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Adaptive inexact Newton methods with a posteriori stopping

criteria for nonlinear diffusion PDEs∗

Alexandre Ern† Martin Vohraĺık‡

October 28, 2012

Abstract

We consider nonlinear algebraic systems resulting from numerical discretizations of nonlinear partial
differential equations of diffusion type. To solve these systems, some iterative nonlinear solver, and, on
each step of this solver, some iterative linear solver are used. We derive adaptive stopping criteria for
both iterative solvers. Our criteria are based on an a posteriori error estimate which distinguishes the
different error components, namely the discretization error, the linearization error, and the algebraic
error. We stop the iterations whenever the corresponding error does no longer affect the overall error
significantly. Our estimates also yield a guaranteed upper bound on the overall error at each step of
the nonlinear and linear solvers. We prove the (local) efficiency and robustness of the estimates with
respect to the size of the nonlinearity owing, in particular, to the error measure involving the dual
norm of the residual. Our developments hinge on equilibrated flux reconstructions and yield a general
framework. We show how to apply this framework to various discretization schemes like finite elements,
nonconforming finite elements, discontinuous Galerkin, finite volumes, and mixed finite elements; to
different linearizations like fixed point and Newton; and to arbitrary iterative linear solvers. Numerical
experiments for the p-Laplacian illustrate the tight overall error control and important computational
savings achieved in our approach.

Key words: nonlinear diffusion PDE, nonlinear algebraic system, a posteriori error estimate, adaptive
linearization, adaptive algebraic solution, adaptive mesh refinement, stopping criterion

1 Introduction

Consider a system of nonlinear algebraic equations written in the form: find a vector U ∈ R
N , N ≥ 1, such

that
A(U) = F, (1.1)

where A : RN → R
N is a discrete nonlinear operator and F ∈ R

N a given vector. A classical solution
algorithm consists in forming a system of linear algebraic equations

A
k−1Uk = F k−1 (1.2)

by a given linearization on each iteration step k ≥ 1. Then some iterative algebraic solver is applied to (1.2),
yielding on step i ≥ 0 an approximation Uk,i to Uk satisfying

A
k−1Uk,i = F k−1 −Rk,i, (1.3)

with Rk,i ∈ R
N the algebraic residual vector.

∗This work was partly supported by the Groupement MoMaS (PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN) and
by the ERT project “Enhanced oil recovery and geological sequestration of CO2: mesh adaptivity, a posteriori error control,
and other advanced techniques” (LJLL/IFPEN).
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If the algebraic solve of (1.2) is done “exactly”, i.e. Rk,i = 0 (typically up to computer working precision),
an exact iterative linearization is obtained. Probably the most well-known example is the Newton method,
where

A
k−1
ij :=

∂Ai

∂Uj
(Uk−1), F k−1 := F −A(Uk−1) + A

k−1Uk−1. (1.4)

Convergence and a priori error estimates for the Newton method have been obtained by Kantorovich [25]
and Ortega [32]. A posteriori error estimates, that is, fully computable quantities yielding an upper bound
on the error ‖Uk −U‖ between Uk, the solution of (1.2), and U , the solution of (1.1), have been proved by
Gragg and Tapia [21] and improved by Potra and Pták [33] and Yamamoto [44], see also references therein.

The Newton method can be computationally demanding because of the solve of the linear system (1.2).
The inexact Newton method is a popular approach to speed it up. It has been used in practice for decades and
studied theoretically in many papers. In particular, Eisenstat and Walker [15] have shown the convergence, a
posteriori error estimates were proved by Moret [31], and adaptive algorithms were derived by Deuflhard [12,
Section 1.2.3], see also references therein.

(Inexact) iterative linearization methods are typically understood and studied as methods for the solution
of systems of general nonlinear algebraic equations of the form (1.1), without much (any) specification of
their structure and origin. In this work, we pursue a conceptually different approach, in that we investigate
nonlinear algebraic systems originating from a given discretization of a given partial differential equation
(PDE). We write the PDE in the following abstract form: given a nonlinear operator A, find a function u
such that

A(u) = f. (1.5)

The nonlinear algebraic system (1.1) then stems from some discretization of (1.5).
Our first goal is to derive stopping criteria in inexact linearizations. Let u be the solution of (1.5) and

let uk,ih be the approximation to u obtained by the discretization scheme on the k-th nonlinear solver step
and the i-th linear solver step, whose algebraic representation is the vector Uk,i of (1.3). Our second goal is
to obtain guaranteed (without undetermined constants) a posteriori estimates for the error between u and

uk,ih . We carry this task for a broad class of nonlinear PDEs of the form (1.5); details are given in Section 2.
The iterative nonlinear and linear solvers need not be specified in our setting. For simplicity, we refer to
our approach as adaptive inexact Newton method.

A posteriori error estimates for the error between the exact solution u and an approximate solution
uh in the absence of errors stemming from the iterative nonlinear and linear solvers have been derived in
various specific situations. Verfürth [38] developed a general framework for reliable and efficient a posteriori
estimates in the finite element setting. For the p-Laplacian, quite tight guaranteed upper bounds have been
obtained by Carstensen and Klose [8], convergence of an adaptive finite element method was first proven
by Veeser [37] for the energy norm and a quasi-optimal rate was recently obtained by Belenki et al. [3]
for an error measure related to the quasi-norm of Barrett and Liu [1]. Other discretization schemes were
also studied; let us mention, in particular, Creusé et al. [11] for mixed finite elements and the p-Laplacian,
Houston et al. [23] for the discontinuous Galerkin method and quasi-linear diffusion, and Kim [26] for locally
conservative methods and strongly monotone problems. Estimates and stopping criteria independently for
linear and nonlinear solvers were proposed by Becker et al. [2], Chaillou and Suri [9], and, more closely to
the present approach, in [24, 16], see also the references therein. Both linearization and algebraic errors
are simultaneously addressed in the context of goal-oriented error estimation by Rannacher et al. [35] and
Meidner et al. [30], see also the survey by Strakoš and Liesen [36].

We are not aware of estimates of the error between u and uk,ih which provide, at the same time, a
guaranteed upper bound and a distinction among the different error components, namely discretization,
linearization, and algebraic errors. We achieve such a result in Section 3 of this paper through three suitable
flux reconstructions following the spirit of Prager and Synge [34], see [18, 22] and references therein for
recent contributions. We describe a possible handling of the algebraic error in Section 4, leading to quasi-
equilibrated fluxes. The distinction of error components leads to stopping criteria expressing that there
is no need to continue with the algebraic solver iterations once the linearization or discretization error
components start to dominate, and that there is no need to continue with the nonlinear solver iterations
once the discretization error component starts to dominate.

A further important result is the efficiency of the estimators, answering the question whether the esti-
mators are also a lower bound for the error, possibly up to a generic constant. Whenever such a constant
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is independent of the nonlinear operator at hand, the approximate and exact solutions, the mesh size, and
the computational domain, we speak of robustness. We use an error measure based on the dual norm of
the residual for conforming discretizations as in [9, 16] which we augment by a jump seminorm in the non-
conforming case. We show in Section 5 that, under the above-discussed stopping criteria and for this error
measure, our estimates are efficient and robust. Moreover, when a local, elementwise version of the stopping
criteria is used, we obtain this efficiency also locally around each mesh element for an easily computable
upper bound of our error measure evaluating the [Lq(Ω)]d distance of the fluxes. Overall, our estimates seem
to give a very tight local control of the [Lq(Ω)]d error in the fluxes. For Leray–Lions problems, our results
thus complement those obtained in the quasi-norm setting. Convergence and optimality of our adaptive
inexact Newton approach shall be addressed elsewhere.

The developments of Section 3, Section 4, and Section 5 constitute a general framework which is built
on a couple of clearly identified assumptions on the flux reconstructions. These assumptions are verified
in Section 6 for various discretization schemes, the Newton and fixed point nonlinear solvers, and an arbitrary
iterative linear solver. In Section 7, we study numerically the behavior of our a posteriori estimates and
the computational gains of our stopping criteria for the p-Laplacian, the Crouzeix–Raviart nonconforming
finite element method, the Newton linearization, and the conjugate gradient algebraic solver. An example
of application of the present framework to two-phase flow simulation can be found in [41]. Finally, we draw
some conclusions in Section 8.

2 Setting

This section describes the continuous problem, sets up the basic notation, and introduces the error measure.

2.1 Continuous problem

Let Ω ⊂ R
d, d ≥ 2, be a polygonal (polyhedral) domain (open, bounded, and connected set). We consider

the following model nonlinear diffusion problem: find u : Ω → R such that

−∇·σ(x, u(x),∇u(x)) = f in Ω, (2.1a)

u = 0 on ∂Ω, (2.1b)

where σ : Ω × R × R
d → R

d is the nonlinear flux function and f : Ω → R the source term. The scalar-
valued unknown function u is termed the potential, and, given a potential u, the vector-valued function
−σ(·, u,∇u) : Ω → R

d is termed the flux.
The nonlinear flux function σ takes the general form σ(x, v, ξ) = A(x, v, ξ)ξ, for all (x, v, ξ) ∈ Ω×R×R

d,
where A : Ω×R×R

d → R
d×d is a Carathéodory (tensor-valued) function (measurable in x and continuous

in v and ξ). Two key examples are the quasi-linear diffusion problem in which A is independent of ξ (so
that σ depends linearly on ξ) yielding

σ(x, v, ξ) = A(x, v)ξ ∀(x, v, ξ) ∈ Ω× R× R
d, (2.2)

and the Leray–Lions problem in which A depends on ξ (so that σ depends nonlinearly on ξ), but is
independent of v, yielding

σ(x, ξ) = A(x, ξ)ξ ∀(x, ξ) ∈ Ω× R
d. (2.3)

For the quasi-linear diffusion problem, we assume that A is bounded and that it takes symmetric values
with minimal eigenvalue uniformly bounded away from zero. For the Leray–Lions problem, see [27], we
assume that, for a real number p > 1, there holds, for all ξ, ζ ∈ R

d and a.e. x ∈ Ω, σ(x, ξ)·ξ ≥ α0|ξ|
p,

(σ(x, ξ)− σ(x, ζ))·(ξ − ζ) > 0 for ξ 6= ζ, and |σ(x, ξ)| ≤ g(x) + α1|ξ|
p−1 for positive real numbers α0 and

α1 and a function g ∈ Lq(Ω) where q := p
p−1 , so that 1

p + 1
q = 1. A typical Leray–Lions problem is the

p-Laplacian where A(x, ξ) = |ξ|p−2I and I is the identity tensor.
To alleviate the notation, we leave henceforth the dependence on the space variable x implicit, so that

we simply write σ(u,∇u). To allow for a unified presentation of the quasi-linear diffusion and Leray–Lions
settings, we set p := 2 for the quasi-linear diffusion problem, while, for the Leray–Lions problem, the real
number p results from the above assumptions. Then, we seek in both cases the potential u in the energy
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space V := W 1,p
0 (Ω) (that is, the space of Lp(Ω) functions whose weak derivatives are in Lp(Ω) and with

zero trace on ∂Ω). Assuming f ∈ Lq(Ω), the model problem (2.1) can be written in the form (1.5) as follows:
find u ∈ V such that

(σ(u,∇u),∇v) = (f, v) ∀v ∈ V. (2.4)

For w ∈ Lq(Ω), v ∈ Lp(Ω), (w, v) stands for
∫

Ω w(x)v(x) dx and similarly in the vector-valued case. We
assume that there exists a unique weak solution to (2.4). Owing to the above assumptions and to (2.4), the
flux −σ(u,∇u) is then in the space Hq(div,Ω) spanned by the functions in [Lq(Ω)]d with weak divergence
in Lq(Ω).

2.2 Discrete setting

Let Th be a simplicial mesh of Ω. For simplicity, we suppose that there are no hanging nodes in the sense
that, for two distinct elements of Th, their intersection is either an empty set or a common l-dimensional
face, 0 ≤ l ≤ d− 1. A generic element of Th is denoted K and its diameter by hK . The (d− 1)-dimensional
faces of the mesh are collected in the set Eh such that Eh = E int

h ∪ Eext
h , with E int

h collecting interfaces and
Eext
h boundary faces. A generic face is denoted e and its diameter by he. The faces of an element K are

collected in the set EK . For any K ∈ Th, TK collects the elements K ′ ∈ Th which share at least a vertex
with K. Similarly, EK collects the faces which share at least a vertex with K, and we set Eint

K := EK ∩E int
h .

For any e ∈ Eh, ne stands for the unit normal vector to e (the orientation is irrelevant, but fixed, for all
e ∈ E int

h and points outward Ω for all e ∈ Eext
h ) and, for any K ∈ Th, nK stands for the outward unit normal

vector to K.
Discretizing problem (2.1) leads to a nonlinear algebraic system of the form (1.1). Let some nonlinear

and linear solvers be applied to problem (1.1). Suppose that we are on step k, k ≥ 1, of the nonlinear solver

and on step i, i ≥ 0, of the linear solver. This corresponds to problem (1.3). We denote uk,ih the discrete

potential associated with the vector Uk,i. Our framework covers both conforming schemes, where uk,ih ∈ V ,

and nonconforming schemes, where uk,ih 6∈ V . To proceed generally, we assume that uk,ih is in the broken
Sobolev space

V (Th) := {v ∈ Lp(Ω), v|K ∈ W 1,p(K) ∀K ∈ Th}. (2.5)

In what follows, for a function v ∈ V (Th), ∇v denotes its so-called broken gradient, that is, the distributional
gradient evaluated elementwise. As functions in V (Th) are not necessarily single-valued at interfaces, we
introduce the jump operator [[·]] yielding the difference (evaluated along ne) of (the traces of) the argument
from the two mesh elements that share e on interfaces and the actual trace if e is a boundary face. Classically,
v ∈ V (Th) is in V if and only if [[v]] = 0 for all e ∈ Eh, see, e.g., [14, Lemma 1.23].

Separately from uk,ih , we also consider a discrete gradient gk,i
h ∈ [Lp(Ω)]d. This allows us to handle a wide

class of discretization schemes in a unified setting. For conforming schemes, gk,i
h is obtained by applying

the usual gradient to uk,ih ; for various nonconforming schemes, the broken gradient can be used instead, but

some schemes employ a more elaborate construction of gk,i
h , taking into account, e.g., the jumps of uk,ih . In

all cases, we require that whenever uk,ih ∈ V , there holds gk,i
h = ∇uk,ih .

2.3 Error measure

The error between the exact solution u of (2.4) and the approximate solution uk,ih is measured as

Ju(u
k,i
h ,gk,i

h ) := Ju,F(u
k,i
h ,gk,i

h ) + Ju,NC(u
k,i
h ), (2.6)

where

Ju,F(u
k,i
h ,gk,i

h ) := sup
ϕ∈V ; ‖∇ϕ‖p=1

(

σ(u,∇u)− σ(uk,ih ,gk,i
h ),∇ϕ

)

, (2.7a)

Ju,NC(u
k,i
h ) :=

{

∑

K∈Th

∑

e∈EK

αs
eh

1−s
e ‖[[u− uk,ih ]]‖ss,e

}
1
q

. (2.7b)
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The quantity Ju,F(u
k,i
h ,gk,i

h ) measures the error in the fluxes and represents the dual norm of the residual
of (2.4). This error measure has been considered by Chaillou and Suri [9] and in [16] for conforming dis-

cretizations. Owing to the well-posedness of (2.4) and the above requirement on g
k,i
h , whenever uk,ih ∈ V ,

Ju,F(u
k,i
h ,gk,i

h ) = 0 if and only if uk,ih = u. Furthermore, the quantity Ju,NC(u
k,i
h ) measures the noncon-

formity of the discrete potential, i.e., the departure of uk,ih from the space V . A specific value for the
weights αe > 0 and the exponent s ≥ 1 is only needed in Section 6.3.4 below; otherwise we only use that
Ju,NC(u

k,i
h ) = 0 if and only if uk,ih ∈ V . All in all, we see that Ju(u

k,i
h ,gk,i

h ) = 0 if and only if uk,ih = u and

g
k,i
h = ∇u.

Although the quantity Ju,F(u
k,i
h ,gk,i

h ) is a dual norm and as such is not easily computable (assuming u
known), the Hölder inequality yields

Ju(u
k,i
h ,gk,i

h ) ≤ J up
u (uk,ih ,gk,i

h ) := ‖σ(u,∇u)− σ(uk,ih ,gk,i
h )‖q + Ju,NC(u

k,i
h ), (2.8)

which features the [Lq(Ω)]d-difference of the exact and approximate fluxes. Our numerical experiments

in Section 7 indicate that both error measures Ju(u
k,i
h ,gk,i

h ) and J up
u (uk,ih ,gk,i

h ) exhibit a very close behavior

and that our a posteriori error estimates approximate extremely well J up
u (uk,ih ,gk,i

h ).

3 A posteriori error estimates and the adaptive inexact Newton

algorithm

In this section, we present our a posteriori error estimates and the inexact Newton algorithm with adaptive
stopping criteria. We proceed generally, with a given discrete potential uk,ih ∈ V (Th) and the corresponding

discrete gradient gk,i
h ∈ [Lp(Ω)]d, k ≥ 1, i ≥ 0, not linked to any particular discretization scheme or to any

iterative nonlinear or linear solvers. Examples of application are given in Section 6. The starting point of
our general framework is the following assumption:

Assumption 3.1 (Quasi-equilibrated flux reconstruction). There exist a vector-valued function t
k,i
h ∈

Hq(div,Ω) and a scalar-valued function ρk,ih ∈ Lq(Ω) such that

∇·tk,ih = fh − ρk,ih , (3.1)

where fh is a piecewise polynomial approximation of the source term f verifying (fh, 1)K = (f, 1)K for all
K ∈ Th.

The function t
k,i
h plays the role of a flux reconstruction providing a discrete approximation of the exact

flux −σ(u,∇u). Such a function is traditional in equilibrated flux estimates, see Prager and Synge [34], Luce
and Wohlmuth [28], Braess and Schöberl [4], or the unified approaches in [18, 22] and the references therein.

In practice, see Section 6, we construct tk,ih in Raviart–Thomas–Nédélec discrete subspaces of Hq(div,Ω).

Furthermore, the function ρk,ih plays the role of an algebraic remainder. This function is introduced to

facilitate the practical construction of tk,ih . Indeed, while using iterative linear solvers, it is usually difficult

to achieve exact equilibration in the sense that (3.1) is satisfied with ρk,ih = 0. An example for constructing

t
k,i
h such that ρk,ih = 0 is the algorithm of [24, Section 7.3] which requires an ordering of the mesh elements
and then a run through all the elements with a local minimization problem inside each element. Herein, we
consider instead a general nonzero ρk,ih with the only requirement that it can be made small enough (the
precise requirement is stated in Section 3.3). A simple and practical way to devise the algebraic remainder

ρk,ih is presented in Section 4, following [24, Section 7.2].

Remark 3.2 (Function fh). For lowest-order discretizations, fh is generally the piecewise constant function
given by the elementwise mean values of f . For higher-order discretizations, a more accurate approximation
of f is considered.

Remark 3.3 (Local mass conservation). Even if we work with not fully converged linear and nonlinear

solvers, Assumption 3.1 means that tk,ih represents a flux with a continuous normal trace whose elementwise

mass balance misfit is merely ρk,ih .
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3.1 Guaranteed a posteriori error estimate

For any K ∈ Th, the generalized Poincaré inequality states that

‖ϕ− ϕK‖p,K ≤ CP,phK‖∇ϕ‖p,K ∀ϕ ∈W 1,p(K), (3.2)

where ϕK denotes the mean value of ϕ in K. Since simplices are convex, there holds CP,p = π− 2
p d

1
2−

1
p

for p ≥ 2, see Verfürth [39], and CP,p = p
1
p 2

(p−1)
p for all p ∈ (1,+∞), see Chua and Wheeden [10]. The

generalized Friedrichs inequality states that

‖ϕ‖p ≤ hΩ‖∇ϕ‖p ∀ϕ ∈ V. (3.3)

In what follows, we denote our estimators in the form ηk,i·,K where k ≥ 1 stands for the nonlinear solver
step, i ≥ 0 for the linear solver step, and K ∈ Th for the mesh element. We define global versions of these

estimators as ηk,i· :=
{

∑

K∈Th

(

ηk,i·,K

)q
}1/q

. Our main result on the a posteriori error estimate is:

Theorem 3.4 (Guaranteed upper bound). Let u ∈ V solve (2.4), let uk,ih ∈ V (Th) and the corresponding

g
k,i
h ∈ [Lp(Ω)]d be arbitrary, and let Assumption 3.1 hold. For any K ∈ Th, define respectively the flux and

the nonconformity estimators as

ηk,iF,K := ‖σ(uk,ih ,gk,i
h ) + t

k,i
h ‖q,K , (3.4a)

ηk,iNC,K :=

{

∑

e∈EK

αs
eh

1−s
e ‖[[uk,ih ]]‖ss,e

}
1
q

, (3.4b)

and the algebraic remainder and data oscillation estimators as

ηk,irem,K := hΩ‖ρ
k,i
h ‖q,K , (3.5a)

ηk,iosc,K := CP,phK‖f − fh‖q,K . (3.5b)

Then,
Ju(u

k,i
h ,gk,i

h ) ≤ ηk,i := ηk,iF + ηk,iNC + ηk,irem + ηk,iosc. (3.6)

Proof. Taking into account that [[u]] = 0 for all e ∈ Eh, it is clear that Ju,NC(u
k,i
h ) = ηk,iNC. We are thus left

with bounding Ju,F(u
k,i
h ,gk,i

h ). Let ϕ ∈ V with ‖∇ϕ‖p = 1 be fixed. Since t
k,i
h ∈ Hq(div,Ω), the Green

formula yields (tk,ih ,∇ϕ) = −(∇·tk,ih , ϕ). Hence, using (2.4) and adding and subtracting (tk,ih ,∇ϕ), we infer

(σ(u,∇u)− σ(uk,ih ,gk,i
h ),∇ϕ) = (f −∇·tk,ih , ϕ)− (σ(uk,ih ,gk,i

h ) + t
k,i
h ,∇ϕ).

The Hölder inequality yields

|(σ(uk,ih ,gk,i
h ) + t

k,i
h ,∇ϕ)| ≤

∑

K∈Th

‖σ(uk,ih ,gk,i
h ) + t

k,i
h ‖q,K‖∇ϕ‖p,K ≤ ηk,iF .

Assumption 3.1, the Hölder inequality, the generalized Poincaré inequality (3.2), and the generalized
Friedrichs inequality (3.3) lead to

|(f −∇·tk,ih , ϕ)| =
∑

K∈Th

(f −∇·tk,ih − ρk,ih , ϕ)K + (ρk,ih , ϕ)

=
∑

K∈Th

(f − fh, ϕ− ϕK)K + (ρk,ih , ϕ)

≤
∑

K∈Th

‖f − fh‖q,KCP,phK‖∇ϕ‖p,K + ‖ρk,ih ‖qhΩ‖∇ϕ‖p

≤ ηk,iosc + ηk,irem.

Combining the above bounds yields (3.6).
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3.2 Distinguishing the different error components

We now identify and estimate separately the various error components. To proceed generally, we introduce
the following assumption:

Assumption 3.5 (Discretization, linearization, and algebraic error flux reconstructions). There exist

vector-valued functions d
k,i
h , lk,ih , ak,ih ∈ [Lq(Ω)]d such that

(i) d
k,i
h + l

k,i
h + a

k,i
h = t

k,i
h ;

(ii) as the linear solver converges, ‖ak,ih ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk,ih ‖q → 0.

The function d
k,i
h is meant to approximate the discretization flux −σ(uk,ih ,gk,i

h ), l
k,i
h represents the

linearization error, and a
k,i
h the algebraic error. A generic way to construct ak,ih is presented in Section 4;

the construction of the functions d
k,i
h and l

k,i
h then depends on the discretization scheme and nonlinear

solver at hand, see Section 6.
The last error component we distinguish is quadrature. Because of nonlinearities, σ(uk,ih ,gk,i

h ) is not

necessarily a piecewise polynomial even if the discrete potential uk,ih and gradient gk,i
h are so. We introduce

a piecewise polynomial vector-valued function σ
k,i
h meant to approximate σ(uk,ih ,gk,i

h ); the specific definition

of σk,i
h depends on the discretization scheme at hand, see Section 6. The main result of this section is:

Theorem 3.6 (A posteriori error estimate distinguishing the error components). Let u ∈ V solve (2.4) and

let uk,ih ∈ V (Th) and the corresponding g
k,i
h ∈ [Lp(Ω)]d be arbitrary. Let Assumptions 3.1 and 3.5 hold. For

any K ∈ Th, define respectively the discretization, linearization, algebraic, and quadrature estimators as

ηk,idisc,K := 21/p
(

‖σk,i
h + d

k,i
h ‖q,K + ηk,iNC,K

)

, (3.7a)

ηk,ilin,K := ‖lk,ih ‖q,K , (3.7b)

ηk,ialg,K := ‖ak,ih ‖q,K , (3.7c)

ηk,iquad,K := ‖σ(uk,ih ,gk,i
h )− σ

k,i
h ‖q,K , (3.7d)

with ηk,iNC,K defined by (3.4b). Let ηk,irem,K and ηk,iosc,K be defined respectively by (3.5a) and (3.5b). Then,

Ju(u
k,i
h ,gk,i

h ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem + ηk,iquad + ηk,iosc. (3.8)

Proof. The decomposition of Assumption 3.5 and the triangle inequality yield

‖σ(uk,ih ,gk,i
h ) + t

k,i
h ‖q,K ≤ ‖σk,i

h + d
k,i
h ‖q,K + ‖lk,ih ‖q,K + ‖ak,ih ‖q,K + ηk,iquad,K .

The assertion then follows from Theorem 3.4 combined with the triangle inequality, the Hölder inequality,
and the inequality aq + bq ≤ (a+ b)q for a, b ≥ 0 used to regroup ‖σk,i

h + d
k,i
h ‖q,K with ηk,iNC,K .

3.3 Adaptive inexact Newton method

We are now ready to present our adaptive inexact Newton method with a posteriori stopping criteria for
the linear and nonlinear solvers. The idea is to require the algebraic estimator to be sufficiently small with
respect to the linearization or discretization estimators and the linearization estimator to be sufficiently
small with respect to the discretization estimator. Owing to the presence of the function ρk,ih , we introduce
a third (balancing) requirement, namely that the algebraic remainder estimator is sufficiently small with
respect to the three other estimators. The adaptive inexact Newton algorithm for (1.1) reads:

Algorithm 3.7 (Adaptive inexact Newton method). 1. Choose an initial vector U0 ∈ R
N . Set k := 1.

2. From Uk−1, define a matrix A
k−1 ∈ R

N,N and a vector F k−1 ∈ R
N . Consider the system (1.2) of

linear algebraic equations.
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3. (a) Define Uk,0 := Uk−1 and set i := 0.

(b) Perform ν > 0 steps of a chosen iterative linear solver for the solution of the linear system (1.2),
starting from the vector Uk,i. This yields an approximation Uk,i+ν to Uk which satisfies

A
k−1Uk,i+ν = F k−1 −Rk,i+ν , (3.9)

where Rk,i+ν ∈ R
N is the algebraic residual vector on step i+ ν. Ensure

ηk,irem ≤ γremmax
{

ηk,idisc, η
k,i
lin , η

k,i
alg

}

. (3.10)

(c) Check the convergence criterion for the linear solver in the form

ηk,ialg ≤ γalg max
{

ηk,idisc, η
k,i
lin

}

. (3.11)

If satisfied, set Uk := Uk,i. If not, set i := i+ ν and go back to step 3b.

4. Check the convergence criterion for the nonlinear solver in the form

ηk,ilin ≤ γlinη
k,i
disc. (3.12)

If satisfied, finish. If not, set k := k + 1 and go back to step 2.

Above, γrem, γalg, and γlin are positive user-given weights, typically of order 0.1, representing the relative
size (percentage) of the algebraic remainder, algebraic, and linearization errors. The balancing and stopping
criteria (3.10)–(3.12) are global in the sense that they are evaluated over all mesh elements. They are
sufficient to establish the global efficiency of our error estimators, see Theorem 5.4 below. Alternatively,
local stopping criteria are elementwise equivalents in the form

ηk,irem,K ≤ γrem,K max
{

ηk,idisc,K , η
k,i
lin,K , η

k,i
alg,K

}

∀K ∈ Th, (3.13)

ηk,ialg,K ≤ γalg,K max
{

ηk,idisc,K , η
k,i
lin,K

}

∀K ∈ Th, (3.14)

ηk,ilin,K ≤ γlin,Kη
k,i
disc,K ∀K ∈ Th, (3.15)

where, for any K ∈ Th, γrem,K , γalg,K , and γlin,K are positive user-given weights, typically of order 0.1.
These local criteria are used to establish the local efficiency of our error estimators, see Theorem 5.3 below,
and are essential for mesh adaptivity.

4 Algebraic remainder and algebraic error flux reconstruction

The goal of this section is to present a simple and practical way to construct the algebraic remainder ρk,ih

and the algebraic error flux reconstruction a
k,i
h . To do so, we suppose that the sum (dk,i

h + l
k,i
h ) of the flux

reconstructions dk,i
h and l

k,i
h satisfies:

Assumption 4.1 (Quasi-equilibration for (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is in Hq(div,Ω), and

there exists a scalar-valued function rk,ih ∈ Lq(Ω) such that

∇·(dk,i
h + l

k,i
h ) = fh − rk,ih . (4.1)

Referring to Algorithm 3.7 where the linear system (1.2) for k ≥ 1 is being solved iteratively, the i-th
step of the linear solver yields the algebraic residual vector Rk,i in (1.3). We will see in Section 6 how the

(piecewise polynomial) function rk,ih of (4.1) can be constructed from the components of Rk,i for various
discretizations. We then define:

Definition 4.2 (Construction of ρk,ih and a
k,i
h ). Let the k-th step of the nonlinear solver and the i-th step of

the linear solver be given, yielding (dk,i
h + l

k,i
h ) and rk,ih satisfying (4.1). Let ν > 0 and perform ν additional

steps of the linear solver, yielding (3.9) and (dk,i+ν
h + l

k,i+ν
h ), rk,i+ν

h satisfying (4.1) with i + ν in place of
i. Set

a
k,i
h := (dk,i+ν

h + l
k,i+ν
h )− (dk,i

h + l
k,i
h ), (4.2a)

ρk,ih := rk,i+ν
h . (4.2b)
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In practice, the parameter ν can be determined adaptively by increasing its value until satisfying (3.10)
or (3.13). We emphasize that this construction is independent of the actual linear solver. Importantly, the
following result can be easily verified:

Lemma 4.3 (Assumptions 3.1 and 3.5(i-ii)). Under Assumption 4.1 and with the construction of Defini-

tion 4.2, define t
k,i
h := d

k,i
h + l

k,i
h + a

k,i
h . Then, Assumptions 3.1 and 3.5(i-ii) hold.

5 Local and global efficiency and robustness

We prove in this section the efficiency and robustness of our a posteriori error estimates. The specific
construction of Section 4 is not needed; we just use the stopping criteria (3.10)–(3.12) or (3.13)–(3.15).

5.1 Local approximation property

To proceed generally, we make one last assumption on the discretization error flux reconstruction d
k,i
h .

Define

ηk,i♯,K :=

{

∑

K′∈TK

hqK′‖fh +∇·σk,i
h ‖qq,K′ +

∑

e∈Eint
K

he‖[[σ
k,i
h ·ne]]‖

q
q,e

}
1
q

. (5.1a)

Let ηk,i·,TK
:=
{

∑

K′∈TK

(

ηk,i·,K′

)q
}

1
q

for the estimators introduced in Section 3. Henceforth, A . B stands

for the inequality A ≤ CB with a generic constant C independent of the mesh sizes hK and he, the domain
Ω, the nonlinear function σ, and the Lebesgue exponent p, but that can depend on the shape regularity of
the mesh family {Th}h and on the polynomial degrees of σk,i

h and fh.

Assumption 5.1 (Local approximation property). For all K ∈ Th, there holds

‖σk,i
h + d

k,i
h ‖q,K . ηk,i♯,K + ηk,iNC,TK

+ ηk,iosc,TK
. (5.2)

Remark 5.2 (Tighter approximation property). In most cases, it is actually possible to prove ‖σk,i
h +

d
k,i
h ‖q,K . ηk,i♯,K . The term ηk,iosc,TK

appears for conforming finite elements in the lowest-order setting m = 1

and l = 0 in Section 6.2.4, while ηk,iNC,TK
appears for interior penalty discontinuous Galerkin and quasi-linear

diffusion, see Section 6.3.4.

5.2 Local efficiency

Our local efficiency result is achieved with respect to the error measure J up
u (uk,ih ,gk,i

h ) defined by (2.8),

which we localize around any K ∈ Th as J up
u,TK

(uk,ih ,gk,i
h ) := ‖σ(u,∇u)− σ(uk,ih ,gk,i

h )‖q,TK
+ ηk,iNC,TK

.

Theorem 5.3 (Local efficiency). Let u ∈ V solve (2.4) and let uk,ih ∈ V (Th) and the corresponding g
k,i
h ∈

[Lp(Ω)]d be arbitrary. Let the local stopping criteria (3.13)–(3.15) be satisfied. Then, under Assumption 5.1,
there holds, for all K ∈ Th,

ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K . J up
u,TK

(uk,ih ,gk,i
h ) + ηk,iquad,TK

+ ηk,iosc,TK
. (5.3)

Proof. Let K ∈ Th be fixed. Owing to the local criteria (3.13)–(3.15), we infer ηk,ilin,K + ηk,ialg,K + ηk,irem,K .

ηk,idisc,K . Combining the definition (3.7a) of ηk,idisc,K with Assumption 5.1 yields ηk,idisc,K . ηk,i♯,K + ηk,iNC,TK
+

ηk,iosc,TK
, whence

ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K . ηk,i♯,K + ηk,iNC,TK
+ ηk,iosc,TK

.

Now, the inequalities (A.6) and (A.7) from [16, Proof of Lemma 4.3] together with the triangle inequality
yield

ηk,i♯,K . ‖σ(u,∇u)− σ
k,i
h ‖q,TK

+ ηk,iosc,TK

. ‖σ(u,∇u)− σ(uk,ih ,gk,i
h )‖q,TK

+ ηk,iquad,TK
+ ηk,iosc,TK

,

whence the assertion of the theorem.

9



5.3 Global efficiency and robustness

Proceeding as above (while relying on (A.10) and (A.11) from [16, Proof of Lemma 4.7]) yields our main

result for global efficiency and robustness with respect to the original error measure Ju(u
k,i
h ,gk,i

h ).

Theorem 5.4 (Global efficiency and robustness). Let u ∈ V solve (2.4) and let uk,ih ∈ V (Th) and the

corresponding g
k,i
h ∈ [Lp(Ω)]d be arbitrary. Let the global stopping criteria (3.10)–(3.12) be satisfied. Then,

under Assumption 5.1, there holds

ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem . Ju(u
k,i
h ,gk,i

h ) + ηk,iquad + ηk,iosc. (5.4)

Remark 5.5 (Comparison with [16]). In [16], the linearization stopping parameters γlin,K (or γlin) had to
be “small enough” in order that the equivalents of Theorems 5.3 and 5.4 hold. This is no longer necessary in
the present setting owing to the decomposition introduced in Assumption 3.5 and the fact that Assumption 5.1
concerns the component dk,i

h of the flux reconstruction.

6 Applications

We show here how the above developments apply to various discretizations and to Newton and fixed point
linearizations (recall that any algebraic solver is admissible). This consists in specifying the approximate

gradient g
k,i
h , flux reconstructions d

k,i
h and l

k,i
h , data approximation fh, polynomial approximation σ

k,i
h ,

residual function rk,ih , and in verifying Assumptions 3.5(iii), 4.1, and 5.1.
We first recall some discrete subspaces of Hq(div,Ω). For an integer l ≥ 0, let Pl(Th) denote the bro-

ken polynomial space spanned by vh|K ∈ Pl(K) for all K ∈ Th. For K ∈ Th and l ≥ 0, let RTNl(K) :=
[Pl(K)]d+xPl(K) be the Raviart–Thomas–Nédélec finite element space of order l. We then setRTN−1

l (Th) :=
{vh ∈ [Lq(Ω)]d;vh|K ∈ RTNl(K) ∀K ∈ Th} and RTNl(Th) := RTN−1

l (Th) ∩ Hq(div,Ω); we will

use RTNl(Th) to reconstruct the fluxes d
k,i
h and l

k,i
h (and consequently a

k,i
h by (4.2a)). Functions vh ∈

RTNl(K) are such that, cf. Brezzi and Fortin [5], ∇·vh ∈ Pl(K) and vh·ne ∈ Pl(e) for all e ∈ EK , and
functions in RTNl(Th) have a continuous normal component across interfaces. We use a similar notation
for these spaces on various patches of elements.

Next, let IRTN
l stand for the broken Raviart–Thomas–Nédélec interpolation operator; for a smooth

enough function v, IRTN
l v ∈ RTN−1

l (Th) is such that, for allK ∈ Th, letting 〈w, v〉e stand for
∫

e
w(s)v(s) ds,

〈(IRTN
l v − v)|K ·ne, qh〉e = 0 ∀e ∈ EK , ∀qh ∈ Pl(e), (6.1a)

(IRTN
l v − v, rh)K = 0 ∀rh ∈ [Pl−1(K)]d. (6.1b)

Finally, for φ ∈ L1(Ω), Πlφ ∈ Pl(Th) is such that (φ−Πlφ, vh) = 0 for all vh ∈ Pl(Th); Πl is the operator
acting componentwise as Πl on vector-valued functions.

6.1 Nonconforming finite elements

We treat here the discretization of problem (2.4) by lowest-order nonconforming finite elements.

6.1.1 Discretization

The Crouzeix–Raviart finite element space Vh is spanned by piecewise affine polynomials on Th such that the
interface jumps and boundary values have zero mean value over the corresponding face. The discretization
of problem (2.4) reads, with fh := Π0f : find uh ∈ Vh such that

(σ(uh,∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh. (6.2)

The basis functions in Vh are associated with the interfaces and are denoted {ψe}e∈E int
h
. Testing (6.2) against

these functions yields the nonlinear algebraic system (1.1).
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6.1.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 3.7. The linearization of (6.2), for k ≥ 1, reads: find
ukh ∈ Vh such that

(σk−1(ukh,∇u
k
h),∇ψe) = (fh, ψe) ∀e ∈ E int

h , (6.3)

which is the functional form of the algebraic system (1.2). Two common ways to define the flux function
σk−1 are the fixed point linearization where

σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ, (6.4)

and the Newton linearization where

σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ + (v − uk−1
h )∂vA(uk−1

h ,∇uk−1
h )∇uk−1

h

+ (∂ξA(uk−1
h ,∇uk−1

h )·∇uk−1
h )·(ξ −∇uk−1

h ).
(6.5)

6.1.3 Algebraic solution

On i-th step, i ≥ 0, of an iterative linear solver for the algebraic system (1.2), we obtain the algebraic residual
vector Rk,i in (1.3) with components associated with interfaces, Rk,i = {Rk,i

e }e∈E int
h
. For convenience, we

set Rk,i
e := 0 for all e ∈ Eext

h . The functional form of (1.3) is: find uk,ih ∈ Vh such that

(σk−1(uk,ih ,∇uk,ih ),∇ψe) = (fh, ψe)−Rk,i
e ∀e ∈ E int

h . (6.6)

6.1.4 Flux reconstruction

Let K ∈ Th. We define fh(x)|K := fh|K
d (x− xK), with xK the barycenter of K. For all e ∈ EK , let aK,e be

the vertex of K opposite to the face e. Let Te stand for the patch of elements sharing the face e.

Definition 6.1 (Construction of (dk,i
h + l

k,i
h )). Set, for all K ∈ Th,

(dk,i
h + l

k,i
h )|K :=

(

−Π0σ
k−1(uk,ih ,∇uk,ih ) + fh

)

|K −
∑

e∈EK

|Te|
−1R

k,i
e

d
(x− aK,e). (6.7)

The construction of dk,i
h mimics that of (dk,i

h + l
k,i
h ) with σ(uk,ih ,∇uk,ih ) in place of σk−1(uk,ih ,∇uk,ih ).

Specifically, let
R̄k,i

e := (fh, ψe)− (σ(uk,ih ,∇uk,ih ),∇ψe) ∀e ∈ E int
h , (6.8)

and R̄k,i
e := 0 for all e ∈ Eext

h . We prescribe d
k,i
h (and hence, also l

k,i
h by subtraction):

Definition 6.2 (Construction of dk,i
h ). Set, for all K ∈ Th,

d
k,i
h |K :=

(

−Π0σ(u
k,i
h ,∇uk,ih ) + fh

)

|K −
∑

e∈EK

|Te|
−1 R̄

k,i
e

d
(x− aK,e). (6.9)

Definition 6.3 (Approximate gradient, data oscillation, quadrature, and algebraic remainder). Set gk,i
h :=

∇uk,ih , fh := Π0f , σ
k,i
h := Π0σ(u

k,i
h ,∇uk,ih ), and rk,ih |K :=

∑

e∈EK
|Te|

−1Rk,i
e for all K ∈ Th.

6.1.5 Assumptions verification

Lemma 6.4 (Linearization error convergence). Assumption 3.5(iii) holds.

Proof. The requirement is obvious from Definitions 6.1 and 6.2.

Lemma 6.5 (Quasi-equilibration). Assumption 4.1 holds.
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Proof. The proof exploits the link between nonconforming finite elements and mixed finite elements, cf.
Marini [29]. For all K ∈ Th and all e ∈ EK , we introduce the geometric weight ωe,K := |K|/|Te|. Note that
0 < ωe,K ≤ 1 and ωe,K = 1 only on boundary faces. For any interface e ∈ E int

h such that e = ∂K ∩ ∂K ′,
K,K ′ ∈ Th, observing that ωe,K + ωe,K′ = 1, we define the weighted average of a piecewise polynomial
function vh at e as {{vh}}ω := ωe,K′(vh|K)|e + ωe,K(vh|K′)|e. On e ∈ Eext

h , we set {{vh}}ω := vh|e. We first
show that, for all K ∈ Th and all e ∈ EK ,

(dk,i
h + l

k,i
h )|K ·ne = {{−Π0σ

k−1(uk,ih ,∇uk,ih ) + fh}}ω·ne. (6.10)

This is obvious for e ∈ Eext
h . Let now e ∈ E int

h . Set wh := −Π0σ
k−1(uk,ih ,∇uk,ih ) + fh. It is readily seen that

(σk−1(uk,ih ,∇uk,ih ),∇ψe) = |e|[[Π0σ
k−1(uk,ih ,∇uk,ih )]]·ne and (fh, ψe) = |e|[[fh]]·ne (recall that [[·]] denotes the

jump across e in the direction of ne). Hence, owing to (6.6), [[wh]]·ne = |e|−1Rk,i
e . The result (6.10) then

follows from
wh|K ·ne = {{wh}}ω·ne + ωe,K [[wh]]·nK (6.11)

and (6.7). Now, (6.10) shows that (dk,i
h + l

k,i
h ) has continuous normal component across interfaces, so

that (dk,i
h + l

k,i
h ) ∈ RTN0(Th). Finally, the property (4.1) follows by taking the divergence of (6.7) and

considering the definition of rk,ih .

Lemma 6.6 (Local approximation). Assumption 5.1 holds.

Proof. Let vh := σ
k,i
h +d

k,i
h ∈ RTN−1

0 (Th) and use, for allK ∈ Th, the estimate ‖vh‖q,K . {
∑

e∈EK
he‖vh|K ·ne‖

q
q,e}

1
q

shown in [16, Section A.4]. Let e ∈ EK . If e ∈ Eext
h , using R̄k,i

e := 0 in (6.9), |x − xK | ≤ hK , a q-robust

inverse inequality (see [16, Section A.1 and A.4]), the fact that fh is constant on K, and ∇·σk,i
h = 0 yields

he‖vh|K ·ne‖
q
q,e = he‖fh|Kd

−1(x− xK)·ne‖
q
q,e ≤ h1+q

K ‖fh|K‖qq,e

. hqK‖fh‖
q
q,K = hqK‖fh +∇·σk,i

h ‖qq,K .

If e ∈ E int
h , reasoning as in the proof of Lemma 6.5 yields d

k,i
h ·ne = {{−σ

k,i
h + fh}}ω·ne (so that d

k,i
h ∈

RTN0(Th)). Using this relation, (6.11) to evaluate vh|K ·ne, and the continuity of the normal component

of dk,i
h yields vh|K ·ne = {{fh}}ω·ne + ωe,K [[σk,i

h ]]·nK . We conclude by proceeding as in the first part of the
proof.

Remark 6.7 (A tighter flux reconstruction using a dual mesh). A slightly tighter flux reconstruction can
be devised using a dual mesh: for all K ∈ Th and all e ∈ EK, let Ke be the sub-simplex of K formed by
the face e and the barycenter xK . Let De regroup the sub-simplices which share e. Then replace in the
last terms of (6.7) and (6.9) the vertex aK,e by the barycenter xK and |Te|

−1 by |De|
−1. Then, using local

stopping criteria, elementwise efficiency (without neighbors) can be proven on each element of the dual mesh
Dh = {De}e∈Eh

.

6.2 Conforming finite elements

We treat here the discretization of problem (2.4) by conforming finite elements.

6.2.1 Discretization

Let Vh := Pm(Th) ∩ V , m ≥ 1, be the usual finite element space of continuous, piecewise m-th order
polynomial functions. The corresponding discretization of problem (2.4) reads: find uh ∈ Vh such that

(σ(uh,∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh. (6.12)

Let ψj ∈ Vh, j ∈ C := {1, . . . , dim(Vh)}, denote the basis functions of Vh. Employing these functions
in (6.12) gives rise to the nonlinear algebraic system (1.1).
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6.2.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 3.7. The linearization of (6.12), for k ≥ 1, reads: find
ukh ∈ Vh such that

(σk−1(ukh,∇u
k
h),∇ψj) = (f, ψj) ∀j ∈ C, (6.13)

which is the functional form of the algebraic system (1.2). Two common linearizations are the fixed
point (6.4) and the Newton one (6.5).

6.2.3 Algebraic solution

On i-th step, i ≥ 0, of an iterative linear solver for the algebraic system (1.2), we obtain the algebraic

residual vector Rk,i in (1.3), with components associated with the set C, Rk,i = {Rk,i
j }j∈C . The functional

form of (1.3) is: find uk,ih ∈ Vh such that

(σk−1(uk,ih ,∇uk,ih ),∇ψj) = (f, ψj)−Rk,i
j ∀j ∈ C. (6.14)

6.2.4 Flux reconstruction

We construct (dk,i
h + l

k,i
h ) ∈ RTNl(Th) with l := m − 1 or l := m, using local homogeneous Neumann

mixed finite element problems posed on patches around mesh vertices, in an equivalent reformulation of
the approach of Braess and Schöberl [4]. Let Vh denote the set of mesh vertices with subsets V int

h for
interior vertices and Vext

h for boundary ones. Let ψa ∈ P1(Th) ∩ C0(Ω) stand for the hat basis function
associated with vertex a ∈ Vh. To distribute the algebraic residual onto vertices, we set, for all a ∈ V int

h ,

Rk,i
a

:=
∑

j∈C βjR
k,i
j , where the coefficients βj are such that ψa =

∑

j∈C βjψj , while, for a ∈ Vext
h , we

set Rk,i
a

:= 0. Furthermore, for all a ∈ Vh, let Ta be the patch of elements of Th that share a, and let

RTN
N,0
l (Ta) be the subspace of RTNl(Ta) with zero normal flux through ∂Ta for a ∈ V int

h and through
that part of ∂Ta which lies inside Ω for a ∈ Vext

h . Let P∗
l (Ta) be spanned by piecewise l-th order polynomials

on Ta, with zero mean on Ta when a ∈ V int
h .

Definition 6.8 (Construction of (dk,i
h + l

k,i
h )). For all vertices a ∈ Vh, define (dk,i

a
+ lk,i

a
) ∈ RTN

N,0
l (Ta)

and qa ∈ P
∗
l (Ta) by

(dk,i
a

+ lk,i
a
,vh)Ta

−(qa,∇·vh)Ta
=−(IRTN

l (ψaΠlσ
k−1(uk,ih ,∇uk,ih )),vh)Ta

, (6.15a)

(∇·(dk,i
a

+ lk,i
a
), φh)Ta

=(fψa − σk−1(uk,ih ,∇uk,ih )·∇ψa, φh)Ta
−(Rk,i

a
, φh)Ta

|Ta|
−1, (6.15b)

for all (vh, φh) ∈ RTN
N,0
l (Ta)× P

∗
l (Ta). Then, set dk,i

h + l
k,i
h :=

∑

a∈Vh
(dk,i

a
+ lk,i

a
).

In (6.15b), we can take φh ∈ Pl(Ta) since multiplying (6.14) by the coefficients βj , summing over all
j ∈ C, and using the definition of Rk,i

a
, yields, for all a ∈ V int

h , the Neumann compatibility condition

(σk−1(uk,ih ,∇uk,ih ),∇ψa)Ta
= (f, ψa)Ta

−Rk,i
a
. (6.16)

We proceed similarly for dk,i
h . Set R̄k,i

a
:= 0 for any a ∈ Vext

h and

R̄k,i
a

:= (f, ψa)Ta
− (σ(uk,ih ,∇uk,ih ),∇ψa)Ta

∀a ∈ V int
h . (6.17)

Definition 6.9 (Construction of dk,i
h ). Define dk,i

a
∈ RTN

N,0
l (Ta) and q̄a ∈ P

∗
l (Ta) by solving the mixed

finite element problems (6.15) with σ(uk,ih ,∇uk,ih ) in place of σk−1(uk,ih ,∇uk,ih ) and R̄k,i
a

in place of Rk,i
a

.

Then, set dk,i
h :=

∑

a∈Vh
dk,i
a

.

Definition 6.10 (Approximate gradient, data oscillation, quadrature, and algebraic remainder). Set gk,i
h :=

∇uk,ih , fh := Πlf , σ
k,i
h := Πlσ(u

k,i
h ,∇uk,ih ), and rk,ih |K :=

∑

a∈VK
|Ta|

−1Rk,i
a

for all K ∈ Th, where VK

collects the vertices of K.
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6.2.5 Assumptions verification

Definitions 6.8 and 6.9 readily imply:

Lemma 6.11 (Linearization error convergence). Assumption 3.5(iii) holds.

Lemma 6.12 (Quasi-equilibration). Assumption 4.1 holds.

Proof. Let K ∈ Th and let vh ∈ Pl(K) (and zero elsewhere) be fixed. For any a ∈ VK , by (6.16), we can
take vh as test function φh in (6.15b). Since

∑

a∈VK
ψa|K = 1 and

∑

a∈VK
∇ψa|K = 0 (ψa form a partition

of unity on K), we infer

(∇·(dk,i
h + l

k,i
h ), vh)K =

∑

a∈VK

(∇·(dk,i
a

+ lk,i
a

), vh)K = (f, vh)K−
∑

a∈VK

(Rk,i
a
, vh)K |Ta|

−1,

whence the assertion of the lemma follows from the definition of rk,ih .

Lemma 6.13 (Local approximation). Assumption 5.1 holds.

Proof. Let K ∈ Th. Since IRTN
l (σk,i

h ) = σ
k,i
h , by the partition of unity and linearity of the projection

operator IRTN
l , it follows that (dk,i

h + σ
k,i
h )|K = (dk,i

h + IRTN
l (σk,i

h ))|K =
∑

a∈VK
(dk,i

a
+ IRTN

l (ψaσ
k,i
h ))|K .

We thus only work with (dk,i
a

+ IRTN
l (ψaσ

k,i
h ))|K for a vertex a ∈ VK , or, more precisely, with (dk,i

a
+

IRTN
l (ψaσ

k,i
h ))|Ta

, in order to prove (5.2). Note that (σ(uk,ih ,∇uk,ih ),∇ψa)Ta
= (σk,i

h ,∇ψa)Ta
and, for all

φh ∈ Pl(Ta), (σ(u
k,i
h ,∇uk,ih )·∇ψa, φh)Ta

= (σk,i
h ·∇ψa, φh)Ta

, so that we can replace σ(uk,ih ,∇uk,ih ) by σ
k,i
h

everywhere in Definition 6.9. We next proceed as in [16, Section A.4], cf. also [22, Proof of Lemmas 7.5
and 7.8]. Firstly, let M(Ta) denote the postprocessing space of piecewise (discontinuous) polynomials mh

on Ta such that
〈[[mh]], vh〉e = 0 ∀e ∈ Ea, ∀vh ∈ Pl(e), (6.18)

where Ea collects the faces to which a belongs. Moreover, the functions mh in M(Ta) satisfy (mh, 1)Ta
= 0

for interior vertices a. [40, Lemma 5.4] and [16, Section A.4] yield

‖dk,i
a

+ IRTN
l (ψaσ

k,i
h )‖q,Ta

. sup
mh∈M(Ta), ‖∇mh‖p,Ta

=1

(dk,i
a

+ IRTN
l (ψaσ

k,i
h ),∇mh)Ta

.

Let mh ∈ M(Ta) with ‖∇mh‖p,Ta
= 1 be fixed and consider the right-hand side of the above inequality.

The Green theorem, the fact that dk,i
a

+IRTN
l (ψaσ

k,i
h ) has zero normal flux through (a part of) ∂Ta together

with (6.18) on ∂Ta ∩ ∂Ω when a ∈ Vext
h , the fact that dk,i

a
∈ RTN

N,0
l (Ta), (6.18), and the properties (6.1)

of IRTN
l yield

−
∑

K′∈Ta

(∇·(dk,i
a

+ IRTN
l (ψaσ

k,i
h )),mh)K′ +

∑

e∈E int
h

, e∩a 6=∅

〈[[IRTN
l (ψaσ

k,i
h )·ne]],mh〉e

=−
∑

K′∈Ta

(∇·(dk,i
a

+ ψaσ
k,i
h ),Πl(mh))K′ +

∑

e∈E int
h

, e∩a 6=∅

〈[[ψaσ
k,i
h ·ne]],Πl(mh)〉e

that we denote as I + II. Employing the second lines of the problems of Definition 6.9 (recall that we can
take φh ∈ Pl(Ta)), the first term I above can be developed as

−
∑

K′∈Ta

(ψa(∇·σk,i
h + f)− R̄k,i

a
|Ta|

−1,Πl(mh))K′

≤

{

∑

K′∈Ta

h−p
K′‖mh‖

p
p,K′

}
1
p
{

∑

K′∈Ta

hqK′(‖f +∇·σk,i
h ‖q,K′ + ‖R̄k,i

a
|Ta|

−1‖q,K′)q

}
1
q

. h−1
Ta

‖mh‖p,Ta

({

∑

K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

}
1
q

+ |R̄k,i
a

||Ta|
−1+ 1

q hTa

)

,
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where we have also used the Hölder inequality, the stability of the Πl-projection, and the fact that ‖ψa‖∞,Ta
=

1. Finally, for any interior vertex a, we get from (6.17), the Green theorem, the Hölder inequality, and the

p-robust inverse inequality ‖ψa‖p,e . h
− 1

p
e ‖ψa‖p,K′, e ∈ EK′ , see [16, Section A.4], that the term R̄k,i

a
can

be developed as

∑

K′∈Ta

(f +∇·σk,i
h , ψa)K′ −

∑

e∈E int
h

, e∩a 6=∅

〈[[σk,i
h ·ne]], ψa〉e

.

({

∑

K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

}
1
q

+

{

∑

e∈E int
h

, e∩a 6=∅

he‖[[σ
k,i
h ·ne]]‖

q
q,e

}
1
q
)

h−1
Ta

|Ta|
1
p .

Using the p-robust discrete Poincaré/Friedrichs inequality ‖mh‖p,Ta
. hTa

‖∇mh‖p,Ta
from [16, Section A.4]

and the triangle inequality for separating the data oscillation terms ηk,iosc,K , we conclude that I ≤ ηk,i♯,K +

ηk,iosc,TK
. Proceeding similarly for the jump term II (with the above treatment of ψa and Πl) yields the

desired result.

6.3 Interior penalty discontinuous Galerkin (IPDG) for quasi-linear diffusion

We treat here the IPDG method applied in the quasi-linear setting (2.2).

6.3.1 Discretization

Let Vh := Pm(Th), m ≥ 1. The IPDG discretization of problem (2.4) in the case (2.2) reads: find uh ∈ Vh
such that, for all vh ∈ Vh,

(σ(uh,∇uh),∇vh)−
∑

e∈Eh

{

〈{{σ(uh,∇uh)}}·ne, [[vh]]〉e

+ θ〈{{A(uh)∇vh}}·ne, [[uh]]〉e
}

+
∑

e∈Eh

〈ᾱeh
−1
e [[uh]], [[vh]]〉e = (f, vh),

(6.19)

with θ ∈ {−1, 0, 1} and ᾱe := ‖A‖L∞(R)χe where χe is a large enough positive parameter. The average
operator {{·}} yields the mean value of the traces from adjacent mesh elements on interfaces and the actual
trace on boundary faces. Testing (6.19) against the basis functions in Vh gives rise to the nonlinear algebraic
system (1.1); these basis functions are denoted ψK,j , for all K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))}.

6.3.2 Linearization

Let u0h ∈ Vh, fixing U
0 in Algorithm 3.7. The linearization of (6.19), for k ≥ 1, is: find ukh ∈ Vh such that,

for all K ∈ Th and all j ∈ CK ,

(σk−1(ukh,∇u
k
h),∇ψK,j)−

∑

e∈Eh

{

〈{{σk−1(ukh,∇u
k
h)}}·ne, [[ψK,j ]]〉e

+ θ〈{{Ak−1(ukh)∇ψK,j}}·ne, [[u
k
h]]〉e

}

+
∑

e∈Eh

〈ᾱeh
−1
e [[ukh]], [[ψK,j ]]〉e = (f, ψK,j),

(6.20)

which is the functional form of (1.2). The fixed point linearization corresponds to σk−1(v, ξ) := A(uk−1
h )ξ

and Ak−1(v) := A(uk−1
h ), and the Newton linearization to

σk−1(v, ξ) := A(uk−1
h )ξ + (v − uk−1

h )∂vA(uk−1
h )∇uk−1

h , (6.21a)

Ak−1(v) := A(uk−1
h ) + ∂vA(uk−1

h )(v − uk−1
h ). (6.21b)
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6.3.3 Algebraic solution

On i-th step, i ≥ 0, of an iterative linear solver applied to (1.2), we obtain (1.3) with algebraic residual

vector Rk,i = {Rk,i
K,j}K∈Th, j∈CK

. The functional form of (1.3) is: find uk,ih ∈ Vh such that, for all K ∈ Th
and all j ∈ CK ,

(σk−1(uk,ih ,∇uk,ih ),∇ψK,j)−
∑

e∈Eh

{

〈{{σk−1(uk,ih ,∇uk,ih )}}·ne, [[ψK,j ]]〉e

+θ〈{{Ak−1(uk,ih )∇ψK,j}}·ne, [[u
k,i
h ]]〉e

}

+
∑

e∈Eh

〈ᾱeh
−1
e [[uk,ih ]], [[ψK,j ]]〉e = (f, ψK,j)−Rk,i

K,j .

6.3.4 Flux reconstruction

We construct dk,i
h and l

k,i
h in the space RTNl(Th) with l := m − 1 or l := m, following Kim [26] and [17].

For all e ∈ Eh, we set we :=
1
2 if e ∈ E int

h and we := 1 if e ∈ Eext
h .

Definition 6.14 (Construction of (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is defined in RTNl(Th) such that,

for all K ∈ Th and all e ∈ EK ,

〈(dk,i
h + l

k,i
h )·ne, qh〉e := 〈−{{σk−1(uk,ih ,∇uk,ih )}}·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e,

(dk,i
h + l

k,i
h , rh)K := −(σk−1(uk,ih ,∇uk,ih ), rh)K + θ

∑

e∈EK

we〈A
k−1(uk,ih )rh·ne, [[u

k,i
h ]]〉e,

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d.

Definition 6.15 (Construction of dk,i
h ). The function d

k,i
h is in RTNl(Th) and is defined using the prescrip-

tion of Definition 6.14 with σ(uk,ih ,gk,i
h ) in place of σk−1(uk,ih ,∇uk,ih ) and A(uk,ih ) in place of Ak−1(uk,ih ).

Definition 6.16 (Approximate gradient, data oscillation, quadrature, and algebraic remainder). Set gk,i
h :=

∇uk,ih , fh := Πlf , σ
k,i
h := IRTN

l (σ(uk,ih ,gk,i
h )), and rk,ih ∈ Pm(Th) with (rk,ih , ψK,j)K = Rk,i

K,j for all K ∈ Th
and all j ∈ CK .

6.3.5 Assumptions verification

As above, Definitions 6.14 and 6.15 yield:

Lemma 6.17 (Linearization error convergence). Assumption 3.5(iii) holds.

Lemma 6.18 (Quasi-equilibration). Assumption 4.1 holds.

Proof. Direct verification by proceeding as in [17, 26], see also [14, Section 5.5].

Lemma 6.19 (Local approximation). Assumption 5.1 holds using weights αe := ᾱ2
e and exponent s := p in

the nonconformity estimator.

Proof. We observe that, for all K ∈ Th and all e ∈ EK , there holds

〈(dk,i
h + σ

k,i
h )·ne, qh〉e = (1− we)〈[[σ

k,i
h ]]·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e, (6.22a)

(dk,i
h + σ

k,i
h , rh)K = θ

∑

e∈EK

we〈A(uk,ih )rh·ne, [[u
k,i
h ]]〉e, (6.22b)

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d. The assertion then follows from standard approximation properties
in Raviart–Thomas–Nédélec spaces, see, e.g., [14, Section 5.5].

6.4 Discontinuous Galerkin with gradient reconstruction

We treat here the discretization of the full problem (2.4) by the discontinuous Galerkin method with a
discrete gradient suitable especially for the Leray–Lions setting (2.3).
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6.4.1 Discretization

Let l ≥ 0 be an integer. For all e ∈ Eh, we define the map ℓe : L
1(e) → [Pl(Th)]

d such that, for all φ ∈ L1(e),
ℓe(φ) is the unique function in [Pl(Th)]

d such that, for all vh ∈ [Pl(Th)]
d, (ℓe(φ),vh) = 〈{{vh}}·ne, φ〉e. The

vector-valued, piecewise polynomial function ℓe(φ) is supported in Te (the patch of elements sharing the
face e) and is colinear to ne. Then, for a function v ∈ V (Th), we define its discrete gradient ∇hv ∈ [Lp(Ω)]d

(see [14, Section 4.2] and references therein) as

∇hv := ∇v − Lh([[v]]), Lh([[v]]) :=
∑

e∈Eh

ℓe([[v]]). (6.23)

Observe that Lh([[v]]) is a (piecewise polynomial) correction to the broken gradient ∇v based on the jump
liftings. The discrete gradient is an important tool in the design of discontinuous Galerkin methods for
nonlinear problems, see Buffa and Ortner [6] and [7] for the p-Laplacian and [13] for the incompressible
Navier–Stokes equations.

Let Vh := Pm(Th), m ≥ 1. We consider here the following gradient reconstruction discontinuous Galerkin
method: find uh ∈ Vh such that

(σ(uh,∇huh),∇hvh) +
∑

e∈Eh

〈se([[uh]]), [[vh]]〉e = (f, vh) ∀vh ∈ Vh, (6.24)

with the stabilization operator se : Lp(e) → Lq(e) for all e ∈ Eh such that, for all v ∈ Lp(e), se(v) =
ᾱeh

1−p
e |v|p−2v with a positive parameter ᾱe. Testing (6.24) against the basis functions in Vh gives rise to

the nonlinear algebraic system (1.1).

Remark 6.20 (Stencil reduction and link with IPDG). The discretization stencil resulting from (6.24)
includes neighbors and neighbors of neighbors in the sense of faces. This stencil can be reduced by adding to
the left-hand side of (6.24) the form −(σ(uh,∇huh)−σ(uh,∇uh),∇hvh −∇vh). For quasi-linear diffusion
and strong enough penalty, this leads to an IPDG formulation of type (6.19) (with θ = 1).

6.4.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 3.7. The linearization of (6.24), for k ≥ 1, reads: find
ukh ∈ Vh such that, for all K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))},

(σk−1(ukh,∇hu
k
h),∇hψK,j) +

∑

e∈Eh

〈sk−1
e ([[ukh]]), [[ψK,j ]]〉e = (f, ψK,j), (6.25)

which is the functional form of (1.2). In the fixed-point linearization, σk−1(v, ξ) is defined by (6.4) with
∇hu

k−1
h in place of ∇uk−1

h , while sk−1
e (v) := ᾱeh

1−p
e |[[uk−1

h ]]|p−2v. In the Newton linearization, σk−1(v, ξ)

is defined by (6.5) with ∇hu
k−1
h in place of ∇uk−1

h , while sk−1
e (v) := ᾱeh

1−p
e |[[uk−1

h ]]|p−2 ((p − 1)v − (p −

2)[[uk−1
h ]]).

6.4.3 Algebraic solution

On i-th step, i ≥ 0, of a linear solver for (1.2), we obtain the system (1.3) with Rk,i = {Rk,i
K,j}K∈Th, j∈CK

.

The functional form of (1.3) is: find uk,ih ∈ Vh such that, for all K ∈ Th and all j ∈ CK ,

(σk−1(uk,ih ,∇hu
k,i
h ),∇hψK,j) +

∑

e∈Eh

〈sk−1
e ([[uk,ih ]]), [[ψK,j ]]〉e = (f, ψK,j)−Rk,i

K,j . (6.26)

6.4.4 Flux reconstruction

We proceed as in Section 6.2.4 hinging on the hat basis functions ψa ∈ P1(Th) ∩ C
0(Ω). This in particular

allows us to eliminate the nonlinear jump terms in the local flux expressions, compare with (6.22). Since
m ≥ 1, there holds ψa ∈ Vh, so that there are coefficients βK,j such that ψa =

∑

K∈Ta

∑

j∈CK
βK,jψK,j .

We then distribute the components of Rk,i onto vertices by setting Rk,i
a

:=
∑

K∈Ta

∑

j∈CK
βK,jR

k,i
K,j for all

a ∈ V int
h , and Rk,i

a
:= 0 for all a ∈ Vext

h .
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We construct d
k,i
h and l

k,i
h in the space RTNl(Th) with l := m − 1 or l := m. We use the notation

from Section 6.2.4.

Definition 6.21 (Construction of (dk,i
h + l

k,i
h )). We define (dk,i

h + l
k,i
h ) ∈ RTNl(Th) using Definition 6.8

with σk−1(uk,ih ,∇hu
k,i
h ) in place of σk−1(uk,ih ,∇uk,ih ).

In the local mixed problems considered in Definition 6.8, we can take φh ∈ Pl(Ta) since multiplying (6.26)
by the coefficients βK,j , summing over all K ∈ Ta and all j ∈ CK , using the definition of Rk,i

a
, and the fact

that [[ψa]] = 0, yields, for all a ∈ V int
h , the Neumann compatibility condition (σk−1(uk,ih ,∇hu

k,i
h ),∇ψa)Ta

=

(f, ψa)Ta
− Rk,i

a
. We proceed similarly for the construction of d

k,i
h , setting, for all a ∈ V int

h , R̄k,i
a

:=

(f, ψa)Ta
− (σ(uk,ih ,∇hu

k,i
h ), ∇ψa)Ta

and, for all a ∈ Vext
h , R̄k,i

a
:= 0. This yields:

Definition 6.22 (Construction of dk,i
h ). We define dk,i

h ∈ RTNl(Th) using Definition 6.9 with σ(uk,ih ,∇hu
k,i
h )

in place of σ(uk,ih ,∇uk,ih ).

Definition 6.23 (Approximate gradient, data oscillation, quadrature, and algebraic remainder). Set gk,i
h :=

∇hu
k,i
h , fh := Πlf , σ

k,i
h := Πl(σ(u

k,i
h ,∇hu

k,i
h )), and rk,ih |K :=

∑

a∈VK
|Ta|

−1Rk,i
a

for all K ∈ Th.

6.4.5 Assumptions verification

The results of Section 6.2.5 apply here identically:

Lemma 6.24 (Linearization error convergence). Assumption 3.5(iii) holds.

Lemma 6.25 (Quasi-equilibration). Assumption 4.1 holds.

Lemma 6.26 (Local approximation). Assumption 5.1 holds.

6.5 Cell-centered finite volumes and lowest-order mixed finite elements

We apply here cell-centered finite volumes and closely related lowest-order mixed finite elements to the
discretization of (2.4).

6.5.1 Discretization

Let Vh := P0(Th). Fix an element K ∈ Th and a face e ∈ EK . We denote σK,e : Vh → R the finite volume
flux function, which maps a piecewise constant function v̄h ∈ Vh to the normal flux through e, σK,e(v̄h).
We do not need the specific form of the flux functions σK,e, except that conservativity be satisfied in the
form σK,e(v̄h) = −σK′,e(v̄h) for any function v̄h ∈ Vh and any interface e ∈ E int

h such that e = ∂K ∩∂K ′. A
general cell-centered finite volume method for the problem (2.4), cf. Eymard et al. [19], reads: find ūh ∈ Vh
such that

∑

e∈EK

σK,e(ūh) = (f, 1)K ∀K ∈ Th. (6.27)

This gives rise to the nonlinear algebraic system (1.1).

6.5.2 Linearization

Let ū0h ∈ Vh, fixing the initial vector U0 in Algorithm 3.7. The linearization of (6.27), for k ≥ 1, reads: find
ūkh ∈ Vh such that

∑

e∈EK

σk−1
K,e (ū

k
h) = (f, 1)K ∀K ∈ Th, (6.28)

which is the functional form of the algebraic system (1.2). Here, σk−1
K,e : Vh → R is the finite volume flux

function on the k-th linearization step. We again suppose conservativity, i.e., σk−1
K,e (v̄h) = −σk−1

K′,e(v̄h) for
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any v̄h ∈ Vh and e = ∂K ∩ ∂K ′ ∈ E int
h . It is not possible to specify the fixed point linearization directly

from (6.27), as it depends on the actual form of σK,e. For the Newton linearization, σk−1
K,e is such that

σk−1
K,e (v̄h) := σK,e(ū

k−1
h ) +

∑

K′∈Th

∂σK,e

∂ūh|K′

(ūk−1
h )(v̄h|K′ − ūk−1

h |K′). (6.29)

As an example, we detail the linearized flux function σk−1
K,e for a two-point finite volume scheme. Let

d = 2 and assume that Th is strictly Delaunay, so that the circumcircle of each triangle does not contain any
other triangle vertex, and each circumcenter of a boundary triangle is inside Ω. Consider the quasi-linear
diffusion setting (2.2) with a scalar-valued function a(x, v) (in place of the tensor-valued function A(x, v)).
Let x◦

K stand for the circumcenter of the triangle K ∈ Th and xe for the center of the edge e ∈ Eext
h . We use

the shorthand notation aK(·) in place of a(x◦
K , ·) and v̄K in place of v̄h|K for any function v̄h ∈ Vh. Then,

a two-point finite volume scheme for the quasi-linear diffusion problem takes the form (6.27) with

σK,e(ūh) :=
ke
2

{

aK(ūK) + aK′(ūK′)
}

(ūK − ūK′) ∀e = ∂K ∩ ∂K ′ ∈ E int
h , (6.30a)

σK,e(ūh) := keaK(ūK)ūK ∀e = ∂K ∩ ∂Ω ∈ Eext
h , (6.30b)

where ke := |e|
|x◦

K
−x

◦

K′ |
in (6.30a) and ke := |e|

|x◦
K
−xe|

in (6.30b). The Newton linearization leads to, for all

K ∈ Th and all e = ∂K ∩ ∂K ′ ∈ E int
h ,

σk−1
K,e (v̄h) :=

ke
2

{

aK(ūk−1
K ) + aK′(ūk−1

K′ )
}

(v̄K − v̄K′) (6.31)

+
ke
2

{

a′K(ūk−1
K )(v̄K − ūk−1

K ) + a′K′(ūk−1
K′ )(v̄K′ − ūk−1

K′ )
}

(ūk−1
K − ūk−1

K′ ),

and, for all e = ∂K ∩ ∂Ω ∈ Eext
h ,

σk−1
K,e (v̄h) := keaK(ūk−1

K )v̄K + kea
′
K(ūk−1

K )(v̄K − ūk−1
K )ūk−1

K . (6.32)

The fixed point linearization is derived from (6.31)–(6.32) by omitting the terms with the derivative of a.

6.5.3 Algebraic solution

On i-th step, i ≥ 0, of an iterative linear solver for the algebraic system (1.2), we obtain the algebraic

residual vector Rk,i in (1.3) with Rk,i = {Rk,i
K }K∈Th

. The functional form of (1.3) is: find ūk,ih ∈ Vh such
that

∑

e∈EK

σk−1
K,e (ū

k,i
h ) = (f, 1)K −Rk,i

K ∀K ∈ Th. (6.33)

6.5.4 Flux reconstruction

We follow Eymard et al. [20] to define:

Definition 6.27 (Construction of (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is defined in RTN0(Th) such

that, for all K ∈ Th and all e ∈ EK,

〈(dk,i
h + l

k,i
h )·nK , 1〉e = σk−1

K,e (ū
k,i
h ). (6.34)

Definition 6.28 (Construction of dk,i
h ). The flux d

k,i
h is defined in RTN0(Th) using Definition 6.27 with

σK,e(ū
k,i
h ) in place of σk−1

K,e (ū
k,i
h ).

The piecewise constant discrete potential ūk,ih ∈ Vh has not enough regularity to be meaningful as
an argument in the error measure (2.6), in particular regarding the size of its jumps. For this reason,

following [40] and the references therein, we introduce an elementwise postprocessing of ūk,ih , leading to a

new discrete potential uk,ih sitting in the richer polynomial space P2(Th). The first step is to determine ∇uk,ih
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from d
k,i
h . For simplicity, we assume that the ξ-dependency of σ can be inverted, i.e., there is a function

B : Ω× R× R
d → R

d,d such that, for all (x, v, ξ, τ ) ∈ Ω× R× R
d × R

d,

τ = A(x, v, ξ)ξ ⇐⇒ ξ = B(x, v, τ )τ . (6.35)

For the quasi-linear diffusion problem, there holds B(x, v) = A(x, v)−1, while for the Leray–Lions problem
in the p-Laplace setting, B(τ ) = |τ |q−2I. Then, we set

∇uk,ih |K := B(xK , ū
k,i
h |K ,d

k,i
h (xK))dk,i

h |K ∀K ∈ Th, (6.36)

where xK denotes the barycenter or the circumcenter of K. Once ∇uk,ih is known, the second step is to
determine a suitable integration constant in each element K ∈ Th. Possible choices are (depending on

the finite volume scheme at hand) (uk,ih , 1)K/|K| := ūk,ih |K or uk,ih (xK) := ūk,ih |K . This now fully defines

uk,ih ∈ P2(Th).

Definition 6.29 (Approximate gradient, data oscillation, quadrature, and algebraic remainder). Set gk,i
h :=

∇uk,ih , fh := Π0f , σ
k,i
h := d

k,i
h , and rk,ih |K := |K|−1Rk,i

K for all K ∈ Th.

6.5.5 Assumptions verification

The above developments readily yield:

Lemma 6.30 (Linearization error convergence). Assumption 3.5(iii) holds.

Lemma 6.31 (Quasi-equilibration). Assumption 4.1 holds.

Lemma 6.32 (Local approximation). Assumption 5.1 holds.

6.5.6 Lowest-order mixed finite elements

We finally tackle the mixed finite element case. We assume that the ξ-dependency of σ can be inverted,
see (6.35), and, omitting the x-dependency, we set γ(v, τ ) := B(v, τ )τ for all (v, τ ) ∈ R × R

d. Let
Vh := P0(Th) and Vh := RTN0(Th). The lowest-order Raviart–Thomas mixed method for (2.4) reads: find
(σh, ūh) ∈ Vh × Vh such that, for all (vh, vh) ∈ Vh × Vh,

(γ(ūh,σh),vh)− (ūh,∇·vh) = 0, (6.37a)

(∇·σh, vh) = (f, vh). (6.37b)

This gives rise to the nonlinear algebraic system (1.1).
Let (σ0

h, ū
0
h) ∈ Vh × Vh, fixing the initial vector U0 in Algorithm 3.7. The linearization of (6.37), for

k ≥ 1, reads: find (σk
h, ū

k
h) ∈ Vh × Vh such that, for all (vh, vh) ∈ Vh × Vh,

(γk−1(ūkh,σ
k
h),vh)− (ūkh,∇·vh) = 0, (6.38a)

(∇·σk
h, vh) = (f, vh), (6.38b)

which is the functional form of the algebraic system (1.2). Two common ways to define the function
γk−1(v, τ ) are the fixed point linearization where γk−1(v, τ ) := B(ūk−1

h ,σk−1
h )τ and the Newton lineariza-

tion where

γk−1(v, τ ) := B(ūk−1
h ,σk−1

h )τ + (v − ūk−1
h )∂vB(ūk−1

h ,σk−1
h )σk−1

h

+ (∂τB(ūk−1
h ,σk−1

h )·σk−1
h )·(τ − σk−1

h ).
(6.39)

Problem (6.38) gives rise to a linear system which is of a saddle-point form for a pair of vectors associated
with ūkh and σk

h. As such, it is not suitable to the present framework. However, following [42] and the
references therein, the resulting algebraic systems can be equivalently rewritten as (6.28), with the only
unknowns the discrete potentials ūkh. Then, the approach of Section 6.5.3–Section 6.5.5 can be readily used.
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Setting Flux Potential

Case p Mesh D. osc. [W sq ,q(Ω)]d J up
u J low

u ηk,i W sp,p(Ω) ‖∇(u− uk,ih )‖p
1 1.5 unif. — sq = 1.67 1.00 0.99 1.00 sp = 4.33 1.00
1 10 unif. — sq = 2.80 0.99 1.01 0.99 sp = 1.31 0.31
2 4 unif. 1.13 sq = 1.13 0.94 0.95 0.99 sp = 1.38 0.38
2 4 adap. 1.64 sq = 1.13 0.97 1.00 0.99 sp = 1.38 0.89

Table 1: Flux and potential regularities and experimental orders of convergence
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Figure 1: Error and estimators on uniformly refined meshes, case 1, p = 10. Exact Newton (left), inexact
Newton (middle), and adaptive inexact Newton (right)

7 Numerical experiments

This section illustrates numerically our theoretical developments. We consider the p-Laplacian for d = 2
and two test cases with known analytical solution. We employ the Crouzeix–Raviart nonconforming finite
element method (6.2), the Newton linearization (6.5), the conjugate gradient (CG) method with diagonal
preconditioning, and use the flux reconstructions of Remark 6.7. In (2.7b), the coefficients αe are set to one
and s := q.

7.1 Test case 1

We set Ω := (0, 1) × (0, 1), f := 2, and prescribe the Dirichlet boundary condition by the exact solution
u(x) = q−1((0.5)q − |x− (0.5, 0.5)|q). This is a two-dimensional extension of a test case from Chaillou and
Suri [9]. The error stemming from inhomogeneous boundary conditions is neglected. We consider six levels
of uniform mesh refinement, together with the values p ∈ {1.5, 10}.

We test three approaches with three different stopping criteria in Algorithm 3.7. In the Exact Newton
(EN) method, both the nonlinear and linear solvers are iterated to “almost” convergence: we impose ηk,ialg ≤

10−8 and ηk,ilin ≤ 10−8. The criterion (3.10) is employed with γrem = 0.1; this influences the precision
of the calculation of the algebraic error component but not Algorithm 3.7. The Inexact Newton (IN)
method is as EN except that a fixed number of preconditioned CG iterations is performed on each Newton
step. These values were chosen respectively as 2, 3, 5, 8, 10, 15 on each level of mesh refinement. The
Adaptive Inexact Newton (AIN) method of this work relies on the global stopping criteria (3.10)–(3.12) with
γlin = γalg = 0.3 and γrem = 0.3. This choice of γrem leads to values of ν increasing on average by 20%
the number of algebraic solver iterations on each linearization step. The initial linearization guess u0h ∈ Vh
is defined, on every considered mesh, by perturbed punctual values of the exact solution u in the form
u0h(x, y) := u(x, y)(1 + λ(x − µ)(y − µ)) with perturbation parameters λ := 1 and µ := 0.5.

We begin with our results for p = 10. Figure 1 displays the curves of the error measure J up
u (uk,ih ,gk,i

h ),

cf. (2.8), and of the estimators ηk,iF and ηk,iNC of Theorem 3.4 as a function of the number of mesh faces.
In the present setting, the estimator ηk,iosc is zero, and ηk,irem takes very small values. We observe that the
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Figure 2: Error and estimators as a function of Newton iterations, case 1, p = 10, 6th level mesh. Exact
Newton (left), inexact Newton (middle), and adaptive inexact Newton (right)
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Figure 3: Error and estimators as a function of preconditioned CG iterations, case 1, p = 10, 6th level mesh.
Exact Newton, 6th step (left), inexact Newton, 6th step (middle), and adaptive inexact Newton, 8th step
(right)

three methods (EN, IN, and AIN) yield almost indistinguishable values for J up
u (uk,ih ,gk,i

h ), ηk,iF , and ηk,iNC,
and these quantities exhibit optimal decrease with the number of mesh faces, see Table 1. Figure 1 also
displays the curves of the linearization estimator ηk,ilin and of the algebraic estimator ηk,ialg of Theorem 3.6.
The conceptual difference between the three methods lies in the size and behavior of these two estimators:
both take values below 10−8 for EN; ηk,ialg takes larger values for IN; both ηk,ialg and ηk,ilin take larger values
that are just sufficiently small so as not to influence the error and estimators for AIN.

Figure 2 focuses more closely on the last, 6th level uniformly refined mesh, and tracks the dependence
of the error measure J up

u (uk,ih ,gk,i
h ), the overall error estimator ηk,i of Theorem 3.4, and the discretization

and linearization estimators ηk,idisc and ηk,ilin of Theorem 3.6 on the Newton iterations. Typically, the error

and all the estimators except ηk,ilin start to stagnate after the linearization error ceases to dominate. This
is precisely the point where the nonlinear iteration is stopped in AIN, whereas both EN and IN perform
many unnecessary additional iterations. We can also observe the appearance of quadratic convergence for
EN and a convergence slow-down for IN.

Figure 3 further analyzes the situation on one chosen Newton iteration from Figure 2. To be in a region
with similar error measure J up

u (uk,ih ,gk,i
h ), we have chosen the 6th iteration for EN and IN and the 8th

iteration for AIN. We see that almost no decrease of the error measure J up
u (uk,ih ,gk,i

h ) can be observed
during the almost 650 iterations of the preconditioned CG method in the EN case. The fixed 15 CG
iterations in the IN case are, on the contrary, not completely sufficient to decrease significantly the error
measure J up

u (uk,ih ,gk,i
h ). In our approach, just the sufficient, “online-decided” number of CG iterations is

performed.
Figure 4 illustrates the overall performance of the three approaches. We can see that the number of

Newton iterations (corresponding to the number of matrix assemblies) per refinement level is stable around
20 for EN. This observation is in agreement with the so-called asymptotic mesh independence of the number
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Figure 4: Number of Newton iterations per refinement level (left), number of linear solver iterations per
Newton step on 6th level mesh (middle), and total number of linear solver iterations per refinement level
(right). Case 1, p = 10
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Figure 5: Estimated (left) and actual (right) error distribution, case 1, p = 10, 2nd level uniformly refined
mesh, adaptive inexact Newton

of Newton iterations, cf., e.g., Weiser et al. [43] and references therein for theoretical results. It increases
significantly for IN, whereas it is still reduced for AIN. On one Newton iteration (example for the 6th level
refined mesh), the number of CG iterations also varies significantly between the three approaches. Many
iterations are necessary in the EN case and fixed 15 iterations in the IN case, whereas AIN picks up the
number that is “just necessary.” Remark that this number is equal to two on the first Newton step; from
here, the error is “lagged” as a function of Newton iterations in the AIN case, cf. Figure 2. The total
number of necessary CG iterations per refinement level is displayed in the right part of Figure 4. On the
last mesh, AIN only needs 306 total iterations, whereas IN needs 1470, and EN 8690 iterations. Thus, our
approach yields an economy by a factor of roughly 5 with respect to IN and roughly 30 with respect to EN
in terms of total algebraic solver iterations.

Figure 5 displays the distribution of the overall error estimator ηk,i and of the error measure J up
u (uk,ih ,gk,i

h )
on the 2nd level uniformly refined mesh for AIN. We see that even in presence of algebraic and linearization
errors, the overall error distribution is very well predicted.

Figures 6–8 display similar results for the choice p = 1.5. The nature of the nonlinearity seems different
here from the case p = 10, as the Newton-iteration dependence curves of Figure 6 illustrate. In particular,
using our stopping criteria avoids the useless waiting before the plateau has been overcome in the classical
approaches (EN and IN). As before, these criteria also allow one to invest the right amount of CG iterations
in each Newton step, as Figure 7 shows. The computational gains of our approach are important here,
with one Newton iteration per refinement up to the 5th level; we only require 122 total CG iterations on
the 6th level mesh, in comparison to 3510 for EN and 7755 for IN, see Figure 8. The error and estimator
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Figure 6: Error and estimators as a function of Newton iterations, case 1, p = 1.5, 6th level mesh. Exact
Newton (left), inexact Newton (middle), and adaptive inexact Newton (right)
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Figure 7: Error and estimators as a function of preconditioned CG iterations, case 1, p = 1.5, 6th level
mesh, 1st Newton step. Exact Newton (left), inexact Newton (middle), and adaptive inexact Newton (right)

distributions are similar to those observed in Figure 5 (not shown).

Finally, we define the upper and lower effectivity indices respectively as Iup := ηk,i/J up
u (uk,ih ,gk,i

h )

and I low := ηk,i/J low
u (uk,ih ,gk,i

h ). Here, J low
u (uk,ih ,gk,i

h ) is a lower error bound obtained by estimating the

supremum in (2.7a) just with ϕ = Iav(u
k,i
h ) where Iav(u

k,i
h ) is the continuous, piecewise affine function

obtained by averaging of uk,ih on interior vertices and by the Dirichlet condition on boundary vertices. Since

J low
u (uk,ih ,gk,i

h ) ≤ Ju(u
k,i
h ,gk,i

h ) ≤ J up
u (uk,ih ,gk,i

h ), the effectivity index I := η/Ju(u
k,i
h ,gk,i

h ) lies between
Iup and I low. All effectivity indices (especially J up

u ) are very close to the optimal value of one following
Figure 9. This holds for both p = 10 and p = 1.5, from where we can experimentally confirm the robustness
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Figure 8: Number of Newton iterations per refinement level (left), number of linear solver iterations per
Newton step on 6th level mesh (middle), and total number of linear solver iterations per refinement level
(right). Case 1, p = 1.5
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Figure 9: Upper and lower effectivity indices, case 1. Exact Newton (left), inexact Newton (middle), and
adaptive inexact Newton (right)

of our estimates with respect to the size of the nonlinearity, given here by the exponent p.

7.2 Test case 2

This test case is taken from Carstensen and Klose [8, Example 3]. We consider the L-shaped domain
Ω := (−1, 1)2 \ [0, 1] × [−1, 0] and prescribe the Dirichlet boundary condition and the source term f by
the exact solution u(r, θ) = rδ sin(δθ). Here, (r, θ) are the polar coordinates and δ := 7/8. We consider the
value p = 4 and, as in test case 1, we neglect the error stemming from inhomogeneous boundary conditions.
The solution features a corner singularity with the regularity reported in Table 1. We only focus on our
adaptive inexact Newton method. We use the local criteria (3.14) and (3.15) (on the dual mesh Dh) with
γalg,De

= γlin,De
= 1 for all e ∈ E int

h and the local criterion (3.13) with γrem,De
= 1 for all e ∈ E int

h . We
perform both uniform and adaptive mesh refinement. The starting value u0h is selected as above only on
the coarsest mesh; on every subsequent refinement, this function is obtained from the approximate solution
uk,ih on the previous mesh. Mesh adaptation is driven by our a posteriori error estimate ηk,i of Theorem 3.4.
All the elements where the estimate exceeds 50% of the maximal error are marked for refinement. Every
marked element is refined regularly into four sub-elements and the so-called longest edge refinement is used
so as to recover a matching mesh (without hanging nodes).

Figure 10 plots the error measure J up
u (uk,ih ,gk,i

h ) and several estimators as before. In contrast to test
case 1, the data oscillation estimators (3.5b) are not zero and actually represent the most significant contri-

bution to the overall error on the coarsest meshes. The linearization and algebraic estimators ηk,ilin and ηk,ialg

are, as expected, only slightly below the other curves for uniform mesh refinement (a little more than in
Section 7.1, as we employ here local and not global stopping criteria). An interesting phenomenon occurs
for adaptive mesh refinement. Because of the corner singularity, the meshes are highly graded. Probably as
a consequence, even if γlin,De

= 1, the linearization estimator ηk,ilin drops to values as low as 10−7, whereas
this estimator would not be so small if the global linearization stopping criterion (3.12) was used.

Figure 11, left, traces the potential energy error ‖∇(u − uk,ih )‖p on both the uniformly and adaptively
refined meshes. Here, we have observed that the usage of local stopping criteria (with the ensuing small
values taken by the linearization estimator) is needed to achieve the quasi-optimal error decrease with
adaptive mesh refinement, cf. Table 1. In particular, such a fast decrease does not appear if the global
stopping criterion (3.12) is employed, as the meshes are not sufficiently graded. Figure 11, middle, illustrates
that as few as 2 Newton iterations per refinement level are sufficient in our approach (except for initial
meshes). The overall efficiency of the AIN combined with adaptive mesh refinement is best appreciated
when evaluating the total number of linear solver iterations per refinement level in Figure 11, right: only a
very mild increase is observed for adaptive mesh refinement case.

Finally, in Figure 12, we plot the distribution of the estimate ηk,i and of the error measure J up
u (uk,ih ,gk,i

h )
on the 5th level adaptively refined mesh. As before, even in the presence of linearization and algebraic
errors, the overall error distribution is predicted very well, while the mesh has been refined around the
corner singularity.
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Figure 10: Error and estimators on uniformly (left) and adaptively (middle) refined meshes and upper and
lower effectivity indices (right). Case 2, p = 4
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Figure 11: Energy error on uniformly and adaptively refined meshes (left), number of linear solver iterations
per Newton step (6th level uniformly and 13th level adaptively refined mesh) (middle), and total number
of linear solver iterations per refinement level (right). Case 2, p = 4

8 Conclusions

In this work, we have designed an inexact Newton method with adaptive stopping criteria for iterative
nonlinear and linear solvers. These criteria are based on guaranteed and robust a posteriori error estimates.
A complete adaptive strategy combined with adaptive mesh refinement has also been proposed. We have
presented numerical experiments illustrating the computational gains achieved by our approach. Our error
estimates are derived in an abstract unified framework using equilibrated flux reconstructions. These recon-
structions must comply with a couple of assumptions which we have verified for a wide class of discretization
schemes and linearizations. In some cases, local mixed finite element problems are to be solved. In practice,
the corresponding local matrices can be assembled only once in a preprocessing stage. Additional compu-
tational savings are possible by evaluating the error estimators only periodically and not at each iteration
of both solvers or by simplifying the estimators by employing quadrature formulas to evaluate the norms.
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