
On Schedulability and Time Composability of
Multisensor Data Aggregation Networks

Fatemeh Saremi
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: saremi1@illinois.edu

Praveen Jayachandran
IBM Research

India
Email: prjayach@in.ibm.com

Forrest Iandola, Yusuf Sarwar, Tarek Abdelzaher
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: {iandola1, mduddin2, zaher}@illinois.edu

Abstract—This paper develops a framework to analyze
the latency and delay composition of workflows in a real-
time networked aggregation system. These workflows are
characterized by different inputs that are processed along
parallel branches that eventually merge or fuse to compute
the aggregation result. The results for each flow must be
produced within certain end-to-end deadlines or else the
information would become stale and useless. We consider
an end-to-end view of the aggregation system that allows us
to derive a much tighter analysis of the end-to-end delay
compared to traditional analysis techniques. The framework
extends results developed by the authors recently to analyze
end-to-end latency of various workflow topologies. We then
provide a reduction of the aggregation network system to
an equivalent hypothetical uniprocessor for the purposes
of schedulability analysis. Extensive simulations show that
latency bound obtained from the analysis framework is
significantly more accurate than that of traditional analysis
techniques.
Keywords: Data Aggregation, Delay, Composition,
Schedulability.

I. INTRODUCTION

Multisensor data aggregation is a discipline concerned
with collecting and processing data from multiple sensor
sources in order to produce information that is accurate,
specific, and relevant to the users of the system. Automated
target recognition, battlefield surveillance, remote sensing,
ocean surveillance, robotics, medical diagnosis, condition-
based maintenance, and environmental monitoring are all
examples of applications of data aggregation systems. An
overarching challenge in such systems is in maintaining the
relevance of information that is obtained by the process of
aggregating together multiple sensory inputs. Oftentimes,
the data collected is real-time in nature, and the processing
needs to complete within certain time constraints. For in-
stance, in defense surveillance systems, detection, tracking
and identification of the threat have to complete within
stringent deadline constraints in order to enable timely
action to counter the threat.

The aggregation workflows we consider in this paper
are characterized by different sensory inputs processed
along parallel branches that merge together to produce
the aggregation results. When parallel branches merge

together, the aggregation results can be computed only
when all incoming branches have completed execution.
A workflow could have multiple such successive merges.
The aggregation results of individual jobs of workflows
need to be computed within certain end-to-end deadlines.
The deadline represents the maximum delay that can be
tolerated from the time the inputs arrive at the various
branches till the time the final aggregation results are
calculated. This system model presents a deviation from
existing literature and presents a new “MERGE” primitive
that is characteristic of aggregation systems.

In this paper, we investigate timing composability and
schedulability of workflows in such multisensor data aggre-
gation systems. We develop an analysis framework which
extends recent work by the authors in developing a delay
composition algebra [1], where distributed system stages
are iteratively composed into a single stage. Well known
uniprocessor analysis techniques can then be applied on
this hypothetical uniprocessor, in order to infer end-to-end
delay and schedulability properties of jobs in the original
distributed system. The framework was designed for jobs
that traverse a sequence of resource stages in a distributed
system and is not directly applicable to aggregation sys-
tems characterized by the “MERGE” primitive described
above.

Our framework develops theoretical rules which deter-
mine how latency in data aggregation systems is com-
posed under preemptive and non-preemptive scheduling.
Unlike traditional analysis techniques such as holistic
analysis [2] [3] and network calculus [4] [5] that analyze
the delay one stage at a time, delay composition framework
considers an end-to-end view of the system. This allows
us to develop intuition into the main system and task
parameters that contribute towards increasing the end-to-
end delay, and to express our end-to-end delay bound in
terms of these parameters. This results in a much tighter
analysis of the end-to-end delay and schedulability of jobs
compared to existing analysis techniques, especially for
large systems.

We evaluate our theoretical framework through extensive
simulations based on two related metrics. The first is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4833731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the capacity or the maximum workload due to jobs of
workflows that can be guaranteed to meet their end-to-end
deadlines. This is important in ensuring that the system
operates at its capacity limit without wasting resources
serving jobs that do not meet their end-to-end deadlines.
The second metric measures the ratio of the average end-
to-end delay of jobs of a workflow to the analytically
computed worst-case end-to-end delay bound. This gives
us a measure of the tightness of the analysis.

The rest of this paper is organized as follows. Section II
reviews related work. In Section III we describe the system
model and the state the main problem addressed in this
paper. In Section IV, we present examples to explain why
seemingly intuitive approaches to calculate the worst-case
latency are not accurate for aggregation systems. These
examples also serve to provide intuition into the right ap-
proach for determining the worst-case latency of individual
jobs of a workflow based on the arrival and computation
time characteristics of other concurrent workflows. We then
proceed to formally derive the delay bound under both
preemptive and non-preemptive scheduling in Section V.
Section VI presents reduction rules that can be employed
to transform the entire data aggregation system into a
single hypothetical stage for the purposes of schedulability
analysis. Then the performance of the analysis framework
is extensively evaluated using simulations in section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Existing data aggregation schedulability literature often
focuses on a specialized system model and a specific
scheduling algorithm. For example, Li and Cao proposed
a non-preemptive scheduling algorithm for data aggre-
gation systems called Coordinated Workload Scheduling
(CWS) [6]. They also analyze schedulability, but the
schedulability results in that study only apply when a
particular scheduling algorithm is used. CWS constrains
the system model to contain just three workflows: sensing,
communication, and computation. In the same vain, in an
earlier paper we developed the real-time capacity of data
aggregation systems that are scheduled under EDF [?].
In that study, our bound only handled data aggregation
systems with a single merge.

There also exist several studies that are applicable to
more general data aggregation system models. For ex-
ample, the real-time systems community has developed
several algorithms to perform optimal offline scheduling
of workflow sets in (general) distributed systems [7] [8].
These algorithms work by constructing the complete
schedule for all the jobs executing on all the stages. The
schedule is then used to determine the the schedulability
of the workflow set. However, these optimal algorithms
require NP-hard computation, which is a major drawback
especially when dealing with large real-time systems. In

addition, workflow sets involving aperiodic or sporadic
workflows make offline scheduling even less feasible.

To reduce the computational complexity of schedulabil-
ity testing, Kao et al. [9] and Zhang et al. [10] presented
techniques to divide the end-to-end deadline into per-
stage deadlines. Uniprocessor schedulability tests are then
used to determine whether each stage is schedulable. If
all the stages are schedulable, the system is deemed to
be schedulable. These techniques allow for a generalized
system model and are not constrained to a particular
scheduling algorithm. However, they do not accurately
account for the inherent parallelism in the execution of
different stages of a data aggregation system. As a result,
they tend to exhibit extreme pessimism when estimating
schedulability boundaries for pipelined and merging work-
flows, especially for large systems.

Holistic analysis [2] [11] [12] and real-time calcu-
lus [13] [14] [15] comprise a “middle ground” between
pessimistic bounds and NP-hard optimal calculations. Un-
like some of the related work we have discussed, holistic
analysis and network calculus allow for a very general
system model. A study by Koubaa and Song found that
holistic analysis is less pessimistic than network calculus
for most system configurations [3]. For this reason, we
use holistic analysis as a benchmark for our evaluation.
Yet, as the holistic approach analyzes one stage at a time,
the pessimism of the analysis grows with system scale.
In contrast, in this paper we develop a delay bound for
aggregation systems by considering an end-to-end view
of the delay. This allows us to develop a bound that
does not become increasingly pessimistic with system
scale. Further, by reducing the problem of schedulability
analysis of the distributed system to that on an equivalent
uniprocessor, we significantly reduce the complexity of
analysis, making it extremely suitable for large systems.

The related works have one or more of the follow-
ing shortcomings: NP-hard computational complexity, pes-
simism, constrained aggregation system models, or con-
strained scheduling algorithms. In contrast to these prob-
lems, the work presented in this paper applies to a general
aggregation system model, is simple to compute even for
large systems, and is less pessimistic than holistic analysis
for a wide range of workload configurations.

III. DATA AGGREGATION MODEL AND PROBLEM
STATEMENT

In this paper, we consider an abstract model of a
data aggregation system, comprising of m data workflows
(e.g., audio and video data from camera and microphone
sensors, speed and proximity sensor information in a next-
generation automobile), each requiring several stages of
processing (such as monitoring, threat analysis, actuation
and display). Each processing stage is handled by a single
resource that is scheduled in priority order. For instance,

this could refer to processors that schedule and serve ar-
riving tasks, or a network link on which enqueued packets
are transmitted. Since each stage represents one resource,
in the rest of this paper, we use the terms stage and
resource interchangeably. Each workflow could potentially
have multiple branches that ultimately merge forming an
aggregation tree. Collectively, the stages of processing of
all workflows taken together are organized in a graph called
the workflow graph. It determines precedence constraints
among the different stages. For simplicity, we only con-
sider workflow graphs that are trees (no two task paths
can split and re-merge with one another).

Consider a flow Fi that has L parallel pipelines, de-
scribed by disjoint paths p1, ..., pL, followed by a common
parent stage, P , as shown in Figure 1.

.

.

.

.

.

.

.

.

.

C
k,m1

Flow F
k

Flow F
i

C
i,m1

C
k,n1

C
i,n1

C
k,o1

C
i,o1

C
k,m2

C
i,m2

C
k,n2

C
i,n2

C
k,o2

C
i,o2

C
k,mL

C
i,mL

C
k,nL

C
i,nL

C
k,oL

C
i,oL

C
k,P

C
i,P

Figure 1. An example of merging workflows.

Jobs from different workflows are assumed to be ape-
riodic and may have different arrival offsets. Let Offi
denote the offset from time zero at which a job Ji of
workflow Fi arrives at all the branches of its workflow
(if different branches arrive at different offsets, Offi can
be set to the maximum of these offsets). A job does not
become eligible to execute on the merge-stage (the com-
mon parent, P) until all pipelines have finished processing
it. A workflow could potentially have several such merge-
segments.

In a real-time data aggregation system, each workflow,
Fi, has an end-to-end latency constraint, Di, denoting the
maximum allowable latency between the arrival of a new
job of workflow Fi into the system (to all its branches),
and the completion of its processing on the last stage. We
call this constraint the end-to-end deadline of workflow Fi.

Each job of every workflow is assigned a priority and
we derive results for both preemptive and non-preemptive
scheduling. We also assume that the relative priority of
each job remains the same across all the stages on which
it executes. The main problem we address in this paper is
to determine a worst-case bound on the end-to-end delay
of jobs for an arbitrary workflow given the computation
times of other workflows that exist concurrently with it in
the system.

IV. INTUITION

In this section, we develop some intuition that will
assist us in deriving the delay bound of workflows in an
aggregation network. We explore a simple and seemingly-
intuitive approach to estimate the worst-case delay using an
example and show why the approach is not accurate. This
exercise points us to the right intuition into developing the
worst-case delay bound in the next section.

Consider the following system. Let jmerge denote a
merge stage in the workflow graph of job Jk which has l
incoming branches from stages jm1 , jm2 , ..., and jml . By
semantics of merge, Jk can execute on jmerge only when
all its subjobs arrive from the l upstream stages. So, Jk
can execute on stage jmerge after the last of the l sub-
jobs arrives. One way to compute the worst-case end-to-
end delay of Jk, is to consider all the possible paths from
aggregation input to computing the aggregation result, and
picking the path that incurs the largest end-to-end delay
bound obtained through the delay composition algebra.
This intuition works even when the workflow graph of Jk
consists of multiple successive merges, by considering all
the possible end-to-end paths that comprise the workflow
graph.

εTime = 0 20 30 40 48 68

End-to-End Delay (L) = 88 – ε

88

10 10 10

20 + 2ε 1010

10 810

10 + ε5 10

10 + ε 1010

S1

S2

S3

S4

S5

Jl

arrival
Jh

arrival

Jl

Jl

Jl1

Jl2

Jl1

Jl3

Jh

JhJl4 Jl

Jl Jh

Jh

Jl Jh

S1

S5

S2

S4S3

Figure 2. Workflow graph and execution trace for seemingly candidate
aggregation composition approaches.

Such a system with two merging branches is illus-
trated in Figure 2. Let us assume that scheduling is non-
preemptive in nature. Job Jl is the job whose end-to-end
delay we wish to bound. Job Jh is a higher priority job,
and jobs Jl1, Jl2, Jl3 and Jl4 are lower priority jobs. Let
us further suppose that Jl arrives at stages S1 and S3

concurrently at time ε > 0 (ε can be arbitrarily small).
Job Jh arrives at stages S1 and S3 at time 30 units. Job
Jl1 executes only on stages S1 and S3 and arrives at
time zero. Job Jl2 executes only on stage S2 and arrives

at time 20 − ε. Job Jl3 executes only on stage S4 and
arrives at time 38− ε. Job Jl4 arrives at stage S5 at time
58 − ε. The computation times and execution trace of all
the jobs are shown in Figure 2. Now, let us use the delay
composition theory developed in [1], [16] along each path
in the workflow graph of Jl, and compute the maximum
to obtain an estimate of the worst-case end-to-end delay
bound.

The worst-case delay bound along the pipeline segment
< S1, S2, S5 > can be computed using delay composition
theory (ignoring the parallel branch along < S3, S4 >),
as the sum of three terms. The first term is the sum of
maximum computation times for each higher priority job
across all the stages on which it executes. The second term,
is the stage additive component, which is one maximum
stage execution time over all higher priority jobs for each
stage on the path. The third term is the blocking term,
which is the sum of the maximum execution time of any
lower priority job at each stage.

Delay<S1,S2,S5>(Jl) ≤ 10 + (3× 10) +

(10 + 20 + 2ε+ 10 + ε)

= 80 + 3ε (1)

Similarly, the worst-case delay along the pipeline seg-
ment < S3, S4, S5 > can be computed using delay com-
position theory as follows:

Delay<S3,S4,S5>(Jl) = 10 + (3× 10) +

(10 + 10 + ε+ 10 + ε)

= 70 + 2ε (2)

The maximum delay across both paths for Jl is therefore
80+3ε. However, as the execution trace suggests, the delay
of Jl can be as large as 88 time units.

Delaytrace(Jl) = 88− ε
So, why didn’t our intuition work in this case? Delay

composition theory implicitly assumes that once a higher
priority job preempts or overtakes a lower priority job,
it will always execute ahead of the lower priority job on
all future stages. However, when there are “merge” stages,
this assumption breaks down. As illustrated in the example,
while Jh delays Jl on one branch (< S1, S2 >), it executes
after Jl in a different busy period on a parallel branch
(< S3, S4 >) and takes longer to arrive at the merge stage.
We call this a revisit event and a more formal definition
is provided in Section V. This is why delay composition
theory is not applicable to this case. We need to account
for this revisit event.

A closer look at the above example reveals that the
revisit event arises due to the fact that the higher priority
job Jh completes execution sooner on one branch, while
the lower priority job Jl completes sooner on another.
This in turn requires that Jl arrives before Jh to the
system. A closer scrutiny revealed that our previous delay
composition result works fine as long as Jl arrives no

earlier than Jh. So, intuitively, we should be able to
calculate the delay starting from the arrival time of Jh
using our previous result, and add the difference in the
arrival times between Jl and Jh. This is precisely how
we derive our delay bound in Section V. The end-to-end
delay bound is expressed as the sum of two terms. The first
is the maximum offset between the arrivals of Jl and any
higher priority job. The second term is the maximum delay
along any end-to-end path that constitutes the aggregation
graph of Jl, which is computed using our previous delay
composition result, similar to Equations 1 and 2. Thus, our
delay bound directly depends on the offsets between the
arrival times of jobs. The bounds will be tighter when the
offsets are lower.

A natural question is, how do we determine the maxi-
mum offset of any higher priority job that can potentially
interfere with the job under consideration? A simple, but
pessimistic, solution is as follows. To begin with, assume
that all higher priority jobs in the system can delay the job
under consideration J1. Use the analysis to determine the
worst-case delay bound. If the arrival time of any higher
priority job is greater than the worst-case delay bound,
then that higher priority job cannot possibly delay J1. Such
higher priority jobs can be removed and the analysis can
be repeated (resulting in a lower worst-case bound). At
each iteration, we can discard some higher priority jobs,
and the process is repeated until no higher priority jobs
can be discarded from the interfering set of jobs. Clearly,
this approach will only overestimate the set of interfering
higher priority jobs. The analysis stands to gain if the
worst-case arrival offset information for higher priority
jobs is provided as system input together to the execution
time characteristics of jobs.

V. AN END-TO-END DELAY BOUND FOR
AGGREGATION WORKFLOWS

In this section, we derive a worst-case bound on the
end-to-end delay of an aggregation workflow in terms of
the stage computation times of other workflows execut-
ing concurrently with it. We derive the result for non-
preemptive scheduling in Section V-A, and in the interest
of brevity, only state the result for preemptive scheduling in
Section V-B. The analysis extends previous work by the
authors in developing a theory called delay composition
theory, to analyze the worst-case end-to-end delay of jobs
in various workflow topologies. The worst-case end-to-
end delays of jobs in a pipelined distributed system under
preemptive and non-preemptive scheduling was analyzed
in [17], [18]. The result was extended to directed acyclic
graphs in [16] and to graphs with cycles in [19]. An algebra
was developed to reduce an arbitrary distributed system
to an equivalent uniprocessor for the purposes of schedu-
lability analysis in [1]. Any uniprocessor schedulability
analysis can then be used to infer end-to-end delay and
schedulability properties of jobs in the original distributed

system. In a deviation from the above work, this paper
considers system graphs that contain aggregation nodes,
with the property that execution on these nodes require the
execution on all incoming branches to complete before it
can be undertaken. As motivated in the previous section,
this important distinction makes such systems difficult to
analyze.

A. Non-Preemptive Scheduling

For the benefit of the reader, we state the delay compo-
sition result for arbitrary directed acyclic graphs (DAGs)
under non-preemptive scheduling from [16] here:

Non-preemptive Delay Composition Theorem [16]. As-
suming a non-preemptive scheduling policy with the same
priorities across all stages for each job, the end-to-end
delay of a job Jk of N stages can be composed from the
execution parameters of other jobs that delay it as follows:

Delay(Jk)≤
∑
Ji∈H

Ci,max +
∑
j≤N

(max
Ji∈H

Ci,j +max
Ji∈Lj

Ci,j) (3)

where H is the set of higher priority jobs and Lj is the
set of lower priority jobs that execute on stage j.

As priority is assigned for each job, let us order all the
jobs in decreasing priority order. Let us suppose that we
wish to bound the worst-case end-to-end delay of a job
Jk. Let S denote the set of all jobs executing concurrently
with Jk. Let Offi denote the offset from time zero at
which a job Ji arrives at all the branches of its workflow
(if different branches arrive at different offsets, Offi can
be set to the maximum of these offsets). Let Delayi denote
the worst-case end-to-end delay of job Ji (we wish to
determine Delayk). Further, let Delayi,j denote the worst-
case delay of a job Ji up to completing its execution on
stage j. Let Pathsi denote the set of all paths from any
source of a branch of job Ji to its sink (the union of all
paths in Pathsi is the workflow tree of Ji). We now state
the main result of this paper:

Non-Preemptive Delay Composition Theorem for Ag-
gregation Workflows: Under a non-preemptive scheduling
policy that assigns the same priority across all stages
for each job, the worst-case end-to-end delay of a job of
workflow Fk in an aggregation tree is bounded as,

Delayk ≤ max
i≤k

(Offi)−Offk +
∑
i≤k

Ci,max

+ max
p∈Pathsk

∑
j∈p

(max
i∈S

Ci,j +max
i≤k

Ci,j) (4)

where Offi is the offset of job Ji from time zero.

Proof: At each merge-stage in its workflow tree, as a job
needs to wait for all incoming branches to complete execu-

tion before it can execute on the merge-stage, the following
sequence of events is possible (which is otherwise not
possible in the absence of merge-stages). A higher priority
job Ji delays a lower priority job Ji′ and arrives ahead
of it on one branch of merge-stage j1. However, along
another branch, Ji′ completes execution and arrives ahead
of Ji to stage j1. Due to this reversal in the arrival order,
it is possible for Ji to again delay Ji′ at a downstream
stage j2 (can be the same as stage j1). Let us call the
instance where Ji again executes ahead of Ji′ after the
reversal, as a revisit event (if Ji always executes after Ji′
on all remaining stages, the revisit event occurs at the last
execution stage of Ji). This is illustrated in Figure 3 (Jl1,
Jl2, and Jl3 are of lower priority than job Ji′).

Figure 3. Example illustrating a reversal event

We shall now prove the theorem using induction on
the number of such revisit events between jobs Ji and
Ji′ , such that i < i′ ≤ k. The basis step is when there
are no such events. This means that at every merge-stage
each higher priority job that was ahead of job Jk remains
ahead of job Jk throughout the system. Hence, Delayk
can be bounded by the maximum delay across any end-
to-end pipeline path from a source to the sink. Applying
the delay composition result (Equation 3) to each path
p ∈ Pathsk and picking the maximum, we can obtain
a bound on Delayk as follows:

Delayk ≤
∑
i≤k

Ci,max + max
p∈Pathsk

∑
j∈p

(max
i∈S

Ci,j +max
i≤k

Ci,j)

This proves the theorem for the basis step when there
are no revisit events.

Let us assume that the result is true up to n− 1 revisit
events, n ≥ 1. We shall now prove that the result is true
when there are n such events. Among all the n revisit
events, consider the one that is latest in time. Let Ji be
the higher priority job involved in this last revisit event. If
Ji exits the system at some stage prior to the last stage on
which Jk executes, lets add executions of zero computation
time for Ji on the remaining stages. This operation cannot
decrease the delay of Jk. Let stage j be the last stage where
there is no idle time between the executions of Ji and
Jk. Let E(i, j) denote the instant of time at which job Ji
completes execution on stage j. We can now calculate the
end-to-end delay of Jk as the sum of three terms: the offset

of Ji relative to Jk, the delay of Ji up to its completion
on stage j, and the delay of Jk from this instant on stage
j to its sink. This is illustrated in Figure 4.

Figure 4. Example illustrating the proof

Delayk≤(Offi−Offk)+Delayi,j+(Delayk−E(i, j))

(5)

The delay of job Ji up to stage j, Delayi,j , can be
obtained from induction assumption as it has only n − 1
revisit events. Let H1 be the set of higher priority jobs
including Ji that contribute to Delayi,j .

Delayi,j ≤ max
i′≤i

(Offi′ −Offi) +
∑
i′∈H1

Ci′,max

+ max
p∈Pathsk

∑
j′≤j∈p

(max
i′∈S

Ci′,j′ +max
i′≤i

Ci′,j′) (6)

In the above equation, j′ ≤ j denotes stages before stage
j and j′ > j denotes stages after stage j in path p. The
delay of job Jk starting from instant E(i, j) on stage j
does not encounter any revisit events and the delay can be
obtained from the basis step. Let H2 be the set of higher
priority jobs that contribute to the delay of Jk from stage
j to the sink.

Delayk−E(i, j)≤
∑
i′∈H2

Ci′,max +

max
p∈Pathsk

∑
j′>j∈p

(max
i′∈S

Ci′,j′+max
i′≤k

Ci′,j′) (7)

Expanding Equation 5 using Equations 6 and 7 we get,

Delayk ≤ max
i′≤k

(Off ′i)−Offk+
∑
i′∈H1

Ci′,max+
∑
i′∈H2

Ci′,max

+ max
p∈Pathsk

∑
j′∈p

(max
i′∈S

Ci′,j′ +max
i′≤k

Ci′,j′) (8)

Clearly, H1∪H2 is a subset of the set of higher priority
jobs of Jk. What remains to be shown is that H1∩H2 = φ.

Any higher priority job Jh in H1 has executed ahead of
Ji on some stage j′ ≤ j. If Jh ∈ H2, it must have
arrived at stage j after Ji (there is an idle time between
the executions of Ji and Jk after stage j). This would
be a revisit event that is after that of Ji’s, as Jh has
executed ahead of Ji on a stage j′ prior to j, leading to a
contradiction. This proves the theorem.

B. Preemptive Scheduling

In the interest of brevity, we only state the result under
preemptive scheduling. The proof is similar to the non-
preemptive case, using the preemptive version of the delay
composition theorem.

Preemptive Delay Composition Theorem for Aggrega-
tion Workflows: Assuming a preemptive scheduling policy
that assigns the same priority across all stages for each
job, the worst-case end-to-end delay of a job of workflow
Fk in an aggregation tree is bounded as,

Delayk ≤ max
i≤k

(Offi)−Offk +
∑
i≤k

Ci,max

+ max
p∈Pathsk

∑
j∈p

max
i≤k

Ci,j (9)

where Offi is the offset of job Ji from time zero.

VI. SCHEDULABILITY ANALYSIS BY REDUCING THE
AGGREGATION SYSTEM TO AN EQUIVALENT

UNIPROCESSOR

In this section, we present a reduction of the aggregation
workflow graph into an equivalent uniprocessor for the
purposes of schedulability analysis. This reduction main-
tains the property that the worst-case delay of a job in the
distributed aggregation graph is no more than the delay
of the corresponding task in the equivalent uniprocessor.
Thus, if the uniprocessor task completes execution within
its deadline, then the corresponding distributed workflow
will also complete execution within its end-to-end dead-
line. The hypothetical uniprocessor can be analyzed using
any well-known schedulability analysis technique (e.g., Liu
and Layland bound [20], response time analysis [21]).

Under non-preemptive scheduling, the schedulability of
a job Jk of an aggregation workflow can be determined by
analyzing the schedulability of a hypothetical uniprocessor
constructed as follows:
• Each higher priority job Ji in the original distributed

system is replaced with a job J∗i on the hypothetical
singe stage, with a computation time equal to Ci,max,
its maximum computation time across all stages in the
distributed system and a deadline Di, same as that of
Ji.

• Job Jk is replaced with job J∗k of lowest prior-
ity in the hypothetical single stage and computa-
tion time of maxi≤k(Offi) − Offk + Ck,max +

maxp∈Pathsk
∑
j∈p(maxi∈S Ci,j+maxi≤k Ci,j) and

deadline equal to Dk.
Under preemptive scheduling, the hypothetical unipro-

cessor is constructed as follows:
• Each higher priority job Ji in the original distributed

system is replaced with a job J∗i on the hypothetical
sing stage, with a computation time equal to 2Ci,max
and deadline equal to Di.

• Job Jk is replaced with job J∗k of lowest prior-
ity in the hypothetical single stage and computa-
tion time of maxi≤k(Offi) − Offk + Ck,max +
maxp∈Pathsk

∑
j∈pmaxi≤k Ci,j and deadline equal

to Dk.
The reduction process in the delay composition frame-

work is schematically depicted on an aggregation tree in
Figure 5.

Flow Fk

Flow F i

S
{1,2,3}

S
{4,5,6}

S
7

S
{{1,2,3}, {4,5,6}, 7}S

7

S
3

S
6

S
5

S
4

S
2

S
1

Figure 5. The reduction process on an aggregation tree in the delay
composition framework

VII. EVALUATION

In this section, we evaluate our approach to demonstrate
the accuracy of our analysis in quantifying the end-to-end
delays of workflows in an aggregation network. Specif-
ically, we elaborate on how different system and load
parameters can affect the effectiveness and accuracy of our
approach. Towards this goal, two questions are explored:
first, how efficiently our analysis utilizes the system re-
sources, and second, how accurate it is in estimating the
worst-case end-to-end delays.

We consider aggregation trees described as full binary
trees for our simulations. So, a tree of height H has
2H+1 − 1 nodes and H levels of cascading merges. All
workflows are assumed to execute on all nodes of the
aggregation tree. Each workflow comprises of a sequence
of aperiodic jobs. Each job is assigned an end-to-end
deadline equal to 500 × H × 10α simulation time units,
where H denotes the height of the aggregation tree and α
is chosen uniformly across the interval [0, DR]. The default
height of the aggregation tree is 5 and the number of stages
is 63. The parameter DR, called deadline ratio parameter,
is set to 2.0 in all experiments, unless otherwise specified.
This choice allows the end-to-end deadlines of jobs to vary
by a factor of 102. The computation times of jobs are

chosen proportional to their deadlines based on a uniform
distribution with a mean of D

H×JR in which D denotes the
corresponding end-to-end deadline and JR denotes the job
resolution parameter. Unless otherwise specified, the JR
factor is set to 20. Different computation times are within
12% of the mean value. Jobs are activated with offsets
randomly chosen from the interval [0, OR× 500×H],
wherein OR denotes the offset resolution factor, set to
0.5 throughout the experiments (note that 500×H is the
minimum end-to-end deadline of any job). Job priorities
are assigned based on their end-to-end deadlines, and
scheduling follows an earliest deadline first policy.

The delay composition algebra and holistic analysis [2]
are simulated and compared in terms of different system
and workload parameters such as the number of stages in
the system, job resolution, deadline ratio, offset resolution,
and the number of real-time jobs. Every experiment is
repeated for 50 times and the 95th percentile confidence
level is within 1% of the plotted average value. For the
sake of clarity, we do not plot the confidence values.

A. Resource Utilization

The delay composition algebra can be employed as
an admission controller, which admits only the part of
the workload that it deems to be feasible (all admit-
ted workflows are guaranteed to meet their end-to-end
deadline). Guaranteeing the schedulability of all admitted
workflows is a vital requirement for mission-critical real-
time applications. This avoids system resources from being
channeled into serving jobs that may not meet their end-
to-end deadline, ensuring more efficient utilization of the
system resources.

For each experiment we employ the delay composition
framewrok and holistic approach as admission controllers
in independent executions that work on the same input.
In each experiment, the same job set (which is sufficient
to overload both approaches) is fed to both admission
controllers and then the admitted jobs for each approach
are executed through the aggregation tree. The overload
region is of interest since it determines the capacity of the
system under each admission controller.

In the first experiment, we varied the height of the
aggregation tree (and hence the number of stages). Figure 6
presents the comparison of average per stage utilization
with increasing values of the height of the tree from 1
to 5 (the number of stages varies from 3 to 63) in this
experiment. The height of the tree is also the path length
for the jobs. The delay composition algebra and holistic
approach are denoted as DCA and Holistic, respectively.
As depicted in the figure, the resource utilization of delay
composition algebra remains nearly constant. This shows
that the pessimism in analysis is independent of the number
of stages in the system. On the other hand, the utilization
of holistic approach drops significantly as system size
increases. The reason is that the holistic approach analyzes

one stage at a time and the pessimism grows as path length
increases. Hence, our analysis is especially useful for large
systems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 7 15 31 63

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

No. of Stages

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 6. Comparison of utilization for different number of stages

In the next experiment, we varied the size of the real-
time jobs in the system. The job resolution parameter is
decreased from 80 to 5 (increasing the job sizes by a factor
of 16) and the results for average per stage utilization
are shown in Figure 7. A job resolution of 80 denotes
a large number of small jobs, while a value of 5 denotes a
small number of large jobs. Under preemptive scheduling,
the system utilization of both approaches remain nearly
constant. Following a non-preemptive scheduling policy,
the average per stage utilization of both DCA and holis-
tic analysis techniques strictly decreases as jobs become
larger. The reason is that the blocking delay component
becomes significantly large as job sizes increase. The
delay composition algebra consistently outperforms holis-
tic analysis under non-preemptive as well as preemptive
scheduling.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 20 40 60 80

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

Job Resolution

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 7. Comparison of utilization for different values of job resolution

Next, we changed the order of variability in job dead-
lines, increasing the deadline ratio parameter, DR, from
0.5 to 3.0 (recall that the deadlines vary by a factor of
10DR). Figure 8 shows the average per stage utilization
for this experiment. As job sizes are proportional to end-to-
end deadlines, when the variability in deadlines increases,
an increased number of larger jobs are introduced into the
job set. When scheduling follows a non-preemptive policy,
larger low priority jobs impose larger blocking delays on
higher priority jobs. Therefore, as observe in the figure,

under both DCA and holistic analysis, for larger deadline
ratios (beyond 1) the effect of blocking delay becomes
significant and the average utilization drops thereof. How-
ever, for the entire range of deadline ratios, the delay
composition algebra outperforms holistic analysis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

Deadline Ratio

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 8. Comparison of utilization for different values of deadline ratio

Figure 9 plots the effect of increasing the offset reso-
lution parameter. We increased the offset resolution value
form 0.1 to 100 which denotes increasing the maximum
offset in job arrivals from one-tenth of the minimum job
deadline to 100 times of that. Note that the x axis is
drawn in logarithmic scale. While the average per stage
utilization under holistic analysis is independent of arrival
offsets, that of the DCA is a function of offset values
and drops beyond the point where offset values become
larger than the minimum job deadline. The results report
that when offset resolution remains below 100 times of
the minimum job deadline, the delay composition algebra
remains superior to the holistic approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.5 1 1.5 3 10 20 100

A
ve

ra
ge

 P
er

 S
ta

ge
 U

til
iz

at
io

n

Offset Resolution

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 9. Comparison of utilization for different values of offset
resolution

B. End-to-End Delay Bound Accuracy
In this section, we evaluate the tightness of the delay

composition algebra by comparing the actual delay of jobs
obtained through simulation to the analytically calculated
worst-case delay bounds. As we are only interested in
delay and not schedulability, we do not perform admission
control. We compare our analysis framework with holistic
analysis, and in each experiment retain the given workload
constant in order to reflect merely the impact of parameters
under study.

Figure 10 compares the average ratio of end-to-end de-
lays obtained from simulation to the analytically computed
delay bounds with respect to increase in the system size. As
the results show, under preemptive scheduling, the holistic
approach calculates tighter bounds than DCA for small-
scale systems. However, as system scales, the delay bounds
of DCA become significantly more accurate than those of
holistic (achieving 6% and 24% improvement in accuracy
respectively at 7 and 63 stages). Under non-preemptive
scheduling, the delay composition algebra again outper-
forms the holistic approach with 14%− 34% difference in
the level of tightness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 7 15 31 63

A
ve

ra
ge

 R
at

io
 o

f E
nd

-t
o-

E
nd

 D
el

ay
to

 D
el

ay
 B

ou
nd

No. of Stages

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 10. Comparison of delay bounds of the delay composition algebra
and holistic approach for different number of stages

We then conducted an experiment to evaluate the effect
of input workload on delay bounds. Figure 11 shows the
corresponding results for job sets of size 10, 20, 40, 80,
160, and 320. As depicted in the figure, the DCA delay
bound accuracy is superior to that of the holistic analysis
for all workload values. The reason is that the holistic
approach performs on a per stage basis and reflects the
contribution of each higher priority job to the end-to-
end delay at all stages along its path, while the delay
composition algebra takes a per job approach. The latter
leads to more accurate estimation of the worst-case delay
for DCA. Furthermore, under non-preemptive scheduling
policy, while the tightness of holistic delay bound de-
creases, that of the DCA improves. This is because for
DCA, the difference between the delay bound and the
actual delay remains more or less constant with increase
in the number of jobs. Therefore, the delay ratio improves
for DCA. On the other hand, for holistic analysis, the
difference between the delay bound and the actual delay
grows significantly with load and hence the delay ratio
drops.

Under preemptive scheduling, the delay ratio of both
analysis techniques decreases with increase in workload.
For DCA, the reason lies in the fact that it accounts for
a delay of two stage execution times for the contribu-
tion of each higher priority job in delay of other lower
priority ones in the worst case (rather than one in non-
preemptive scheduling). We encourage the reader to review
our prior work [1], [16] for an explanation of this source

of pessimism in the analysis. Under both non-preemptive
and preemptive scheduling, DCA consistently has a higher
ratio of end-to-end delay to the computed delay bound as
compared to holistic analysis (more than 20% when the
number of jobs is over 80).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 40 80 160 320

A
ve

ra
ge

 R
at

io
 o

f E
nd

-t
o-

E
nd

 D
el

ay
to

 D
el

ay
 B

ou
nd

No. of Tasks

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 11. Comparison of delay bounds of the delay composition algebra
and holistic approach for different number of jobs

Figure 12 plots the results for the effect of job resolu-
tion on delay bounds. As depicted in the figures, when
changing jobs sizes, the delay composition algebra is
superior to the holistic approach under both preemptive
and non-preemptive scheduling policies (up to 25% and
45% improvement in tightness, under preemptive and non-
preemptive policies, respectively).

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 20 40 60 80

A
ve

ra
ge

 R
at

io
 o

f E
nd

-t
o-

E
nd

 D
el

ay
to

 D
el

ay
 B

ou
nd

Job Resolution

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 12. Comparison of delay bounds of the delay composition algebra
and holistic approach for different values of job resolution

The impact of deadline ratio on the tightness is reported
in Figure 13. Recall that a value of x for deadline ratio
implies a 10x variability in jobs deadlines. As indicated
before, the decrease in delay ratio under a non-preemptive
policy is related to the blocking delay component becom-
ing more significant. Both analysis approaches predict a
larger worst-case blocking factor leading to a reduced value
for the delay ratio for both analysis techniques. Here again,
the delay composition algebra outperforms the holistic
approach by about 25% and 45% under preemptive and
non-preemptive scheduling schemes, respectively.

The impact of offset in job arrivals is presented in
Figure 14. Note that the x axis is in logarithmic scale.
The worst-case delay bound estimation of the DCA is a
function of offset values, while that of the holistic remains

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 R
at

io
 o

f E
nd

-t
o-

E
nd

 D
el

ay
to

 D
el

ay
 B

ou
nd

Deadline Ratio

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 13. Comparison of delay bounds of the delay composition algebra
and holistic approach for different values of deadline ratio

constant. The slight reduction in delay ratios of the holistic
is due to the fact that increase in offset values reduces the
interference in jobs execution which leads to decrease in
the value of actual end-to-end delay. We observe that up to
an offset parameter value of nearly 100, DCA outperforms
holistic analysis in terms of the achieved average ratio of
the end-to-end delay of jobs to the computed delay bound.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.5 1 1.5 3 10 20 100

A
ve

ra
ge

 R
at

io
 o

f E
nd

-t
o-

E
nd

 D
el

ay
to

 D
el

ay
 B

ou
nd

Offset Resolution

DCA - non-preemptive
Holistic - non-preemptive

DCA - preemptive
Holistic - preemptive

Figure 14. Comparison of delay bounds of the delay composition algebra
and holistic approach for different values of offset resolution

VIII. CONCLUSIONS

In this paper, we investigate timing properties and delay
composability of jobs in multisensor data aggregation sys-
tems. We propose a theoretical framework which extends
previously proposed delay composition algebra for a new
class of systems characterized by a “MERGE” primitive.
We provide intuition as to why analyzing such systems can
be difficult, and develop a framework to determine offline
schedulability of multi-criticality distributed workload in
data aggregation systems. The framework assists to prevent
system resources from being channeled into serving jobs
which may not complete its end-to-end execution within
prespecified deadlines. We provide delay composition rules
for aggregation workflows under preemptive as well as
non-preemptive scheduling policies based on character-
istics of concurrent workflows and their corresponding
arrival offsets. We extensively evaluate our framework
through simulations and show that our theoretical frame-
work is significantly more accurate than traditional analysis

techniques and effectively utilizes distributed resources.
Our framework is especially beneficial for large systems.

ACKNOWLEDGEMENTS

This research was sponsored in part by ONR grant
N00014-10-1-0172 and NSF grant CNS 07-20513 and in
part by the Army Research Laboratory and was accom-
plished under Cooperative Agreement Number W911NF-
09-2-0053. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] P. Jayachandran and T. Abdelzaher, “Delay composition algebra:
A reduction-based schedulability algebra for distributed real-time
systems,” in RTSS, December 2008, pp. 259–269.

[2] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Elsevier Microprocessing and
Microprogramming, vol. 40, no. 2-3, pp. 117–134, 1994.

[3] A. Koubaa and Y.-Q. Song, “Evaluation and improvement of re-
sponse time bounds for real-time applications under non-preemptive
fixed priority scheduling,” International Journal of Production and
Research, vol. 42, no. 14, pp. 2899–2913, July 2004.

[4] R. Cruz, “A calculus for network delay, part i: Network elements
in isolation,” IEEE Transactions on Information Theory, vol. 37,
no. 1, pp. 114–131, January 1991.

[5] ——, “A calculus for network delay, part ii: Network analysis,”
IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 132–
141, January 1991.

[6] X. Li and J. Cao., “Coordinated workload scheduling in hierarchical
sensor networks for data fusion applications,” Journal of Computer
Science and Technology, vol. 23, May 2008.

[7] J. Xu and D. Parnas, “On satisfying timing constraints in hard real-
time systems,” IEEE Transactions on Software Engineering, vol. 19,
no. 1, pp. 70–84, January 1993.

[8] G. Fohler and K. Ramamritham, “Static scheduling of pipelined
periodic tasks in distributed real-time systems,” in Euromicro Work-
shop on Real-Time Systems, June 1997, pp. 128–135.

[9] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed
soft real-time system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 8, no. 12, pp. 1268–1274, 1997.

[10] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker, “End-to-end
scheduling strategies for aperiodic tasks in middleware,” University
of Washington at St. Louis, Tech. Rep. WUCSE-2005-57, December
2005.

[11] J. Palencia and M. Harbour, “Offset-based response time analysis of
distributed systems scheduled under edf,” in Euromicro Conference
on Real-Time Systems, July 2003, pp. 3–12.

[12] R. Pellizzoni and G. Lipari, “Improved schedulability analysis of
real-time transactions with earliest deadline scheduling,” in RTAS,
March 2005, pp. 66–75.

[13] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in IEEE International Sympo-
sium on Circuits and Systems, vol. 4, May 2000, pp. 101–104.

[14] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi, “Cyclic depen-
dencies in modular performance analysis,” in ACM EMSOFT, Oct.
2008, pp. 179–188.

[15] E. Wandeler, A. Maxiaguine, and L. Thiele, “Quantitative character-
ization of event streams in analysis of hard real-time applications,”
in IEEE RTAS, May 2004, pp. 450–459.

[16] P. Jayachandran and T. Abdelzaher, “Transforming acyclic dis-
tributed systems into equivalent uniprocessors under preemptive and
non-preemptive scheduling,” in ECRTS, July 2008, pp. 233–242.

[17] ——, “A delay composition theorem for real-time pipelines,” in
ECRTS, July 2007, pp. 29–38.

[18] P. Jayachandran and T. Abdelzaher, “Delay composition in preemp-
tive and non-preemptive real-time pipelines,” Invited to Real-Time
Systems Journal: Special Issue on ECRTS’07, vol. 40, no. 3, pp.
290–320, December 2008.

[19] ——, “End-to-end delay analysis of distributed systems with cycles
in the task graph (to appear),” in ECRTS, July 2009.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” Journal of ACM,
vol. 20, no. 1, pp. 46–61, 1973.

[21] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying
new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering, vol. 8, no. 5, pp. 284–292, 1993.

