simply by inserting the values of xj

instead of Kleene’s stars, resulting in a polynomial representation of the shortest
common superstring.

Theorem 2. MULTI-SCS(k) can be solved in O(poly(n)) time for k = O(1).

5 SUM-SCS(k) problem

Let G be the prefix graph of S = {s1, s2, . . . , sk}. We are looking for the shortest
word containing m occurrences of words from S. Recall that such a word corre-
sponds to the shortest path in G from the source to the destination, traversing
m + 1 edges. Let M be the adjacency matrix of G. The length of the shortest
path from the vertex 0 to the vertex k + 1 passing through m + 1 edges equals
Mm+1[0, k + 1], where Mm+1 is the (m + 1)th power of M w.r.t. the min-plus
product. Mm+1 can be computed in O(k3 log m) time by repeated squaring, i.e.
using identities:

M2p = (Mp)2 M2p+1 = M ⊕ M2p .

Having computed the described matrices, we can also construct a represen-
tation of SCS of size O(poly(n)) by a context-free grammar. The set of terminals



Three Versions of the Shortest Common Superstring Problem 11

is Σ. For each of the matrices Mp that we compute, we create an auxiliary ma-
trix Kp containing distinct non-terminals of the grammar. If Mp (for p > 1) is
computed in the above algorithm using Ma and M b then we add the following
production from Kp[i, j]:

Kp[i, j] ⇒ Ka[i, q]Kb[q, j] where Mp[i, j] = Ma[i, q] + M b[q, j] .

The production from K1[i, j] is defined as:

K1[i, j] ⇒ pr(si, sj) .

The starting symbol of the grammar is Km+1[0, k + 1].
Clearly, this representation uses O(k2 log m) memory and the only word gen-

erated by this grammar is the requested SCS. Hence, we obtain the following
theorem:

Theorem 3. The SUM-SCS(k) problem can be solved in O(n+k3 log m) time
and O(n + k2 log m) memory.

References

1. C. Armen and C. Stein. A 2 2/3-approximation algorithm for the shortest super-
string problem. In D. S. Hirschberg and E. W. Myers, editors, CPM, volume 1075
of Lecture Notes in Computer Science, pages 87–101. Springer, 1996.

2. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of
shortest superstrings. J. ACM, 41(4):630–647, 1994.

3. D. Breslauer, T. Jiang, and Z. Jiang. Rotations of periodic strings and short
superstrings. Journal of Algorithms, 24(2):340–353, 1997.

4. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Publishing
Company, 2002.

5. J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic sequencing.
Genome research, 17(11):1697–1706, November 2007.

6. F. Eisenbrand. Fast integer programming in fixed dimension. In G. D. Battista
and U. Zwick, editors, ESA, volume 2832 of Lecture Notes in Computer Science,
pages 196–207. Springer, 2003.

7. J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings. J.

Comput. Syst. Sci., 20(1):50–58, 1980.
8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
9. D. Gusfield, G. M. Landau, and B. Schieber. An efficient algorithm for the all

pairs suffix-prefix problem. Inf. Process. Lett., 41(4):181–185, 1992.
10. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.
11. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math-

ematics of Operations Research, 8(4):538–548, 1983.
12. H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and call-

ing variants using mapping quality scores. Genome Research, 18(11):1851–1858,
November 2008.



12 M. Crochemore et al.

13. E. W. Myers et al. A whole-genome assembly of drosophila. Science,
287(5461):2196–2204, Mar. 2000.

14. A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner, and S. Batzoglou. Whole-genome
sequencing and assembly with high-throughput, short-read technologies. PLoS

ONE, 2(5):e484, 2007.
15. J. Tarhio and E. Ukkonen. A greedy approximation algorithm for constructing

shortest common superstrings. Theor. Comput. Sci., 57(1):131–145, 1988.
16. R. L. Warren, G. G. Sutton, S. J. Jones, and R. A. Holt. Assembling millions

of short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, February
2007.

17. D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome research, 18(5):821–829, May 2008.


