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Abstract. Barium ferrite (BFO) is a class of hard magnetic materials which is technologically important for 
many applications. Likewise, bacterial cellulose (BC) is a natural cellulose with a unique nanostructure and 
properties. Particularly, magnetic BC membrane, produced by incorporation of magnetic nanoparticles (NPs) 
in the BC structure, has recently been a research focus of many research groups. In this work, BFO NPs and 
BC/BFO nanocomposites were fabricated by hydrothermal synthesis. The BFO NPs could be fabricated 

only when the synthesis temperature reached 290 C, with the faceted plate-like shape. Increasing the 
synthesis temperature gradually changed the magnetic properties from paramagnetic to superparamagnetic 
and ferromagnetic. Maximum Ms, Mr and Hc of 43 emu/g, 21 emu/g, and 1.6 kOe, respectively, were found. 
For BC/BFO nanocomposites, the hydrothermal synthesis conditions were limited by the stability of BC, i.e., 

150 – 210 C (for 1 h), or 1 – 7 h (at 190 C). Using the higher temperature or time resulted in disintegration 
or decomposition of BC. It was found that very small NPs were coated on the BC nanofibers but the BFO 
phase was not observed by XRD. However, the magnetic measurement showed the hysteresis loops for the 

nanocomposites synthesized at 190 C for 3 – 7 h. The observation of the hysteresis loops could be attributed 
to a small fraction of BFO in the nanocomposite that cannot be detected by XRD. The BC/BFO 
nanocomposite membranes were demonstrated for their magnetic attraction, flexibility, and lightness, which 
make them potential uses for flexible information storage or lightweight magnets. 
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1. Introduction 
 

Magnetic materials can be classified into two types for 
applications: soft and hard magnetic phases. Soft magnetic 
materials exhibit high magnetic susceptibility, large 
saturation magnetization (Ms), narrow hysteresis loop, and 
small coercivity (Hc), whereas for hard magnetic materials, 
large Ms and magnetic remanence (Mr) with wide 
hysteresis loop and large Hc are required [1].  Amongst 
hard magnetic materials, hexagonal ferrites (M-type 
ferrites), such as strontium ferrite (SrFe12O19) or barium 
ferrite (BaFe12O19, BFO), have been studied extensively 
due to their outstanding hard magnetic properties and 
their applications in a wide range [2]. In particular, for 
BFO, there have been a number of research focusing on 
the synthesis and properties of BFO nanoparticples (NPs) 
and their nanocomposites. For instance, the BFO NPs, 
synthesized by a co-precipitation method, were doped 
with Zn, Co, and Zr cations to increase the magnetic and 
microwave absorption properties [3]. In another study, 
BFO/graphite nanocomposites were synthesized and 
applied as electromagnetic wave absorbers [4]. It was 
found that the electromagnetic waves absorption of the 
nanocomposites was enhanced from the combination of 
the dielectric loss from graphite and magnetic loss from 
ferrite. These nanocomposites showed a potential to be 
applied for stealth technology or military applications. On 
the other hand, Choudhary et al. fabricated Pb-doped 
BFO/ polyaniline-wax nanocomposites [5]. The resultant 
nanocomposites showed the improved efficiency in 
electromagnetic interference (EMI) shielding and the 
ability to control electromagnetic smog. Furthermore, the 
core-shell NPs were engineered from the BFO core and 
poly (3,4-ethylenedioxy thiophene) (PEDOT) shell [6]. 
This nanostructure improved the microwave absorption 
properties due to the high dielectric and magnetic losses 
of the core-shell structured NPs. 

It is clearly seen that BFO NPs are very useful hard 
magnetic materials and their nanocomposites show 
various potential applications. Several synthetic polymers 
have been used as the matrix for the nanocomposites. 
However, the current trend of research tends to employ 
natural bioresources for maintaining environmental 
friendliness and sustainability. Cellulose is one of the most 
important and abundant natural polymers. It is an 
inexhaustible raw material and a key source of sustainable 
materials on an industrial scale [7]. Therefore, using 
cellulose as a matrix for fabrication of BFO 
nanocomposites is an interesting alternative. Particularly, 
bacterial cellulose (BC), a natural polymer produced by the 
cultivation of bacteria, exhibits unique structural features 
and intriguing properties. It consists of a three-
dimensional nanostructure formed by a network of highly 
crystalline cellulose nanofibrils. It also possesses 
remarkable mechanical properties, high water absorbency, 
high moldability, biodegradability and excellent biological 
affinity [8-10]. Therefore, it is one of the excellent choices 
as a matrix for fabricating BFO nanocomposites. 

BC composited with magnetic NPs have been 
explored with potential uses in medical and environmental 
applications, as well as in advanced electronic devices [11]. 
The most common magnetic NPs that have been 
incorporated into a BC nanostructure are limited to 
magnetite (Fe3O4) NPs or other soft magnetic phases [12-
14]. These soft magnetic materials are desired for some 
applications, such as actuators, sensors, and heavy metal 
adsorption [15-20] but for other applications, e.g. 
information storage, anti-counterfeit, or permanent 
magnets, the hard magnetic properties are required. 
Therefore, the BC incorporated with hard magnetic NPs 
needs to be researched. 

In this work, we therefore studied the properties of 
BFO NPs, and BFO nanocomposites using BC as the 
matrix. In literatures, BFO NPs could be chemically 
synthesized by several techniques, such as co-precipitation 
[3]  or citrate-gel auto-combustion [21, 22]. However, to 
obtain the desired BFO phase, the NPs need to be fired at 

high temperature (>800 C). Such high temperature is not 
applicable for the fabrication of BC/BFO 
nanocomposites because BC starts decomposed at the 

temperature above 300 C [12, 16]. Alternatively, 
hydrothermal synthesis is a technique that can produce 
single phase nanomaterials at relatively low temperature by 
the aid of high pressure [23]. It was used to synthesize 
BFO NPs without a need of high-temperature post-
annealing [24]. Thus, it is a suitable method for preparing 
both BFO NPs and BC/BFO nanocomposites. The 
hydrothermally synthesized NPs and nanocomposites in 
this work were subjected to several characterization 
techniques to determine their crystal structures, 
morphologies, sizes, and magnetic properties. 

 

2. Materials and Methods 
 

2.1. Materials 
 

The chemicals used in this work were iron (III) nitrate 

nonahydrate (Fe(NO3)39H2O, 99+%, ACROS Organics), 
barium nitrate (Ba(NO3)2, AR grade, Himedia), sodium 
hydroxide (NaOH, 99%, RCI Labscan), yeast extract 
powder (Himedia), D-Glucose (anhydrous AR, Ajax 
Finechem), and the bacterial strain Komagataiebacter nataicola 
(strain TISTR 975), from the Microbiological Resources 
Centre, Thailand Institute of Scientific and Technological 
Research (TISTR). 

 

2.2. BC Preparation 
 

The process for preparing BC was adapted from [25]. 
In brief, BC was cultivated using the bacterial strain 
TISTR 975 in a liquid culturing medium consisting of 1 L 
of de-ionized (DI) water, 100 g of D-glucose, and 10 g of 

yeast extract powder. After agitated cultivation at 30 C 
for 24 h, the cell suspension was transferred into a fresh 

culture medium, and then incubated at 30 C under a static 
condition for 3 days. Thin BC pellicles were collected and 
purified in boiling DI water for 2 h. After that, BC pellicles 
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were soaked in 0.5 M of NaOH solution for 15 minutes, 
followed by soaking in 5 wt.% NaOH solution for 24 h. 
In the final step, the BC pellicles were washed in DI water 
until the color changed from brown to white, and the pH 
became neutral. They were then were freeze-dried to 
obtain the BC aerogels. 

 

2.3. Synthesis of BFO NPs and BC/BFO 
Nanocomposites 

 

For the synthesis of BaFe12O19 (BFO) NPs, 7.867 g of 

(Fe(NO3)39H2O and 1.574 g of Ba(NO3)2 were dissolved 
in 400 mL of DI water with continuous stirring until 
homogeneous solution was obtained. Then, 400 mL of 
0.78 M NaOH was added and stirred rigorously for 30 min. 
The solution changed the color into red brown, which was 
then transferred to an autoclave for hydrothermal reaction. 
The temperature and the holding time for the 
hydrothermal synthesis were adjusted and systematically 
studied. The chemical reaction is according to the 

equation:  Ba(NO3)2 + 12 Fe(NO3)39H2O + 38 NaOH 

→ BaFe12O19 +38 NaNO3 + 127 H2O. After the 
hydrothermal process, the precipitated powders were 
washed with acetic acid, and subsequently with water 
several times until the pH of 7 was reached. They were 

oven-dried at 60 C before use or further characterization. 
For fabricating BC/BFO nanocomposites, the BC 

aerogels were soaked in the (Fe(NO3)39H2O + Ba(NO3)2 
solution for 15 hours to allow the diffusion of Fe3+ and 
Ba2+ ions into the BC structure. The rest of the process 
was the same as for the BFO NPs hydrothermal synthesis. 
After the process, the BC was freeze-dried again to obtain 
the BC/BFO nanocomposite aerogels.  

 

2.4. Characterization 
 

The phase and crystal structure of the samples was 
determined using X-ray diffraction (XRD) with a 
diffractometer (PANalytical, Empyrean, USA) in the 2θ 

range of 10 - 80. A transmission electron microscope 
(TEM, FEI-Tecnai G2 20, USA) was used to investigate 
the size and morphology of BFO NPs. The surface 
morphology of the BC/BFO nanocomposites were 
studied using a field emission scanning electron 
microscope (FESEM) (FEI, Helios, USA). Before imaging, 
the samples were gold coated to improve conductivity. 
Magnetic properties measurements were carried out using 
a vibrating sample magnetometer (VSM) option in the 
VersaLab instrument (Quantum Design, USA) with the 
maximum applied field of 30 kOe. 

 

3. Result and Discussion 
 

Figure 1(a) shows the XRD patterns of the 
synthesized NPs under different temperatures and holding 
times of the hydrothermal process, along with the 
reference pattern (BaFe12O19, ICDD: 00-039-1433). It is 
clearly seen that at the synthesis temperature ranging from 

190 to 270 C at the holding time of 1 h, the NPs do not 

form the desired phase. It is implied that the synthesis 
conditions are not favorable for the formation of the BFO 
phase. On the other hand, for the synthesis temperature 

of 290 C, the XRD pattern of the NPs (Fig. 1(b)) matches 
very well with most of the peaks from the standard BFO 
pattern. This indicates that the hydrothermal process at 

290 C can successfully synthesize the BFO NPs. Figure 
1(b) also shows the XRD pattern of the NPs 

hydrothermally synthesized at 290 C for different holding 
time (1 h, 3 h and 5 h). All samples show the XRD pattern 
corresponded to the standard peaks but prolonging the 
hydrothermal reaction time results in higher crystallinity 
of the samples. 

To investigate the size and morphology of the NPs, 
the TEM study was carried out, and the results are 
presented in Fig. 2. For the samples synthesized at the 

temperature from 190 to 270 C, the NPs exhibited 
spherical shapes with relatively small sizes in the range of 
10 – 17 nm. The average size of the particles increases with 
hydrothermal temperature. Conversely, the NPs 

synthesized at 290 C for 1-5 h show the facet plate-like 
shape with the much larger sizes (140 – 208 nm). The sizes 
of the plates also increased with the holding time. The 
changes between these two groups of samples are 
consistent with the XRD results. At the lower temperature 

(270 C and below), the BFO phase was not formed so 
that the particles were mostly in the precursor stage, and 
thus, the sizes were small and in round shape. On the 

other hand, at 290 C, the samples formed the BFO phase. 
Therefore, the morphology of the samples changed into 
facet plates and the sizes grew much larger. 

The magnetic measurement results of the synthesized 
NPs are shown in Fig. 3. Figure 3(a) shows the M-H curve 

of the NPs synthesized at 190 – 270 C. The M-H curve 
measures the responded magnetization (M) to the applied 
magnetic field (H). It can inform the magnetic behaviors 
of the samples, and several magnetic parameters can be 
extracted. For the relatively low hydrothermal temperature 

(190 and 210 C), the samples show the almost linear 
relationship of M and H, implying a paramagnetic main 
phase of the samples. Increasing the synthesis temperature 

to 230 C resulted in a slight S-shape curve, which infers 
superparamagnetism due to the nanosize of the particles. 
These results are well supported by the XRD and TEM 
analysis since the BFO phase was not formed at these 
temperatures, and thus the hard magnetic properties were 
not observed. Further increasing the hydrothermal 

temperature to 250 and 270 C led to the appearance of 
M-H hysteresis loops, with low saturation magnetization 
(Ms) (1-2 emu/g), low magnetic remanence (Mr) (0.1-0.5 
emu/g), and small coercivity (Hc). The existence of the M-
H loop is an evidence of the formation of hard magnetic 
phases. However, the low value of Ms and Mr indicates 
that the fraction of the hard magnetic phases must be very 
few in these samples, and that is why such phases could 
not be detected by XRD analysis. 
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Fig. 1. The figure is center-aligned and the caption of the 
figure is left-aligned. 

 

 
Fig. 2. TEM micrographs of the BFO NPs synthesized by 
hydrothermal using different temperature and time. (p.s. 
= particle size). 
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Figure 3(b) shows the M-H curves of the NPs 

synthesized at 290 C for 1-5 h. The clear hysteresis loops 
are observed in all samples, indicating the formation of the 
BFO phase, the hard ferromagnetic phase, as evidenced 
from the XRD results. The values of Ms, Mr, were 
enhanced significantly to around 39 – 43 emu/g, and 15 – 
21 emu/g, respectively, and the Hc was found to be 
approximately 1.4-1.6 kOe. These values are similar to the 
literature values for the BFO NPs synthesized by a 
hydrothermal method [24, 26].  Increasing the holding 
time enhanced the Ms value slightly, because of the higher 
crystallinity and the larger size of BFO NPs as shown in 
XRD and TEM results, but had an insignificant effect on 

Hc. Compared with BFO NPs synthesized by other 

methods, the hard magnetic properties of BFO NPs in the 
present work are somewhat lower.  The literatures 
reported the BFO NPs with Ms and Hc of 50 – 70 emu/g 
and 3.5 – 5.0 kOe [3, 27, 28]. However, those samples 

were post-annealed at high temperature above 900 C, 
leading to fully formed crystalline phase and large 
crystallites. Thus, it is not unexpected to find the large 
values magnetization and coercivity for those samples. 

Next, we moved to the results for the hydrothermal 
synthesis of the BC/BFO nanocomposites. From the 
previous results, we knew that the optimized conditions 

for hydrothermal synthesis of BFO NPs was at 290 C for 
1-5 h. Ideally, the preparation of the BC/BFO 
nanocomposites should be carried out at such conditions. 
However, as we performed the experiments at that 
condition, the BC membrane was disintegrated or 
decomposed since it could not tolerate the temperature at 

290 C under a high-pressure condition. Hence, we had to 
reduce the synthesis temperature and tune the reaction 
time instead. The hydrothermal temperatures were varied 

between 150 C and 210 C, which is the maximum 
hydrothermal temperature that BC membranes can 
withstand, and the reaction time ranged from 1 to 7 h. The 
results on the structure and properties of the synthesized 
magnetic BC nanocomposites are discussed below. 

The XRD analysis of the nanocomposites are shown 
in Fig. 4. For all samples, the XRD peaks of the BC phase 

were detected at 14.4, 16.8, 22.6 which are indexed to 

the (1 10) , (110) and (200) planes [13, 29]. However, there 

are no peaks which can match with the diffraction peaks 
for the BFO phase, whether the samples were synthesized 

at different temperature 150 – 210 C (for 1 h) or different 

time (at a fixed temperature of 190 C). This result imply 
that the synthesis temperature and time are not sufficient 
to promote the BFO phase formation. It is understandable 
since the synthesis of NPs alone form the BFO phase only 

when the hydrothermal temperature was above 270 C. 
This is unfortunately inevitable because it is the upper 
limit that the BC membrane can withstand. Increase 

temperature further, such as at 230 C for 1 h, or 

lengthening the holding time at 190 C more than 7 h led 
to the deterioration or decomposition of the BC 
membranes. Nevertheless, as we shall see below, even 
within the range of the experimental conditions, the 
BC/BFO nanocomposites still show hard ferromagnetic 
properties. 

The morphology of the BC nanocomposites was 
investigated as shown in Fig. 5. The three-dimensional 
network of cellulose nanofibers is observed which was the 
signature of the BC structure. Each nanofiber has a 
diameter around 100 – 200 nm. NPs are coated uniformly 
on the surface of the fibers. The NPs from all synthesis 
conditions are very small with spherical shape, similar to 
the TEM observation in Fig. 2 for the NPs synthesized at 
lower temperature. No faceted plate-like particles are 
observed, implying that the BFO phase was not properly 
formed, as suggested by XRD. Increasing the 

hydrothermal temperature (from 150 to 210 C) led to 
more densely packed structure since more NPs filled the 
pores of BC (Fig. 5(a)-(d)). Similarly, lengthening the 

synthesis time (from 3 to 7 h, at 190 C) also promotes the 
formation of the NPs in the porous structure of BC 
nanofibrils (Fig. 5(e)-(g)). 

 

 

 

Fig. 3. VSM measurement of the BFO NPs 
hydrothermally synthesized at (a) different temperature 

(190 – 270 C) at 1 h holding time, and (b) different 

holding time (1 – 5 h) at 290 C. 



DOI:10.4186/ej.2021.25.10.95 

100 ENGINEERING JOURNAL Volume 25 Issue 10, ISSN 0125-8281 (https://engj.org/) 

 
 

 
 

 

 

 
Fig. 4. XRD patterns of the BC/BFO nanocomposites 
hydrothermally synthesized at (a) different temperature 

(150 – 210 C) at 1 h holding time, and (b) different 

holding time (3 – 7 h) at 190 C. 

 

 

 
Fig. 5. SEM micrographs of the BC/BFO 
nanocomposites synthesized by hydrothermal using 
different temperature and time. 
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The magnetic properties of the BC nanocomposites 

are shown in Fig. 6. For the samples hydrothermally 
synthesized for 1 h, the linear M-H curves are observed 
for all samples, independent of the synthesis temperature 
(Fig. 6(a)). This is attributed to the paramagnetic phase of 
the NPs since the BFO phase was not yet formed. On the 

other hand, the samples synthesized at 190 C but hold 
for 3, 5 and 7 h showed the M-H curves with hysteresis 
loops (Fig. 6(b)). The size of the loops increases with 
longer holding times. This result is quite unexpected since 
there is no indication from XRD or SEM for the existence 
of the BFO hard magnetic phase. However, it could be 
argued based on the results from the previous section. In 
Fig. 3(a), the hysteresis loops were found for the NPs 

synthesized at 250 and 270 C, even though the XRD did 
not detect the BFO phase. We discussed that there should 
exist a very small fraction of BFO NPs in the batches but 
could not be detected by XRD. Similar argument can 
apply here. Although the synthesis temperature of the 

BC/BFO nanocomposites was lower (only 190 C) but 
the time was multiplied. Thus, the small portion of the 

starting materials could be kinetically driven to form the 
BFO phase. Again, the existence of the BFO phase must 
be very few, since the Ms (0.9-1.1 emu/g) and Mr (0.2-0.3 
emu/g) values are very low, as compared to the completely 

formed phase (Ms 40 emu/g, Fig. 3(b)). That could be 
the possible reason why XRD cannot detect it. 

Since hysteresis loop can be observed, it suggests that 
the ferromagnetic properties can be retained in the 
BC/BFO nanocomposites membranes. Therefore, we 
demonstrated the ferromagnetic behavior of the BC/BFO 
nanocomposites by using a permanent magnet to lift the 
membrane, (as shown in Fig. 7(a)). Furthermore, not only 
magnetically attractive, the BC/BFO nanocomposite also 
exhibits excellent flexibility (Fig. 7(b)). It can be bent 
manually and can return to its original shape after release. 
Moreover, it is very light. It can be placed on top of the 
leaves without deflecting them (Fig. 7(c)). Combining 
these properties (magnetically attractive, flexible, and 
light), the BC/BFO nanocomposites could become an 
interesting choice of magnetic materials. They can be 
exploited in several potential applications, such as 
information storage, anti-counterfeit, and flexible and 
lightweight magnets. 

 

4. Conclusions 
 
This work has successfully prepared BFO NPs by a 

hydrothermal method. The hydrothermal synthesis at 270 

C or below led to the formation of very small NPs (10 – 
17 nm) but did not yield the BFO phase. Increasing the 

synthesis temperature to 290 C for 1 – 5 h resulted in the 
NPs with the desired BFO phase. The particles exhibited 
the faceted plate-like shape with much larger sizes (140 – 
208 nm). The NPs synthesized at low temperature showed 
paramagnetic property whereas increasing the synthesis 
temperature gradually changed the magnetic properties 
into superparamagnetic and ferromagnetic. The NPs 

synthesized at 290 C for 5 h showed the largest hysteresis 
loop with Ms, Mr and Hc of 43 emu/g, 21 emu/g, and 1.6 
kOe, respectively. For the hydrothermal synthesis of 
BC/BFO nanocomposites, the temperature range was 150 

– 210 C (for 1 h), and the time varied from 1 to 7 h (at 

190 C), which was limited by the stability of the BC 
membranes. Every synthesis condition could not promote 
the formation of the BFO phase that can be observed by 
XRD. In all samples, we only observed very small NPs 
coated on the BC nanofibers. Increasing the temperature 
and time led to higher deposition of NPs in the BC pores. 
However, magnetic hysteresis loops were observed for the 

nanocomposites synthesized at 190 C for 3 – 7 h. This 
indicates that there might be a small fraction of BFO 
phase in the nanocomposite membranes but too few to be 
detected by XRD. The fabricated BC/BFO 
nanocomposite membranes were demonstrated for their 
magnetic attraction, flexibility, and lightness. This makes 
them suitable for potential uses in flexible information 
storage or lightweight magnets. 

 

 

 

 
Fig. 6. VSM measurement of the BC/BFO 
nanocomposites hydrothermally synthesized at (a) 

different temperature (150 – 210 C) at 1 h holding time, 

and (b) different holding time (3 – 7 h) at 190 C. 
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