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Abstract  

A mechanical lap joint fabricated with high-temperature superconducting (HTS) tapes is proposed for the 

application to joint-winding in HTS magnets for fusion reactors. The applicability of the joint has been validated, 

however, it could not be guaranteed because the joint resistance is unpredictable before the entire conductor is cooled 

and energized. Identifying the factors that affect the joint resistance is necessary to develop a method to predict this 

parameter at room temperature. In this report, we evaluated the correlation between the electrical resistance of contact 

interfaces (contact resistance) and the contact area observed using X-ray computer tomography scan (observed 

contact area), and discussed appropriate techniques for this prediction. A total of 40 mechanical lap joint samples 

were prepared. The observed contact areas were segmented from cross-sectional images of contact interfaces using 

a graph cut image segmentation, while the contact resistances were calculated from measured joint resistances. The 

correlation indicated that the prediction of contact resistance is more precise when base on the observed contact area 

compared to the conventional method using the nominal contact area. However, some of dispersive contact resistivity 

still remained due to inhomogeneous distribution of fine-structure on contact interface. 

 

1. Introduction 

 “Remountable” (demountable) high-temperature superconducting (HTS) magnets [1-8] with coil segments that are 

mounted and demounted repeatedly using mechanical joints is proposed for advanced heliotoron-type and compact 

tokamak fusion reactors. The joint-winding concept [8-10], where a coil is wound by connecting half- or single-pitch 

HTS helical conductor segments using mechanical joints was suggested for the large helical device (LHD)-type 

fusion reactors, FFHR series in particular [11] [12]. Considering the current viable fabrication techniques, the joint-

winding is the primary option for constructing helical coils, whereas the remountable magnet is an advanced option. 

Ohmic-heating generated from non-superconducting materials at the joint section can be tolerated by using HTS 

materials with larger heat capacity and higher temperature margin compared to low-temperature superconducting 

materials. Among the potential HTS wires and tapes, rare-earth barium copper oxide (REBCO) tape is an ideal 

candidate because of its high current density under high magnetic fields, high mechanical strength, and low 

radioactivation. 

For joint-winding, Stacked Tapes Assembled in Rigid Structure (STARS) conductor [10], where simply-stacked 

REBCO tapes are embedded in copper and stainless-steel jackets have been proposed for use in helical-shaped 

conductor segments with easy-fabricable resistive lap joints. Several types of resistive lap joint have been studied for 

various HTS applications. Solder joint with tin-lead solder has achieved joint resistivity (the product of the joint 

resistance and the nominal contact area) of 2-5 pm2 at 77 K, self-field [13-15]. However, tin-lead solder has a risk 

to decrease critical current (Ic) due to the temperature limit of HTS material without oxygen annealing in a large-

scale conductor, which has ununiformed heating temperature distribution and prolonged heating time during heat 

process. Nano-particle metal paste joint is one example not require oxygen annealing, and it realized 4.8 pm2 with 

1 hour heat treatment [16]. One candidate to shorten the joining process is ultrasonic welding (UW) [17]. Combined 

UW technique with solder realized 5.7 pm2 [18]. Considering repeatedly fabrication and demount ability of joint, 

we developed mechanical lap joint where REBCO tapes are pressed together with indium foil inserted in-between 

the tapes. A joint resistivity of 5 pm2 has been achieved with the joint fabricated at room temperature [19], and was 

able to be improved to 2.5 pm2 with low-temperature heat treatment at about 100 degree C [20] [21]. The 

mechanical lap joint is now the first candidate for the joint-winding because of sufficiently low joint resistance, 

simple fabrication process and applicability to large-scale joint. In a previous study [22], we applied bridge-type 

mechanical lap joint with indium (with no heat treatment) to a large-scale conductor and succeeded in achieving a 

joint resistance of 1.8 n (corresponding to 10 pm2). This was achieved with 100 kA energizing at 4.2 K, 0.45 T 

using a STARS conductor with 3-row and 14-layer of 10-mm-wide REBCO tape and the joint resistance achieved 

by the bridge-type joint was sufficiently low from the perspective of cooling power. However, the joint resistance 

could only be evaluable after cooling, and energizing because of the difference in the current path between the 
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ambient and cryogenic environments at the joint. This situation is not desirable; the helical coil is constructed with 

7800 joints using half-pitch segments [11]. An inspecting and qualification technique at room temperature is 

indispensable to realize a reliable fabrication process for these joints.  

In this regard, we indevoured to identify the factors that affect joint resistance in the development of an appropriate 

prediction technique. Joint resistance involves the electrical resistances from non-superconducting materials and the 

contact interface between the REBCO tape and indium (contact resistance). The contact resistance is estimated by 

subtracting the experimentally measured joint resistance from the resistances of the non-superconducting materials. 

The estimated contact resistance depends on the size of the contact area used to calculate the resistance of the non-

superconducting materials. In a conventional evaluation, the “nominal contact area Sn,” which is calculated simply 

by multiplying the joint length and width of the REBCO tape is used to calculate contact resistance. However, the 

actual contact area inside the joint should be utilized. X-ray computer tomography (CT) scan is known for its 

excellent nondestructive inner inspection ability. It was used for analyzing condition of filament in superconducting 

material [23] [24], and tracing trajectories of superconducting wires in Cable-in-Conduit Conductor (CICC) [25]. As 

a pioneer to introduce this technology for analyzing joint, our earlier study [26] has used X-ray CT scan to observe 

the contact interfaces to evaluate the area or to analyze the contact condition inside the joint. It was determined that 

there were random gaps at the contact interfaces. In this study, the influence of these gaps on the joint resistance was 

quantitatively evaluated. Specifically, 40 mechanical lap joint samples were prepared. X-ray CT scan was used 

initially used to acquire and analyze cross-sectional images of contact interfaces. The observed contact area was 

denoted as “observed contact area SCT.” The joint resistance of each sample was then measured. Subsequently, the 

contact resistance was estimated using the measured joint resistance and two contact areas, Sn and SCT. Finally, the 

correlation between each contact area and the estimated contact resistance was evaluated. The development of a 

predicting technique for joint resistance is discussed in this work based on the analysis of the evaluated contact area 

and resistance.  

 

2. Materials and Methods 

2.1 Sample Preparation 

The samples were mechanical lap joints with 4-mm-wide copper-stabilized REBCO tapes (SCS4050-AP, 

SuperPower Inc, Schenectady, NY, USA, Ic : over 91 A at 77 K and self-field). The tapes from two different lots were 

used, and denoted as lot A and lot B. The compositions and the thickness of the tapes: the layers from top to bottom 

are: copper (20 m), silver (1.6 m), REBCO (1.6 m), buffer layers (less than 0.2 m), Hastelloy substrate (50 m), 

silver (1.6 m), and copper (20 m). The copper layer at the top of the tapes at the joint section was polished using 

sandpaper (the diameter of the abrasive particle was 81 m) and then cleaned with ethanol. The thickness of the 

indium foil was originally 100 m and the surface of the indium was also cleaned using ethanol. After polishing and 

cleaning, the tops of the two tapes at the joint area were set face-to-face and the indium foil was inserted between 

them. The joint area was then pressed together with a joint pressure of 100 MPa at room temperature (approx. 293 K) 

for 1 minute. The thickness of the joint was measured using a micrometer after the release of the pressure because 

indium deformed plastically during the pressing process. We prepared 40 samples: 22 samples using REBCO tapes 

from lot A, of which 14 samples had a 5 mm joint length, 4 samples had a 2 mm joint length, and 4 samples had a 10 

 
Fig. 1 Sample set for X-ray CT scan 



mm joint length. For the 18 samples using the REBCO tapes from lot B, all their joint length was 5 mm.  

2.2 Contact area evaluation 

  Each sample was set in an acrylic jig as shown in Fig. 1 and inspected using micro X-ray CT scanner (ScanXmate-

D160TS110, Comscantecno Company Ltd., Yokohama, Japan) to observe two interfaces between the REBCO tapes 

and the indium foil. The number of projections was 600, and the X-ray tube voltage and X-ray tube current were set 

to be 145 kV and 20 A, respectively. A metallic filter was not used. The obtained three-dimensional CT data consists 

of 496496496 voxels. The size of the voxel was 13.168 m for the samples with 2 mm and 5 mm joint length, and 

25.957 m for 10 mm long joint samples, which were the smallest for the sizes of sample and the X-ray tube 

conditions.  

Figure 2 shows schematic cross-sectional images of the contact interfaces. After the acquisition of the three-

dimensional data, the area of two REBCO tapes superposing was identified as the region of interest (ROI) based on 

X-ray transmission images of the joint. This is because a preliminary numerical simulation to evaluate current 

distribution indicated that the indium outside the superposing area has little effect on the joint resistance. Then we 

manually extracted two-dimensional cross-sectional images corresponding to the contact interfaces shown in 

Fig. 2 (b). In order to reduce the computational resource necessary for subsequent image segmentation, Simple 

Linear Iterative Clustering [27] was applied to the extracted images. The number of superpixel was 5120. 

Subsequently, graph cut was utilized [28] to segment the ROI into areas with and without gaps because a preliminary 

numerical simulation of X-ray CT scan confirmed that only the presence of air contributes to an abrupt change in the 

CT number. Points with a locally small CT number were chosen as initial seeds for areas with gaps; those with a 

relatively large CT number were choose as the areas of the observed contact area. Finally, the calculation was 

executed and the two observed contact areas of the two contact interfaces are denoted as SCT1 and SCT2. To enhance 

the visibility of the ROI and the seeds of the gap areas, the contrast of the image was appropriately adjusted using 

histogram equalization and segmentation processing was performed three times to evaluated the error caused by the 

different initial seed points. All image segmentations were performed using MATLAB R2018a with the Image 

Processing Toolbox.  

Samples were inspected by X-ray CT scan before and after the resistance measurement described in 2.3 to confirm 

the validity of discussing the effect of contacts areas on contact resistances at cryogenic state.  

2.3 Contact resistance evaluation 

After acquiring X-ray CT scan, each sample was cooled using liquid nitrogen (77 K) and the joint resistance, Rjoint, 

was measured from the current-voltage slope (I-V curve) using the four-terminal method. The two terminals that were 

used to measure voltage were set on both REBCO tapes that straddle the joint, with a separation distance of 

approximately 20 mm. Currents up to 40 A (0, 10, 20, 30, and 40 A) were applied, and the joint resistance was 

evaluated by applying the least squares approach to the measured I-V curve. Each sample was soaked into liquid 

 

(a) 

 

(b) 

Fig. 2 Configuration of extracted cross-sectional images: (a) Region space of ROI (b) Positions of observed 

cross-sections at joint 



nitrogen, measured twice, and heated to room temperature to confirm reproductivity of the I-V curve. 

Figure 2 suggests that it is reasonable to model the joint resistance, Rjoint, as the sum of the resistance of the silver 

layers, copper layers, and indium foil, in addition to the interface resistance inside the REBCO tapes and contact 

resistances at the two contact interfaces. The sum of two contact resistances as evaluated using a conventional method, 

Rn, can be expressed as 

Rn = Rjoint − (𝟐 × 𝝆Ag 

TAg

Sn
 +   𝟐 × 𝝆inter 

1
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where Ag, Cu, In, are the resistivities of silver, copper, and indium at 77 K (Ag=2.7010-9 m, Cu=2.1010-9 m,  

In=1.6710-8 m) [29], TAg, TCu, TIn are the thicknesses of silver, copper, and indium, and Tin was in 32 m to 

94.5 m  range. inter (= 1.05 pm2) is the interface resistivity determined from a previous study [30]. For the 

observed contact areas, the sum of two contact resistances, RCT, can be expressed as  
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Each contact resistance was calculated using equation (1) and (2), respectively. 

 

3. Results and discussion  

A series of image segmentation is introduced in Fig. 3. Figure 3 (a) represents the X-ray transmission image of a 

sample with a joint resistance of 0.279  (corresponding to a joint resistivity of 5.58 pm2) and its ROI was the 

ranged following the contour of the tapes as shown in Fig. 3 (b). Figure 3 (c) shows one of the two cross-sectional 

images of the two contact interfaces from the sample which were extracted from the X-ray CT data. It should be 

noted that the shape of the two REBCO tapes in Fig. 3 (c) consists of the top surface of the REBCO tape and a partial 

volume averaging, which is a kind of artifact of X-ray CT. In Fig. 3 (c), the dark areas around the center of the joint 

were identified as gap areas. The seeds of the gap were chosen at these spots (arrowhead No. 1). In addition, a 

discontinuous and dark area in the upper and lower area in the ROI could be observed (arrowheads No. 2). These 

are dark bands, which is another kind of artifact of X-ray CT, caused by the boundary between different X-ray 

attenuation properties. The seeds of the gap area were also selected in these dark bands areas. The seeds of the 

observed contact area were selected at the area except for the gap areas as arrowhead No. 1 and No. 2. The calculation 

of graph cut was executed and Fig. 3 (d) shows the segmented observed contact area acquired from the cross-sectional 

image.  

 

Fig. 3 Segmentation process for cross-section images: (a) X-ray transmission image of joint with adjusted 
contrast, (b) Ranged ROI of joint, (c)Cross-sectional images of contact interface with adjusted contrast, 

(d)Segmented contact area 



Examples of the measured experimental result is shown in Fig. 4. Figure 4 (a), (b), (c) represent one cross-sectional 

image of two contact interfaces from samples with joint lengths of 2 mm, 5 mm, and, 10 mm, respectively. The area 

of the smallest gap indicated by the procedure described in 2.2 was 5.3810-3 mm2. The change rate of evaluated 

contact area before cooling and after cooling is −2.48% in average. Four of 40 samples varied 10% in and the 

maximum variation was −17.62%. Since the image processing here revealed that manually choosing the seeds led 

error in evaluating contacted area, and the majority of samples varied slightly, we considered the cooling did not 

affect the observed contact area significantly. The I-V curves and calculated joint resistances Rjoint corresponding to 

the samples of (a), (b), (c) are shown in Fig. 4 (d), and the relationship between Rjoint and inverse nominal contact 

area Sn of all samples were shown in Fig. 4 (e). The minimum joint resistivity of the sample was 4 pm2 in 

conventional evaluation. 

The relationship between the contact resistances Rn and the sum of two inverse nominal contact areas 2/Sn is shown 

in Fig. 5 (a). The lines correspond to contact resistivities of 4, 8, 12, and 20 pm2. This parameter is calculated by 

multiplying the contact resistance Rn and the sum of the two nominal contact areas 2Sn to determine the average 

contact condition of the two contact interfaces. The results indicate that except for the two samples enclosed by the 

dot-lines which had relatively high contact resistance, the sample with larger contact areas tended to have relatively 

high contact resistivity. We considered that the existence of gaps mainly increased the contact resistivity because of 

the difficulty of uniformizing joint pressure for larger joints. To verify this assumption, it was necessary to evaluate 

and eliminate the gap area. In Fig. 5 (b), the relationship between RCT and the sum of the inverse observed contact 

areas 1/SCT1+1/SCT2 was shown. The lines correspond to contact resistivities of 4, 8, 12, and 20 pm2 that were 

determined by multiplying the contact resistance RCT and the sum of the two observed contact area SCT1+SCT2. 

Compare to the result shown in Fig. 5 (a), it was determined that the dependency of contact resistance on contact area 

tended to be more linear. In particular, the results for samples with a smaller contact area indicates that the contact 

resistivity are tends to follow same line with a contact resistivity of 4 pm2. The evaluation of the contact condition, 

 

  

(d) (e) 

Fig. 4 Experimental result, Cross-sectional image of one contact interface from joint sample with (a) 5 mm joint 

length, (b) 2 mm joint length, (c) 10 mm joint length, (d) three representative samples and corresponding 

measured I-V curve (e) Relationship between joint resistance and inverse nominal contact area. 



i.e., contact resistivity, produce an accuracy with the elimination of the gap area.  

Considering the dispersion of the contact resistivity in Fig. 5 (b), the local critical current degradation on REBCO 

tapes and the contact condition changes with the scale smaller than X-ray CT resolution are primary causes. For the 

former, the result without specific difference in the contact resistance based on a comparison of different lots indicated 

the local degradation might be caused by joining process. In this situation, the flux-flow resistance would be counted 

together as the contact resistance, resulting in an increment of the contact resistivity. Since the REBCO tapes 

superposing at the joint were inaccessible using the four-terminal method, we could not examine the quality of the 

REBCO tapes to eliminate this possibility. For the latter, in the boundary of two different metals, micro-gap, oxidized 

film and alloy are present. Theoretically, a study [31] showed the real contact area accounts for nominal contact area 

less than 50% from microscopic-scale point of view. Since the effect of micro-gap and thin oxidized film is too small 

to affect CT number, and the alloy of the two metals is too similar to be segmented from the other voxels consisting 

of the same metals. As such, it is difficult to identify the distribution of these micro-order fine structures to evaluate 

real contact area. In the case that the real contact area distributed uniformly on the SCT1+SCT2, we could expect the 

contact resistance RCT proportional to the inverse contact area 1/SCT1+1/SCT2. Consequently, the result with dispersive 

contact resistivity can be interpreted as inhomogeneous distribution of real contact area. Therefore, further studies 

are needed to clarify the specific distribution of inhomogeneous fine structure, which are finer than the voxel size of 

X-ray CT scan. 

According to the theory of electric contacts [32] and the improvement of the joining method [7] [8] [20] [21] [33] 

developed based on the theory, the distribution of real contact area varies with the joining process. Based on the 

aforementioned result, we conclude that the range of the contact resistance prediction is improved with the acquisition 

of the observed contact area, but cannot be perfectly predicted only from the scale of this region. The condition of 

the joining process which affects the fine structure of the contact interface also needs to be considered in the 

prediction of joint resistance.  

 

4. Conclusion  

 In this study, we evaluated the correlation between the contact area and contact resistance of the mechanical lap 

joint of REBCO tapes. X-ray CT scan were used to extract cross-sectional images of the contact interfaces. The 

observed contact area was quantitatively segmented, then the joint resistance was measured, followed by the 

calculation of the contact resistance. Compared to the relationship between nominal contact area and contact 

resistance using a conventional method, the relationship between the observed contact area with contact resistance 

reflected more accurate contact resistivity by eliminating the gap area in the joint. This indicated the contact resistance 

can be predicted more precisely using the observed contact area. However, the local degradation of REBCO tape and 

micro-order fine structure in the observed contact area is considered to account for dispersive contact resistance. 

Therefore, depending only on the observed contact area is not appropriate for predicting joint resistance; the joining 

process is also needed to be considered.  

  

(a) (b) 

Fig. 5 Relationship between contact area and contact resistance: (a)Relationship between 2/Sn and Rn  

(b) Relationship between 1/SCT1+1/SCT2 and RCT 
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