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Abstract—Understanding and troubleshooting wide area net-
works (such as military backbone networks and ISP networks)
are challenging tasks due to their large, distributed, and highly
dynamic nature. Building a system that can record and replay
fine-grained behaviors of such networks would simplify this
problem by allowing operators to recreate the sequence and
precise ordering of events (e.g., packet-level forwarding decisions,
route changes, failures) taking place in their networks. However,
doing this at large scales seems intractable due to the vast
amount of information that would need to be logged. In this
paper, we propose a scalable and reliable framework to monitor
fine-grained data-plane behavior within a large network. We
give a feasible architecture for a distributed logging facility, a
tree-based data structure for log compression and show how
this logged information helps network operators to detect and
debug anomalous behavior of the network. Experimental results
obtained through trace-driven simulations and Click software
router experiments show that our design is lightweight in terms
of processing time, memory requirement and control overhead,
yet still achieves over 99% precision in capturing network events.

I. INTRODUCTION

In order to keep their networks running efficiently and
securely, network operators need to build a deep understanding
of traffic characteristics and the kinds of events taking place
in their networks [1]. An important step in modeling network
behavior, analyzing its performance, and troubleshooting prob-
lems when things go wrong, involve monitoring its operations
over time. However, monitoring is a highly challenging prob-
lem in large networks such as military backbone networks
and Internet Service Provider (ISP) networks. They consist
of hundreds of routers transiting tens of billions of data
packets daily, with dynamics exacerbated by high rates of
routing table churn and increasing amounts of load balancing.
Yet building an understanding of network performance and
troubleshooting in real-time are crucial, for example to as-
sist network-centric warfare [2] and environment surveillance
activities in military backbone networks connecting multiple
tactical networks [3][4], and to assist real-time traffic (VOIP,
multimedia streaming, online gaming etc.) in ISP and data
center networks.

To cope with such a massive flood of information, large
networks often resort to heuristics, for example by monitoring
subsets of their networks, only monitoring heavy-hitter flows,
periodically sampling performance, or collecting loose-grained
statistical information (such as average-case performance).
Protocols such as NetFlow [5] and its variant [6] allow
network operators to collect flow records of traffic information.

Protocols such as SNMP allow more customizable monitoring
by querying a device-specific MIB (Management Information
Base). However, while collecting such loose-grained statistical
information works well for certain specific classes of problems
(e.g., detecting traffic volume anomalies), and while logging
all messages seems possible for certain protocols (e.g., retain-
ing records of routing protocol updates [7]), localizing more
general classes of faults (e.g., transient/intermittent faults,
convergence events, instability) at the data plane has remained
something of a black art.

Understanding a network’s packet forwarding behavior
would be simpler if it were possible to log detailed history
of each packet inside the network. The history includes
time and ordering information of each packet at each router.
Simply logging such fine-grained information could provide
substantial benefits including the ability to replay past network
events (i.e., recreating the sequence of events taking place
in the network over a period of time) for troubleshooting,
perform fine-grained performance analysis, detect network
hotspots, analyze optimal network parameters for routers and
links, detect malicious activities, perform attribution of attacks,
and perform traffic engineering. For example, deterministic
replay has been used to debug distributed applications by
reconstructing information about the ordering and sequence
of events taking place within the system [8]. If packet-level
history of each router in a network can be logged, the network
administrator can simply re-run the events for offline diagnosis
and analysis in a controlled environment along with online
debugging and troubleshooting.

However, doing fine-grained logging of packet-level history
in large networks seems extremely challenging. We need to
log vast volumes of state for storing timing and ordering
information of packets at each router, need to retain that
state over long periods, and keep it up-to-date over time. In
general, monitoring architectures in such cases are composed
of two levels. Level one uses fast memory counters to collect
statistics, and the second level is used to store long-term logs.
Compression is important at both levels. It is important at
the counter level because fast memory, which is required to
cope with the line speed, is expensive and power hungry.
So we want to keep that small. Compression in the second
level is important, because we need to store vast volumes of
log for long periods. The current flow monitoring standard
NetFlow [5] keeps its first level information in DRAM as it
generates large volume of data. Updating per-packet counters
in DRAM is already impossible with today’s line speeds;



furthermore, the gap between DRAM speeds (improving 7-
9% per year) and link speeds (improving 100% per year)
is increasing over time [9]. NetFlow solves this problem
by sampling; only sampled packets result in updates. This
reasonably impacts the accuracy of our objectives.

In this paper, we consider the questions “To what degree
is it possible to log important data-plane behavior in large
networks?” and “How much information do we need to log
for this purpose while still retaining reliability and scalability
in terms of memory, processing and control overhead?”. We
propose a scalable and reliable architecture called RESCUE
(REliable and SCalable distribUted nEtwork monitoring) with
aggregation-based “‘compression” techniques to reduce the
amount of storage required to analyze data-plane behavior.
These compression techniques enable our design to scale to
core routers (by enabling statistics-counting to take place in
fast memory such as TCAM and SRAM), reduce cost of long-
term storage (by reducing necessary disk storage and control
information to keep that storage up-to-date), as well as speed
up monitoring operations such as replay and online analysis
of data-plane events (by reducing the amount of information
that needs to be traversed when analyzing logs).

Due to the extremely challenging nature of this problem, we
make use of techniques that bring some loss in accuracy (in
particular, we employ some lossy forms of compression). We
do not log the payloads or header information of data packets;
only timing and ordering information (i.e., metadata) is logged,
and we also lose some information about packet delays. We
do not attempt to reconstruct the precise ordering of events
across routers, instead we assume routers in the network have
clocks that are loosely synchronized (e.g., using GPS [10]
or NTP [11]) and only aim to reconstruct event orderings
across routers within that granularity. However, we show that
even with these relaxed assumptions, our system still retains
substantial benefits for network monitoring, management and
troubleshooting. We provide a list of possible faults in net-
works, and show that unlike sampling-based approaches (e.g.,
NetFlow), RESCUE can deterministically localize problems
in each of these cases. We perform several experiments, and
find that our design can scale to current Internet-scale traffic
with low overhead in terms of processing, memory and control
traffic, and allows for more accurate diagnosis than previously-
proposed approaches. We believe this may be an early step
towards solving the larger challenging question of how to
design efficient traffic-level monitoring protocols for wide-area
networks. Our proposed technique is applicable in military
backbone networks, wired and wireless backbone of tactical
networks, ISP networks, data center networks, or any large
scale enterprise networks for scalable traffic monitoring, online
troubleshooting and offline analysis.

II. RELATED WORK

The traditional approach to network traffic monitoring fo-
cuses on statistical monitoring at a per-flow or per-interface
granularity. Sampled NetFlow [5] with sampling parameter /N
(one out of every IN packets is sampled) is used to detect
and monitor large flows. SNMP is used to collect link-based
statistics, and sometimes used in conjunction with NetFlow

to detect traffic volume anomalies [12]. cSAMP [6] improves
upon NetFlow with hash-based coordination and network-wide
optimization to eliminate redundant reports without explicit
communication between routers. While these approaches are
used for accounting [13], traffic engineering [14] and volume
anomaly detection, they suffer from inaccuracy when perform-
ing more general analyses, for example when estimating the
number of flows [15], estimating performance of new service
deployments or network algorithms [16], detecting transient
anomalies, or measuring properties of network convergence.
To detect traffic anomalies, NetFlow logs are often combined
with OSPF (Open Shortest Path First) routing tables in order
to determine paths taken by packets. However, synchronizing
traces across different sources is challenging, prone to mis-
takes, and can have reduced accuracy. RESCUE tries to solve
these tasks more accurately. By analyzing logs provided by
our framework, we can determine specific paths and timing
information about individual packets inside a network. It
provides a higher information metric [17] with lower memory
requirement as compared to previous approaches. A subjective
comparison is given in Table 1.

Maier et al. [18] proposed a scheme to archive the raw
contents of network traffic streams in order to perform network
security analysis. However, their scheme only stores the first
10 — 20 kilobytes of data of each connection that works
well for their target domain of intrusion detection, but is not
sufficient to deal with other network misbehaviors like routing
instability and link congestion. Our proposed framework aims
to provide stronger accountability, the ability to localize the
cause of a particular network fault (such as a packet loss) and
deterministically narrow it back to the source, as opposed to
collecting statistical information.

Some works focus on detecting anomalous network be-
havior by logging and analyzing control-plane messages (i.e.,
routing protocol messages). Markopoulou et al. [19] used the
Python Routing Toolkit (PyRT) as a passive IS-IS listener to
collect IS-IS link up/down messages. These messages were
analyzed to detect and classify IP layer connectivity failures
among the routers. Shaikh er al. [7] presented a monitoring
framework that provides real-time tracking of OSPF updates
and facilitates offline in-depth analysis of route flapping,
LSA (Link State Advertisement) storms and other anomalous
behavior. While several important aspects of network perfor-
mance can be understood by observing updates in the net-
work’s control plane, other aspects (such as problems that only
manifest themselves in the data plane, or control/data plane
inconsistencies [20]) require analysis of data-plane behavior
as well, which we target in this work.

III. SYSTEM GOALS

Our high-level goal is to construct a trace of network
activities that allows the ability to reproduce, in as much
detail as possible, information about events taking place in
a network. To accomplish this, we need to know the time and
ordering information of each packet at each router on some
level of granularity. As we do not require strict synchronization
across routers, global ordering of packets across routers can be
resolved with the help of path information gathered through



TABLE I
COMPARISONS WITH RELATED WORK

[ | Unsampled NetFlow [ Sampled NetFlow | cSAMP | RESCUE
Fraction of packets sampled complete incomplete incomplete complete
Memory requirement high moderate to low low low
Per-packet IGP path information incomplete incomplete incomplete complete
Per-packet latency information no no no yes

routing protocol updates [21]. One simple approach is to log
necessary information without any compression as each packet
traverses the network through different routers. However,
logging packet-level information individually for each packet
is not feasible for several reasons. First, routers must collect
online statistics in a fast memory (such as SRAM or TCAM)
to keep up with line rates. However, the size of such memory
is bounded (often in the range of couple of megabytes [22]),
due to their high cost and large power demands. Per-packet
information would not fit in such memory, and streaming it
to DRAM would not scale due to limitations on memory
bandwidth. Second, storing logs of individual data packets
would not scale. Third, processing such logs for analyses
would represent a massive computational challenge.

To deal with these challenges, we propose techniques to
compress packet level information. In order to effectively
diagnose and localize problems in a networks, we would like
to ensure that the signature of the original event (the way
the event manifests itself on network operation) is captured in
the compressed trace. To clarify our design requirements, we
consider here some taxonomies of events (proposed in [23])
and the particular design choices necessary for our system
to capture their signatures. In particular, there are three key
cases: events may manifest themselves in the data plane
(affecting how data packets are forwarded), in the control
plane (affecting how routes are computed), or both.

Events affecting the data plane: Many kinds of events trigger
undesired data-plane behavior, including failures of links or
routers, congestion, and misconfigurations. The underlying
cause of these events may vary widely: a router/link may fail
due to hardware and software errors, overload, configuration
errors, or planned maintenance activities. However, all these
events cause one or more data packets to be handled in a
manner differently than the desired behavior (e.g., they are
dropped, or they oscillate back and forth between paths, or
loop between routers). Hence a mechanism that can log and
replay packet-level forwarding behavior at the data plane
would be sufficient to collect signatures of a number of such
events.

Events affecting the control plane: Many events can harm
the correctness of route computations within the network:
route advertisements may flap due to internal or external
instability (which can overload routers), misconfigurations, or
router software implementation errors. However, in any of
these cases, there can only be two kinds of effects on the
network: either routing updates become logically incorrect, or
they become inconsistent with the values of the data plane.
In either case, maintaining a log of control-plane packets (for
example, as done in [7]), and correlating them with data-plane
logs, is sufficient to contain the signatures of these events.
In light of the above discussion, it is evident that in order

to develop a general mechanism to pinpoint the location and
root cause of network faults, a comprehensive record of data-
plane activities needs to be maintained, including information
about packet latencies, forwarding paths, packet orderings or
arrival patterns. However, more detailed packet information
(contents of data packets, original source destination IPs, ports,
extremely fine-grain information about packet arrival times)
does not seem necessary to diagnose these problems.

IV. SYSTEM MODEL

To address our goals, we propose the distributed logging
infrastructure shown in Figure 1. Packet-level information is
logged at routers, compressed over time intervals, and sent
to a central node (called the Domain Controller or DC) for
storage. Our infrastructure consists of several components.

ROUTER MONITOR

Data Store

Event Log

| Update Log

Data Manager

Fig. 1. Components of Router Monitor: interface for distributed logging of
compressed metadata.

A. Router Monitor

Each router contains a Router Monitor with two compo-
nents:

Data Store: When an event occurs at a router (a data packet
arrives, or is forwarded, or some control-plane change occurs),
an update needs to be sent to the DC reporting about the
event. However, sending updates to the DC on every event is
not scalable. To deal with this, each router maintains a local
Data Store, which stores time and ordering information of
each packet per OD (Origin router-Destination router) flow
(i.e., per ingress-egress router pair) in an Update Log. It then
performs aggregation (shown in Section V-A and V-B) on that
metadata, which is sent (via the Data Manager component)
to the DC periodically. Data Store also keeps an Event Log
that stores additional information about changes (e.g., changes
in access control list or router configuration) in router’s state.
This information is also sent to the DC periodically. The DC
correlates the information of Update Log and Event Log for
proper reasoning of anomalies at routers.

Data Manager: The Data Manager is responsible for up-
dating the Data Store and periodically sending reports to the
DC. If updated too quickly, update overhead may be too high,
whereas slow updates may increase event detection time in the
network. Data Manager controls the rate at which updates are
sent to the DC in two ways: a minimum update interval u, and



a maximum number of events y that can be sent as a single
batch to the DC. If events occur at a rate r, the Data Manager
will not send updates at a rate faster than max(1/u,r/y). y
acts as a safety valve to ensure that router memory does not
get exhausted when there is a sudden burst of packets. This
also prevents any sort of Denial of Service (DoS) attacks on
router memory due to the use of RESCUE.

In order to handle router failures, the Data Manager pe-
riodically refreshes a backup copy of the recent in-memory
Update Log by making use of router’s NVRAM (Non-Volatile
Random Access Memory). The rate of this backup task is
higher than the log update rate to the DC. Use of NVRAM
enhances reliability of RESCUE as all the packets that have
been observed by a router and saved in its NVRAM will
eventually be reported to the DC once the router recovers after
a failure event.

B. Domain Controller

The Domain Controller (DC) provides a central point of
control where network operators can interact with the mon-
itoring facility. The DC maintains monitoring sessions with
routers, where metadata information is received over a reliable
channel. The DC stores this metadata for offline analysis.
It also performs further aggregation (shown in Section V-C)
on the metadata, by removing redundant observations across
routers, and optionally discarding information for packets that
were processed “correctly” (e.g., no anomalous event was
triggered). We assume that the DC has complete knowledge
of link delays between routers and learns about the network
topology by tracking routing protocol updates such as OSPF
updates [7].

To distribute load and improve resilience to failures, our de-
sign is amenable to hierarchical and replicated deployment. In
particular, a separate DC could be assigned per logical group
of routers within the network where each DC is responsible
for collecting traces from its own group. Before analysis, logs
from all the DCs need to be aggregated. In a similar manner,
multiple DCs may be assigned per logical group of routers.
We do this by replicating router feeds to each of the DCs.
When one DC goes offline and comes back up, it selects
another DC within the group, and downloads that DC’s log
to resynchronize itself. In addition to this, our design is also
amenable to other widely used techniques (e.g., the technique
presented in [21]) for load balancing and service replication.

V. PACKET METADATA COMPRESSION AND STORAGE

In Section V-A, we show our basic algorithm and data
structure for logging packet-level history via aggregation. The
naive way of aggregating packets can lose information about
the ordering of packets within the sequence. To address this,
we provide a modification to our algorithm in Section V-B.
Section V-C describes the storage facility at the DC and how
routers reliably send updates to the DC. Finally we show the
analytical computation of the memory requirement at routers
in Section V-D.

A. Log Aggregation

Existing traffic monitoring schemes (e.g., [5], [6], [24],
[25], [26], and their variants) reduce the amount of log stored
at a router by keeping per-flow state. As our objective is
to deal with recording data-plane events inside the network,
compression can be done by keeping state per ingress-egress
pair (IEP) of routers. States are compressed by aggregating
information of packets belonging to a particular IEP into a
single virtual packet. Each virtual packet is associated with a
unique IEP value, called Virtual ID (VID). Details of virtual
packet and VID are explained later in this section. A simple
example given in Figure 2 shows that NetFlow creates 4
records for 5 packets traversing a router whereas IEP/virtual
packet based compression saves space by storing only 2 virtual
packets.

RESCUE: |EP/virtual packet based state at router P

X, Y | virtual packet record

, S | virtaal packet record. |

s1 .

A,S2 record .
Z |
A B,S2 &

flow record
NetFlow: flow based state at router p
C, S1 | flow record

C, S2 | flow record

Fig. 2. An example demonstrating the difference in log sizes under RESCUE
and NetFlow. P, R, S, X and Y are routers.

When a router receives a packet or forwards it, it reports
the packet arrival and its forwarding information to the DC.
To make it scalable, RESCUE collects metadata about groups
of packets, and sends that group to the DC periodically. In
particular, this metadata is expressed in the form of a virtual
packet. Each virtual packet contains the metadata of certain
number of real packets with the same ingress and egress router
pair. We assign each virtual packet a virtual packet id (VID),
which is computed as a combination of the ingress and egress
router IDs. The ingress router assigns a sequence number
or packet id (PID) to each packet when it first enters into
the network. The PID is locally unique to a router for each
VID and increases monotonically. The VID and PID pair can
uniquely identify a packet inside the network. Each packet
stores its VID and PID pair in a small shim header. As packets
of the same VID are expected to follow the same path in the
network, intermediate routers in the path are likely to observe
consecutive PIDs of the same VID.

To allow multiple data packets to be aggregated into a
single virtual packet, we must discard information that is
different across them. Ideally, we would like to discard only
information irrelevant to our troubleshooting and performance
analysis goals. Examples of such information are data packet
payloads and fine-grained timing information (since highly
precise timing information about packets within a single flow
is not necessary to understand most performance criteria, as we
show in the results section). To control the amount of discarded
timing information, RESCUE provides a tunable timestamp
granularity (TSG) parameter. The TSG signifies the minimum
granularity on which different data packet receipt times are
distinguished. When a timestamp (e.g., T'Ss) is generated



for a packet belonging to a certain VID value (say vid), all
packets having the same VID and arriving within the next TSG
time will be assigned the same timestamp range [T'Ss, T'S],
where TS, is the timestamp of the last packet arrived in the
interval [T'S,, T'Ss+TSG]. Thus, each virtual packet contains
its VID and a sequence of PIDs along with their timestamp
ranges since the last update was sent to the DC. In order
to reduce packet size, instead of storing the PIDs for every
packet in the virtual packet, we only store the lower bound
(Ib) and upper bound (ub) of PIDs belonging to the same
timestamp range. The virtual packet format hence takes the
form: [U’L'di, < (TSijS,TSije)[lbijk,ubijk] >] for i,5,k > 0.

When a data packet arrives at the router, we need to quickly
look up its VID and PID values. Here, we use a tree-based data
structure (tree-based data structures in fast memory are used in
modern routers to perform high speed lookups for data packet
forwarding [16]) in the Update Log. The starting point in this
data structure is the root (A), followed by the second level
containing VID nodes («,,;4) each storing a unique value vid.
Each VID node can have multiple timestamp nodes (87, ,7,)
as its children with start timestamp value Ts; (= T'Ss) and
end timestamp value T, (= T'S,) where (T, — Ts < TSG).
The lowest level (leaves) of this tree structure contains PID
nodes (Jy, p, ) storing lower value p; (= {b) and upper value
pu (= ub) of consecutive PIDs that were received during the
time period of the immediate parent timestamp node. Note
that, in case of packet loss, the ordering of packets for a single
VID may not be sequential. In this case, one timestamp node
contains multiple leaf nodes.

» VID=au

Fig. 3. Example with two OD flows; one corresponds to VID = aw and the
other corresponds to VID = bv.

LastUpdatelndex = 0

B(Timestamp

Jo=1 (o jex=0
[2s~)4o] ‘patternLength:Z 1j‘patternlength:l }

8(Pi0) 115 | [13;25] (27—41](1>25]

(a) (b)

Fig. 4. (a) Tree-based data structure for log storage, (b) Incorporating
information of packet ordering.

Here we provide an example of the above algorithm. Let us
consider the topology of a network as shown in Figure 3, with
two VID values au and bv. Packets of VID value au traverse
the router-level path ¢ — d — ¢ — s — u while packets
with VID value bv traverse b - e - g —>q —r —t — 0.
Table II shows the ordering sequence of packets arriving at
router ¢ based on their actual time of arrival. For simplicity,
we assume that all packets at each row arrive at the same
physical time (according to the local clock granularity of the
router). Let us also assume that TSG value is 10ms at router

¢, and the link d — ¢ fails at actual time T, = 8ms that affects
only the packets having VID value au, and recovers at time
Ts = 10ms. Packets 16 and 17 having VID value au are
lost due to this link failure before arriving at router ¢. From
Table II, (T3 —Tl) < 10ms, (T5 —Tl) < 10ms, (T4 — TQ) <
10ms and (T — T7) < 10ms. Hence, we can merge 11, T3
and T3 into one timestamp range T3 _,5 = [2, 10] at timestamp
node (3 19. Similarly 75,4 = [6, 8] and T7_,s = [17,20], and
they are put at timestamp nodes /35 g and /317 20 respectively in
the tree structure. The resulting tree is shown in Figure 4(a).
Note that packets 16 and 17 are lost, and hence the node T} _.5
in Figure 4(a) must store two separate leaves, one for the PID
range [1,15] and another for [18, 26].

TABLE II
EXAMPLE: PUTTING INCOMING PACKETS AT ROUTER ¢ UNDER DIFFERENT
TIMESTAMP NODES (87, .)

VID | Packet Actual time | Assigned timestamp [t1,t2]
sequence of arrival

au 1—10 T, = 2ms T1 5 = [2,10] € B2,10
bv 1—12 To = bms T>4 =1[5,8] € B5,8

au 11 — 15 | T35 = 6ms T15 = [2,10] € 5210
bv 13 — 25 Ty = 8ms T>4 =1[5,8] € 85,8

au 18 =+ 26 | T5 = 10ms T15 = [2,10] € 5210
bv 26 — 40 Te = 16ms Ts—e6 = [16,16] € (16,16
au 27 — 36 T7 = 17ms T7 s = [17,20] € B17,20
au 37 — 41 Ty = 20ms T7 s = [17,20] € B17,20

B. Pattern Logging

It is desirable to gain information about the particular
sequence and ordering information of data traffic traversing
a router. This can shed light on the performance of particular
queuing or packet processing schemes (e.g., performance of
route caching mechanisms [16]), bandwidth allocation and
forwarding across routers, and the underlying sources of
resource contention. We extend our tree-based algorithm to
keep track of this information by detecting patterns of packet
arrivals, and storing them with low space requirement.

For example (following the previous example described in
Figure 4), let us assume that the ordering sequence of packet
arrival for the last two entries in Table II is 27, 28, 37, 29, 30,
38, 31, 32, 39, 33, 34, 40, 35, 36, 41. We refer to this pattern
as an interleaving-based pattern, as a sequential ordering of
earlier PIDs is embedded within an ordered sequence of later
PIDs. Moreover, this interleaving pattern is deterministic and
regular, and hence it can be simply captured by storing the two
PID ranges, the PIDs where they start being interleaved, and
some concise information about the pattern of how they are
interleaved. For example, in the aforementioned packet stream,
there is a 2 : 1 pattern between the sequence of PIDs, i.e., (27
to 36) and (37 to 41).

We extend the tree-based data structure described earlier to
store these packet arrival patterns in a compact way with low
lookup overhead. At each leaf node of the tree, we specify
two node variables: next_pattern and pattern_length. If
Spy.p, and 8, ,, are the i and j'* child of the same
parent and they have interleave pattern of PIDs of ratio m:n,
then 9y, ,,.next_pattern and 6, ,,.next_pattern variables
point to j and 7 respectively, and dy, j,.pattern_length and
Ops.pa-Pattern_length are set to m and n likewise. Using sim-
ilar approach, we can associate pattern information for higher



number of PID nodes. The corresponding parent timestamp
node (57, 1.) keeps a last_update_index variable that is the
index of the last updated leaf under this timestamp node. Every
time there is a break/gap in the PID sequence, we create a new
leaf node and update the next_pattern and pattern_length
variables of the last updated leaf node. If the pattern persists,
these two variables will not change over time, and only the
upper bound of the leaf node needs to be updated.

In the last example, if this pattern-recording procedure is
enabled, then the sub-tree corresponding to the last two rows
of Table II will be as shown in Figure 4(b). A similar approach
may be used to merge patterns across VIDs. To validate
this approach, we conduct some simple experiments with a
3Com [27] Gigabit Switch with eight 1 Gbit ports. We set
up an experiment where we inject packet flows on different
input ports, and study the sequence of arrival patterns exiting
the switch. We find that all flows exiting the switch can be
characterized as interleaving-based patterns. As a quick sanity-
check, we also validate this effect using the ns-2 [28] network
simulator.

C. Log Storage at the DC

Routers typically do not have sufficient storage to store logs
for an extended period of time and hence need to periodically
send updates to the Domain Controller reporting the current set
of virtual packets. Reliable delivery of these updates need to be
ensured as loss of updates may affect future analysis activities.
The DC must be prepared to handle loss of packet metadata
information due to router failure and be ready to track packet
traversal information even in the presence of missing updates.
In this section, we first describe the way updates are reported
reliably and stored at the DC. We then discuss how the routers
and the DC deal with loss of packet metadata information due
to router failure. Next, we show compression across updates
at the DC.

Reliable delivery and storage: In order to ensure reliable de-
livery of updates, routers maintain dedicated TCP connections
with the DC to send these updates. It ensures that updates are
received in order and they do not get lost while in transit due to
intermediate device or link failure. As mentioned earlier, there
are two types of updates that each router generates. The first
type tracks all the packets received by a router (received packet
update, or RPU) and the second type tracks those packets that
have been successfully processed and whose outgoing link
have been determined (processed packet update, or PPU). We
assume that the DC is equipped with large storage facility. At
the DC, there are two log files for each router that records
raw updates (i.e., serialized version of the tree-based structure
maintained by the routers) coming from a particular router.
The first log records RPU and the second records PPU.

Handling router failure: In case of a router failure, the
DC will not receive any update from the failed router till it
recovers. After recovery, the router checks its NVRAM to
figure out if there exists any partial log that was not sent
to the DC due to the failure. If one exists, then the router
immediately sends that partial log to the DC and resumes
its normal operation. Now, the router may have been in the

midst of processing some packets and updating the tree-based
log structure before the failure event. Some parts of the log
may not have been saved in NVRAM. Due to the failure, the
router will lose all its unsaved logs present in its memory
and there will be a gap in the log reported to the DC when
the router recovers. This will affect the path determination
task as it is not possible to deduce which set of packets were
actually processed by the router just before it failed. However,
by consulting the logs of its neighbor routers, it is possible to
have a rough idea about the packets that were being processed
by the router and whose information was not sent to the DC
because of the failure.

Compression across updates: We do further compression
across individual routers’ updates. Instead of storing timing
information of a single packet multiple times for each indi-
vidual router traversed by that packet, the DC can store all
the same PIDs (of same VID) reported within a specific time
interval (T'SGp¢) by multiple routers under one timestamp
node (Br, r.), where (T, — T,) < T'SGpc. To support this,
each timestamp node needs to store the number of routers
whose updates are compressed. Using such structure, the DC
can reconstruct individual updates reported by those routers at
some granularity of time, as coarse grained path information
and latency between the routers are available at the DC [21].
Although this approach loses timing precision, it still keeps
ordering information of packets intact and reduces memory
requirement at the DC.

D. Memory Requirement at Routers

Here we present the theoretical analysis of required memory
at routers. Let us assume that the mean packet inter-arrival
time is A and the number of unique VIDs received per second
by a router is v. In practice v << A. If each VID node
generates 7 timestamp nodes per second and the number of
PID nodes per timestamp node per second is p, the memory
requirement at the router per second (/) can be represented
by the following equation, where .S,,, S- and S, represent the
memory required to store a VID node, a timestamp node and
a PID node respectively: M = vS, + v(7.5; + 7pS,).

T can be calculated by estimating the average number of
packets per VID node per second (x) and the value equals \/v.
In the worst case the inter-arrival time between all packets
for a single VID will be higher than TSG and hence, there
will be x number of timestamp nodes per second in the worst
case provided x * TSG < 1, otherwise there will be 1/TSG
number of timestamp nodes per second for each VID. Hence
7 =min{x,1/TSG} in the worst case. If we do not consider
the packet loss or disruption in sequence, the number of PID
nodes per second per timestamp node (p) is 1 (only the upper
and lower value of the consecutive PIDs).

Now, suppose there is a packet loss with rate R. As we
create different PID nodes on each break in the sequence of
PIDs, we set p = R. If logs are sent to the domain controller
regularly after each update interval y, the maximum memory
requirement at the router will be M i. Suppose the size of the
available fast memory for RESCUE at a router is o. Hence
the bound on the memory requirement at the router can be
defined as follows: My <o = M <o/p.
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y = 80, 000), and (f) Loss of timing information (1 = 5sec, y = 80, 000).
VI. PERFORMANCE EVALUATION

We analyzed performance of RESCUE using discrete-event
simulation and the Click [29] software router. To improve
realism, we use real-world traces and topologies. To construct
the router-level topology, we used the Abilene backbone net-
work [30]. For data traffic, we leveraged traffic traces collected
by CAIDA [31], which contain packet-level traffic logs from
an 2488.32Mbps link between two autonomous systems. We
then map the traffic trace onto our topology by selecting an
ingress and egress router pair for each flow. We do this by
mapping each source and destination IP address in the CAIDA
trace file to randomly selected routers in the topology. We then
replay each packet-level flow in the trace from its source router
to its destination router.

We compare RESCUE to a “naive approach” where each
update to the DC contains individual PID and timestamp for
each packet belonging to a particular VID without any virtual
packet based aggregation. Note that, the naive approach still
uses IEP based aggregation. We focus on three metrics -
scalability, accuracy and precision. Finally, we would also
like to gain some sense of how much useful information
is captured, and how much useful information is discarded,
by our approach. To gauge the amount of “information”
captured about traffic-level behavior, we apply the information
metric devised in [17], which gives an information-theoretic
framework for capturing the amount of information contained
in network traces. We use the original packet-level traces
as “ground truth” against logs captured from our scheme
to determine information content of our logs. Finally, we
compare our approach with different variants of NetFlow and
cSAMP. While our approach solves a different problem than
NetFlow and cSAMP, we use these schemes as rough baselines
to characterize performance. We show that information metric
of RESCUE is higher than NetFlow and cSAMP while still

maintaining lower memory at the routers compared to them.

Memory requirements: Figure 5(a) shows memory usage as
a function of update interval p, and for varying timestamp
granularities (TSG). RESCUE_TSG in the figure denotes
the performance of RESCUE with different TSG values in
milliseconds. When TSG is very small (T'SG = 1ms),
RESCUE performs poorly and does not show much im-
provement over the naive approach, while for higher TSG
values, it significantly outperforms the naive approach. This
happens because the compression ratio improves along with
the increase of TSG. We found similar results for varying
values of y (the threshold controlling the maximum number
of packets that can appear in one update towards the DC) as
shown in Figure 5(b). Overall, we find that for large networks
(which contain on the order of 50 core routers, each handling
on the order of 6000 packets per second), with u = 5sec,
y = 80,000 and T'SG = 10ms, our system requires 200K B
of state on routers (to store the current set of virtual packets),
and 5.3GB at the DC per hour. With TSG = 100ms, the
requirement reduces to 32K B for router and 1.2GB at the
DC per hour. To identify any variability in update size, we
measure the update size for each update sent. We set 1 = 5sec,
y = 80,000 and T'SG = 10ms in this experiment. As we can
see in Figure 5(c) the update size is fairly uniform during the
experimental period.

Control overhead: Reducing p and y reduces memory
requirement at routers, but increases control traffic towards
the DC. This tradeoff is investigated in Figure 5(d), which
shows the traffic overhead to DC for different values of wu.
It is evident that RESCUE reduces traffic as compared to the
naive approach. We set 7°'SG = 100ms in this experiment.
To understand the effects of data accumulation at the DC,
Figure 5(e) shows the amount of memory usage at the DC for
a single router. While the naive consumes memory at a higher



rate due to large volume of data, RESCUE shows slower rate.

Accuracy and precision: Accuracy measures the fraction
of data packets that are recorded with correct information.
Since RESCUE bounds arrival times, orderings, and other
information within ranges, we found that it achieves perfect
accuracy (though in practice, accuracy may be reduced if
router clocks are increasingly unsynchronized). However, it is
not necessarily precise, because it does not perfectly pinpoint
the exact arrival times of packets. Figure 5(f) measures pre-
cision as TRESCUE/TCAIDAv where TRESCUE isa packet’s
timestamp determined by RESCUE and T arp 4 is the actual
timestamp of that packet in the CAIDA trace. TrgscuEr 1S
constructed by uniformly dividing the timestamp range of a
timestamp node among the child PIDs. In the naive approach,
the precision is always 1, but in RESCUE it decreases with
the increase of TSG. However, even with T'SG = 100ms,
RESCUE gives 99.8% precision.

Comparison with alternate approaches: We compare the
memory requirement and information metric of RESCUE with
NetFlow and cSAMP. We implement NetFlow V.5 with 5sec
update interval. We use the same update interval in the imple-
mentation of cSAMP and RESCUE. NetFlow_n in Figure 6
denotes the NetFlow that samples 1 out of each n packets
and hence NetFlow_1 stores all packet information (also
called unsampled NetFlow). Similarly in case of cSAM P_n,
each router samples 1 out of each n packets assigned to it
by hashing. We compare them with RESCUE for different
TSG values (RESCUE_TSG). 1t is clearly evident that with
higher TSG values, the memory requirement will be lower. As
Figure 6(a) shows, our compression reduces log size by a large
amount compared to unsampled NetFlow and even cSAMP.

To compare information metric (IM), we regenerate flow
count, flow size and packet inter-arrival time information from
captured log of NetFlow, cSAMP and RESCUE individually.
The IM value is then computed by the ratio of the measured
value and the actual value. While this computation is straight-
forward for flow size and flow count, it is not quite obvious for
packet inter-arrival time. To compute packet inter-arrival time
for sampled NetFlow, we take the initial timestamp and end
timestamp for each flow and divide the timestamp uniformly
among the packets. We use similar approach in RESCUE as
explained earlier. The resulting information metric is shown
in Figure 6(b). According to this figure, RESCUE has higher
information metric compared to all the variants of NetFlow
(except NetFlow_1), while consuming less memory in the
router (Figure 6).

Processing overhead at router: In order to measure the
impact of RESCUE on packet forwarding performance of a
router, we incorporate it in the Click modular router [29]. The
Click software is installed in a Pentium 4 workstation with
2.53GHz CPU and 512M B RAM running Red Hat Enterprise
Linux 5 as the operating system. We install Click in the
user-level mode. The Click package contains some example
configurations for demonstrating the operations of Click. We
use one of those configurations that mimics the operation
of a light-weight IP router (fake-iprouter.click). We use the
InfiniteSource element of Click to generate 6.5 million packets
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Fig. 6. (a) Memory comparison among RESCUE, NetFlow and cSAMP, (b)
Information metric comparison between RESCUE and NetFlow.

at the highest possible rate permitted by Click and the CPU.
This element generates a synthetic workload of data packets
for testing purposes. As it only generates packets for a fixed
source-destination pair, we modified the Click implementation
to modify the IP header of each packet with random source
and destination IP addresses. We use BGP table snapshots
available at the Route Views Archive Project [32] to extract
IP route prefixes and use those in our Click software router.
We evaluate the performance of Click both with and without
RESCUE. In our experiments, we vary the number of routing
table entries (i.e., IP prefixes in the routing table) to observe
the impact of routing table size on Click’s performance.
Figure 7(a) and 7(b) present the results from our Click
performance experiments. From Figure 7(a) we can deduce
that Click’s performance in terms of packet processing time is
significantly influenced by the size of the routing table. Also,
deterioration of Click’s performance due to the presence of
RESCUE is quite negligible and is independent of the routing
table size. Figure 7(b) clarifies this observation by plotting the
processing overhead incurred by RESCUE against the routing
table size. It shows that with the increase in routing table
size, the overhead imposed by RESCUE falls sharply and
remains within 10% when the number of IP prefixes present
in the routing table exceeds 10, 000 entries. As current routers
typically have to keep more than 100, 000 entries [33] in their
routing tables, it is quite obvious that use of RESCUE will not
have any noticeable effect on packet forwarding capability of
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VII. DiscussioN: USES oOF RESCUE

In this section we discuss the ways RESCUE can be used
by network operators to analyze different types of network
events.

Tracking packet paths: RESCUE records the reception and
forwarding events of every packet at every router in the
network that are eventually saved in the DC in each router’s
RPU and PPU logs. By chaining the information present in
these logs, it is possible to reconstruct the actual path taken
by a set of packets. This information is valuable to the network
operators as it allows them to figure out whether packets are
actually traversing the network according to their policies.

Detecting forwarding loops: Detecting the presence of for-
warding loops in the data plane is quite easy by analyzing
the logs recorded by RESCUE at the DC. If the record of
a particular packet is present more than once in the RPU
log of a particular router, once as a newly injected packet
and as transit packets in the remaining occurrences, then it
clearly indicates a forwarding loop in the data plane. Now, by
tracking the path taken by this particular packet (as explained
in the previous paragraph), it is possible to determine the set of
routers involved in the loop. Narrowing down the set of routers
responsible for anomalous network behavior helps network
operators to quickly localize the faulty device and minimize
network downtime.

Analyzing packet drops: By consulting the RPU and PPU
log of a router at the DC, it is possible to determine which
packets were not successfully processed (i.e., dropped) by that
router. Also, by consulting the PPU log of a particular router
along with the RPU logs of its neighbor routers, it is possible
to figure out which set of packets got dropped while traversing
the respective links. By recording additional information in the
Event Log during such anomalous events, RESCUE enables
network operators to pin-point the root cause responsible for
these events. For example, if a packet gets dropped because
of absence of routing information in the router’s forwarding
table, then it indicates the presence of a black-hole in the
data plane. The VID of the dropped packet helps operators
to learn about the specific routing entry that is missing in the
forwarding plane and the associated timestamps denote the
period during which the black-hole was present in the network.
This information allows operators to take preventive measures
quickly and ensure quality service to the customers.

Analyzing traffic traversal patterns: RESCUE helps to figure
out which parts of the network are experiencing more traffic
and during which part of the day. This information is quite use-
ful as it enables network operators to take informed decisions
while provisioning their networks. Moreover, by changing
network policy and routing tables, and replaying the traffic
recorded by RESCUE, network operators can observe the
effect of their changes on network performance in an offline
setting. RESCUE builds the initial framework for distributed
replay of network events that allows network operators to
experiment with different network configurations with real
traffic traces in a controlled environment and use these results
during network installation and upgrades.

RESCUE can also detect link failures and congestion
in a network using packet ordering and delay information.
Therefore, RESCUE helps network operators in analyzing
network events in various ways that is not possible with
existing network monitoring solutions. However, RESCUE is
orthogonal to them. Correlating logged information obtained
through existing monitoring approaches with RESCUE logs
helps network operators to perform other monitoring activities
such as detection of Denial of Service (DoS) attacks, provid-
ing accounting/billing information and analyzing application
behavior in better ways.

VIII. CONCLUSION

In this paper, we take steps towards scalable and reli-
able monitoring of data-plane forwarding behavior in large
networks. Our proposed strategy RESCUE tracks the flow
of packets traversing a network with low overhead and low
demands on router architectures. It targets the ability to log
data-plane behavior in a scalable way to assist operators in
analyzing and troubleshooting transient network anomalies
and other misbehavior. With the help of extensive simulations
and experiments using the Click software router we show
that RESCUE is capable of tracking data-plane activities at
sufficient granularity with minimal memory, processing and
control overhead. In comparison to other existing network
monitoring strategies, RESCUE can successfully track the path



taken by a packet and records packet arrival times with high
precision.
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