

Rupture directivity, stress drop, and hypocenter migration of small earthquakes in the Yamagata-Fukushima border swarm triggered by upward pore-pressure migration after the 2011 Tohoku-Oki earthquake

Keisuke Yoshida, Tatsuhiko Saito, Kentaro Emoto, Yumi Urata, Daisuke Sato
Tectonophysics
769
228184
2019-10-20
http://hdl.handle.net/10097/00133202

doi: 10.1016/j.tecto.2019.228184

1	Rupture directivity, stress drop, and hypocenter migration of small- and moderate-
2	sized earthquakes in the Yamagata-Fukushima border swarm triggered by upward
3	pore-pressure migration after the 2011 Tohoku-Oki earthquake
4	
5	Keisuke Yoshida ¹ , Tatsuhiko Saito ² , Kentaro Emoto ¹ , Yumi Urata ² , Daisuke Sato ³
6	
7	1: Department of Geophysics, Graduate School of Science, Tohoku University
8	2: National Research Institute for Earth Science and Disaster Resilience
9	3: Research Center for Earthquake Prediction, Disaster Prevention Research Institute,
10	Kyoto University
11	
12	
13	
14	Corresponding author: Keisuke Yoshida, Research Center for Prediction of Earthquakes
15	and Volcanic Eruptions, Tohoku University, 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai,
16	980-8578, Japan. (keisuke.yoshida.d7@tohoku.ac.jp)
17	

18 Abstract

We examined a relationship between rupture propagation directions and the 19distribution of fault strength by analyzing seismological data from the earthquake swarm 2021on the Yamagata-Fukushima border, NE Japan. This earthquake swarm exhibits a distinct hypocenter migration behavior and was estimated to be triggered by upward fluid 22movement after the 2011 Tohoku-Oki earthquake. We utilized the dense nationwide 23seismic network in Japan to estimate apparent source time functions of >1,500 small 24earthquakes ($M_{\text{IMA}} \ge 2$). We found clear directional dependences of the peak amplitude 2526and the pulse-width in the apparent source time functions, suggesting the earthquake rupture directivity, for half of the earthquakes. Based on the unilateral rupture model, 27rupture directions mostly avoid the directions of the hypocenter migration. The difference 28between the microscopic and macroscopic propagations of rupture might be explained by 29the spatial variation in the fault strength affected by pore pressure; ruptures of each 30 earthquake are hindered from developing toward the region with higher fault strength 31ahead of the pore-pressure front. Estimates of stress drop systematically increased on 32taking the effects of rupture directivity into account. We observed a temporal increase in 33 34stress drop from 3 MPa to 10 MPa during the pore-pressure migration.

36 1. Introduction

Dynamics of earthquakes and seismicity are dominantly affected by the states of stress and strength on the fault (Das & Aki, 1977; Kanamori & Stewart, 1978). For an improved physical understanding of an earthquake, it is important to examine seismicity and source process on the basis of the spatiotemporal variation in stress and strength. This task is usually challenging because of the lack of information about both stress and frictional states on the fault.

Source process of earthquake, including the initiation, propagation and arrest of 43rupture, is affected by the spatial distribution of stress and strength on fault (Das & Aki, 441977; Kanamori & Steward, 1978; Madariaga, 1979; Fukuyama & Madariaga, 2000; 45Urata et al., 2017). In this context, we can consider a basic cause for the rupture 46 47directivity: stress and/or strength gradients favoring the rupture of earthquakes toward the direction of reaching the failure criterion (away from areas of low stress or high fault 48strength). Variation of elastic properties across the fault lead to persistent rupture 49directivity by the strong dynamic reduction in normal stress (Weertman, 1980; Ben-Zion 50& Andrews, 1998; Ben-Zion & Huang, 2002; Ampuero & Ben-Zion, 2008). Small-scale 5152heterogeneities in stress, strength, material properties, and/or their transient changes during the propagation might produce essentially random rupture directivities. 53

54	Rupture processes of large earthquakes have been widely examined by seismic
55	waveform analysis (Hartzell & Heaton, 1983; Fukuyama and Irikura, 1986) under certain
56	kinematic constraints. Previous studies have investigated their similarities and differences
57	based on seismic waveform inversion under different tectonic regimes (Ye et al., 2016).
58	Since investigations of earthquake rupture processes are usually limited to large
59	earthquakes (M >5–7), it is difficult to discuss the cause of their similarities and
60	differences by comparing many events under the same setting.
61	Small- and moderate-sized earthquakes (M <~4) are often approximated as point
62	sources. This is because of the difficulty of modeling high-frequency waveforms (> a few
63	Hz) and the lack of signal recorded at the necessary high frequencies due to low sampling
64	rate or noise. As a consequence, the fault plane is indistinguishable between the two nodal
65	planes of a focal mechanism.
66	Even a small earthquake has a finite fault length and width. Dominant frequency
67	or pulse-width of waveform is often used for the estimation of fault size based on simple
68	symmetrical circular fault models (Brune, 1970; Sato & Hirasawa, 1973; Madariaga,
69	1976). If the real source process is asymmetrical or exhibits a significant directivity effect,
70	the assumption of isotropic rupture evolution can lead to a large estimation error in the
71	fault size and thus, the stress drops (Kaneko & Shearer, 2015). Recently, as data quantity

72	and quality have improved, directivity effects on seismic waves have been observed for
73	moderate-sized (Hatch et al., 2018; Abercrombie et al., 2017; Boatwright, 2007; McGuire,
74	2004; Seekins & Boatwright, 2010; Tan & Helmberger, 2010) and even smaller
75	earthquakes (Chen, Jordan, & Zhao, 2010; Folesky et al., 2016; Tomic et al., 2009;
76	Yamada et al., 2005). We can obtain information about the rupture propagation and the
77	fault orientation by analyzing the directional dependence of the seismic wave.
78	Since an individual earthquake is caused by an increase in stress and/or a reduction
79	in strength, seismicity also should be affected by the evolution of stress and strength in
80	the focal area. Migration of seismicity, which is frequently seen in earthquake swarms, is
81	often interpreted as being associated with pore-pressure diffusion (Shapiro et al., 1997)
82	in the crust. In fact, the migration behavior of hypocenters is similar to that observed in
83	fluid-injection-induced seismicity (Julian et al., 2010; Parotidis et al., 2005). Migration
84	behaviors of hypocenters could provide a clue to spatiotemporal variation in pore pressure
85	and strength on the fault.
86	The present study estimates the rupture directivity of small earthquakes in the
87	evolving swarm activity in the Yamagata-Fukushima border. This earthquake swarm

89 by upward fluid movement after the 2011 Tohoku-Oki earthquake (Yoshida & Hasegawa,

88

exhibits a distinct migration behavior of hypocenters and was estimated to be triggered

90	2018b). An important question is how the spatially varying fault strength and pore
91	pressure affect the rupture of individual earthquakes and the evolution of the seismicity.
92	Examining this earthquake swarm provides a unique opportunity for the relationship
93	between the rupture propagation and the distribution of strength and pore pressure on the
94	fault. Since the migration behavior of hypocenters along the planes can be seen as a
95	macroscopic directivity of failure, comparing them with the directions of rupture
96	propagation of individual earthquakes is of interest.
97	First, we briefly summarize the Yamagata-Fukushima border swarm (Section 2).
98	Then, we describe the methods for determining focal mechanisms, apparent moment rate
99	functions, and rupture parameters (Section 3). The results indicate that half of $M_{\text{JMA}} \ge 2$
100	earthquakes in the swarm have significant unilateral rupture directivities. Then, we
101	compare directions of rupture propagation and hypocenter migration (Section 4). We also
102	estimate stress drop of earthquakes by taking the effect of rupture directivity into account.
103	We show that stress drops are systematically underestimated if neglecting the effects of
104	rupture directivity (Section 5). Finally, integrating the results of the analyses, we give a
105	comprehensive picture of dynamics of earthquakes and seismicity in the Yamagata-
106	Fukushima swarm (Section 6).

108 2. The Yamagata-Fukushima border swarm

Several earthquake swarms were initiated in central Tohoku with a delay of days to 109 weeks after the 2011 Tohoku-Oki earthquake, although the earthquake reduced the shear 110 111 stress magnitude by its static stress change (Yoshida et al., 2012 and 2018). The most intense earthquake swarm is that on the Yamagata-Fukushima border (Figs. 1 and 2); the 112magnitude of the largest event is M 4.6. More than 14,000 earthquakes with M >1 were 113detected and listed in the JMA (Japan Meteorological Agency) unified catalog. 114 Earthquake hypocenters in the Yamagata-Fukushima border swarm were precisely 115116 determined by Yoshida & Hasegawa (2018b) based on the double-difference hypocenter 117relocation method (Waldhauser & Ellsworth, 2000) by using numerous differential arrival time data obtained by waveform cross-correlation (Fig. S1). Also, focal mechanisms of 118 119 M >1.2 earthquakes were determined by Yoshida et al. (2016) based on the short-period waveforms of P-waves. The relocated hypocenters are concentrated along several sharply 120121defined planes consistent with WNW-ESE compressional reverse-fault focal mechanisms of individual earthquakes. This suggests that individual small- and moderate-sized 122earthquakes occur on the several macroscopic planar structures. 123124Previous studies suggested that these earthquake sequences were triggered in

125 response to the increase in pore-pressure due to upwelling fluids specifically due to the

126	reduction in EW compressional stress associated with the Tohoku-Oki earthquake
127	(Terakawa et al., 2013; Okada et al., 2016; Yoshida et al., 2016, 2017, 2018; Yoshida &
128	Hasegawa, 2008a and b). These earthquake sequences are characterized by their swarm-
129	like seismicity pattern with a distinct migration pattern of hypocenters similar to those
130	observed for the fluid-injection induced seismicity (Julian et al., 2010; Rutledge et al.,
131	2004; Shapiro et al., 1997). According to the precise hypocenter relocation, these
132	earthquakes move along several macroscopic planar structures (Yoshida & Hasegawa,
133	2018a and b). Yoshida & Hasegawa (2018a, b) suggested that crustal fluids started to
134	move after the 2011 Tohoku-Oki earthquake, permeated into several pre-existing planes,
135	reduced the fault strengths, and caused the earthquake sequences and the upward
136	hypocenter migration along the planes.

Previous studies reported temporal changes in focal mechanisms (Yoshida et al.,
2016), stress drop, b-values (Yoshida et al., 2017) and background seismicity rate
(Yoshida & Hasegawa, 2018b) in accordance with the fault strength (Yoshida et al., 2016).
They are consistent with the idea that this swarm was triggered by the temporal change
in pore pressure (Fig. 2b–e).

142 The focal area of the Yamagata-Fukushima border swarm is surrounded by the143 national dense seismic network (Fig. 1b), which enables us to examine the directional

144 dependence of the waveform.

145

146 **3. Data and methods**

We used waveform data derived from the national routine seismic network deployed around the source region of the swarm (Fig. 1b). The seismic network is composed of seismic stations of Tohoku University, NIED Hi-net, and V-net. They are three-component velocity seismometers with natural frequencies of 1 Hz recorded at a sampling rate of 100 Hz. We attempted to estimate the rupture directivity of 2,271 earthquakes with $M_{\text{JMA}} \ge 2$ for the period from 11 March, 2013 to 19 May, 2013, which were the first 800 days after the 2011 Tohoku-Oki earthquake.

We first determined focal mechanisms of target earthquakes to help constrain the rupture directivity (Subsection 3.1). We then computed apparent source time functions of target earthquakes at each station (Subsection 3.2) and estimated the directions and speeds of ruptures based on the 1-D unilateral rupture model (Haskell, 1964) (Subsection 3.3).

158

159 **3.1. Estimation of focal mechanisms**

Focal mechanisms are helpful to constrain the direction of rupture propagation. We
estimated focal mechanisms by using the similarity of waveforms for this work. The

162 method is described in detail in the Appendix.

163	We used amplitude ratios of P-, SH-, and SV-waves between a target and a reference
164	event. We used 918 earthquakes whose focal mechanisms were determined by Yoshida et
165	al. (2016) for reference events. We computed the moment tensor components of the target
166	earthquake when amplitude ratio data are obtained at more than eight different stations.
167	We estimated uncertainty of focal mechanisms based on 2,000 bootstrap method
168	resamplings. We derived focal mechanisms only when the 90% confidence range of 3-D
169	rotation angle (Kagan, 1991) is less than 30° from the best-solution. As a result, we
170	obtained focal mechanisms for 1,285 earthquakes contributing to the total focal
171	mechanisms number of 2,203 shown in map view in Fig. S2 and in cross-sectional views
172	along the fault strike in Fig. S3. They are characterized by WNW-ESE compressional
173	reverse fault mechanisms consistent with the planar structures of the hypocenters.

174

175 **3.2.** Estimation of apparent source time functions

For deriving information about the rupture directivity of small earthquakes, it is necessary to handle high-frequency waveforms (a few–a few tens Hz). We adopted the EGF (empirical green function) method (Hartzell, 1978) for correcting the site- and patheffects by using nearby earthquakes. We refer to earthquakes for which waveforms are used for EGF as "EGF events". Transverse components of direct S-waves are used for the
estimation of the rupture directivity.

We selected EGF events which satisfy the following criteria: (1) Distance from the 182183 target event is <0.5 km according to the relocated catalog. This criterion is stricter than suggested from a systematic study by Kane et al. (2013a). (2) Mean cross-correlation 184 coefficients of band-passed waveform (2-5 Hz) between the target and the EGF event are 185higher than 0.85 for at least three stations. Similarity of waveform ensures that event 186 locations are sufficiently close and focal mechanisms are similar (Abercrombie et al., 187 188 2016). (3) The magnitude of the EGF is at least 0.8 times smaller than the target earthquake. 189

For waveform deconvolution, we used the iterative time-domain approach 190 developed by Ligorría & Ammon (1999), after Kikuchi & Kanamori (1982). The cut-off 191frequency of the low-pass (Butterworth-type) filter used in the algorithm was set to be the 192193 mean corner frequencies of the source spectra of the target and the EGF earthquakes. We first roughly estimated corner frequency by assuming the stress drop of 1 MPa in 194 accordance with Yoshida et al. (2017) and the source model of Sato & Hirasawa (1973). 195196 If the obtained apparent source time function can explain more than 80% of the observed waveforms, we regarded the deconvolution as successful. When there were multiple 197

198	candidates for EGF earthquakes for a target event, we stored multiple apparent source
199	time functions for the same stations. The rupture directivity was examined only when
200	apparent moment rate functions are obtained at more than eight different stations.
201	As a result, we obtained 1,596 earthquakes with apparent moment rate functions at
202	more than eight different stations. Four examples of the distribution of apparent moment
203	rate function are shown in Fig. 3. Although shapes of apparent moment rate functions are
204	similar at nearby stations, directional dependencies of amplitudes and widths of apparent
205	moment rate functions are obvious: short pulse-widths and high amplitudes toward one
206	direction, while long pulse-widths and low amplitudes toward the opposite direction.
207	Such a distribution can be easily explained by the unilateral rupture model.
208	

210

3.3. Estimation of rupture directivity

In order to estimate the rupture directivity, we applied the 1-D unilateral rupture 211model (Haskell, 1964) to the distribution of apparent moment rate functions obtained in 212the previous subsection as follows. 213

214
$$T_{\rm d}^{\ uni} = \frac{L}{V_{\rm r}} \left(1 - \frac{V_{\rm r}}{V_{\rm S}} \vec{R} \cdot \vec{U} \right) \tag{2}$$

where T_d^{uni} is the apparent rupture duration; L is the fault length; V_r and V_s are the 215

217

speeds of rupture and S-wave, respectively; and \vec{R} and \vec{U} represent the unit vector of the rupture propagation and ray direction at the source, respectively.

To avoid the effect of slight differences of the radiation pattern, we did not rely 218219on amplitudes but on pulse-widths of apparent moment rate functions in the estimation of rupture directivity. We used a fit of synthetic triangular pulses to apparent moment rate 220functions for the measurement of pulse-widths. We applied the same Butterworth low-221pass filter as used for the waveform deconvolution to triangular pulses with variable width. 222By changing the half-widths of the triangular pulses by 0.01 s, we computed the cross-223correlation coefficient with the apparent moment rate function and obtained the best-fit 224pulse-width. We used the mean pulse-width if we had multiple apparent moment rate 225226functions at the same station for an earthquake.

We grid-searched the direction of rupture (measured by azimuth Φ and take-off angle Θ), $\frac{L}{v_r}$, and $\frac{v_r}{v_s}$ which best explain the obtained pulse-widths of apparent moment rate functions based on Eq. (2). Orientations of the rupture directivity were searched on the two nodal planes of focal mechanisms. We changed the rupture duration $\frac{L}{v_r}$ (0.01– 1.00 s) by dividing the interval by 100 grids, the ratio $\frac{v_r}{v_s}$ (0 – 1.0) between the rupture velocity and the S-wave velocity by dividing the interval by 50 grids, and the direction of the rupture propagation on the plane (0–350°) by dividing the interval by 36 grids. The evaluation function was defined as follows.

235
$$Var_{uni} = \sum_{i=1}^{n} (T_d^{uni}(\Phi_i, \Theta_i) - T_{d_i})^2 / n$$
 (3)

where T_{d_i} is the *i*-th observation of pulse-width and *n* is the number of the observations. We selected one nodal plane with higher Var_{uni} as the fault plane.

238 The residual of Eq. (3) was compared with that in the case of the uniform pulse 239 width $\overline{T_d}$

240
$$Var_{\text{mean}} = \sum_{i=1}^{n} \left(\overline{T_d} - T_{d_i}\right)^2 / n \tag{4}$$

241
$$VR = 100(1 - \frac{Var_{\text{uni}}}{Var_{\text{mean}}})$$
(5)

If the rupture is more suitably modeled by a unilateral rupture, VR approaches to 100. Although directional dependencies are clear for all the four earthquakes in Fig. 3, VRfor three of four earthquakes are approximately 55 %. We regarded that the rupture has significant unilateral rupture directivity if the reduction of the variance VR in Eq. (5) is higher than 40 %.

We checked the validity of this threshold (*VR* >40%) based on the Akaike Information Criterion (AIC) (Akaike, 1973; Sakamoto et al., 1986). We assumed that measurement errors of pulse-width follow a Gaussian distribution. The AIC parameter is expressed as $AIC = n \ln 2\pi + n \ln S + n + 2(m + 1)$, where *S* and *m* are the sum of the squared mean residuals and the number of model parameters, respectively. We assumed m = 1 for the uniform pulse-width model and m = 3 for the unilateral rupture model. We computed the difference of AICs $\Delta AIC = AIC_{mean} - AIC_{uni}$, where AIC_{mean} and AIC_{uni} are AICs of the uniform pulse-width model and the unilateral rupture model, respectively. We regarded the unilateral rupture model to be the better model when ΔAIC is positive. Fig. S4 compares the ratios of positive ΔAIC with VR for 1,596 earthquakes. Above VR >40 %, ΔAIC is positive for almost all the event (>98%).

We estimated the uncertainty range of directivity parameters for each earthquake 259by applying the above procedure to 2,000 simulated datasets. We assumed that estimation 260errors of pulse-width follow a Gaussian distribution with standard deviation of the square 261root of Varuni and produced 2,000 simulated pulse-width datasets. We then determined 262263the 90% confidence interval of the direction of rupture propagation and rupture velocity. Fig. 3 includes examples of estimated orientations and errors of rupture propagation thus 264determined. We also evaluated the reliability of the fault-plane choice based on the 265consistency of 2,000 results. We regarded the fault-plane determination as reliable when 266more than 90% of the choices are consistent with the best solution. Fig. 4 (d) shows the 267268frequency distribution of percentage of choosing the same fault plane as the best solution for 2,000 simulated data. The percentage is higher than 90% for 321 events, for which we 269

270 could determine the fault planes.

271

4. Results of rupture directivity

273 4.1. Significant proportion of unilateral rupture events

By incorporating the effect of unilateral rupture, residuals in pulse-widths decrease 274more than 40% (i.e., VR >40%) for approximately 50% of target earthquakes (824 of 2751,596 event) as shown by the frequency distribution in Fig. 4 (a). This indicates that half 276of $M_{\text{JMA}} \ge 2$ earthquakes in the swarm have significant unilateral rupture directivities. 277278This observation is similar to recent observations in various regions of the world (e.g., Chen et al., 2003, McGuire, 2004; Yamada et al., 2005; Boatwright, 2007; Seekins & 279Boatwright, 2010; Lengline & Got, 2011; Kane et al., 2013b; Kurzon et al., 2014; 015; 280281Folesky et al., 2016; Abercrombie et al., 2017). Furthermore, taking the heterogeneities in stress, frictional state, and material properties into account, rupture directivity might 282be significant for small earthquakes, as considered for large earthquakes (McGuire, 2002; 283Chounet et al., 2018). 284Fig. 4 (e) and (f) show the frequency distributions of $\frac{V_r}{V_s}$ and $\frac{L}{V_r}$, respectively. $\frac{V_r}{V_s}$ 285and $\frac{L}{V_r}$ are shown only when the confidence intervals are less than 0.3 (668 events) and 286

 $287 \quad 0.025 \text{ s} (648 \text{ events})$, respectively. We determined M_0 by the empirical relationship with

the JMA magnitude (Edwards & Rietbrock, 2009) and *L* by assuming a V_s of 3,300 m/s. Rupture duration $T_r = \frac{L}{V_r}$ shown in Fig. 4 (f) mostly range from 0.05–0.2 s. Positive correlations are recognized between T_r and *L* with the seismic moment M_0 (Fig. 5a and b). M_0 increases with the cube of T_r and *L*, supporting the scaling relationship of earthquakes (Aki, 1967; Kanamori & Anderson, 1975) and suggesting that V_r is almost constant with M_0 .

We need to be careful in interpreting the estimated values of $\frac{V_{\rm r}}{V_{\rm e}}$ because they are 294affected by the lack of signal recorded at the necessary high frequencies due to low-pass 295filter, low sampling rate or noise (Abercrombie et al., 2017). They are as well affected by 296the assumption of unilateral rupture. We would underestimate the value of $\frac{V_r}{V_s}$ if the real 297 rupture propagates asymmetrically toward all the directions with higher rupture speed. 298However, obtained $\frac{V_{\rm r}}{V_{\rm s}}$ ranges widely from 0.4–1.0 (Fig. 4e) with a mean value of 0.75, 299which is similar to the typical range of 0.6-0.9 (Geller, 1976; Venkataraman & Kanamori, 300 2004). We observe a slight increase in $\frac{V_r}{V_s}$ with magnitude from 2.5–3.1 (Fig. 5c). This 301 might reflect the acceleration of the rupture with propagation before reaching the terminal 302velocity. Furthermore, obtained values of $\frac{V_r}{V_s}$ seems to change with time (Fig. S5) in a 303 304 similar pattern with fault strength, stress drop, b-value, and background seismicity rate (Fig. 2). We, however, do not go into detail because of the above reasons. 305

307 4.2. Comparison between directions of rupture propagation and hypocenter
 308 migration

Frequency distributions of obtained azimuths and take-off angles of rupture propagation are shown in Figs. 4 (b) and (c), respectively. The results are used only when the confidence intervals are less than 30° and VR >40% (684 results for azimuth and 427 results for take-off angle). Although they are diverse, we observe that ruptures avoid propagating eastward, or in the direction of hypocenter migration (Fig. 2a), for many earthquakes. Similarly, ruptures tend to proceed downward (< 90° in Fig. 4c) unlike the orientation of the hypocenter migration (Fig. S1).

324	Fig. 7 compares the orientations of hypocenter migration and rupture directivity in
325	the four clusters. We measured the orientations of hypocenter migration for each $M \ge 1$
326	earthquake by comparing the mean locations of 40 nearby (< 500 m) $M \ge 1$ earthquakes
327	before and after the earthquake. According to the result, ruptures generally do not
328	propagate in the directions of hypocenter migration. In fact, ruptures appear to avoid
329	propagating in the directions of hypocenter migration. This tendency is clearly observed
330	in the western and the northern clusters (Figs. 7a and b), where fault structures are
331	relatively simply. A consistent tendency can be seen for the other two clusters (Figs. 7c
332	and d) as well.

The fault structure is the simplest in the western cluster. We separately plotted rupture propagation directions on the five distinctive macroscopic planes in the western cluster in Fig. 8 along with hypocenters colored by the timing of occurrence. The macroscopic hypocenter migrations proceed to the SE to SSE directions along each plane while ruptures of each earthquake tend to be oriented NNW. Namely, the orientations of the hypocenter migrations, which probably reflect the migration of pore pressure, are opposite to those of rupture propagations of individual earthquakes.

Recent observations of rupture directivity of small and moderate-sized earthquakes
 suggested the existence of favored orientations of rupture along the same fault (McGuire,

342	2004; Boatwright, 2007; Seekins & Boatwright, 2010; Lengline & Got, 2011; Kane et al.,
343	2013b; Kurzon et al., 2014; Calderoni et al., 2015). One likely cause of this is the effect
344	of the bimaterial substance across the fault. The effects of bimaterial fault interface might
345	also explain the predominance of unilateral rupture for a global catalog of large
346	earthquakes (McGuire, 2002; Chounet et al., 2018). The diversity in rupture propagation
347	directions obtained in the present study, however, suggests that they are affected by other
348	factors than the bimaterial effect.

Direction of rupture directivity observed in this study tend to avoid the direction of 349 350hypocenter migration, probably reflecting the pore-pressure migration. A similar observation was recently obtained for the case of the largest earthquake $(M_L \sim 2)$ in the 351fluid-injection induced seismicity at Basel, Switzerland (Folesky et al., 2016). We 352obtained a similar but more robust tendency of the rupture directivity by analyzing more 353than 1,500 $M_{JMA} > 2$ events from a natural earthquake swarm and by comparing them 354with the local hypocenter migrations along the planes. Although Folesky et al. (2016) 355 reported that rupture propagation directions depend on magnitude in fluid-injection 356induced seismicity, we did not recognize a clear relationship of the rupture directivity 357with size in the present swarm (Fig. 5d). Since they analyzed smaller earthquakes $(M_L \sim 1)$, 358the results might reflect smaller-scale heterogeneity in stress and/or strength. 359

360	The observed tendency may be explained by the distribution of strengths on the
361	fault. Namely, given that the pore pressure diffused from the deeper portion as suggested
362	by the hypocenter migration (Yoshida & Hasegawa, 2018b), pore pressure is higher with
363	increasing depth. Fig. 9 shows a schematic illustration of the rupture of each earthquake
364	and seismicity, that are controlled by the pore pressure distribution. Lower pore pressure
365	and hence higher fault strength tend to hinder the propagation of rupture outward of the
366	pore-pressure front (shallower development) while higher pore pressure tends to allow
367	rupture to propagate inward.

369 5. Temporal change in stress drop

In Section 4, we reported that even small and moderate-sized earthquakes exhibit 370 significant rupture directivity in the Yamagata-Fukushima border swarm. The 371predominance of rupture directivity becomes an obstacle when applying the symmetrical 372373 circular fault model to earthquakes for estimating geophysical parameters such as source radius, stress drops. Yoshida et al. (2017) estimated a temporal change in stress drop in 374this region based on the symmetrical circular fault model of Sato & Hirasawa (1973). In 375376 this section, we re-examined the temporal variation in stress drop in the Yamagata-Fukushima border swarm by taking the effects of the rupture directivity into account. 377

5.1. Determination of stress drop based on a general circular fault model

For estimating the stress drop, we approximated earthquake faults by growth of 380381self-similar circular crack similarly to Sato & Hirasawa (1973). We specified the slip inside the crack by employing the static solution of Eshelby (1957) at every instant in 382383 time. Instead of assuming ruptures always initiate at the center of the crack as done by Sato & Hirasawa (1973), we allowed ruptures to initiate in an arbitrary point inside the 384crack based on a special case (circular fault) of the general crack model of Dong & 385Papageorgiou (2003). In the model, the radius of rupture increases with a constant 386 velocity (V_r) while the center of the rupture front moves to the center of the fault. The 387slip stops when the rupture front reaches the edge of the fault at $t = r/V_r'$. The rupture 388 front propagates with the maximum velocity of $V_{\rm rmax} = (1 + r')V_{\rm r}'$ toward the center of 389 the fault while it propagates with the minimum velocity of $(1 - r')V_r'$ toward the 390 opposite direction. Here, r' is the ratio between the distance of the initiation points from 391 the center and the fault radius r. 392

We computed the apparent moment rate functions by using the analytical solution derived by Dong & Papageorgiou (2003) and measured the pulse-widths for comparing with the observation. We used the same data, same procedure, and same evaluation

function (Eq. 5) described in Subsection 3.2 to determine the source parameters. Unlike 396 397 the 1-D unilateral rupture model, we grid-searched the radius of the circular fault, the maximum rupture velocity, and the initiation point of rupture that best explain observed 398399 pulse-widths. We changed the radius of circular fault r (0.01–1.00 km) by dividing the interval by 100 grids, the ratio $\frac{V_{\text{rmax}}}{V_{\text{s}}}$ (0–1.0) between the maximum rupture velocity and 400 the S-wave velocity by dividing the interval by 50 grids, the ratios r' (0.0–1.0) between 401 the distance of the initiation points from the center to the fault radius by dividing the 402interval by 20 grids, and the direction of the rupture propagation on the plane $(0-350^{\circ})$ 403 by dividing the interval by 36 grid. 404

Radii of circular fault thus determined for 1,596 earthquakes are shown by the frequency distribution in Fig. 10 (a) and by the relationship with magnitude in Fig. 10 (b). Source radii have a positive correlation with magnitude, which is similar to the case of the 1-D unilateral rupture model (Fig. 5b). Rupture initiation points tend to be located in the edge of the fault (r'~1) (Figs. 10 c and d), which supports the validity of the unilateral rupture model in Section 4. We observe a slight increase in $\frac{v_{\rm r}}{v_{\rm s}}$ with magnitude (Fig. 10f) as similar to the results of the unilateral rupture model (Fig. 5c).

We computed the stress drop of each earthquake based on the formula of Eshelby(1957):

$$\Delta \sigma = (7/16)(M_0/r^3)$$
 (6)

415 where $\Delta \sigma$ is the stress drop.

416

417 **5.2.** Results of stress drop

Fig. 11 (a) shows the frequency distribution of stress drops thus obtained for 1,596 418 events. The median value is 5.6 MPa, which is a few times larger than that obtained by 419 Yoshida et al. (2017). For comparison, we computed stress drop by fixing $\frac{V_{\text{rmax}}}{V_c} = 0.9$ 420and r'=0 which corresponds to the model used by Yoshida et al. (2017) and showed the 421422result in Fig. 11 (c). In this case, estimated values of stress drop decrease (Fig. 11i; the 423median value is 1.9 MPa) and become similar to those by Yoshida et al. (2017). Residuals of pulse-width, however, are significantly high (VR is distributed around 0 %; Fig. 11f) 424425because this model ignores the directional dependency of apparent moment rate function. On the other hand, if we computed stress drop by fixing $\frac{V_{\rm rmax}}{V_c} = 0.9$ but allowing 426asymmetrical rupture propagation (r'>0), obtained stress drops (Fig. 11b) and residuals 427(Fig. 11e) are not very different from those obtained by changing all the parameters (Figs. 42811a and d). This indicates that the difference of estimated stress drops by Yoshida et al. 429430 (2017) and in this study mainly comes from the incorrect assumption of the symmetrical rupture propagation adopted by Yoshida et al. (2017). These results demonstrate the 431

432 importance of taking the effects of rupture directivity into account for estimating stress433 drop.

We compared obtained stress drop with time in Fig. 12 (a). Median stress drops were 434435computed in 25 time-windows having the same number of results. The 95% confidence intervals are estimated based on the standard deviations. Stress drops are small (~ 3 MPa) 436at the beginning of the swarm activity, and increase with time for ~50 days, after which 437they become nearly constant (~ 10 MPa). This temporal pattern is consistent with that 438reported by Yoshida et al. (2017) (Fig. 2c) although the obtained values are systematically 439440 higher in the present study. The temporal pattern itself is maintained even in the cases of fixing $\frac{v_{\text{rmax}}}{v_s} = 0.9$ (Fig. 12b) and $\frac{v_{\text{rmax}}}{v_s} = 0.9$ and r'=0 (Fig. 12c). 4414424436. Discussion 444

445 6.1. Fault planes of small and earthquakes and macroscopic hypocenter alignments

Rupture directivity is one of the most significant pieces of information about the fault plane of individual earthquake. We examined the relationship between the macroscopic hypocenter alignments and fault planes of individual earthquakes in the Yamagata-Fukushima border swarm directly by employing the rupture directivity.

450	Orientations of fault planes are separately shown by cross-sectional views in the
451	four clusters in Fig 6 (b). The planar structure of the hypocenter is the clearest in the
452	western cluster, in which most of fault planes dip to the west and parallel to the
453	macroscopic planar structure of the hypocenters. Fault structure is also relatively simple
454	in the northern and central clusters. Fig. 13 shows cross-sectional views of fault planes
455	and hypocenter alignments in the northern to central part of the focal region in more detail
456	along the lines A-P in Fig. 2 (a). Most fault planes are parallel to the west dipping
457	macroscopic planar structures of hypocenters also in this case. This suggests that most of
458	small and moderate-sized earthquakes in the swarm occurred using those common planar
459	structures. This observation is consistent with the hypothesis that this earthquake swarm
460	is caused by the intrusion of fluids from the deeper into several existing planar structures
461	(Yoshida & Hasegawa, 2018b).
462	By contrast, there are some earthquakes with fault planes perpendicular to the
463	hypocenter alignments. This suggests that there exist branching faults continuing from
464	the dominant faults, and earthquakes also occur along these planes. Some of them might
465	facilitate the upward movement of fluids by connecting the dominant planes. Fault planes
466	in the deeper portion tend to be perpendicular to the macroscopic hypocenter alignments
467	(cross-sections E–H in Fig. 13). They correspond to earthquakes with abnormal fault focal

mechanisms reported by Yoshida et al. (2016) in the initial phase ($< \sim 50$ days after the 468 2011 Tohoku-Oki earthquake). They suggested that these earthquakes were caused by 469 unfavorably-oriented faults due to the elevated pore pressure. The present observation 470supports that earthquakes in the initial stage occur on various small-scale fault planes 471rather than the dominant fault planes. 472Fault planes in the southern part of the source region show more complex fault 473structures in accordance with the hypocenter distribution (Fig. 6b). By taking the 474limitation of the resolution of hypocenter relocation into account, information from the 475

476 rupture directivity can be unique data for understanding the fault planes of small and477 moderate-sized earthquakes.

478

6.2. Integrated understanding of seismicity and rupture processes in the Yamagata-

480 Fukushima border swarm

The temporal change in stress drop (Fig. 12) is in accordance with those of the fault strength (Fig. 2b), background seismicity rate (Fig. 2d), and b-value (Fig. 2e). Yoshida et al. (2017) and Yoshida & Hasegawa (2018b) suggested that the systematic temporal changes in these parameters together with the upward hypocenter migration can be understood in a consistent manner by the effects of upward fluid diffusion after the 2011

486	Tohoku-Oki earthquake. Namely, (1) Due to the E-W extension caused by the 2011
487	Tohoku-Oki earthquake (Yoshida et al., 2012), high-pressure fluid moved from the deeper
488	level and intruded into the source region. (2) The high pore pressure considerably
489	decreased the effective normal stress, decreased the fault strength, and caused intensive
490	seismicity in the region. (3) The reduction in fault strength made earthquake occurrence
491	more likely, even though the stress did not reach high levels, which resulted in a high rate
492	of occurrence of smaller earthquakes. (4) As time elapsed (> 100 days from the Tohoku-
493	Oki earthquake), the fluid diffused over the region, expanding the active swarm area. (5)
494	This expansion decreased the pore pressure, resulting in an increase in the fault strength
495	and the decrease in the earthquake number and b-value around the pore-pressure fronts.
496	Furthermore, we consider that the characteristics of rupture propagations obtained
497	in this study can be explained by the spatial variation in fault strength due to the pore-
498	pressure migration in a consistent manner with systematic temporal changes in fault
499	strength, stress drop, background seismicity rate, b-values, and upward hypocenter
500	migration. We observed that the orientations of rupture propagation are approximately
501	opposite to those of the hypocenter migration and the pore-pressure migration. This
502	observation is consistent with ruptures of each earthquake being hindered from shallower
503	development due to higher fault strength ahead of the pore-pressure front. Since

earthquakes (and possible aseismic slips) already occurred in the deeper portion along the
plane, shear stress decreased there. The complex distribution of stress and strength along
the fault planes thus produced might have caused some diversity seen in the rupture
propagation directions.

508 The temporal change in stress drop may be explained by considering that it reflects 509 the change in effective normal stress. Yoshida et al. (2017) used the following simplified 510 relationship to explain the obtained correlation between fault strength τ_0 and stress drop 511 $\Delta\sigma$:

512
$$\tau_0 = \mu_s \sigma_n^{eff} \tag{6}$$

513
$$\Delta \sigma = (\mu_s - \mu_d) \sigma_n^{eff} = (1 - \frac{\mu_d}{\mu_s}) \tau_0 \tag{7}$$

where μ_s , μ_d , and σ_n^{eff} are the static frictional coefficient, kinematic frictional coefficient, and effective normal stress, respectively. Previous studies of fluid-injection induced seismicity support the correlation between stress drops and effective normal stress (Goertz-Allmann et al., 2011; Lengliné et al., 2014).

By taking the finite rupture area into account, this simplification might no longer be valid because initial shear stress τ_{ini} should be smaller than $\tau_0 = \mu_s \sigma_n^{eff}$ except for at the hypocenter. In this case, we should assume $\Delta \sigma = \tau_{ini} - \mu_d \sigma_n^{eff}$ in the surrounding area. This equation implies a negative correlation between stress drop and 522 effective normal stress.

As an alternative method, we might explain the positive relationship between stress 523drop and fault strength by considering the small-scale stochastic heterogeneity in shear 524stress (τ_{ini}) in the focal region. Earthquakes can occur even under relatively low 525magnitudes of shear stress when pore-pressure level is high and effective normal stress is 526low. By contrast, earthquakes can only occur in higher shear stress region when the pore-527pressure level is lower. This suggests that the mean value of shear stress increased during 528the pore-pressure diffusion, which might have produced the obtained positive relationship 529between stress drop and fault strength. In fact, Yoshida et al. (2016) suggested that 530earthquakes occurred on unfavorably-oriented faults, on which shear-stress magnitude is 531low, especially in the initial stage of this swarm activity. 5325337. Conclusion 534In this study, we investigated the rupture directivities of small and moderate-sized 535earthquakes in the Yamagata-Fukushima border earthquake swarm, which was estimated 536

537 to be triggered by upward fluid movement after the 2011 Tohoku-Oki earthquake. We

- 538 utilized the dense nationwide seismic network in Japan to estimate the rupture directivity
- 539 of small- and moderate-size earthquakes ($M_{\text{JMA}} \ge 2$).

540	Apparent source time functions were computed for 1,596 earthquakes at each
541	station based on the waveform deconvolution technique with nearby (<300 m) small
542	earthquakes to remove the propagation- and site-effects. We found clear directional
543	dependences of the peak amplitude and the pulse-width in the apparent source time
544	functions, suggesting the earthquake rupture directivity, for 824 of 1,596 event.
545	Based on the unilateral rupture model, we estimated the direction, duration, and
546	velocity of rupture for each earthquake. Rupture directions of most earthquakes tend to
547	be different from those of the hypocenter migration. This difference between the
548	microscopic and macroscopic propagations of rupture might be explained by the spatial
549	variation in the fault strength on the fault; ruptures of each earthquake are hindered in
550	their development toward the region with higher fault strength ahead of the pore-pressure
551	front. This suggests the importance of the knowledge of spatial variation in fault strength
552	affected by pore pressure to understand source processes.

553 Fault planes of small and moderate-sized earthquakes were estimated based on 554 focal mechanism and rupture directivity. Most of the fault planes are parallel to the 555 macroscopic planar structures, which is consistent with the idea that they were triggered 556 by fluid intrusion along those common planar structures. By taking the limitation of the 557 resolution of hypocenter relocation, information from the rupture directivity can provide

558	unique data for understanding the fault planes of small and moderate-sized earthquakes.
559	We confirmed the temporal increase in stress drop reported by Yoshida et al. (2017)
560	by taking the effect of rupture directivity into account, although the obtained values are
561	systematically higher in the present study. The systematic temporal changes in fault
562	strength, stress drop, background seismicity rate, b-values, the upward hypocenter
563	migration along the planar structures, and the rupture directivity opposite to the
564	hypocenter migration can be explained in a consistent manner by the effects of the upward
565	fluid flow along several existing planes after the 2011 M9 Tohoku-Oki earthquake.

567 Appendix

We determined the focal mechanism to obtain information about fault planes of individual earthquakes. For that, we used amplitudes of direct P- and S-wave corrected by those of a reference earthquake whose focal mechanism is known. We adopted a similar method to Dahm (1996), which utilizes amplitude ratios of P-, SH-, and SV-waves by assuming that the medium in the vicinity of the source is homogeneous and isotropic. The displacement component u_i^n in the *n* direction for phase observation *i* is: $u_i^n = l_i^n \sum_{k=1}^6 m_k a_{ik}$ (1)

575 with

Find P:
$$a_{i1} = -\sin^2 \theta_i \cos 2\varphi_i$$
, $a_{i2} = -\sin^2 \theta_i \sin 2\varphi_i$, $a_{i3} = \sin 2\theta_i \cos \varphi_i$, $a_{i4} = \sin 2\theta_i \sin \varphi_i$, $a_{i5} = \sin^2 \theta_i - 2\cos^2 \varphi_i$, $a_{i6} = 1$,
SH: $a_{i1} = -\sin \theta_i \sin 2\varphi_i$, $a_{i2} = -\sin \theta_i \cos 2\varphi_i$, $a_{i3} = -\cos \theta_i \sin \varphi_i$, $a_{i4} = \cos \theta_i \sin \varphi_i$, $a_{i5} = 0$, $a_{i6} = 0$,
SV: $a_{i1} = -\frac{1}{2}\sin 2\theta_i \cos 2\varphi_i$, $a_{i2} = \frac{1}{2}\sin 2\theta_i \sin 2\varphi_i$, $a_{i3} = \cos 2\theta_i \cos \varphi_i$, $a_{i4} = \cos 2\theta_i \sin \varphi_i$, $a_{i5} = \frac{3}{2}\sin 2\theta_i$, $a_{i6} = 0$,

583
$$m_1 = 0.5(M_{22} - M_{11})$$
, $m_2 = M_{12}$, $m_3 = M_{13}$, $m_4 = M_{23}$, $m_5 = \frac{1}{3}(0.5(M_{22} + M_{13}))$

584
$$M_{11}$$
) – M_{33}), $m_6 = \frac{1}{3}(M_{11} + M_{22} + M_{33})$

where M_{lm} are the moment tensor components, and φ_i and θ_i are the azimuth and 585take-off angle of the ith ray (Dahm, 1996). I_i^n includes the site- and path-effects. We 586cancel out I_i^n in Eq. (1) by considering amplitude ratios between a target event and a 587reference event. By substituting the moment tensor components of the reference event, 588we obtain a set of linear equations that relate the moment tensor components of the target 589events to amplitude ratio data. To validate the assumption for cancelling out I_i^n and to 590obtain the amplitude ratios robustly, amplitude ratio data are discarded if the two 591592waveforms are not similar (cross correlation coefficient less than 0.6). We use lowfrequency (2-5 Hz) waveforms for avoiding the effect of rupture directivity and measure 593

594	the amplitude ratio by a principal component fit (Shelly et al., 2013). If amplitude ratio
595	data are obtained at more than eight different seismic stations, we compute the moment
596	tensor components by applying the least square method to the set of linear equations.

Moment tensor components of the reference event were computed under the assumption that they have no non-double-couple components. We limited distance between a target and a reference event to <3 km. We computed 2,000 focal mechanisms for each target event based on bootstrap resampling of amplitude ratio data. Difference of focal mechanisms from the best-solution is measured by the 3-D rotation angle (Kagan, 1991). If the 90 % confidence region was larger than 30°, we discarded the result. Thus, moment tensor solutions of 1,285 $M_{JMA} \ge 2$ events were determined.

Fig. A1 shows an example of applying this method to an aftershock of the 2008 Iwate-Miyagi Nairiku earthquake. The focal mechanism of this earthquake was precisely determined by Yoshida et al. (2014) based on P-wave first-motion polarity data owing to the temporal seismic network (Fig. A1a). We newly determined the focal mechanism of this earthquake by the above procedure using only the routine seismic network data. The result is almost identical to that obtained by Yoshida et al. (2014).

610

611 Acknowledgments

612	We deeply thank the editor Kelin Wang, Rachel E. Abercrombie, and an anonymous
613	reviewer for their constructive comments, which helped to improve the manuscript. The
614	comments from Roland Bürgmann on the first draft significantly improved the manuscript.
615	KY thanks Hiroo Kanamori for motivating and helping the investigation of rupture
616	directivity of small earthquakes in the first stage. The figures in the present paper were
617	created using GMT (Wessel and Smith, 1998). Focal mechanisms, rupture directivities,
618	and stress drops determined in this study are accessible via the following address:
619	http://www.aob.gp.tohoku.ac.jp/~yoshida/pub/Tecto2019/.
620	
691	
041	
622	References
622 623	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of
622 623 624	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New
 622 623 624 625 	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, ggw393.
 622 623 624 625 626 	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, ggw393. Abercrombie, R.E., Poli, P., Bannister, S., 2017. Earthquake Directivity, Orientation,
 622 623 624 625 626 627 	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, ggw393. Abercrombie, R.E., Poli, P., Bannister, S., 2017. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New
 622 623 624 625 626 627 628 	References Abercrombie, R. E., Bannister, S., Ristau, J., & Doser, D., 2016. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand. Geophysical Journal International, ggw393. Abercrombie, R.E., Poli, P., Bannister, S., 2017. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 122, 10, 176-10, 188.
630	Ampuero, J.P., Ben-zion, Y., 2008. Cracks, pulses and macroscopic asymmetry of
-----	---
631	dynamic rupture on a bimaterial interface with velocity-weakening friction.
632	Geophys. J. Int. 173, 674–692. <u>https://doi.org/10.1111/j.1365-246X.2008.03736.x</u>
633	Bachmann, C.E., Wiemer, S., Goertz-Allmann, B.P., Woessner, J., 2012. Influence of
634	pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res.
635	Lett. 39, 1–7. <u>https://doi.org/10.1029/2012GL051480</u>
636	Ben-Zion, Y., Andrews, D.J., 1998. Properties and implications of dynamic rupture
637	along a material interface. Bull. Seismol. Soc. Am , 88(4), 1085-1094.
638	Ben-Zion, Y., Huang, Y., 2002. Dynamic rupture on an interface between a compliant
639	fault zone layer and a stiffer surrounding solid. J. Geophys. Res. 107, 2042.
640	https://doi.org/10.1029/2001JB000254
641	Boatwright, J., 2007. The persistence of directivity in small earthquakes. Bull. Seismol.
642	Soc. Am. 97, 1850–1861. https://doi.org/10.1785/0120050228
643	Brune, J.N., 1970. Tectonic stress and the spectra of seismic shear waves from
644	earthquakes. J. Geophys. Res. 75, 4997–5009.
645	https://doi.org/10.1029/JB075i026p04997
646	Chen, P., Jordan, T.H., Zhao, L., 2010. Resolving fault plane ambiguity for small

648	<u>246X.2010.04515.x</u>
649	Chounet, A., Vallée, M., Causse, M., Courboulex, F., 2018. Global catalog of earthquake
650	rupture velocities shows anticorrelation between stress drop and rupture velocity.
651	Tectonophysics 733, 148–158. https://doi.org/10.1016/j.tecto.2017.11.005
652	Dahm, T., 1996. Relative moment tensor inversion based on ray theory: Theory and
653	synthetic tests. Geophys. J. Int. 124, 245–257. https://doi.org/10.1111/j.1365-
654	246X.1996.tb06368.x
655	Das, S., & Aki, K., 1977, Fault plane with barriers: a versatile earthquake model.
656	Journal of geophysical research, 82(36), 5658-5670.
657	Dong, G., Papageorgiou, A.S., 2003. On a new class of kinematic models: Symmetrical
658	and asymmetrical circular and elliptical cracks. Phys. Earth Planet. Inter. 137, 129-
659	151. https://doi.org/10.1016/S0031-9201(03)00012-8
660	Edwards, B., Rietbrock, A., 2009. A comparative study on attenuation and source-
661	scaling relations in the Kantō, Tokai, and Chubu regions of Japan, using data from
662	Hi-net and KiK-net. Bull. Seismol. Soc. Am. 99, 2435–2460.
663	https://doi.org/10.1785/0120080292
	37

earthquakes. Geophys. J. Int. 181, 493-501. https://doi.org/10.1111/j.1365-

664	Folesky, J., Kummerow, J., Shapiro, S.A., Häring, M., Asanuma, H., 2016. Rupture
665	directivity of fluid-induced microseismic events: Observations from an enhanced
666	geothermal system. J. Geophys. Res. Solid Earth 121, 8034-8047.
667	https://doi.org/10.1002/2016JB013078
668	Fukuyama, E., Irikura, K., 1986. RUPTURE PROCESS OF THE 1983 JAPAN SEA
669	(AKITA-OKI) EARTHQUAKE USING A WAVEFORM INVERSION METHOD.
670	Bull. Seismol. Soc. Amerma 76, 1623–1640. https://doi.org/10.1785/0119990070
671	Fukuyama, E., Madariaga, R., 2000. Dynamic Propagation and Interaction of a Rupture
672	Front on a Planar Fault. Pure Appl. Geophys. 157, 1959–1979.
673	https://doi.org/10.1007/PL00001070
674	Geller, R.J., 1976. SCALING RELATIONS FOR EARTHQUAKE SOURCE
675	PARAMETERS AND MAGNITUDES, Bulletin of the Seismological Society of
676	America.
677	Goertz-Allmann, B.P., Goertz, A., Wiemer, S., 2011. Stress drop variations of induced
678	earthquakes at the Basel geothermal site. Geophys. Res. Lett. 38, n/a-n/a.
679	https://doi.org/10.1029/2011GL047498
680	Hainzl, S., Ogata, Y., 2005. Detecting fluid signals in seismicity data through statistical

- 681 earthquake modeling. J. Geophys. Res. Solid Earth 110, 1–10.
- 682 https://doi.org/10.1029/2004JB003247
- 683 Hartzell, B.Y.S.H., Heaton, T.H., 1983. INVERSION OF STRONG GROUND
- 684 MOTION AND TELESEISMIC WAVEFORM DATA FOR THE FAULT
- 685 RUPTURE HISTORY OF THE 1979 IMPERIAL VALLEY, CALIFORNIA,
- 686 EARTHQUAKE. Bull. Seismol. Soc. Am. 73, 1553–1583.
- 687 Hartzell, S.H., 1978. Earthquakes aftershocks as Green's Functions. Geophys. Res. Lett.
- 688 5, 1–4. https://doi.org/10.1029/GL005i001p00001
- 689 Hasegawa, A., Umino, N., Takagi, A., 1978. Double-planed structure of the deep
- seismic zone in the northeastern Japan arc. Tectonophysics 47, 43–58.
- 691 https://doi.org/10.1016/0040-1951(78)90150-6
- Haskell, N.A., 1964. Total energy and energy spectral density of elastic wave radiation
- from prom propagating faults. Bull. Seismol. Soc. Am. 54, 1811–1841.
- 694 <u>https://doi.org/10.1029/SP030p0149</u>
- Hatch, R. L., Abercrombie, R. E., Ruhl, C. J., & Smith, K. D., 2018. Earthquake
- Interaction, Fault Structure, and Source Properties of a Small Sequence in 2017
- 697 near Truckee, California. Bulletin of the Seismological Society of America,

698 108(5A), 2580-2593.

- 699 Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M., Tsushima, H.,
- 500 Suzuki, S., Fujimoto, H., Miura, S., 2012. Coseismic slip distribution of the 2011
- 701 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor
- geodetic data. J. Geophys. Res. Solid Earth 117, 1–18.
- 703 https://doi.org/10.1029/2012JB009186
- Julian, B.R., Foulger, G.R., Monastero, F.C., Bjornstad, S., 2010. Imaging hydraulic
- fractures in a geothermal reservoir. Geophys. Res. Lett. 37.
- 706 https://doi.org/10.1029/2009GL040933
- 707 Kanamori, H., & Stewart, G. S., 1978, Seismological aspects of the Guatemala
- earthquake of February 4, 1976. Journal of Geophysical Research: Solid Earth,
- 709 83(B7), 3427-3434.
- 710 Kane, D. L., Kilb, D. L., & Vernon, F. L., 2013a, Selecting empirical Green's functions
- in regions of fault complexity: A study of data from the San Jacinto fault zone,
- southern California. Bulletin of the Seismological Society of America, 103(2A),
- 713 641**-**650.
- Kane, D.L., Shearer, P.M., Goertz-Allmann, B.P., Vernon, F.L., 2013b. Rupture

715	directivity of small earthquakes at Parkfield. J. Geophys. Res. Solid Earth 118,
716	212-221. https://doi.org/10.1029/2012JB009675
717	Kaneko, Y., Shearer, P.M., 2015. Variability of seismic source spectra, estimated stress
718	drop, and radiated energy, derived from cohesive-zone models of symmetrical and
719	asymmetrical circular and elliptical ruptures. J. Geophys. Res. Solid Earth 120,
720	1053-1079. https://doi.org/10.1002/2014JB011642
721	Kurzon, I., Vernon, F.L., Ben-Zion, Y., Atkinson, G., 2014. Ground Motion Prediction
722	Equations in the San Jacinto Fault Zone: Significant Effects of Rupture Directivity
723	and Fault Zone Amplification. Pure Appl. Geophys. 171, 3045–3081.
724	https://doi.org/10.1007/s00024-014-0855-2
725	Lengliné, O., Got, J.L., 2011. Rupture directivity of microearthquake sequences near
726	Parkfield, California. Geophys. Res. Lett. 38, 1–5.
727	https://doi.org/10.1029/2011GL047303
728	Lengliné, O., Lamourette, L., Vivin, L., Cuenot, N., & Schmittbuhl, J., 2014. Fluid -
729	induced earthquakes with variable stress drop. Journal of Geophysical Research:

- 730 Solid Earth, 119(12), 8900-8913.
- 731 Ligorría, J.P., Ammon, C.J., 1999. Iterative deconvolution and receiver-function

732	estimation. Bull. Seismol. Soc. Am. 89, 1395–1400. https://doi.org/10.1016/S0304-
733	<u>3940(97)00816-1</u>
734	Madariaga, R., 1976. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am.
735	66, 639–666. <u>https://doi.org/10.1111/j.1461-0248.2009.01352.x</u>
736	Madariaga, R., 1979. On the relation between seismic moment and stress drop in the
737	presence of stress and strength heterogeneity. Journal of Geophysical Research:
738	Solid Earth, 84(B5), 2243-2250.
739	Madariaga, R., Ruiz, S., 2016. Earthquake dynamics on circular faults: a review 1970-
740	2015. J. Seismol. 20, 1235–1252. https://doi.org/10.1007/s10950-016-9590-8
741	Martínez-Garzón, P., Kwiatek, G., Sone, H., Bohnhoff, M., Dresen, G., Hartline, C.,
742	2014. Spatiotemporal changes, faulting regimes, and source parameters of induced
743	seismicity: A case study from the Geysers geothermal field. J. Geophys. Res. Solid
744	Earth 119, 8378-8396. https://doi.org/10.1002/2014JB011385
745	Masayuki Kikuchi, and Hiroo Kanamori, 1982. Inversion of complex body waves. Bull.
746	Seismol. Soc. Am. 72, 491–506.
747	McGuire, J.J., 2004. Estimating finite source properties of small earthquake ruptures.
748	Bull. Seismol. Soc. Am. 94, 377-393. https://doi.org/10.1785/0120030091

749	McGuire, J.J., Zhao, L., Jordan, T.H., 2002. Predominance of unilateral rupture for a
750	global catalog of large earthquake. Bull. Seismol. Soc. Am. 92, 3309-3317.
751	https://doi.org/10.1785/0120010293
752	Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A., Takahashi, H.,
753	Yamada, T., Kosuga, M., Takeda, T., Kato, A., Igarashi, T., Obara, K., Sakai, S.,
754	Saiga, A., Iidaka, T., Iwasaki, T., Hirata, N., Tsumura, N., Yamanaka, Y., Terakawa,
755	T., Nakamichi, H., Okuda, T., Horikawa, S., Katao, H., Miura, T., Kubo, A.,
756	Matsushima, T., Goto, K., Miyamachi, H., 2016. Hypocenter migration and crustal
757	seismic velocity distribution observed for the inland earthquake swarms induced
758	by the 2011 Tohoku-Oki earthquake in NE Japan: Implications for crustal fluid
759	distribution and crustal permeability, in: Crustal Permeability.
760	https://doi.org/10.1002/9781119166573.ch24
761	Ross, Z.E., Rollins, C., Cochran, E.S., Hauksson, E., Avouac, J.P., Ben-Zion, Y., 2017.
762	Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture
763	mesh. Geophys. Res. Lett. 44, 8260-8267. https://doi.org/10.1002/2017GL074634
764	Rutledge, J.T., Phillips, W.S., Mayerhofer, M.J., 2004. Faulting induced by forced fluid
765	injection and fluid flow forced by faulting: An interpretation of hydraulic-fracture

766	microseismicity, Carthage Cotton Valley gas field, Texas. Bull. Seismol. Soc. Am.
767	94, 1817–1830. https://doi.org/10.1785/012003257

- Sato, T., Hirasawa, T., 1973. Body wave spectra from propagating shear cracks. J. Phys. 768

Earth 21, 415–431. https://doi.org/10.4294/jpe1952.21.415 769

- Seekins, L.C., Boatwright, J., 2010. Rupture directivity of moderate earthquakes in 770
- Northern California. Bull. Seismol. Soc. Am. 100, 1107-1119. 771
- https://doi.org/10.1785/0120090161 772

- Shapiro, S.A., Huenges, E., Borm, G., 1997. Estimating the crust permeability from 773
- 774fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 131.
- https://doi.org/10.1111/j.1365-246X.1997.tb01215.x 775
- Shelly, D.R., Ellsworth, W.L., Hill, D.P., 2016. Fluid-faulting evolution in high 776
- definition: Connecting fault structure and frequency-magnitude variations during 777
- the 2014 Long Valley Caldera, California, earthquake swarm. J. Geophys. Res. 778
- Solid Earth 121, 1776–1795. https://doi.org/10.1002/2015JB012719 779
- Tan, Y., Helmberger, D., 2010. Rupture directivity characteristics of the 2003 big bear 780
- sequence. Bull. Seismol. Soc. Am. 100, 1089-1106. 781
- https://doi.org/10.1785/0120090074 782

783	Terakawa, T., Hashimoto, C., Matsu'ura, M., 2013. Changes in seismic activity
784	following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure. Earth
785	Planet. Sci. Lett. 365, 17-24. https://doi.org/10.1016/j.epsl.2013.01.017
786	Tomic, J., Abercrombie, R.E., Do Nascimento, A.F., 2009. Source parameters and
787	rupture velocity of small $M \le 2.1$ reservoir induced earthquakes. Geophys. J. Int.
788	179, 1013–1023. https://doi.org/10.1111/j.1365-246X.2009.04233.x
789	Udias, A., Madariaga, R., Buforn, E., 2013. Source mechanisms of earthquakes: Theory
790	and practice, Source Mechanisms of Earthquakes: Theory and Practice.
791	https://doi.org/10.1017/CBO9781139628792
792	Urata, Y., Yoshida, K., Fukuyama, E., Kubo, H., 2017. 3-D dynamic rupture simulations
793	of the 2016 Kumamoto, Japan, earthquake 4. Seismology. Earth, Planets Sp. 69,
794	150. https://doi.org/10.1186/s40623-017-0733-0
795	Venkataraman, A., Kanamori, H., 2004. Observational constraints on the fracture energy
796	of subduction zone earthquakes. J. Geophys. Res. Solid Earth 109.
797	https://doi.org/10.1029/2003JB002549
798	Waldhauser, F., Ellsworth, W.L., 2000. A Double-Difference Earthquake Location

Algorithm : Method and Application to the Northern Hayward Fault, California

800 1353–1368.

- 801 Weertman, J., 1980. Unstable slippage across a fault that separates elastic media of
- different elastic constants. J. Geophys. Res. 85, 1455–1461.
- 803 https://doi.org/10.1029/JB085iB03p01455
- 804 Wyss, M., 1973. Towards a Physical Understanding of the Earthquake Frequency
- Distribution. Geophys. J. R. Astron. Soc. 31, 341–359.
- 806 https://doi.org/10.1111/j.1365-246X.1973.tb06506.x
- Xue, L., Bürgmann, R., Shelly, D.R., Johnson, C.W., Taira, T., 2018. Kinematics of the
- 808 2015 San Ramon, California earthquake swarm: Implications for fault zone
- structure and driving mechanisms. Earth Planet. Sci. Lett. 489, 135–144.
- 810 https://doi.org/10.1016/j.epsl.2018.02.018
- 811 Yamada, T., Mori, J.J., Ide, S., Kawakata, H., Iio, Y., Ogasawara, H., 2005. Radiation
- efficiency and apparent stress of small earthquakes in a South African gold mine. J.
- 813 Geophys. Res. B Solid Earth 110, 1–18. https://doi.org/10.1029/2004JB003221
- Ye, L., Lay, T., Kanamori, H., Rivera, L., 2016. Rupture characteristics of major and
- great ($Mw \ge 7.0$) megathrust earthquakes from 1990 to 2015: 1. Source parameter
- scaling relationships. J. Geophys. Res. Solid Earth 121, 826–844.

817 <u>https://doi.org/10.1002/2015JB012426</u>

- 818 Yoshida, K., Hasegawa, A., Okada, T., Iinuma, T., Ito, Y., Asano, Y., 2012. Stress before
- and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland
- areas of eastern Japan. Geophys. Res. Lett. 39.
- 821 https://doi.org/10.1029/2011GL049729
- 822 Yoshida, K., Hasegawa, A., 2018a. Sendai-Okura earthquake swarm induced by the
- 2011 Tohoku-Oki earthquake in the stress shadow of NE Japan: Detailed fault
- structure and hypocenter migration. Tectonophysics 733, 132–147.
- 825 <u>https://doi.org/10.1016/j.tecto.2017.12.031</u>
- 826 Yoshida, K., Hasegawa, A., 2018b. Hypocenter Migration and Seismicity Pattern
- 827 Change in the Yamagata-Fukushima Border, NE Japan, Caused by Fluid
- Movement and Pore Pressure Variation. J. Geophys. Res. Solid Earth 123, 5000–
- 829 5017. https://doi.org/10.1029/2018JB015468
- 830 Yoshida, K., Hasegawa, A., Okada, T., Iinuma, T., 2014. Changes in the stress field after
- the 2008 M7.2 Iwate-Miyagi Nairiku earthquake in northeastern Japan. J.
- 832 Geophys. Res. Solid Earth 119, 9016–9030. <u>https://doi.org/10.1002/2014JB011291</u>
- 833 Yoshida, K., Hasegawa, A., Okada, T., 2015. Spatially heterogeneous stress field in the

source area of the 2011 Mw 6.6 Fukushima-Hamador	ri earthquake, NE Japan,
--	--------------------------

- probably caused by static stress change. Geophys. J. Int. 201, 1062–1071.
- 836 https://doi.org/10.1093/gji/ggv068
- 837 Yoshida, K., Hasegawa, A., Yoshida, T., 2016. Temporal variation of frictional strength
- in an earthquake swarm in NE Japan caused by fluid migration. J. Geophys. Res.
- 839 Solid Earth 121, 5953–5965. <u>https://doi.org/10.1002/2016JB013022</u>
- 840 Yoshida, K., Saito, T., Urata, Y., Asano, Y., Hasegawa, A., 2017. Temporal Changes in
- 841 Stress Drop, Frictional Strength, and Earthquake Size Distribution in the 2011
- 842 Yamagata-Fukushima, NE Japan, Earthquake Swarm, Caused by Fluid Migration.
- ⁸⁴³ J. Geophys. Res. Solid Earth 122, 10,379-10,397.
- 844 https://doi.org/10.1002/2017JB014334
- 845 Yoshida, K., Hasegawa, A., Yoshida, T., Matsuzawa, T., 2018. Heterogeneities in Stress
- and Strength in Tohoku and Its Relationship with Earthquake Sequences Triggered
- by the 2011 M9 Tohoku-Oki Earthquake. Pure Appl. Geophys. 1–21.
- 848 <u>https://doi.org/10.1007/s00024-018-2073-9</u>
- 849

852	Figure 1. The earthquake swarm in the Yamagata-Fukushima border. The blue rectangle
853	indicates the focal region of the swarm. Red and gray circles denote
854	shallow earthquakes (z \leq 40 km) before and after the 2011 Tohoku-Oki
855	earthquake, respectively. (a) The distribution of hypocenters before and
856	after the 2011 Tohoku-Oki earthquake. Gray circles denote shallow
857	earthquakes before the 2011 Tohoku-Oki earthquake. The black contours
858	show the coseismic slip distribution of the Tohoku-Oki earthquake
859	determined by Iinuma et al. (2012). The dashed line rectangle indicates the
860	range of (b). (b) The distribution of seismic stations around the source
861	region of the Yamagata-Fukushima border swarm. Stations used in this
862	study are shown by crosses.
863	

Figure 2. Temporal changes in the Yamagata-Fukushima border swarm. (a) Map view 866 867 showing hypocenter migration. Dots show hypocenters of earthquakes. Time elapsed after the Tohoku-Oki earthquake is shown by the color scale. 868 The thin line denotes the border line between Yamagata and Fukushima 869 870 prefectures. (b)–(e) Temporal variations in (b) fault strength, (c) stress drop, 871 (d) background seismicity rate, and (e) b-value. The horizontal lines show 872 the time periods from which data were taken for computation of the corresponding values. Data for frictional strengths are from Yoshida et al. 873 (2016), those for stress drops and b-values are from Yoshida et al. (2017), 874 and those for background seismicity rate are from Yoshida & Hasegawa 875 876 (2018b). 877

Figure 3. Four examples of the distribution of apparent moment rate functions. (a) 880 881 Apparent moment rate functions plotted on the locations of seismic stations. 882 Black arrows represent the azimuths of rupture directivity based on the 883 unilateral rupture model. Tick marks denote 0.1 s intervals. (b) Relationships between azimuth of the seismic stations and the pulse widths 884 of apparent moment rate functions. (c) Relationships between the angles 885 886 between the ray and rupture, and the pulse widths of apparent moment rate functions. (d) Confidence regions of rupture propagation direction shown 887 888 on the beach-balls. Crosses show the seismic stations. White squares shows the best-fit direction of rupture propagation. Black squares show results 889 from 2,000 computations based on the bootstrap resampling. The results are 890 891 shown in the left-beach ball (lower-hemisphere projection) when the ray or the rupture is downward. They are shown on the right-beach ball (upper-892 hemisphere projection) when the ray or the rupture is upward. 893 894

898	frequency distribution. (a) Variance reduction (VR), (b) azimuth of rupture
899	propagation, (c) take-off angle of rupture propagation, (d) consistency of
900	nodal plane choice, (e) Rupture velocity divided by S-wave velocity
901	(Vr/Vs), (f) Rupture length divided by rupture speed (L/Vr). Azimuth,
902	takeoff angle, Vr/Vs, and L/Vr are shown only when the variance reduction
903	in (a) is higher than 40%.

907 Figure 5. Comparisons of the results of applying the 1-D unilateral rupture model with 908 the magnitude and the seismic moment. (a) seismic moment versus source duration, (b) seismic moment versus fault length, (c) magnitude versus 909 910 VR/Vs, (d) magnitude versus azimuth. Crosses represent individual values. 911 The blue circles show the mean values at each seismic moment and magnitude. 912

 $\begin{array}{c} 914\\ 915 \end{array}$

916	Figure 6. Hypocenter migrations and fault plane orientations in the four clusters. (a)
917	Locations of hypocenters are shown in map view. The circle diameter
918	corresponds to the circular fault size when the stress drop is 3 MPa. (b)
919	Fault planes chosen based on the rupture directivity. Colors indicate the
920	occurrence timing of earthquakes according to the color scale. Bar length
921	corresponds to the angle of the maximum dip of the fault plane with the
922	cross-section.
923	

936 Figure 8. Orientations of rupture directivity and hypocenter migration on the five 937 distinct planar structures in the western cluster. Five columns correspond to the five planes. (a)-(e): Hypocenters shown in the cross-sectional views 938 along the lines in (f)–(j). (f)–(j): hypocenters shown in the map views. (k)– 939 (o): rose diagrams showing the relative frequency of rupture propagation 940 941 directions.

945	Figure 9.	A schematic illustration explaining the relationship of directions between the
946		rupture propagation and the hypocenter migration. Pore-pressure migrates
947		along the plane together with hypocenters. Lower pore pressure and hence
948		higher fault strength tend to hinder the propagation of rupture outward of
949		the pore-pressure front (shallower development) while higher pore pressure
950		tends to allow rupture to propagate inward.

 $\begin{array}{c} 952\\ 953 \end{array}$

955Figure 10. Results of applying the asymmetrical circular crack model. (a) Frequency956distributions of fault radii and (b) their relationship with magnitude. (c)957Frequency distributions of relative distance of the initiation points from the958center to the fault radius, and (d) their relationship with magnitude. (e)959Frequency distributions of ratios between the maximum rupture velocity960and the S-wave velocity, and (f) their relationship with magnitude. The blue961circles represent the mean value at each magnitude.962

 $\begin{array}{c} 964\\ 965 \end{array}$

966	Figure 11. Results of stress drop. (a), (b), and (c) show frequency distribution of stress
967	drops estimated based on the asymmetrical circular crack model, those
968	based on the asymmetrical circular crack model with constant Vr/Vs=0.9,
969	and those based on the symmetrical circular crack model with constant
970	Vr/Vs=0.9, respectively. (d), (e) and (f) show frequency distribution of
971	variance reduction of the corresponding models. (g) Comparison between
972	stress drops based on the asymmetrical model (a) and those based on the
973	asymmetrical model (b) with constant Vr/Vs=0.9 of same events. (h)
974	Comparison between stress drops based on the asymmetrical model (b) and
975	those based on the symmetrical model (c) of same events. (i) Comparison
976	between stress drops based on the asymmetrical model (a) and those based
977	on the symmetrical model (c) of same events.
978	

Figure 13. Orientations of fault planes and hypocenter distribution in the northern and southern cluster. Blue bars indicate the orientation of fault planes. Bar length corresponds to the angle of the maximum dip of fault plane with the cross-section.

997	Figure A1. An example of applying the focal mechanism determination method used in
998	this study. (a) Focal mechanisms determined by Yoshida et al. (2014) (left)
999	and in this study (right) are shown beach-balls. Black and white circles in
1000	the left beach-ball represent first-motion polarity data (up and down,
1001	respectively). The gray curves in the right figure indicate 1,000 solutions
1002	based on the bootstrap resampling. The beach-ball on the lower left
1003	indicates the reference focal mechanism listed in the JMA catalog. (b)
1004	Comparison between observed and theoretical amplitude ratio data. (c)
1005	Examples of waveform data. Red waveforms represent the waveforms of
1006	the reference event, and black represents waveforms of the target event
1007	divided by the predicted amplitude ratio of the two earthquakes.
1008	

1011 Figure Captions

1012	Figure 1. The earthquake swarm in the Yamagata-Fukushima border. The blue rectangle
1013	indicates the focal region of the swarm. Red and gray circles denote
1014	shallow earthquakes (z <40 km) before and after the 2011 Tohoku-Oki
1015	earthquake, respectively. (a) The distribution of hypocenters before and
1016	after the 2011 Tohoku-Oki earthquake. Gray circles denote shallow
1017	earthquakes before the 2011 Tohoku-Oki earthquake. The black contours
1018	show the coseismic slip distribution of the Tohoku-Oki earthquake
1019	determined by Iinuma et al. (2012). The dashed line rectangle indicates the
1020	range of (b). (b) The distribution of seismic stations around the source
1021	region of the Yamagata-Fukushima border swarm. Stations used in this
1022	study are shown by crosses.
1023	
1024	Figure 2. Temporal changes in the Yamagata-Fukushima border swarm. (a) Map view
1025	showing hypocenter migration. Dots show hypocenters of earthquakes.
1026	Time elapsed after the Tohoku-Oki earthquake is shown by the color scale.
1027	The thin line denotes the border line between Yamagata and Fukushima
1028	prefectures. (b)-(e) Temporal variations in (b) frictional strength, (c) stress

1029	drop, (d) background seismicity rate, and (e) b-value. The horizontal lines
1030	show the time periods from which data were taken for computation of the
1031	corresponding values. Data for frictional strengths are from Yoshida et al.
1032	(2016), those for stress drops and b-values are from Yoshida et al. (2017),
1033	and those for background seismicity rate are from Yoshida & Hasegawa
1034	(2018b).
1035	
1036	Figure 3. Four examples of the distribution of apparent moment rate functions. (a)
1037	Apparent moment rate functions plotted on the locations of seismic stations.
1038	Black arrows represent the azimuths of rupture directivity based on the
1039	unilateral rupture model. Tick marks denote 0.1 s intervals. (b)
1040	Relationships between azimuth of the seismic stations and the pulse widths
1041	of apparent moment rate functions. (c) Relationships between the angles
1042	between the ray and rupture, and the pulse widths of apparent moment rate
1043	functions. (d) Confidence regions of rupture propagation direction shown
1044	on the beach-balls. Crosses show the seismic stations. White squares show
1045	the best-fit direction of rupture propagation. Black squares show results
1046	from 2,000 computations based on the bootstrap resampling. The results are

1047	shown in the left-beach ball (lower-hemisphere projection) when the ray or
1048	the rupture is downward. They are shown on the right-beach ball (upper-
1049	hemisphere projection) when the ray or the rupture is upward.
1050	
1051	Figure 4. Results of applying the 1-D unilateral rupture model. They are shown by
1052	frequency distribution. (a) Variance reduction (VR), (b) azimuth of rupture
1053	propagation, (c) take-off angle of rupture propagation, (d) consistency of
1054	nodal plane choice, (e) Rupture velocity divided by S-wave velocity
1055	(Vr/Vs), (f) Rupture length divided by rupture speed (L/Vr). Azimuth,
1056	takeoff angle, Vr/Vs, and L/Vr are shown only when the variance reduction
1057	in (a) is higher than 40%.
1058	
1059	Figure 5. Comparisons of the results of applying the 1-D unilateral rupture model with
1060	the magnitude and the seismic moment. (a) seismic moment versus source
1061	duration, (b) seismic moment versus fault length, (c) magnitude versus
1062	VR/Vs, (d) magnitude versus azimuth. Crosses represent individual values.
1063	The blue circles show the mean values at each seismic moment and
1064	magnitude.

1066	Figure 6. Hypocenter migrations and fault plane orientations in the four clusters. (a)
1067	Locations of hypocenters are shown in map view. The circle diameter
1068	corresponds to the circular fault size when the stress drop is 3 MPa. (b)
1069	Fault planes chosen based on the rupture directivity. Colors indicate the
1070	occurrence timing of earthquakes according to the color scale. Bar length
1071	corresponds to the angle of the maximum dip of the fault plane with the
1072	cross-section.
1073	
1074	Figure 7. Comparison between the orientations of hypocenter migration and rupture
1075	propagation in the four clusters. Left: Frequency distribution of migration
1076	azimuth of hypocenters. Middle: Frequency distribution of azimuth of
1077	rupture propagation. Right: Comparison of frequency distributions of
1078	hypocenter migration and rupture.
1079	
1080	Figure 8. Orientations of rupture directivity and hypocenter migration on the five
1081	distinct planar structures in the western cluster. Five columns correspond to
1082	the five planes. (a)–(e): Hypocenters shown in the cross-sectional views

1083	al	ong the lines in (f)–(j). (f)–(j): hypocenters shown in the map views. (k)–
1084	(0): rose diagrams showing the relative frequency of rupture propagation
1085	di	rections.
1086		
1087	Figure 9. A	schematic illustration explaining the relationship of directions between the
1088	rı	pture propagation and the hypocenter migration. Pore-pressure migrates
1089	al	ong the plane together with hypocenters. Lower pore pressure and hence
1090	hi	gher fault strength tend to hinder the propagation of rupture outward of
1091	th	e pore-pressure front (shallower development) while higher pore pressure
1092	te	nds to allow rupture to propagate inward.
1093		
1094	Figure 10. Res	sults of applying the asymmetrical circular crack model. (a) Frequency
1095	di	stributions of fault radii and (b) their relationship with magnitude. (c)
1096	F	requency distributions of relative distance of the initiation points from the
1097	C	enter to the fault radius, and (d) their relationship with magnitude. (e)
1098	F	requency distributions of ratios between the maximum rupture velocity
1099	aı	nd the S-wave velocity, and (f) their relationship with magnitude. The blue
1100	ci	rcles represent the mean value at each magnitude.

1102	Figure 11. Results of stress drop. (a), (b), and (c) show frequency distribution of stress
1103	drops estimated based on the asymmetrical circular crack model, those
1104	based on the asymmetrical circular crack model with constant Vr/Vs=0.9,
1105	and those based on the symmetrical circular crack model with constant
1106	Vr/Vs=0.9, respectively. (d), (e) and (f) show frequency distribution of
1107	variance reduction of the corresponding models. (g) Comparison between
1108	stress drops based on the asymmetrical model (a) and those based on the
1109	asymmetrical model (b) with constant Vr/Vs=0.9 of same events. (h)
1110	Comparison between stress drops based on the asymmetrical model (b) and
1111	those based on the symmetrical model (c) of same events. (i) Comparison
1112	between stress drops based on the asymmetrical model (a) and those based
1113	on the symmetrical model (c) of same events.
1114	
1115	Figure 12. Temporal changes in stress drop. Gray dots represent the individual results.
1116	Blue circles and vertical values are the median values and the 95 $\%$
1117	confidence interval, respectively. (a) stress drop estimated based on the
1118	asymmetrical circular crack model. (b) stress drop estimated based on the

1119	asymmetrical circular crack model with constant Vr/Vs=0.9. (c) stress drop
1120	estimated based on the symmetrical circular crack model with constant
1121	Vr/Vs = 0.9.
1122	
1123	Figure 13. Orientations of fault planes and hypocenter distribution in the northern and
1124	southern cluster. Blue bars indicate the orientation of fault planes. Bar
1125	length corresponds to the angle of the maximum dip of fault plane with the
1126	cross-section.
1127	
1128	Figure A1. An example of applying the focal mechanism determination method used in
1129	this study. (a) Focal mechanisms determined by Yoshida et al. (2014) (left)
1130	and in this study (right) are shown beach-balls. Black and white circles in
1131	the left beach-ball represent first-motion polarity data (up and down,
1132	respectively). The gray curves in the right figure indicate 1,000 solutions
1133	based on the bootstrap resampling. The beach-ball on the lower left
1134	indicates the reference focal mechanism listed in the JMA catalog. (b)
1135	Comparison between observed and theoretical amplitude ratio data. (c)
1136	Examples of waveform data. Red waveforms represent the waveforms of

1137the reference event, and black represents waveforms of the target event1138divided by the predicted amplitude ratio of the two earthquakes.

1140 Supplementary Figures

1141	Figure S1.	Distribution of the hypocenters relocated in this study. Blue dots represent
1142		the hypocenters. The 36 figures show across-fault vertical cross-sections
1143		along the lines shown in Fig. 2 (a). Their colors show the occurrence time
1144		in accordance with Fig. 2(a).
1145		
1146	Figure S2.	Distribution of focal mechanisms shown in map view. Focal mechanisms are
1147		shown by "beach balls". Red, green, and blue "beach balls" denote thrust,
1148		strike-slip, and normal fault types of focal mechanisms, respectively, whose
1149		plunges of T, P, and B axes were greater than 45°.
1150		
1151	Figure S3.	Distribution of focal mechanisms shown in cross-sectional view. Locations
1152		of cross-sections are shown in Fig. S2. Red, green, and blue "beach balls"
1153		denote thrust, strike-slip, and normal fault types of focal mechanisms,
1154		respectively, whose plunges of T, P, and B axes were greater than 45°.
1155		
1156	Figure S4.	Comparison of VR with \triangle AIC. (a) \triangle AIC against VR for each event. (b)
1157		Percentage of positive ΔAIC above corresponding VR.
1158	Figure S5. Temporal changes in Vr/Vs. Gray dots represent the individual results.	
------	---	
1159	Median stress drops were computed in 25 time-windows having the same	
1160	number of results. Blue circles and vertical values are the median values	
1161	and the 95 % confidence interval, respectively.	
1162		