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Abstract

Those who aim to devise new materials with desirable properties usu-

ally examine present methods first. However, they will find out that

some approaches can exist only conceptually without high chances to

become practically useful. It seems that a numerical technique called

automatic differentiation together with increasing supply of computa-

tional accelerators will soon shift many methods of the material design

from the category ”unimaginable” to the category ”expensive but pos-

sible”. Approach we suggest is not an exception. Our overall goal

is to have an efficient and generalizable approach allowing to solve

inverse design problems. In this thesis we scratch its surface. We con-

sider jammed systems of identical particles. And ask ourselves how

the shape of those particles (or the parameters codifying it) may affect

mechanical properties of the system. An indispensable part of reach-

ing the answer is an appropriate particle parametrization. We come up

with a simple, yet generalizable and purposeful scheme for it. Using

our generalizable shape parameterization, we simulate the formation of

a solid composed of pentagonal-like particles and measure anisotropy

in the resulting elastic response. Through automatic differentiation

techniques, we directly connect the shape parameters with the elastic

response. Interestingly, for our system we find that less isotropic par-

ticles lead to a more isotropic elastic response. Together with other

results known about our method it seems that it can be successfully

generalized for different inverse design problems.
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1 Introduction

Our global goal is to be able to find certain particle shapes that

would realize the materials with properties we choose in advance. In

other words, we are trying to solve an inverse design problem. The

second part of this chapter will be about this aspect of our research,

the first part will be devoted to the introduction to disordered matter

(the material class we consider).

1.1 Disordered matter

In 1915, William Laurance Bragg and his father William Henry

Bragg won the nobel prize for showing that atoms in crystals form a

periodically repeating lattice. Ever since, structural order has formed

the foundation for how we characterize solids as materials with long-

range order. On the other hand, in liquids we can find at most short

range order determined by a certain amount of nearest neighbours.

Therefore, it can be tempting to use structural order to discern solids

from liquids. However, there are whole classes of solids that actually

lack long-range order, notably the glasses. We call it disordered matter.

However, it would be wrong to assume that disordered matter

must lack any kind of order, what we require is the absence of trans-

lational periodicity manifesting itself in some level of randomness in

atomic positions. On the other hand, even though the definition of

crystals does not imply it, in real life they always have imperfections

like vacancies and dislocations. Some inhomogeneous materials, such
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as composites or porous materials, can be regarded as homogeneous

and disordered at sufficiently large length scale. In glasses basic build-

ing blocks are local structural motifs but there is some freedom in their

orientations and positions. An ordering at the scale of few building

blocks from the chosen one soon disappears already at an intermediate

scale [38].

Jammed systems as disordered systems are of particular interest

for this thesis. Jamming is the onset of the rigidity in amorphous sys-

tems. In many disordered particle systems like colloids, foams, emul-

sions and granular materials a jamming transition from fluid-like to

solid-like states [5] can be observed. According to a paradigm pre-

sented in [29] all these phenomena could be unified through a jamming

diagram. It includes three parameters: thermodynamic temperature

T , inverse packing fraction 1/φ, and shear stress τ . At low parameters

jamming becomes possible and for low enough values even almost cer-

tain. Additionally, we have to consider finite size effects as we have to

deal with systems with limited amount N of particles.

A true milestone was the discovery of the jamming point J on the

zero stress and zero temperature axis. Below it φ < φJ (correspond-

ing to 1/φJ < 1/φ) jamming is not possible because of mechanical

constraints [17]. The probability that system will jam increases with

growing φ ≥ φJ , also the bigger the φ the wider the range of shear

stresses 0 ≤ τ ≤ τφ that allows for jamming [36]. From a theoreti-

cal perspective a scaling ansatz was proposed at the critical jamming

transition [18], showing possibilities for a renormalization group theory

for jamming. However, jamming transition turns out to be of mixed
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first-/second-order character, complicating its theoretical description

even more [22]. We can conclude that disordered solids have similar

behaviour to some extent. Can we actually obtain disordered materials

with extremely different properties?

1.2 Designer matter

We work with jammed systems whose particles are soft spheres

which are larger than individual atoms but much smaller than the

material itself. From this perspective we also deal with soft matter.

As its name may suggest these are easily deformable materials with

low elastic moduli.

Soft matter can be dissipative, disordered, far from equilibrium,

nonlinear, thermal and entropic, slow, observable, gravity affected, pat-

terned, nonlocal, interfacially elastic, memory forming, and active [33].

It has applications in almost all natural sciences: from chemistry and

biology to astrophysics.

In soft matter physics some of the problems are especially chal-

lenging [19]. Among those not only mentioned jamming (see section

1.1) but also designer matter are related to the topic of this thesis. The

last problem can be attacked from different directions by tuning the

architecture (selecting the appropriate geometry [13]) or the compo-

sition (designing particles, our global goal) of the material. Particles’

shape and size can greatly affect jamming probability [21] and even

entirely change the class of the material [10].
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But what does it actually mean to design particles? It is not work-

ing with a priori given particles or choosing them through trial and

error. An example of such approach is [10] where the authors explore

the properties of the materials consisting of particles of shapes that

were chosen in advance. Designing particles can be broken down into

two parts. First, you need to identify how different particle parameters

affect material properties. Second, you target some material property

and determine values of particle parameters that would realize it. Both

tasks are extremely complex. Different approach in the field can be

found in [27, 11, 12, 1]. Speaking about topic of this work, the most

important parameter for jammed systems is the contact number, or

the average number of the neighbouring particles. It is mainly affected

by the shape of the particles and their inner elasticity [26]. Obviously,

the contact number hugely depend on the particle shape. Therefore, it

is natural to choose a shape as a particle parameter affecting material

properties.

Depending on the goals, computational capabilities and chosen

means to model systems (about ours see section 2.4) ways to parametrize

and approximate the shape vary a lot. Moreover, the wrong choice of

the former can significantly limit the possibilities of the latter. In other

words, from the practical perspective one must find a balance between

the shape generality and the number of the parameters involved in its

definition. We will discuss some of the constructive approaches (build-

ing the geometry from scratch following an algorithm) and leave aside

the whole class of deformation modelling (examples and details in [2]).

Shape parametrization can be purely geometrical [8, 30] decrib-

4



ing the shape’s boundary, for example, as a set of nodes with their

coordinates and edges between them as graphs of functions from a

chosen class (lines, polynomials etc). On the one hand it may allow to

precisely encode a given shape. On the other hand the amount of pa-

rameters can be too big, some parameters can be hard to interpret and

it completely ignores internal structure of the particles concentrating

on the boundary description only. It has to be worked out separately

somehow afterwards, for example, using Voronoi tesselation, introduc-

ing additional layers of complexity.

In this thesis we do not need to approximate shapes but it is still

worth looking at many insightful methods of shape approximations

coming from the field of computer graphics. Among them are devel-

opable wrapping [25], bounding proxies [7], geometry-aware bases [40]

and variational [9] shape approximation algorithms. These models are

usually created for purposes different from ours and almost always

tuned to 3 dimensions. Their effectiveness is mostly determined by

the ability to preserve the deteriorating subjective visual quality bal-

anced by the rendering speed-up, less often by the physical simulation

speed-up or even by its accuracy. Similarly to the boundary-based

shape parameterization introduced in the previous paragraph, the ma-

jor drawback for us is the complexity of the introduction of interac-

tions of individual parts of the objects with each other, including those

within the same object.

Building on the ideas set out here, one may look at the volume

model introduced in [37] and further developed in [41]. Its first part

provides an algorithm that could be especially suitable for our model
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construction (see section 2.2) representing any shape as a set of over-

lapping circles so that their union would be similar to the target shape.

In principle, it allows to approximate any given shape. But the price

of a more detailed approximation will be a significant increase in the

required resources (time and memory) for the simulation.

Our particle model (similar to the one described just above) gives

control over its shape and inner elasticity simultaneously. Adjusting

them – namely distances between circles – we aim to achieve desirable

material properties. In this work we start with some particle shape and

measure the value of a chosen property in the resulting material. Next

we differentiate the property over the particle’s parameters. The most

interesting feature is that we do it over the whole process of the mate-

rial creation (see section 2.4.1). After it we would be able to use any

gradient descent method to minimize (maximize) the property chang-

ing the parameters accordingly. Moreover, dependence of the property

on the parameters may be probabilistic. Therefore, this strategy could

sound unrealistic but similar approach has already been shown to be

effective in designing kinetics of the self-assembly [16]. For this reason

we expect that it may be fruitful in our case as well.
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2 Materials and methods

This section’s purpose is to establish a theoretical and computa-

tional ground of the entire thesis. With the notions from this section

we will be able to describe the exact setting of our modelling and our

results. First, we explain the assumptions we make about our model

and present the model itself. Then we provide the general theoreti-

cal description of the chosen model and useful definitions. Finally, we

present the computational tools we use as well as a theoretical frame-

work behind them.

2.1 Assumptions

For further convenience we present the assumptions in the form

of a list.

1. We consider jammed systems in which all its structural blocks are

completely identical. To be more precise, all particles are of the

same shape, size, internal structure and mechanical properties.

Our systems can be also considered as granular materials.

2. Frictionless particles interact with each other via normal contact

repulsive forces (see section 2.3.1). They have internal structure

allowing them to deform but at an energy cost.

3. We limit ourselves to 2-dimensional case. However, whenever it

is possible we will describe the general case. The dimensionality
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of the space is denoted with d. Moreover, every system is in the

cubic box L× ...× L with periodic boundary conditions (in our

case it is a box L× L).

4. We consider systems at zero temperature. Generally, it implies

that they must be in the state with the minimum possible en-

ergy according to the third law of thermodynamics. Our systems

end up in local minima. In other words, we deal with athermal

systems far from thermodynamical equilibrium. For the details

of the realization see section 2.4.3.

2.2 Particle model

In the section 1.2 we have already discussed different approaches

to shape parametrizations. The choice of a model is driven by our com-

putational capacities (see section 2.4) as well as our goals. Namely, the

model we descibe below is scalable, its parameters and their changes

are easily interpretable, particle’s internal stucture arises naturally and

its architecture is customizable. Consequently, the particles are de-

formable and their stiffness is adjustable (and even of their individual

parts).

It is important to note that the content of this section is applicable

to every particle separately. For the particle-particle interactions take

a look at the section 2.3.

We approximate a particle (for an example see the section 3.1)

of an arbitrary shape as a set of m (possibly overlapping) spheres
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(S1, S2, ..., Sm) together with their radii (R1, R2, ..., Rm) and relative

coordinates

(x1,x2, ...,xm). (2.2.1)

The spheres are linked by the springs of lengths l = (l1i, ..., lmj)

between their centers. The spring lij connects the spheres Si and Sj.

Regarding spheres’ centers as vertices of the graph Γ and springs be-

tween them as its edges, we can also reasonably demand Γ’s connectiv-

ity for the ”particle” in our defition to be a single particle. The details

of the topology of the spring network (for example, connecting only

nearest neighbours), amount, relative sizes and placement patterns of

the spheres should be chosen according to need. For example, higher

amount of spheres can improve the precision of the approximation.

As we claimed before, it is clear from the description how such parti-

cles can be deformed. Deformations cause stresses within a particle to

which its other subparts have to respond.

Additionally we introduce such simplifications:

• All spheres are of the same size

R1 = R2 = ... = Rm = R. (2.2.2)

• We consider relatively small amount of spheres so we can afford

connecting all spheres with each other. Therefore, l becomes

(l11, l12, ..., l23, l24, ..., l(m−1)m).

9



• Within a particle spheres interact with each other exclusively via

springs (see section 2.3.1, also compare [34]).

• Springs’ lengths are equal to the initial distances between centers

of the spheres. We can derive their values using 2.2.1 as

ltt′ = |xt − xt′|. (2.2.3)

Again, whenever it is possible, we will attempt to describe the

general case beyond the simplifications above.

2.3 Theoretical implementation

Consider a system of N particles in d dimensions. Recall that each

particle consists of m spheres connected with each other via springs. In

our setting it means that we deal with N ·m spheres and N · (m− 1)m

springs. p’s sphere coordinates are denoted by rp.

The following notation can be a bit complex and lack immediate

interpretability but it is not as cumbersome as many simpler options.

We explicitly enumerate spheres starting with 1 in a way that first m of

them are in the first particle, next m are in the second etc. Moreover,

corresponding spheres k and k′ in different particles are those whose

numbers are congruent modulo m, i.e. if k ≡ k′(modm). It induces

the springs’ enumeration. By spring lkk′ we mean the spring lkk′ such

that k ≡ t(modm) and k′ ≡ t′(modm) and ltt′ is a component of l.
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2.3.1 Interactions

Any two spheres k and k′ from different particles interact with a

pairwise soft-sphere potential

U soft
kk′ (rk, rk′) =


ε1
α1

(
1− rkk′

Rk+R′
k

)α1

if rkk′ < Rk +Rk′ = 2R,

0 otherwise

(2.3.1)

where ε1 sets an energy scale, α1 ≥ 2 and rkk′ is a distance between

their centers

rkk′ = |rk − rk′|. (2.3.2)

Any two spheres k and k′ within the same particle interact via a

spring lkk′ with a potential

U spr
kk′ (rk, rk′) =

ε̃2
α2

(
lkk′ − rkk′

)α2

, (2.3.3)

where rkk′ is defined in 2.3.2.

Notice that the interactions between particles are purely repulsive

and the character of the interactions within each individual particle

implies that its initial shape is favoured (which is true only due to the

simplification about springs’ lengths mentioned in the section 2.2).

We consider in both cases harmonic potentials α1 = α2 = 2. It

is easy to see how similar these potentials are. We can replace ε̃2 with
ε2

(2R)α2 to work with a dimensionless ratio ε1
ε2

. ε1
ε2

can be viewed as an

approximate measure of the relation between the two forces: from 0
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(spheres interact only via springs) to +∞ (only spheres from different

particles interact). Then the spring potential can be rewritten as

U spr
kk′ (rk, rk′) =

ε2
α2

(lkk′
2R
− rkk′

2R

)α2

. (2.3.4)

Notice that in our setting every two spheres interact either through

a soft sphere potential or though a spring potential. It allows us to

introduce a potential between any pair of spheres Ukk′. To keep it com-

pact we also introduce a function S such that S(k, k′) = 1 if spheres

are in the same particle and 0 otherwise

Ukk′ = U spr
kk′ S(k, k′) + U soft

kk′ (1− S(k, k′)). (2.3.5)

2.3.2 Useful definitions

For the future convenience we introduce a list of definitions which

will be used in the next sections.

1. The total potential U can be expressed using compact form

from the end of the previous section as

U(r) =
1

2

k,k′∑
k 6=k′

Ukk′(rk, rk′). (2.3.6)

where r is a vector of all N · m · d coordinates of spheres compris-

ing particles. However, we look at the total potential from a slightly
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different perspective. One can also consider U as a function of parti-

cle parameters, specifically l. Recall that l determines corresponding

springs in every particle but not all distinct springs in the system. In

other words, changing any component lkk′ (1 ≤ k, k′ ≤ m, k 6= k′) of l

would lead to the simultaneous change of the corresponding springs ltt′

in all particles. And it, in turn, would affect U spr which is a component

of U . Therefore, we may write U(r; l). However, we will drop l from

the notation for the most of the time.

2. The stress tensor σij is a d× d stress tensor

σij =
1

2V

k,k′∑
k 6=k′

(∂Ukk′
∂rkk′

)rirj
rkk′

(2.3.7)

where V is a total volume of the system, ri and rj are components of

rkk′ = rk − rk′.

The pressure p is related to the trace of the stress tensor simpy

as

p = −1

d
Tr σij. (2.3.8)

3. The global affine deformation to the lowest order is defined by

a strain tensor εij and transforms every vector ri as

ri = ri +
∑
j

εijrj (2.3.9)

where εij obeys a symmetry requirement εij = εji and in 2-dimensional
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case has a form

ε =

(
εxx εxy

εxy εyy

)
. (2.3.10)

2.3.3 Linear dilatancy

Here we define the linear dilatancy (one of the elastic moduli), the

material property we target in our systems. However, it will require

performing a lot of auxiliary work and introducing quite a few technical

definitions.

The dilatancy is the phenomenon of changing volume in gran-

ular materials subjected to shear deformations. First discovered by

Reynolds [3], it has been extensively scrutinized from both theoretical

(e.g. [24, 28]), numerical (e.g. [4]) and experimental perspectives (e.g.

[20]) since then. Different parameters can be used to measure this ef-

fect. We consider linear dilatacy D defined at the end of this section.

We will consider D as a function of l and try to understand the nature

of this dependence by examining its gradient’s behaviour.

The following is according to [15]. In a stable mechanical system

after an affine transformation there is usually a secondary non-affine

response. It can be calculated within the harmonic approximation [14].

The change in the total energy is approximately given by

∆U

V 0
= σ0

ijεji +
1

2
cijklεijεkl. (2.3.11)
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Where V 0 and σ0
ij are initial state volume and stress tensor respectively.

In our case V 0 = Ld. cijkl is the d× d× d× d elastic modulus tensor.

Details on its derivation can be found in [14].

We can also rewrite 2.3.11 by introducing an enthalpy-like func-

tion H = U − σ0
ijεij

∆H

V 0
=

1

2
cijklεijεkl. (2.3.12)

From the symmetry requirement εij = εji we can derive such

symmetries of cijkl:

cijkl = cijlk = cjikl = cklij. (2.3.13)

Some of the global affine deformations are similar. To understand

in which way, imagine you rotate a system and apply the same ε as

before but in the new coordinate system. However, the manipulations

are the same, in the old coordinate system it would correspond to a

rotated ε. We define ε(θ) = M−θεMθ where Mθ is a rotational matrix

Mθ =

(
cos θ − sin θ

sin θ cos θ

)
. (2.3.14)

In an isotropic system rotations of ε correspond to appropriate

rotations of the tensor cijkl. Notice that when θ = 90◦ values of cijkl

change in a way that is equivalent to exchanging x and y. Our systems
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are finite and we expect them to be anisotropic. Therefore, we can

examine dependence of cijkl on θ to understand a measure of system’s

anisotropy.

Any modulus R = 2∆H
V 0 to a linear order is

R = cijklεijεkl

= cxxxxε
2
xx + cyyyyε

2
yy + 2cxxyyεxxεyy

+ 4cxyxyε
2
xy + 4cxxxyεxxεxy + 4cyyxyεyyεxy.

(2.3.15)

Taking this into account, R can be actually considered a function

of an angle θ and we define R(θ) the same way as in 2.3.15 but with

εij(θ) instead of εij. We can average across θ integrating out anisotropic

fluctuations in the system

RDC =
1

π

∫ π

0

R(θ)dθ. (2.3.16)

Similarly, we also find its variance RAC which is, in turn, the

measure of fluctuations

R2
AC =

1

π

∫ π

0

(R(θ)−RDC)2dθ. (2.3.17)

To define the linear dilatancy we introduce quantities

16



G0 = cxyxy

Gπ
4

=
1

4
(cxxxx + cyyyy − 2cxxyy)

A2 = −
√

1

4
(cxxxx − cyyyy)2 + (cxxxy + cyyxy)2

φ2 = tan−1
(

(cyyyy − cxxxx)/2(cxxxy + cyyxy)
)

A4 = −1

2

√
(cxxxy − cyyxy)2 + (G0 −Gπ

4
)2

φ4 = tan−1
(

(G0 −Gπ
4
)/(cxxxy − cyyxy)

)
.

(2.3.18)

Shear modulus G can be understood as a response to the affine

transformation εxx = εyy = 0 and εxy = γ
2 (γ is the parameter allowing

us to control the scale of the deformation). It gives us a family of strain

tensors

εG(θ) =
γ

2

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)
. (2.3.19)

We obtain

G(θ) =
1

2

(
G0 +Gπ

4

)
− A4 sin(4θ + φ4). (2.3.20)

Also you can notice that G(0) = G0 and G(π4 ) = Gπ
4
.

It is easy to see from definitions 2.3.16 and 2.3.17

GDC =
1

2

(
G0 +Gπ

4

)
GAC =

A4√
2
.

(2.3.21)
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In a similar way we define the uniaxial compression U(θ) with

εxx = γ and εxy = εyy = 0 leading to

εU(θ) =
γ

2

(
1 + cos 2θ − sin 2θ

− sin 2θ 1− cos 2θ

)
. (2.3.22)

We calculate

U(θ) = B +GDC + A4 sin(4θ + φ4) + A2 sin(2θ + φ2) (2.3.23)

so that

UDC = B +GDC

UAC =

√
1

2
(A2

2 + A2
4).

(2.3.24)

Where B is the bulk modulus defined as the response to the uni-

form compression with εxx = 0 and εxx = εyy = γ
2 . In this case the

strain tensor is proportional to the unit one so it does not depend on

the angle (also implying BAC = 0) and has a simple form

εB(θ) =
γ

2

(
1 0

0 1

)
. (2.3.25)
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The calculation of B is straightforward

B = BDC =
1

4
(cxxxx + cyyyy + 2cxxyy). (2.3.26)

Finally, we have all the components to define the linear dilatancy

D. First, we need to find a response R(θ) to the deformation given by

εyy = 0 and εxx = εxy = γ
2

εR(θ) =
γ

4

(
1 + cos 2θ + 2 sin 2θ 2 cos 2θ − sin 2θ

2 cos 2θ − sin 2θ 1− cos 2θ − 2 sin 2θ

)
. (2.3.27)

We can express D in terms of R as

D(θ) = R(θ)− 1

4
U(θ)−G(θ). (2.3.28)

After cumbersome calculations we obtain

D(θ) = −A4 cos(4θ + φ4)−
A2

2
cos(2θ + φ2) (2.3.29)

and again

DDC = 0

DAC =

√
1

8
(A2

2 + 4A2
4).
. (2.3.30)

Notice that its value is nonzero in almost all directions but its

mean DDC is 0 for any system so it is natural to consider DAC as a
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value representing fluctuations of D.

2.4 Computational implementation

We model our systems in Python by the means of the libraries

jax and jax-md [39]. They provide us with built-in fuctions producing

systems of soft spheres and executing automatic differentiation over the

whole minimization process. This section we begin with the notion of

the automatic differentiation. Then we proceed to system initialization

and minimization. The final paragraphs bring up how much they affect

each other.

2.4.1 Automatic differentiation

A prominent property (actually by definition) of a derivative is

that it reflects how the rapidly function changes in a given point. Its

multidimensional analogue is a gradient, showing componentwise how

fast function changes in different directions independently. Gradient

as a vector also has an important interpretation. It points in the di-

rection in which the function changes the fastest. For example, we can

go in this direction and iteratively increase the value of the function.

This way we can (locally) maximize (or minimize) the function finding

appropriate arguments.

For us it is important from two perspectives. First, we need gra-

dients to minimize the energy function for every system we handle.
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Every system requires thousands of gradient calculations. Moreover,

we differentiate these calculations themselves. Therefore, it becomes

a crucial task to perform them in the most efficient way. We choose

automatic differentiation for these purposes. Second, once we have

a minimized system we can measure any property and calculate its

gradient with respect to the chosen particle property, namely spring

lengths. Similarly, we could use this gradient to minimize (or maxi-

mize) the system’s property.

Automatic differentiation is an algorithmic technique to calcu-

late derivatives. To understand automatic differentiation conceptually,

first, we need to clarify that it is neither a symbolic differentiation nor a

finite differentiation. Its advantages are efficiency (cost to compute the

derivative is linear in the cost to compute the value of the function that

is differentiated), numerical stability and accurateness (derivatives are

calculated with machine precision) [35].

Second, we introduce basic concepts necessary to understand how

automatic differentiation operates

• Almost all computer programs consist of sequence of basic arith-

metic operations (like summation) and elementary functions (such

as cos, exp etc).

• We can represent their derivatives using same basic arithmetic

operations and elementary functions in a known way. For ex-

ample, if at some point you need to calculate a sum a + b of

previously calculated values a and b, the corresponding calcula-

tion of the derivative would be (a+ b)′ = a′ + b′ where we would
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already have calculated a′ and b′ (at the stages corresponding to

calculations of a and b respectively).

• Using the chain rule (we omit mathematical requirements as they

are almost always met) we can calculate the derivative of

y = h(x) = f(g(x)) as

∂h

∂x
=
∂f

∂z

∂g

∂x
=
∂y

∂z

∂z

∂x
(2.4.1)

where z = g(x) and y is viewed as y = f(z). For example,

if we calculate ec = d for a previously calculated value c, the

corresponding calculation of the derivative would be (ec)′ = ec ·c′

= d · c′ where we would have already calculated d and c′ (at the

stage corresponding to the calculation of c).

Finally, we see how to decompose derivative calculation of any

complexity into a sequence of simpler operations in an algorithmic

way. Depending on the goal and available resources (time and memory)

there are two possible implementations: forward (more memory) and

reverse (more time) modes. Sometimes it is beneficial to combine them,

for example, calculating the Hessian matrix of the function.

In a forward mode after every calculation step we evaluate the

derivative corresponding to it and carry both values to the next step

so that we obtain the derivative right after obtaining the function value.

In a reverse mode we store the result of every calculation (the forward

phase). Additionally we need to create a computational graph display-

ing the relationships between these steps. We use the calculated values

to find the derivative during the so-called backpropagation through the
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graph (the backward phase). For details and examples of both proce-

dures we refer to [23].

As it is mentioned in the section 2.3.3, we are interested in the

behaviour of the derivatives of DAC with respect to l. But it is im-

portant to note that we will take them over the whole minimization

process. Here we explain how it can be realized.

1. We start with some random configuration r0 (see section 2.4.2)

for which we can calculate U(r0; l) (but r0 is regarded as a vari-

able independent from l, however, in our case there is a clear

relationship between them, see section 2.4.2).

2. Next, we change the coordinates of the spheres following the

FIRE algorithm until the stopping condition is met (see section

2.4.3) at the M th step. Conceptually every step of the algorithm

can be exemplified with the simplest gradient descent step

ri+1 = ri − α∇U(ri). (2.4.2)

• We see that ri+1 is a function of the derivatives of U(ri; l)

and ri (other algorithms may include additional terms, α

may become a function itself).

• For i > 0 it implies that ri+1 is the function of l (and ri).

• Finally, by induction ri+1 = f i+1(U(ri(r0, l); l), ri(r0, l)), or

ri+1 = ri+1(r0, l).

3. Having a minimized system we can measure its elastic moduli cijkl

which are the functions of U(rM), its first and second derivatives.
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Taking into account written above we see that we can consider

cijkl as a function of U(rM(r0, l); l) and its derivatives.

D as a certain combination of cijkl moduli can be considered a

function of r0 and l following the reasoning above.

2.4.2 Initialization

To initialize a system of N particles in 2 dimensions we require

a set of particle positions (R1,R2, ...,RN) and their orientations rep-

resented by angles (ψ1, ψ2, ..., ψN), or in total 2N + N = 3N num-

bers. Now it is easy to calculate initial positions of spheres having

2.2.1. For example, sphere k in a particle p (which we enumerate as

v = (p− 1)N + k) will be on a position

rv = Rp + Mψpxk (2.4.3)

where Mψ is a rotation matrix defined in 2.3.14.

Similar calculations would be in 3 dimensions but we would need

at least 3 numbers, e.g. Euler angles, to encode particle’s orientation.

Also the formulas for the rotations of any objects (e.g. vectors, tensors)

change.

Forces between spheres within any particle are vanishing at the

initialization step. Notice that it follows from our initial assumptions

as spheres in any particle interact only via springs. For two spheres k
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and k′ within a particle p distance between them is

|r(p−1)N+k − r(p−1)N+k′| = |Rp + Mψpxk −Rp −Mψpxk′| = (2.4.4)

= |Mψp(xk − xk′)| = |xk − xk′| = lkk′,

which is the corresponding spring’s length so the force between them is

exactly 0. We used here 2.2.3 and that from 2.3.14 follows det Mψp = 1.

Generally, it does not hold during the minimization process when the

particles deform (by the deformation we mean the change of relative

distances between spheres) interacting with each other.

2.4.3 Minimization

To prepare a new system one would usually start from effectively

infinite temperature (random configuration, more details in the end

of this section) and end up at zero temperature (in some local energy

minimum) using gradient descent algorithm. However, we start with

configurations that are not random. We have not proved exactly that

it would not change the outcome.

Because we consider systems at zero temperature and all forces are

conservative, the minimized state should not depend on the algorithm.

However, some methods with added noise may still end up in different

local minima. We use the FIRE algorithm [6] which is one of the most

efficient in our setting. Default parameters from jax-md library turn

out to work sufficiently good.
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In a local energy minimum for every sphere force balance must

hold. We can use this fact to set a meaningful stopping condition for

a minimization procedure

max
k,i
|fk,i| < f0 (2.4.5)

where fk,i is a component i of the total force acting on the sphere k.

f0 is a constant that we choose to guarantee residual forces to be small

comparable to the typical force scale in the system.

Additionally we can impose another condition. We stop the pro-

cedure unconditionally after M steps and discard such systems as they

do not meet the first stopping condition. The value of M we deter-

mine from the empirical experience. It must satisfy several conditions.

First, most systems should be minimized by that point. Second, most

of the systems which are not minimized by that point will fail to be

minimized even after K steps where K must be unreasonably big.

In principle, such limitation must not affect the final ensemble

a lot. Because of it we will not specify exact criteria (what is ”most

systems” and how big K must be). Main purpose of these conditions

is to maximize the effectiveness of the procedure - maximum amount

of eligible systems in minimal time. Moreover, keeping this number

low is essential in our context. For us every additional step increases

amount of memory necessary to perform the differentiation over the

whole minimization procedure (see section 2.4.1).

In order to inspect the whole phase space of initial configurations,

r0 should be picked from the multidimensional uniform distribution
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U[0,L]dN or, equivalently, every component of every Rp from U[0,L]. But

it allows for a variety of extremely overlapping initial configurations.

It results in many minimized systems with spheres from one particles

stuck in other particles - completely legit systems from minimal energy

perspective but totally impossible in practice. For relatively simple ge-

ometries it can be fixed by including dummy spheres as in [31] that

prevent spheres from other particles to squeeze in. Another problem

is that such initial configurations have comparatively huge energy gra-

dients (forces). In this case standard FIRE parameters may fail (the

minimization will not end in a meaningful time if ever) causing us to

manually adjust them, usually by few orders decreasing the step size

as well as its permissible maximum. However, such a minimization can

take an overwhelmingly long time.

Our solution is to substantially limit the phase space of initial con-

figurations. In the section 3.1 we specify our approach. General idea

is to start from the configurations with minimal amount of overlaps,

or locally sparse (by this we mean the system with low local density

in every point). There are two justifications for this. Firstly, real-life

systems would jam in similar conditions. Secondly, what matters is

the final (minimized) state. And there is a certain region of a phase

space around the local minimum whose points all can ”fall” only to it

with a standard gradient descent algorithm. Reasonable final configu-

rations are also locally sparse. Therefore, it is meaningful that during

minimization all configurations will become locally sparse from some

moment. Therefore, we should not miss any realistic final states with

our approach.
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3 Results

This section is devoted to the essential part of any research - its

results. But first we describe the exact set up so that everyone could

reproduce our results.

3.1 Setup

• Particle. We work with the particle consisting of 5 spheres of ra-

dius R = 1 (see figure 1). Their centres are placed equidistantly

on the circle of r = 1.5 (basically forming a pentagon) and then

each of their coordinates is disturbed with a value from the nor-

mal distribution N (0, 0.1) (on the figure 1 for one of the spheres

we mark where its centre will end up with probability 50% in red

and 99% in orange). There are two types of springs: shorter ones

between neighbouring spheres (l = 1.763 before disturbance) and

longer ones between other pairs (l = 2.853).

• System and initialization. System consists of N = 81 particles

in the square box with sides L = 37.6 and periodic boundary

conditions so that the density is 0.9. Particles are placed at

the square lattice with the spacing 37.6/9 = 4.2 and then each

coordinate is disturbed with a value from the normal distribution

N (0, 0.25). The angles for their orientations are taken from the

uniform distribution U[0,2π] (for the example of the initiation see

figure 2a).
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• Potential. We set ε1 = 1 and ε2 = 40. It may seem that such

particles must be quite stiff. However, a glance at figure 2b al-

lows to notice with the unaided eye that particles are deformed.

This values were manually customized to meet two criteria: par-

ticles are deformable but most likely will still keep the visual

resemblance with the initial state.

• Minimization. For our purposes it is sufficient to set f0 = 10−12

[14]. Empirically derived number of steps after which we un-

condinitionally stop the minimization is M = 2000. Any system

which is not minimized by that moment is skipped. The example

(a) Before (b) After

Fig. 1. Particle shape before (green) and after (blue) the gaussian
disturbance. Centers of the spheres are marked with violet dots. The
springs are violet lines (longer - sharp, shorter - dashed). White circle
with r = 1.5 is centered at the origin. Red (r = 0.117) and orange (r =
0.303) spheres show areas where the underlying sphere’s centre will end
up after disturbance with 50% and 99% probability respectively.

29



of the minimized state see on the figure 2b.

3.2 Data

In total we consider 23 different randomly generated (see section

3.1) particle shapes.

For every particle shape we produce random initial configurations.

We minimize each of them until any stopping condition is met. Again,

we always check the condition on the forces and if it is not met, we

discard such configuration. We measure the linear dilatancy D (DAC)

of the remaining systems. It gives us a distribution of D values as on

(a) Initialized (b) Minimized

Fig. 2. Example of the same system in the initial state (a) and
after energy minimization (b). Spheres in the same particle are always
the same colour. Different colours are used only to help distinguish
individual particles.
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the figure 3. It allows us to fix a universal cutoff of 1 regarding systems

with higher D as unrealistic.

For each of the remaining systems we run the minimization and

an automatic differentiation of D with respect to l but this time for

a fixed amount of steps M = 2000 (so that the amount of necessary

steps is not the function of l itself). This way we obtain gradients. We

can also check their norms to identify the suspicious outliers. 4.5 is a

sensible cutoff (see the figure 4) after examining the overall shape of the

distribution of the norms. Again, we discard the systems with gradients

of a bigger norm. It continues until we find at least 50 suitable ones

(at most around 600 configurations).

Finally, for every shape we can take all the gradients and calcu-

late their mean componentwise (and the variance of their distribution

as well). The resulting vector we call the mean gradient (of DAC with

respect to l). Similarly to how we used energy gradients in the section

Fig. 3. Distributions of the values of D (252 of 3 different shapes).
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2.4.3 to minimize the energy function, we expect that we can mini-

mize DAC changing l in the direction opposite to the mean gradient

(reestimating the mean gradient after each update of l).

Fig. 4. Distributions of the norms of gradient of D with respect to l
(3485 of all 23 investigated shapes).
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4 Discussion

In this final section before the conclusion we analyse and interpret

the data from the previous section, critically assess it and provide our

view on what could be the further steps to achieve our global goal.

4.1 Analysis

Developing ideas of the previous section we will look at the de-

pendence of the mean gradients on the corresponding l. Just as in the

figure 1 we will consider shorter and longer springs separately. Along

the axis x will be the length of the spring l and along the axis y the

corresponding -mean gradient (pointing to the direction minimizing

DAC). The result is in the figure 5. Recall that there are 5 shorter

and 5 longer springs in each particle so that every particle shape con-

tributes 5 points to each figure. Actually it means that these points

should be correlated.

Interestingly, it turns out that for shorter springs there is a more

general pattern. It can be formulated as ”to minimize the fluctuations

of the linear dilatancy we need to make the longer springs among them

even longer and the shorter ones even shorter”. Moreover, the relative

magnitude of this change appears to depend approximately linearly on

the difference between the spring length and its length before distur-

bance (l = 1.763 marked by the vertical line on the figure 5).

It is possible to give a numerical assessment of this statement. To
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do it we calculate the Pearson correlation

r =
Cov(l, dl)

σlσdl
(4.1.1)

where we denoted dl as the -mean derivative (component of the mean

gradient) correspoding to the spring of the length l. Note that for this

calculation we consider all data points as independently obtained. It

gives us r = 0.455 (by its definition |r| ≤ 1) with the p-value less than

0.00001 (calculated for r = 0.455 and the sample size 23 · 5 = 115). In

other words, this correlation should be statistically significant.

Recall that DAC reflects the anistropic fluctuations in the system.

Therefore, we come to the counterintuitive conclusion that in order to

make the system more isotropic we need to make its constituents less

Fig. 5. The relationship between the length of the spring and the
correspoding gradient (to be precise, -mean gradient). Points of the
same colour correspond to the springs belonging to the same particle
type (23 in total). Red vertical lines are at l = 1.763 for shorter springs
and l = 2.853 for longer ones which are the lengths of the respective
springs before the disturbance.
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symmetric! In our case we can state it because the opposite transfor-

mation leads to the perfect pentagon. Explanation of this phenomenon

requires further exploration and correct formulations of the questions

posed in the process. By now it is hard to say what we observe: a

general pattern, a very specific exception, a misleading sign or even a

by-product of some conceptual mistake.

Another encouraging observation is that the variance of the gra-

dient distributions is relatively small (see error bars in the figure 5). It

can be the sign that following them may consistently change material

properties in a desirable manner even though the properties themselves

are random variables (consider figure 3).

4.2 Further directions

This research admits a plenty of possible extensions. Here we

suggest few of them.

First of all, we chose a very specific setup.

• The amount of the particles in our model is actually too small

comparing to real systems. Same calculations for larger systems

can both confirm and disprove our findings.

• Different extrema of particles’ stiffness can be scrutinized in our

context. As well as densities of systems.

• One can actually try to fill the ”gap” between longer and shorter

35



springs (and extend the represented range of l to both sides) by

increasing the variance of the disturbance at the stage of particle

creation. It would allow to see whether our finding holds in a

more general case. By this we mean that we were working in a

perturbative mode when the particles still resemble the pentagon.

• The particle’s geometry itself is highly customizable. There are

many more simple shapes that can be used as toy models with

different number of spheres in them, their relative sizes and

placements, spring network topologies and assumptions on their

lengths etc.

• We considered one specific material property. We mentioned

some of the others worth looking like bulk modulus, shear mod-

ulus, Poisson’s ratio etc.

• We assume particles to be identical. One can consider systems

containing slight variations of the same particle, systems with

multiple types of particles etc.

• The same approach can be applied not just to jammed systems.

For example, systems with variable geometries (you can also look

at [32]) can be inspected in a similar way.

Next, we do not follow the gradient to minimize the chosen prop-

erty. It is interesting for a few reasons.

• It will simply answer whether our approach is fruitful for such

problems.
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• Shapes that optimize for targeted material properties can be

themselves objects of research.

• It can open the way for the study of much more complex particle

shapes and sophisticated material properties by means of our

approach.

• The last but not least are real-life applications. It may provide

us with both materials having improved ordinary qualities (also

simpler manufacturing, cheaper or more resource-effective) and

metamaterial with unusual properties.
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5 Summary and conclusion

In this section we briefly summarize the content of this thesis,

point out main results and outline next steps.

Our motivation starting this thesis was to establish a universal

framework that would allow to create materials with desirable prop-

erties. First, we chose exact material class of jammed systems and

how we would like to control their properties through shapes of the

particles comprising them. Next, we identified an exact way (gradient-

bazed minimization) allowing us to rationally design particle shapes to

modify material properties in a desirable way.

The actual procedure includes gradient calculations of the energy

function. However, it does not involve conceptually new terms and

concepts. It has rather become possible through the good choice of

optimization algorithms (automatic differentiation), growing speed of

calculations and available memory volumes. As often it happens, com-

bination of these factors led to an approach that was impossible before

even for much simpler problems.

Main results of this thesis can be summarized as following. The

most obvious result is that we have shown that our approach is realiz-

able in jammed systems. Next, we have obtained enough data to claim

that trying gradient descent for our systems will make sense. We jus-

tify it by low variance of data points. Probably the most unexpected

result is that we may need to decrease the symmetry of the particles

in order to increase the system’s isotropy.
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For anyone who would like to reproduce our results we gave all

the technical details about exact model parameters and approaches to

data sampling.

This thesis is just the first step in studying the possibilities to

control material properties by designing particles’ shape by means of

automatic differentiation. Ahead we have a lot of work justifying ob-

tained results and developing the ideas presented here. In previous

section we already mentioned a lot of ways to extend the exploration

horizons. From the perspective of this thesis the most relevant and in-

sightful directions are the implementation of the gradient descent with

mean gradients and the range extension for parameters like system

size, density and variation of spheres’ placement within a particle.
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parameterization method for multidisciplinary global optimiza-

tion and application to integrated ship hull shape optimization

workflow. Computer-Aided Design, 80:61–75, 2016.

[31] R. L. Marson, E. G. Teich, J. Dshemuchadse, S. C. Glotzer,

and R. G. Larson. Computational self-assembly of colloidal

43



crystals from platonic polyhedral sphere clusters. Soft Matter,

15(31):6288–6299, 2019.

[32] S. M. Moosavi, H. Xu, L. Chen, A. Cooper, and B. Smit. Geo-

metric landscapes for material discovery within energy-structure-

function maps. 2020.

[33] S. R. Nagel. Experimental soft-matter science. Reviews of Modern

Physics, 89(2), 2017.

[34] A. N. B. Nair, S. Pirker, T. Umundum, and M. Saeedipour.

A reduced-order model for deformable particles with applica-

tion in bio-microfluidics. Computational Particle Mechanics,

7(3):593–601, 2019.

[35] U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation. Number 24 in Soft-

ware, Environments, and Tools. SIAM, Philadelphia, PA, 2012.

[36] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel. Jamming at

zero temperature and zero applied stress: The epitome of disorder.

Physical Review E, 68(1), 2003.

[37] V. Ranjan and A. Fournier. Volume models for volumetric data.

Computer, 27(7):28–36, 1994.

[38] P. S. Salmon. Order within disorder. Nature Materials, 1(2):87–88,

2002.

[39] S. S. Schoenholz and E. D. Cubuk. Jax, m.d.: A framework for

differentiable physics, 2020.

44



[40] O. Sorkine, D. Cohen-Or, D. Irony, and S. Toledo. Geometry-

aware bases for shape approximation. IEEE Transactions on Vi-

sualization and Computer Graphics, 11(2):171–180, 2005.

[41] S. Stolpner, P. Kry, and K. Siddiqi. Medial spheres for shape ap-

proximation. Advances in Intelligent and Soft Computing Brain,

Body and Machine, page 137–148, 2010.

45


