

JURNAL INFOTEL

Informatics - Telecommunication - Electronics

Website Jurnal : http://ejournal.st3telkom.ac.id/index.php/infotel

ISSN : 2085-3688; e-ISSN : 2460-0997

 216

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

All-in-one computation vs. computational-offloading

approaches: a performance evaluation of object detection

strategies on android mobile devices

Muhammad Abdullah Rasyad1*, Favian Dewanta2, Sri Astuti3
1,2,3 Telkom University

1,2,3Telekomunikasi Street No.01, Terusan Buahbatu - Bojongsoang, Sukapura, Kec. Dayeuhkolot, Kabupaten
Bandung 40257, Indonesia

*Corresponding email: rasyadmar@gmail.com

Received 18 August 2021, Revised 30 September 2021, Accepted 26 October 2021

Abstract — Object detection gives a computer ability to classify objects in an image or video. However, high specified
devices are needed to get a good performance. To enable devices with low specifications performs better, one way is
offloading the computation process from a device with a low specification to another device with better specifications. This
paper investigates the performance of object detection strategies on all-in-one Android mobile phone computation versus
Android mobile phone computation with computational offloading on Nvidia Jetson Nano. The experiment carries out the
video surveillance from the Android mobile phone with two scenarios, all-in-one object detection computation in a single

Android device and decoupled object detection computation between an Android device and an Nvidia Jetson Nano. Android
applications send video input for object detection using RTSP/RTMP streaming protocol and received by Nvidia Jetson Nano
which acts as an RTSP/RTMP server. Then, the output of object detection is sent back to the Android device for being
displayed to the user. The results show that the android device Huawei Y7 Pro with an average FPS performance of 1.82 and
an average computing speed of 552 ms significantly improves when working with the Nvidia Jetson Nano, the average FPS
becomes ten and the average computing speed becomes 95 ms. It means decoupling object detection computation between an
Android device and an Nvidia Jetson Nano using the system provided in this paper successfully improves the detection speed
performance.

Keywords – Object Detection, Nvidia Jetson Nano, Android Studio, RTSP, RTMP, TensorRT

All rights reserved.

I. INTRODUCTION

Object detection usage has been growing rapidly in

recent years. Object detection gives computers the

ability to recognize many things on input in the form

of images, videos, and similar image forms [1]. By

working together with augmented reality, it can do

object recognition and tracking to aid the augmented

reality accuracy. [2].

Regarding object detection in augmented reality,

several works combine google glass with a PC server
in [3], and other works use smartphones [4]. As for

smartphone, there are various types of smartphones

with different computational resources (CPU, RAM,

and storage). However, those smartphones are mostly

not equipped with a graphics processing unit (GPU)

inside them, which will perform poorly in object

detection [5],[6]. Therefore, those smartphones need to

be supported by other devices that can leverage their

computational ability in performing object detection

tasks.

In recent years Nvidia has developed a

microcomputer that affordable and able to operate

object detection effectively with its dedicated GPU. It

is proven in a paper by Luis et al. [7] who conducted a

study on vehicle and pedestrian detection in rural areas

using the Nvidia Jetson Nano microcomputer. In [7],

the results showed that Nvidia Jetson Nano detection

computation speed is around 1 – 10 seconds when

processing several combined datasets consisting of

837 pedestrians and 681 vehicles in rural areas. In

addition, Martina et al. [8] also conducted a study on

deep learning applications in space with Nvidia Jetson
Nano. The experiment in [8] showed that even though

Nvidia Jetson Nano speed performance still loses to

the cutting edge Nvidia GPU, further research on

Copyright © 2021 JURNAL INFOTEL

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 217

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

testing Nvidia Jetson Nano capabilities for this usage

is worth considering.

Considering the mobility of an Android device and

the computational resource of Nvidia Jetson Nano, this

paper discusses the computational performance of

object detection conducted by an Android device

versus an Android device supported by Nvidia Jetson
Nano. Furthermore, the frame per second (FPS) value,

the reflection of communication and computation

delays between those systems, is compared and

analyzed to decide whether offloading the computation

process from Android to Nvidia Jetson Nano is

efficient considering the delay between transmission.

II. RESEARCH METHODS

The system model depicted in Fig. 1, consists of

two devices (an Android device and an Nvidia Jetson

Nano) and a live video taken by the Android device
camera.

(a)

(b)

Fig.1. System diagram implemented in this work. (a) An object detection scheme is done on a mobile phone. (b) An object detection scheme

using computational offloading into an NVIDIA jetson nano board.

Fig.1. (a) shows the all-in-one object detection

computation conducted by an Android device, and

Fig.1. (b) shows the computational offloading scheme

from an Android device to an Nvidia Jetson Nano.

A. Communication Design Between Android Device

and Nvidia Jetson Nano

We use two protocols for sending a live video from

the Android device to the Nvidia Jetson nano. Both

protocols send the video data via a wireless local area
network. The first one is Real-Time Streaming

Protocol (RTSP). RTSP is a protocol that controls data

transmission in real-time over a computer network [9].

RTSP is used to stream digital media such as audio

and video in real-time. RTSP also can be used by

streaming receivers to control servers. In other words,

RTSP can act as a remote-control network for

multimedia servers [9]. And the second protocol is

Real-Time Messaging Protocol (RTMP). Adobe use

RTMP to stream audio, video, and data over the

internet [10]. RTMP is a stateful protocol, meaning
that the protocol gives the server the ability to observe

the behavior of the stream receiver, such as when

playing or pausing the received video [11].

Fig. 2. Android device and nvidia jetson nano communication

diagram.

The android device and Nvidia Jetson Nano
communicate over an indoor wireless local area

network connected to the device, Nvidia Jetson Nano,

and a router. To exchange data, Nvidia Jetson Nano

acts as a server and provides object detection services

to devices.

B. Software and Hardware Requirements

To design the system some software and hardware

requirements need to be prepared. In this system, two

android devices are used for comparison. The

hardware requirements are:

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 218

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

1. Nvidia Jetson Nano, used as a server to help object

detection computation that has Quad-core ARM

A57 1.43 GHz Central Processing Unit (CPU),

128-core Maxwell GPU, and 4 GB 64-bit

LPDDR4 25.6 GB/s RAM.

2. Huawei Y7 Pro, a Huawei smartphone that runs on

Android OS. This smartphone has an Octa-core
1.8 GHz Cortex-A53 CPU, Adreno 506 GPU, and

3 GB of RAM

3. Huawei Nova 5T, is a Huawei smartphone that

runs on Android OS with Octa-core 2.6 GHz

Cortex-A76 CPU, Mali-G76 MP10 GPU, and 8

GB RAM.

Huawei Y7 Pro with lower hardware capability is

compared with Huawei Nova 5T, which has more

hardware capability. Nvidia Jetson Nano helps both

android devices to do object detection. The result

when both devices work with Nvidia Jetson Nano and

process object detection independently are compared.

Nvidia Jetson Nano is one of the microcomputers

produced by NVIDIA to run Artificial Intelligence

applications that are affordable by the broader

community at affordable prices.

Fig. 3. Nvidia jetson nano [7].

The Jetson Nano is equipped with JetPack

Software Development Kit (SDK) to aid performance

[7]. JetPack SDK has several components in it,

namely:

1. TensorRT, an SDK to aid deep learning

performance, including Object Detection by

maximizing GPU performance [12].

2. Compute Unified Device Architecture (CUDA)

toolkit provides an environment for c/c++

developers to build applications with accelerated

GPU [7].

3. CUDA Deep Neural Network (cuDNN), a library
to accelerate GPU for deep neural networks [7].

Next is the software requirements. The software

requirements are:

1. Android Studio, used to develop the android

application. Applications made with Android

Studio are native applications from Android [13].

It means that the initial developers of the Android

operating system have designed Android Studio as

software to create applications on it.

2. Python 3.6 is a programming language used in
programs running on Nvidia Jetson Nano. Python

programming language can do a variety of jobs.

Some of which are numerical computing, web

development, databases, network programming,

and Image Processing [14].

3. OpenCV, one of the libraries in python. OpenCV

is a library of programming functions that are

widely used for image processing [15].

4. FFmpeg, an open-source multimedia framework

for the transmission of multimedia such as audio

and video. FFmpeg helps to encode and decoding
video and audio data [16]. FFmpeg implemented

in Nvidia Jetson Nano.

5. YoloV3-tiny is an object detection model that used

to be the detector in android applications and

Nvidia Jetson nano. Yolov3-tiny is one of the

types of YoloV3 detection models. YoloV3 is the

third generation of the Yolo detection model that

provides a pre-trained model so we can use object

detection easily and effectively [17]. When tested

with Pascal Titan X GPU YoloV3 got 57.9% mean

average precision (mAP) accuracy and 20 FPS of

detection speed, while YoloV3-tiny got 33% mAP
accuracy and 220 FPS of detection speed [18].

Therefore, we chose YoloV3-tiny because its

accuracy is acceptable while having fast detection

speed.

C. Measured Parameters

The test is carried out in both scenarios. The test is
repeated 30 times and every test has a duration of 2

minutes. The test is carried out in a laboratory room

with a size of 5x3 m.

To measure the success of both scenarios some

parameters is retrieved on every repetition. The

parameters to measure the object detection

computation performance are detected video output

frame per second (FPS) and detection computation

speed per frame.

Detection video input FPS for both scenarios is set

to be 15 FPS. When the output FPS is closer to input
FPS it means the detection speed is close to real-time

[19].

The parameters to measure Nvidia Jetson Nano

and android device resource usage are CPU usage and

RAM usage. And to measure the quality of

transmission, we use throughput and delay between

Nvidia Jetson Nano and android devices as

parameters.

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 219

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

0
2
4
6
8

10
12

H
u

aw
e

i N
o

va
 5

T
R

TS
P

H
u

aw
e

i N
o

va
 5

T
R

TM
P

H
u

aw
e

i N
o

va
 5

T
In

d
e

p
en

d
e

n
t

H
u

aw
e

i Y
7

 P
ro

 R
TS

P

H
u

aw
e

i Y
7

 P
ro

 R
TM

P

H
u

aw
e

i Y
7

 P
ro

In
d

e
p

en
d

e
n

t

Fr
am

e
P

er
 S

ec
o

n
d

 (
FP

S)

0
100
200
300
400
500
600

H
u

aw
e

i N
o

va
 5

T
R

TS
P

H
u

aw
e

i N
o

va
 5

T
R

TM
P

H
u

aw
e

i N
o

va
 5

T
In

d
e

p
en

d
e

n
t

H
u

aw
e

i Y
7

 P
ro

R
TS

P

H
u

aw
e

i Y
7

 P
ro

R
TM

P

H
u

aw
e

i Y
7

 P
ro

In
d

e
p

en
d

e
n

t

M
ili

 S
ec

o
n

d
 (

m
s)

(a)

(b)

Fig. 4. Object detection computation performance comparison. (a) FPS comparison. (b) computation speed comparison.

III. RESULTS

A. Object Detection Computation Performance
Figure 4. (a) and Fig.4. (b) show the average

values of all 30 tests. It shows the amount of FPS and
computation speed comparison between android
devices when offloading computation on Nvidia
Jetson Nano with both protocols and when doing it
independently.

From Fig. 4. (a), we can see that both devices have
nearly similar FPS performance values when
offloading computation on Nvidia Jetson Nano with
both protocols. Huawei Nova 5T gets an average FPS
value of 10.469 FPS with RTSP and 10.469 FPS with
RTMP. Furthermore, Huawei Y7 Pro gets an average
FPS value of 10.469 FPS with RTSP and 10.468 FPS
with RTMP. The value is nearly the same as it
indicates that differences in protocols and devices are
not impacting the performance of Nvidia Jetson Nano
on offloading the object detection computation.
However, when both devices are doing object
detection computation independently, the performance
becomes poor. Huawei Nova 5T has better hardware
performance gets an average FPS value of 6.18 FPS.
Moreover Huawei Y7 Pro get an average FPS value of
1.82 FPS.

The average value of computation speed is nearly
similar on both devices and protocols. Huawei Nova
5T gets an average computation speed value of 95.51
ms with RTSP and 95.51 ms with RTMP.
Furthermore, Huawei Y7 Pro gets an average
computation speed value of 95.52 ms with RTSP and
95.52 ms with RTMP. It means that the computing
speed of the Nvidia Jetson Nano is not affected by
device and protocol differences. When doing
computation independently, FPS and computation
performance also becomes poor. Huawei Nova 5T has
better hardware performance gets an average
computation speed value of 162.78 ms. And Huawei
Y7 Pro gets an average computation speed value of
552.29 ms.

As shown in Fig. 4 both devices’ performances are

increased when offloading computation on Nvidia

Jetson Nano. It means the computational offloading

scheme from an Android device to an Nvidia Jetson

Nano successfully improve both devices performance.

(a)

(b)

Fig. 5. Android devices resource usage (a) CPU usage comparison. (b) RAM usage comparison.

0

20

40

60

80

100

H
u

aw
e

i N
o

va
 5

T
R

TS
P

H
u

aw
e

i N
o

va
 5

T
R

TM
P

H
u

aw
e

i N
o

va
 5

T
In

d
e

p
en

d
e

n
t

H
u

aw
e

i Y
7

 P
ro

R
TS

P

H
u

aw
e

i Y
7

 P
ro

R
TM

P

H
u

aw
e

i Y
7

 P
ro

In
d

e
p

en
d

e
t

P
er

ce
n

t
(%

)

0

50

100

150

200

250

H
u

aw
e

i N
o

va
 5

T
R

TS
P

H
u

aw
e

i N
o

va
 5

T
R

TM
P

H
u

aw
e

i N
o

va
 5

T
In

d
e

p
en

d
e

n
t

H
u

aw
e

i Y
7

 P
ro

R
TS

P

H
u

aw
e

i Y
7

 P
ro

R
TM

P

H
u

aw
e

i Y
7

 P
ro

In
d

e
p

en
d

e
t

M
eg

aB
yt

le
 (

M
B

)

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 220

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

B. Android Devices Resource Usage

Figure 5 shows the average values of all 30 tests.

Fig.5 (a) shows the comparison of CPU usage, and

Fig.5 (b) shows the comparison of RAM usage when

offloading computation on Nvidia Jetson Nano with

both protocols and when doing it independently.

Jetson Nano. When computing independently,

Huawei Nova 5T gets an average value of 78.09

percent. And Huawei Y7 Pro gets an average CPU

usage value of 25.81 percent with RTSP and 25.82

percent with RTMP when offloading computation on

Nvidia Jetson Nano. When computing independently,

Huawei Y7 Pro gets an average value of 78.88
percent. As we can see, the value of both android

devices' CPU usage is nearly similar, and CPU usage

when both android devices are computing

independently is vastly higher. It means the

computational offloading scheme from an Android

device to an Nvidia Jetson Nano successfully reduces

CPU usage of both android devices, and the

differences in android devices and protocols are not

impacting android devices CPU usage when

offloading computation on Nvidia Jetson Nano.

Figure 5 (b) shows that Huawei Nova 5T gets an
average RAM usage value of 108.35 MB with RTSP

and 102.07 MB with RTMP when offloading

computation on Nvidia Jetson Nano. When

computing independently, Huawei Nova 5T gets an

average value of 195.38 MB. Moreover, Huawei Y7

Pro gets an average RAM usage value of 115.76 MB

with RTSP and 111.13 MB with RTMP when

offloading computation on Nvidia Jetson Nano. When

computing independently, Huawei Y7 Pro gets an

average value of 149.89 MB. Same as before, both

android devices have a nearly similar RAM usage

value, and RAM usage when both android devices are
computing independently is vastly higher. It means

the computational offloading scheme from an

Android device to an Nvidia Jetson Nano successfully

reduces RAM usage of both android devices, and the

differences in android devices and protocols are not

impacting android devices RAM usage when

offloading computation on Nvidia Jetson Nano.

C. Nvidia Jetson Nano Resource Usage

The data in this section are retrieved when the
android device works with the help of Nvidia Jetson
Nano. Therefore, the retrieved data are Nvidia Jetson
Nano CPU usage and Nvidia Jetson Nano RAM usage.

CPU and RAM usage of Nvidia Jetson Nano is
retrieved using operating system default task manager.
The average value of all 30 tests is shown in this
graph.

When using RTMP, the Nvidia Jetson Nano CPU
usage is greater than when using RTSP to
communicate with Huawei Nova 5T or Huawei Y7
Pro. CPU usage when communicating using the RTSP
protocol with the Huawei Nova 5T has an average of

26.25 percent, and when communicating with the
Huawei Y7 Pro, the average value is 26.24 percent.
Then, CPU usage when communicating using the
RTMP protocol with the Huawei Nova 5T has an
average of 26.74 percent, and when communicating
with the Huawei Y7 Pro, the average value is 26.77
percent.

Fig. 6. CPU usage of Nvidia jetson nano when working with android

device.

When the Nvidia Jetson Nano communicates with
RTMP with the Huawei Nova 5T, its CPU usage
values have a similar overall average as when
communicating with the Huawei Y7 Pro using the
same protocol. Furthermore, when using RTSP, the
Nvidia Jetson Nano CPU value also has a similar
overall average on both devices. It means that the
difference in devices does not affect the CPU
computing load of the Nvidia Jetson Nano, but the use
of the type of protocol does.

Based on Fig.6, the RAM used by the Nvidia
Jetson Nano when using RTSP is greater than the
RTMP on both devices. When communicating using
the RTSP protocol with the Huawei Nova 5T, the
RAM usage is an average of 62.99 percent. When
communicating with the Huawei Y7 Pro, the average
value is 63.01 percent. Then, RAM usage when
communicating using the RTMP protocol with the
Huawei Nova 5T has an average of 62.49 percent.
When communicating with the Huawei Y7 Pro, the
average value is 62.51 percent. Furthermore, just like
CPU usage, RAM usage has an average similarity
when both devices use the same protocol. It means that
the difference in devices does not affect the RAM load
of the Nvidia Jetson Nano, but the use of the type of
protocol does.

D. Communication Performance

Delay and throughput during communication are

indicators of the successful delivery of data. Input

data sent from the device to the Nvidia Jetson Nano is

called Upload. Moreover, the output sent from the

Nvidia Jetson Nano to the device is called Download.

Delay and throughput are retrieved using Wireshark
when Nvidia Jetson Nano and android devices

communicate with each other. The average delay

value of all 30 tests is shown in this graph.

0

10
20
30

40
50
60

70

H
u

aw
e

i N
o

va
 5

T
…

H
u

aw
e

i Y
7

 P
ro

…

H
u

aw
e

i N
o

va
 5

T
…

H
u

aw
e

i Y
7

 P
ro

…

H
u

aw
e

i N
o

va
 5

T
…

H
u

aw
e

i Y
7

 P
ro

…

H
u

aw
e

i N
o

va
 5

T
…

H
u

aw
e

i Y
7

 P
ro

…

P
er

ce
n

t
(%

)

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 221

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

Fig. 7. Delay comparison when devices are working with Nvidia

Jetson Nano.

Figure 7 shows upload and download delays.

When uploading, the delay from the Huawei Nova 5T

RTSP has an average of 18.22 ms, and when using

RTMP, the average delay is 16.48 ms. For Huawei Y7

Pro, the average delay when using RTSP is 12.22 ms,
and when using RTMP, the average is 12.56 ms. The

average value of the upload delay in Fig. 8 differs on

the order of 1 ms. The possibility of this difference

occurs, is due to the instability of the wireless

connection.

When downloading, the delay from RTMP far

exceeds RTSP on either Huawei Nova 5T or Huawei

Y7 Pro, as shown in Fig.7. For example, the average

delay of Huawei Nova 5T when using RTSP is 35.95

ms and when using RTMP is 180.05 ms. Furthermore,

for Huawei Y7 Pro, the average when using RTSP is

36.08 ms, and when using RTMP, the average value

is 167.92 ms.

It means that object detection displayed on the

device through RTMP has a higher delay than RTSP

because upload and download delays contribute to

delays in device object detection display.

Fig. 8. Throughput comparison when devices are working with
Nvidia jetson nano.

In Fig. 8, Huawei Nova 5T has an average upload

throughput of 969 Kbps when using RTSP and 735

Kbps when using RTMP. While the Huawei Y7 Pro

has an average of 971 Kbps when using RTSP and

735 Kbps when using RTMP. In both android

devices, RTSP upload throughput is higher than

RTMP. Same as when uploading, the throughput

during the download process on the Huawei Nova 5T

and Huawei Y7 Pro using RTSP are much higher than

RTMP. When Huawei Nova 5T uses RTSP, the

average throughput is 337 Kbps, and when using
RTMP, the average is 65 Kbps. Meanwhile, when

Huawei Y7 Pro uses RTSP, the average value is 338

Kbps, and when using RTMP, the average value is 64

Kbps.

It means that the object detection results when

using RTMP are experiencing greater lag than RTSP

on both devices. Because large throughput indicates

smooth communication between the device and the

Nvidia Jetson Nano.

IV. DISCUSSION

As expected, the Nvidia Jetson Nano successfully
helps the android device to do object detection if the

transmission delay and throughput are not concerned.

However, bad delay and throughput of the

transmission causes some lag and delay when

transmitted detections are displayed in the android

device screen. RTSP got a better result. It is tolerable,

as we can see in Fig. 7 and 8. However, RTMP not

perform so well that it causes 3-6 second delay and lag

when displayed on the device screen.

V. CONCLUSION

Decoupling computation of object detection

between an Android device and an Nvidia Jetson

Nano using the system provided in this paper

successfully improves the detection speed

performance. The results show that the Huawei Y7

Pro android device, which has an average FPS

performance of 1.82 and an average computing speed

of 552 ms, gets better when working with Nvidia

Jetson Nano. The average FPS becomes 10, and the
average computing speed average becomes 95 ms.

For further work, other video transfer protocol such as

WebRTC, FTL, and SRT needs to be tested.

Hopefully, it can improve the transmission delay and

throughput. For further improvement in aiding

detection of the android device, the Nvidia Jetson

Nano that acts as a server needs to be upgraded. The

suggested upgrade are Jetson TX2Series, Jetson

Xavier NX, dan Jetson AGX XavierSeries.

ACKNOWLEDGMENT

The authors sincerely thank Telkom University for

allowing this research and The APTRG Laboratory of

Telkom University, who provide tools for this

research..

REFERENCES

[1] A. Kumar, J. Zhang, and H. Lyu, “Object detection in
real time based on improved single shot multi-box
detector algorithm,” EURASIP J. Wirel. Commun.

0
20
40
60
80

100
120
140
160
180
200

H
u

aw
e

i N
o

va
 5

T
R

TS
P

U
p

lo
ad

H
u

aw
e

i N
o

va
 5

T
R

TM
P

U
p

lo
ad

H
u

aw
e

i Y
7

 P
ro

 R
TS

P
U

p
lo

ad

H
u

aw
e

i Y
7

 P
ro

 R
TM

P
U

p
lo

ad

H
u

aw
e

i N
o

va
 5

T
R

TS
P

D
o

w
n

lo
ad

H
u

aw
e

i N
o

va
 5

T
R

TM
P

D
o

w
n

lo
ad

H
u

aw
e

i Y
7

 P
ro

 R
TS

P
D

o
w

n
lo

ad

H
u

aw
e

i Y
7

 P
ro

 R
TM

P
D

o
w

n
lo

ad

M
ili

 S
ec

o
n

d
 (

m
s)

0
200
400
600
800

1000
1200

H
u

aw
e

i N
o

va
 5

T
R

TS
P

 U
p

lo
ad

H
u

aw
e

i N
o

va
 5

T
R

TM
P

 U
p

lo
ad

H
u

aw
e

i Y
7

 P
ro

R
TS

P
 U

p
lo

ad

H
u

aw
e

i Y
7

 P
ro

R
TM

P
 U

p
lo

ad

H
u

aw
e

i N
o

va
 5

T
R

TS
P

 D
o

w
n

lo
ad

H
u

aw
e

i N
o

va
 5

T
R

TM
P

 D
o

w
n

lo
ad

H
u

aw
e

i Y
7

 P
ro

R
TS

P
 D

o
w

n
lo

ad

H
u

aw
e

i Y
7

 P
ro

R
TM

P
 D

o
w

n
lo

ad

K
b

p
s

ISSN : 2085-3688; e-ISSN : 2460-0997

All-in-one computation vs. computational-offloading approaches: a performance evaluation of

object detection strategies on android mobile devices

 222

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.700

Netw., vol. 2020, Oct. 2020, doi: 10.1186/s13638-

020-01826-x.

[2] H. Le, M. Nguyen, W. Q. Yan, and H. Nguyen,
“Augmented reality and machine learning
incorporation using yolov3 and arkit,” Appl. Sci., vol.
11, no. 13, pp. 1–19, 2021, doi:

10.3390/app11136006.

[3] Z. He et al., “Design and implementation of
augmented reality cloud platform system for 3D
entity objects,” Procedia Comput. Sci., vol. 131, pp.

108–115, 2018, doi: 10.1016/j.procs.2018.04.192.

[4] D. Ambarwulan and D. Muliyati, “The Design of
Augmented Reality Application as Learning Media
Marker-Based for Android Smartphone,” J. Penelit.
Pengemb. Pendidik. Fis. p-ISSN 2461-0933 e-

ISSN2461-1433, vol. 2, no. 1, pp. 73–80, 2016.

[5] E. Buber and B. Diri, Performance Analysis and CPU

vs GPU Comparison for Deep Learning. 2018.

[6] P. Sowa and J. Izydorczyk, Darknet on OpenCL: A

Multi-platform Tool for Object Detection and

Classification. 2020.

[7] L. Barba-Guaman, J. E. Naranjo, and A. Ortiz, “Deep
learning framework for vehicle and pedestrian
detection in rural roads on an embedded GPU,”

Electron., vol. 9, no. 4, pp. 1–17, 2020, doi:

10.3390/electronics9040589.

[8] M. Lofqvist and J. Cano, “Accelerating Deep
Learning Applications in Space,” vol. 44, no. 0, 2020,

[Online]. Available: http://arxiv.org/abs/2007.11089.

[9] Y. Syaifudin, I. Rozi, R. Ariyanto, R. Erfan, and S.
Adhisuwignjo, “Study of Performance of Real Time
Streaming Protocol (RTSP) in Learning Systems,”
Int. J. Eng. Technol., vol. 7, pp. 216–221, Dec. 2018,

doi: 10.14419/ijet.v7i4.44.26994.

[10] X. Li, M. Darwich, M. A. Salehi, and M. Bayoumi,
“A survey on cloud-based video streaming services,”
in Advances in Computers, vol. 123, 2021, pp. 193–

244.

[11] T. Ruether, “Streaming Protocols: Everything You
Need to Know (Update),” 2021.
https://www.wowza.com/blog/streaming-protocols

(accessed Aug. 09, 2021).

[12] B. Patel, V. Sanchez, and J. Anderson, “Deep
Learning Inference on PowerEdge R7425,” Dell EMC

Tech. White Pap., 2019.

[13] N. Verma, S. Kansal, and H. Malvi, “Development of
Native Mobile Application Using Android Studio for
Cabs and Some Glimpse of Cross Platform Apps,”
Int. J. Appl. Eng. Res., vol. 13, no. 16, pp. 12527–
12530, 2018, [Online]. Available:

http://www.ripublication.com.

[14] K. R. Srinath, “Python – The Fastest Growing
Programming Language,” Int. Res. J. Eng. Technol.,
pp. 354–357, 2017, [Online]. Available:
https://www.irjet.net/archives/V4/i12/IRJET-

V4I1266.pdf.

[15] A. Brdjanin, A. Akagic, D. Džigal, and N. Dardagan,
Single Object Trackers in OpenCV: A Benchmark.

2020.

[16] X. Wu, P. Qu, S. Wang, L. Xie, and J. Dong, Extend
the FFmpeg Framework to Analyze Media Content.

2021.

[17] J. Redmon and A. Farhadi, “YOLOv3: An

incremental improvement,” arXiv, 2018.

[18] A. Redmon, Joseph and Farhadi, “YOLO: Real-Time
Object Detection,” 2018.
https://pjreddie.com/darknet/yolo/ (accessed Aug. 13,

2021).

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object
detection,” Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–

788, 2016, doi: 10.1109/CVPR.2016.91.

