
Improved Verification Techniques for
Concurrent Systems

by

Viktor Toman

October, 2021

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Tamás Hausel, Chair

Krishnendu Chatterjee
Thomas Anton Henzinger

Parosh Aziz Abdulla
Andreas Pavlogiannis





The thesis of Viktor Toman, titled Improved Verification Techniques for Concurrent Systems,
is approved by:

Supervisor: Krishnendu Chatterjee, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Thomas Anton Henzinger, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Parosh Aziz Abdulla, Uppsala University, Uppsala, Sweden

Signature:

Committee Member: Andreas Pavlogiannis, Aarhus University, Aarhus, Denmark

Signature:

Defense Chair: Tamás Hausel, IST Austria, Klosterneuburg, Austria

Signature:

Signed page is on file





© by Viktor Toman, October, 2021
All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing the
dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my
thesis committee, and that this thesis has not been submitted for a higher degree to any other
university or institution.

I certify that any republication of materials presented in this thesis has been approved by the
relevant publishers and co-authors.

Signature:

Viktor Toman
October, 2021

Signed page is on file





Abstract

The design and verification of concurrent systems remains an open challenge due to the
non-determinism that arises from the inter-process communication. In particular, concurrent
programs are notoriously difficult both to be written correctly and to be analyzed formally, as
complex thread interaction has to be accounted for. The difficulties are further exacerbated
when concurrent programs get executed on modern-day hardware, which contains various
buffering and caching mechanisms for efficiency reasons. This causes further subtle non-
determinism, which can often produce very unintuitive behavior of the concurrent programs.

Model checking is at the forefront of tackling the verification problem, where the task is to
decide, given as input a concurrent system and a desired property, whether the system satisfies
the property. The inherent state-space explosion problem in model checking of concurrent
systems causes naive explicit methods not to scale, thus more inventive methods are required.
One such method is stateless model checking (SMC), which explores in memory-efficient
manner the program executions rather than the states of the program. State-of-the-art SMC
is typically coupled with partial order reduction (POR) techniques, which argue that certain
executions provably produce identical system behavior, thus limiting the amount of executions
one needs to explore in order to cover all possible behaviors. Another method to tackle the
state-space explosion is symbolic model checking, where the considered techniques operate
on a succinct implicit representation of the input system rather than explicitly accessing the
system.

In this thesis we present new techniques for verification of concurrent systems. We present
several novel POR methods for SMC of concurrent programs under various models of seman-
tics, some of which account for write-buffering mechanisms. Additionally, we present novel
algorithms for symbolic model checking of finite-state concurrent systems, where the desired
property of the systems is to ensure a formally defined notion of fairness.
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CHAPTER 1
Introduction

Model checking. The fundamental problem of model checking asks, given a model and
a specification, whether the model satisfies the specification [CGP99a]. Model-checking
algorithms are rigorous methods for formal verification of diverse software and hardware
systems. To reason about an input system, a model checker aims to cover all possible system
behaviors that can arise due to non-determinism, randomness, or outside environment. There
are numerous successful and well-established model-checking tools, including VeriSoft [God97,
God05], CHESS [MM07], BLAST [BHJM07], SLAM [BR02], SPIN [Hol97], PRISM [KNP11],
and DiVinE [BBC+06].

Concurrent finite-state systems. Two fundamental types of transition structures to model
finite-state systems are graphs and Markov decision processes (MDPs). A Graph can efficiently
capture the non-determinism of the underlying system, whereas an MDP captures both the
non-determinism and the randomness present in its system. Thus graphs and MDPs can
precisely model various classes of software and hardware systems. In particular, concurrent
systems are systems that inherently exhibit non-determinism due to the interaction between
different modules (often called processes, or threads) present in one system, and formal analysis
of concurrent systems has been a subject of extensive research [Pet62, CL73, Lip75, CES86,
LR09, FM09, FK12]. Concurrent finite-state systems are naturally represented as graphs,
where vertices capture possible states of the system (typically given as variable valuations
of all the modules), while edges (or transitions) denote atomic actions performed by some
module. However, when graphs and MDPs are used to model realistic systems (including
concurrent systems), they suffer from the well-known state-space explosion problem, which is
a combinatorial blow-up on the number of states (i.e., vertices) due to the inter-play between
modules and variables of the modelled system. Thus graphs and MDPs are central models
used in model checking, with the challenge that for realistic systems they are often way too
big for naive explicit exploration [CGP99a, BK08].

Concurrent programs. Model checking of concurrent programs is one of the key challenges in
formal methods. Inter-process communication in concurrent programs incurs non-determinism
in the program behavior, which is resolved by a scheduler. However, as the programmer has
no control over the scheduler, program correctness has to be guaranteed under all possible
schedulers, i.e., the scheduler is adversarial to the program and can generate erroneous
behavior if one can arise out of scheduling decisions. On the other hand, during program
testing, the adversarial nature of the scheduler is to hide erroneous runs, making bugs
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1. Introduction

extremely difficult to reproduce by testing alone (called Heisenbugs [MQB+08]). These
facts make it very hard for concurrent programs both to be written correctly, and to be
analyzed formally, as both the programmer and the model checker need to account for
all possible communication patterns among the threads. As a result, systematic state-
space exploration by model checking is an important approach for verification of concurrent
programs [CGP99a, AQR+04, God05, MQ07, AKT13, BBH+13].

Semantics of concurrent programs. Traditional verification has focused on concurrent
programs adhering to the semantics of sequential consistency (SC) [Lam79]. Under SC, the
read and write operations of a program are considered atomic. This typically does not precisely
reflect the program behavior when executed on real-world hardware, which makes use of various
buffering and caching mechanisms. Descriptions of semantics that model such mechanisms
are broadly called relaxed memory models, and programs operating under relaxed-memory
semantics can exhibit additional behavior as compared to SC. This makes it exceptionally hard
to reason about correctness since, besides scheduling subtleties, the formal reasoning needs to
additionally account for the non-determinism induced by the buffering and caching mechanisms.
Two of the most standard operational relaxed memory models in the literature are total store
order (TSO) and partial store order (PSO) [SI94, AG96, OSS09, SSO+10, Alg10, ACU17].

On the operational level, both TSO and PSO introduce subtle mechanisms via which write
operations become visible to the shared memory and thus to the whole system. Under TSO,
every thread is equipped with its own buffer. Then, every write to a shared variable is pushed
into the buffer, and thus initially remains hidden from the other threads. The buffer is flushed
non-deterministically to the shared memory, at which point the writes become visible to the
other threads. The semantics under PSO are even more involved, as now every thread has one
buffer per shared variable, and non-determinism now governs not only when a thread flushes
its buffers, but also which buffers are flushed. Consequently, the great challenge in verification
under TSO and PSO is to systematically, yet efficiently, explore all such extra behaviors of the
system, i.e., account for the additional non-determinism that comes from the buffers.

Stateless model checking. Model checkers typically store a large number of global states,
and hence due to state-space explosion they struggle to handle realistic concurrent programs.
The standard solution that is adopted to battle this problem on concurrent programs is stateless
model checking (SMC) [God96]. SMC methods typically explore traces rather than states of
the analyzed program, and only have to store a small number of traces at any time. In such
techniques, model checking is achieved by a controllable scheduler, which drives the program
execution based on the desired interaction between the threads. The depth-first nature of
the search enables it to be both systematic and memory-efficient. SMC techniques have
been employed successfully in numerous well-known model checkers [God97, God05, MM07,
AAA+15, Hua15, DL15, KLSV17].

Partial order reduction. While SMC deals with the state-space issue, one key challenge
that remains is to efficiently explore the exponential number of interleavings, which results
from the non-deterministic inter-process communication. There exist various techniques
for reducing the number of explored interleavings, such as depth bounding and context
bounding [MQ07, LR09]. Notably though, one of the most well-studied techniques is partial
order reduction (POR) [Pel93, God96, CGMP99]. The main principle of POR is that two
interleavings can be regarded as equal if they agree on the order of conflicting (i.e., dependent)
events. In other words, POR considers certain pairs of program executions (i.e., traces) to
be equivalent, and the theoretical foundation of POR is an equivalence relation induced on

2
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the trace space, known as the happens-before (or the Mazurkiewicz) equivalence [Maz87].
POR algorithms explore at least one trace from each equivalence class and thus guarantee a
complete coverage of all behaviors that can occur in any interleaving, while exploring only a
subset of the trace space. For the most interesting properties that arise in formal verification,
such as safety, race freedom, absence of global deadlocks, and absence of assertion violations,
POR-based algorithms make sound reports of correctness [God96].

An on-the-fly version of POR is called dynamic partial order reduction (often abbreviated as
DPOR) [FG05]. Dynamic POR records conflicts that actually occur during the execution of
traces, and thus is able to infer independence more frequently than static POR, which typically
relies on over-approximations of conflicting events. Similar to static POR, dynamic-POR-based
algorithms guarantee the exploration of at least one trace in each class of the happens-before
partitioning. Further, the great advantage of dynamic POR is that it handles indirect memory
accesses precisely without introducing spurious interleavings. As a result, state-of-the-art SMC
methods to tackle verification of concurrent programs are all coupled with dynamic POR
techniques.

Symbolic model checking. An approach to tackle the state-space explosion which is
orthogonal to SMC is called symbolic model checking. Symbolic model-checking algorithms
operate on a succinct implicit representation of the input system rather than explicitly accessing
the system, thus sidestepping the state-space problem.

In contrast to traditional explicit algorithms that operate on the explicit representation of the
system (i.e., a graph or an MDP), symbolic algorithms only use a set of predefined operations
to manipulate the system and they never explicitly access the system [CGP99b]. As a result,
the explicit representation of the system does not have to be constructed and stored at all,
and only the implicit representation (which is typically exponentially smaller) is constructed
and manipulated. Thus symbolic algorithms are scalable, whereas explicit algorithms do not
scale as it is computationally too expensive to even explicitly construct the system.

Symbolic algorithms for the analysis of graphs and MDPs are at the heart of many state-
of-the-art model-checking tools, such as SPIN [Hol97], NuSMV [CCGR00] for graphs, and
PRISM [KNP11], LiQuor [CB06], STORM [DJKV17] for MDPs.

1.1 Previous Literature – POR
To deal with the exponential number of interleavings faced by the early model checking [God97],
several reduction techniques have been proposed, such as depth bounding, context bound-
ing [Pel93, MQ07, LR09, CKK+17, BMTZ21], unfoldings [McM95, KSH12, RSSK15], and
importantly also POR. As many interleavings (i.e., traces) induce the same program be-
havior, POR partitions the trace space into equivalence classes and attempts to sample
a few representative traces from each class. The initial POR techniques deem interleav-
ings as equivalent based on the way that conflicting memory accesses are ordered, also
known as the happens-before (or the Mazurkiewicz) equivalence [Maz87]. Originally, sev-
eral static POR methods, based on persistent-set [Val91, God96, CGMP99] and sleep-set
techniques [God97], have been studied. The first dynamic POR technique was proposed
in [FG05], where the Mazurkiewicz equivalence is constructed dynamically, as all memory
accesses are known, and thus this approach does not suffer from the imprecision of earlier
approaches based on static information. After [FG05], several variants and improvements
have been proposed [SA06, SA07, WYKG08, KWG09, LKMA10, TKL+12, SKH12]. In par-
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ticular, in [AAJS14], source sets and wakeup trees were developed to make the Mazurkiewicz
dynamic-POR technique exploration-optimal, i.e., each class of the Mazurkiewicz partitioning
is explored exactly once. The underlying computational problems of [AAJS14] were fur-
ther studied in [NRS+18]. Notably, while in this thesis we focus on concurrent programs
with shared memory, techniques for POR have also been considered for message-passing
concurrency [KP92, GHP95, God96].

Beyond the Mazurkiewicz equivalence. Consider an SMC algorithm that utilizes a dynamic
POR technique to explore classes of some trace-space partitioning. The performance of the
SMC algorithm is generally a product of two factors: (a) the size of the underlying partitioning
that is explored, and (b) the total time spent in exploring each class of the partitioning.
Typically, the task of visiting a partitioning class requires solving a consistency-checking
problem, where the algorithm checks whether a semantic abstraction, used to represent some
partitioning class, has a consistent concrete interleaving that witnesses the class. For this
reason, the search for efficient SMC is reduced to the search of coarse partitionings for which
the consistency problem is tractable. The idea of searching for coarse trace partitionings was
initially proposed in [GP93], and it has become a very active research direction in recent years
in the context of SMC coupled with dynamic POR.

In [AJLS18], the Mazurkiewicz partitioning was reduced by ignoring the order of conflicting
write events that are not observed, while retaining polynomial-time consistency checking. The
work of [AAdlB+17] utilizes context-sensitivity to achieve partitioning reduction as compared
to Mazurkiewicz. The approach in [Hua15] considers a very coarse partitioning based on
maximal causal models, where the consistency checking is solved using satisfiability modulo
theories (SMT) solvers, and the work was later improved with static analysis techniques [HH17].
Similarly to [Hua15] using SMT solvers, the SMC work of [DL15] utilizes propositional-logic
solvers (commonly known as SAT solvers) for consistency checking. Orthogonally to other
works, [KRV19a] proposes an efficient method of handling locks in SMC, thereby achieving
coarse partitionings on concurrent programs utilizing lock accesses.

A new direction of SMC has recently been developed where the techniques consider the reads-
from (RF) equivalence to partition the trace space. The key principle is to classify traces as
equivalent based on whether the read accesses observe the same write accesses. The idea was
initially explored in [CCP+17] for a subset of concurrent programs with acyclic communication
topologies. The work of [CCP+17] uses polynomial time for consistency checking, and it
does not handle concurrent programs with arbitrary communication topologies1, since the
corresponding consistency-checking problem in the general setting is NP-hard [GK97], while it
was recently shown to be even W[1]-hard [MPV20]. Nevertheless, efficient SMC based on the
RF equivalence handling concurrent programs with all communication topologies was recently
developed in [AAJ+19, KRV19b]. The work of [AAJ+19] sidesteps the consistency-checking
hardness by proposing a consistency-checking approach that is polynomial-time when the
number of threads is bounded by a constant, and further the approach is very efficient in
practice. Similarly, the work of [KRV19b] utilizes a simple consistency-checking technique
which, while exponential-time in the worst case, is also efficient in practice.

Dynamic POR for relaxed memory models. While the above-mentioned SMC techniques
mostly consider concurrent programs operating under the SC memory model, it is very important
to also study programs under more complex memory models that more accurately reflect the

1More precisely, [CCP+17] handles programs with arbitrary topologies by considering an equivalence that
is a mixture of RF and Mazurkiewicz, and hence admits polynomial-time consistency checking.
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behavior made possible by present-day hardware. Hence the SMC literature has taken up
the challenge of model checking concurrent programs under relaxed memory. Extensions to
SMC for TSO and PSO have been considered by [ZKW15] using shadow threads to model
memory buffers, as well as by [AAA+15] using chronological traces to represent the Shasha–
Snir notion of trace under relaxed memory [SS88]. Chronological/Shasha–Snir traces are the
generalization of Mazurkiewicz traces to TSO and PSO. The work of [DL15] utilizing SAT
solvers also handles TSO in addition to SC, and the work of [HH16] extends the SMT-using
maximal-causal-model approach of [Hua15] to handle TSO and PSO. Further extensions
have also been made to other memory models, namely by [AAJN18] for the release-acquire
fragment of C++11, [KLSV17, KRV19b] for the RC11 model [LVK+17], and [KV20] for the
IMM model [PLV19]. Notably, the approaches in [KRV19b] and [KV20] introduce a general
SMC interface that can potentially handle a large variety of relaxed memory models, provided
that a consistency-checking technique is externally supplied for the corresponding desired
memory model.

1.2 Previous Literature – Fairness
One of the very basic specifications (i.e., desired properties) that arise in verification of reactive
systems is the strong fairness (also known as the Streett) objective [CGP99a, MP96, AH04].
Given different types of requests and corresponding grants, the Streett objective requires that
for each type, if the request event happens infinitely often, then the corresponding grant event
must also happen infinitely often. After safety, reachability, and liveness, the Streett condition is
one of the most standard properties that arise in the analysis of reactive systems. Moreover, all
ω-regular objectives can be described by Streett objectives, e.g., linear-temporal-logic formulas
and non-deterministic ω-automata can be translated to deterministic Streett automata [Saf88],
and efficient translation has been an active research area [CGK13, EK14, KK14]. Thus Streett
objectives are a canonical class of verification objectives.

Problems. The algorithmic model-checking problem of graphs and MDPs with Streett
objectives is a core problem in verification. For graphs the requirement is that there is a
trajectory (i.e., an infinite path) that belongs to the set of paths described by the Streett
objective. For MDPs the satisfaction requires that there is a policy to resolve the non-
determinism such that the Streett objective is ensured almost-surely (i.e., with probability 1).
The basic approach to tackle model checking of graphs with Streett objectives utilizes repeated
computation of the strongly connected component (SCC) decomposition of graphs. Similarly,
for MDPs the core subproblem of Streett model checking is the maximal end-component
(MEC) decomposition of MDPs. Thus efficient solutions to the SCC and MEC computation
are necessary for efficient model-checking algorithms with Streett objectives.

Explicit algorithms. The traditional model-checking studies consider explicit algorithms
that operate on the explicit representation of the system [CE81]. Several explicit algorithms
have been introduced for graphs with Streett objectives [HT96, CHL15], and for MDPs with
Streett objectives [CDHL16]. Further, various explicit algorithms for MEC decomposition of
MDPs have been recently proposed [CH11, CH12, CH14]. For SCC decomposition, classical
linear-time explicit algorithms are well-known [Tar72, Dij76, Sha81].

Symbolic algorithms. In contrast to the explicit algorithms, implicit (or symbolic) algorithms
only use a set of predefined operations to access the system [CGP99b]. Symbolic algorithms
for MDP with liveness (i.e., Büchi) objectives have been proposed in [CHJS13]. Further, a
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symbolic algorithm for SCC decomposition that requires O(n) symbolic steps, for graphs with
n vertices, was proposed in [GPP08], and later shown to be optimal in [CDHL18]. In contrast,
the current best-known symbolic algorithm for MEC decomposition requires O(n2) symbolic
steps.

Basic symbolic model-checking algorithms for Streett objectives can be obtained as follows.
For an input graph, first the SCC decomposition is computed, and then given an SCC, (a) if
for every request type that is present in the SCC the corresponding grant type is also present in
the SCC, then the SCC is identified as “good”, (b) else vertices of each request type that has
no corresponding grant type in the SCC are removed, and the algorithm recursively proceeds
on the remaining graph. Finally, reachability to good SCCs is computed. For MDPs a similar
approach is followed, but the SCC computation has to be replaced by MEC computation.
Utilizing the above-mentioned best-known algorithms for SCC and MEC computation, the
bounds for basic symbolic Streett model-checking algorithms are O(n ·min(n, k)) for graphs
and O(n2 ·min(n, k)) for MDPs, where k is the number of types of request-grant pairs.

1.3 Contributions
In this thesis we present our novel contributions towards verification of concurrent systems.
In particular, we present several novel works on verification of concurrent programs via POR
methods, and a novel work on symbolic algorithms for model checking of graphs and MDPs.
In POR, we present new dynamic POR methods, two for the memory model of SC, and one
for the memory models of TSO and PSO. Each our POR method is underpinned by a newly
proposed equivalence, which aims to be coarser than the equivalences of other state-of-the-art
POR methods, i.e., we aim to (soundly) consider more program traces equivalent, while still
being able to efficiently explore the resulting trace space via SMC. Additionally, in symbolic
model checking, we present new algorithms for fairness objectives that have superior complexity
bounds as compared to the previously known algorithms.

The rest of this thesis is organized as follows.

Chapter 2: We introduce the basic concepts and definitions that we utilize in the later
chapters to describe our POR works.

Chapter 3: We present a novel value-centric (VC) trace equivalence for concurrent pro-
grams under the SC memory model. The VC equivalence is coarser than the baseline
Mazurkiewicz equivalence, and crucially at the same time, the consistency checking
problem corresponding to the VC equivalence admits a polynomial solution, and we
present such a solution. Furthermore, we develop an SMC approach coupled with
dynamic POR that utilizes the VC equivalence to verify concurrent programs operating
under SC. We implement the techniques and experimentally evaluate the SMC approach
with other state-of-the-art SMC methods, demonstrating the advantages of the VC
equivalence in SMC as compared to the other methods. This chapter provides the full
technical report of the work [CPT19].

Chapter 4: We consider the SC memory model, and we generalize the VC equivalence of
Chapter 3 into a new trace equivalence, called the reads-value-from (RVF) equivalence.
The RVF equivalence is coarser than other state-of-the-art SMC equivalences, including
the VC equivalence, and the corresponding consistency checking problem for RVF is
NP-hard. Nevertheless, we propose a new solution for the RVF consistency checking,
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which is polynomial when the number of threads and variables is bounded by a constant,
and we further present practical heuristics that make our consistency-checking approach
efficient in practice. Moreover, we introduce an SMC technique coupled with dynamic
POR underpinned by the RVF equivalence. We implement all the methods, and we
experimentally evaluate the RVF-based SMC approach with other state-of-the-art SMC
approaches, highlighting the desirable properties of utilizing RVF in SMC. This chapter
provides the full technical report of the work [ACP+21].

Chapter 5: We utilize the well-established reads-from (RF) equivalence, and we develop SMC
with dynamic POR for programs under the relaxed memory models TSO and PSO. In
particular, we consider the recent reads-from SMC approach on SC [AAJ+19], and we
extend it to TSO and PSO. In our extension, for the consistency checking problem,
the core algorithmic subproblem of SMC, we present novel algorithms for TSO and
PSO that improve upon naive extensions of the solutions for SC presented in [AAJ+19].
Specifically, given an execution of n events, k threads and d variables, for TSO we
improve the bound from O(n2·k) to O(k · nk+1), and for PSO we improve the bound
from O(nk·(d+1)) to O(k · nk+1 ·min(nk·(k−1), 2k·d)). We implement all the algorithms
and experimentally evaluate both the consistency algorithms and the SMC approach,
both in TSO and in PSO, against state-of-the-art alternatives. This chapter provides
the full technical report of the work [BCG+21].

Chapter 6: We present new symbolic algorithms for model checking of graphs and MDPs
with fairness objectives, and a new symbolic algorithm for maximal end-component
(MEC) decomposition of MDPs. Our symbolic algorithms improve in complexity upon
state of the art, and thus we establish new complexity bounds for the respective
algorithmic problems. As an example, for the fairness model checking problem of MDPs,
the best previously-known solution has the bound on the number of symbolic steps
O(n2 ·min(n, k)), where n and k is the number of vertices and fairness pairs, respectively.
However, our new symbolic algorithm has the symbolic-steps bound of O(n

√
m log n)

(where m is the number of edges), which yields a significant improvement for MDPs
with few edges and/or many fairness pairs. We implement the algorithms and evaluate
them on large-scale benchmarks, showcasing the improvement of our algorithms in terms
of both the runtime and the number of performed symbolic steps. This chapter provides
the full technical report of the work [CHL+18].

Chapter 7: We summarize the contributions of this thesis and we conclude by suggesting
directions for future research of concurrent-systems verification.
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CHAPTER 2
Preliminaries for the POR Techniques

In this chapter we define the main concepts that are used in the presentation of our partial
order reduction (POR) works in Chapter 3, Chapter 4 and Chapter 5.

2.1 General Notation.
Given a natural number i ≥ 1, we let [i] be the set {1, 2, . . . , i}. Given a map f : X → Y , we
let dom(f) = X denote the domain of f . We represent maps f as sets of tuples {(x, f(x))}x.
Given two maps f1, f2 over the same domain X, we write f1 = f2 if for every x ∈ X we have
f1(x) = f2(x). Given a set X ′ ⊂ X, we denote by f |X ′ the restriction of f to X ′. A binary
relation ∼ on a set X is an equivalence iff ∼ is reflexive, symmetric and transitive. Given an
equivalence ∼ on a set X, we denote by X/ ∼ the quotient set of X under ∼, i.e., the set of
all equivalence classes of X under ∼.

2.2 Concurrent Model
Here we describe the computational model of concurrent programs with shared memory.
We first describe concurrent programs under the sequential consistency (SC) memory model,
following a standard exposition of stateless model checking (SMC), similarly to [FG05, AAJS14,
CCP+17, AAJ+19, KRV19b, CPT19]. Afterwards we describe concurrent programs under the
relaxed memory models total store order (TSO) and partial store order (PSO), following the
exposition similar to [AAA+15, HH16].

2.2.1 Concurrent Program under the SC Memory Model
We consider a concurrent program P = {thri}k

i=1 of k deterministic threads. The threads
communicate over a shared memory G of global variables with a finite value domain D. Threads
execute events of the following types.

1. A write event w writes a value v ∈ D to a global variable x ∈ G.

2. A read event r reads the value v ∈ D of a global variable x ∈ G.
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Additionally, threads can execute local events which do not access global variables and thus
are not modeled explicitly.

Semantics under SC. The semantics of P are defined by means of a transition system over
a state space of global states. A global state consists of (i) a memory function that maps
every global variable to a value, and (ii) a local state for each thread, which contains the
values of the local variables and the program counter of the thread. We consider the standard
setting of sequential consistency, and refer to [FG05] for formal details. As usual in SMC
works, P is execution-bounded, which means that the state space is finite and acyclic.

2.2.2 Concurrent Program under the TSO and PSO Memory
Models

Similarly to the SC case, we consider a concurrent program P = {thri}k
i=1 of k threads,

communicating over a shared memory G of global variables with a finite value domain D. In
TSO, each thread additionally owns a store buffer, which is a first-in-first-out queue for storing
updates of variables to the shared memory. In PSO, each thread is equipped with a store
buffer for each global variable, rather than a single buffer for all global variables.

Threads execute events of the following types.

1. A buffer-write event wB enqueues into the local store buffer an update that wants to
write a value v ∈ D to a global variable x ∈ G.

2. A read event r reads the value v ∈ D of a global variable x ∈ G. The value v is the
value of the most recent local buffer-write event, if one still exists in the buffer, otherwise
v is the value of x in the shared memory.

Additionally, whenever a store buffer of some thread is nonempty, the respective thread can
execute the following.

3. A memory-write event wM that dequeues the oldest update from the local buffer and
performs the corresponding write-update on the shared memory (in PSO any nonempty
store buffer of the thread can deque its oldest update).

Threads can also flush their local buffers into the memory using fences.

4. A fence event fnc blocks the corresponding thread until its store buffer is empty (resp.,
in PSO, until all buffers of the thread are empty).

Finally, threads can execute local events that are not modeled explicitly, as usual. We
refer to all non-memory-write events as thread events. Following the typical setting of
SMC [FG05, AAJS14, AAA+15, CCP+17], each thread of the program P is deterministic,
and further P is bounded, meaning that all executions of P are finite and the number of
events of P’s longest execution is a parameter of the input.

Semantics under TSO and PSO. Similarly to the SC case, the semantics of P under TSO
resp. PSO are defined by means of a transition system over a state space of global states.
However, here a global state consists of (i) a memory function that maps every global variable
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to a value, (ii) a local state for each thread, which contains the values of the local variables
of the thread, and (iii) a local state for each store buffer, which captures the contents of
the queue. We consider the standard setting with the TSO/PSO memory model, and refer
to [AAA+15] for formal details. Analogously to the SC case, the state space of P is finite
and acyclic, as is usual in SMC.

2.2.3 Definitions regarding Concurrent Programs
Here we define concepts around concurrent programs, which we operate with when presenting
our methods.

Given an event e, we denote by thr(e) its thread and by var(e) its global variable. We
denote by E the set of all events, by R the set of all read events, and by W the set of all
write events. In TSO/PSO, given a buffer-write event wB ∈ WB and its corresponding
memory-write wM ∈ WM , we let w = (wB, wM) be the two-phase write event, we denote
thr(w) = thr(wB) = thr(wM) and var(w) = var(wB) = var(wM), and W then represents
the set of all such two-phase write events. Further, we denote by WB the set of buffer-write
events, by WM the set of memory-write events, and by F the set of fence events. Given
two events e1, e2 ∈ E , we say that they conflict, denoted e1 ⋊⋉ e2, if they access the same
global variable and at least one of them is a write event in SC (resp., a memory-write event in
TSO/PSO).

Event sets. Given a set of events X ⊆ E , we write R(X) = X ∩R for the set of read events
of X, and W(X) = X ∩W for the set of write events of X. In TSO/PSO we similarly write
WB(X) = X ∩WB and WM(X) = X ∩WM for the buffer-write and memory-write events
of X, respectively, and here W(X) = (X ×X) ∩W represents the set of two-phase write
events in X. In TSO/PSO we only consider event sets X where wB ∈ X iff wM ∈ X for
each (wB, wM) ∈ W . We also denote by L(X) = X \WM(X) the thread events (i.e., the
non-memory-write events) of X. Finally, in all memory models, given a set of events X ⊆ E
and a thread thr, we denote by Xthr and X ̸=thr the events of thr, and the events of all other
threads in X, respectively.

Sequences and Traces. Given a sequence of events τ = e1, . . . , ej, we denote by E(τ)
the set of events that appear in τ . We denote R(τ) = R(E(τ)) and W(τ) =W(E(τ)), in
TSO/PSO we further denote WB(τ) = WB(E(τ)) and WM(τ) = WM(E(τ)). Finally we
denote by ϵ an empty sequence.

Given a sequence τ and two events e1, e2 ∈ E(τ), we write e1 <τ e2 when e1 appears before
e2 in τ , and e1 ≤τ e2 to denote that e1 <τ e2 or e1 = e2. Given a sequence τ and a set of
events A, we denote by τ |A the projection of τ on A, which is the unique subsequence of τ
that contains all events of A ∩ E(τ ), and only those events. Given a sequence τ and a thread
thr, let τthr be the subsequence of τ with events of thr, i.e., τ |E(τ)thr. Given a sequence τ
and an event e ∈ E(τ), we denote by preτ (e) the prefix up until and including e, formally
τ |{e′ ∈ E(τ) | e′ ≤τ e}. Given two sequences τ1 and τ2, we denote by τ1 ◦ τ2 the sequence
that results in appending τ2 after τ1.

A (concrete, concurrent) trace is a sequence of events σ that corresponds to a concrete valid
execution of P under the respective memory model. We let enabled(σ) be the set of enabled
events after σ is executed, and call σ maximal if enabled(σ) = ∅. A concrete local trace ρ is
a sequence of thread events of the same thread. As P is bounded, all executions of P are
finite and the length of the longest execution in P is a parameter of the input.
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Reads-from functions. Given an event set X ⊆ E , a reads-from (RF) function over X is
a function that maps each read event of X to some write event of X accessing the same
global variable. Formally, RF : R(X)→W(X), where var(r) = var(RF(r)) for all r ∈ R(X).
In TSO/PSO, given a buffer-write event wB (resp. a memory-write event wM), we write
RF(r) = (wB, _) (resp. RF(r) = (_, wM)) to denote that RF(r) is a two-phase write for
which wB (resp. wM) is the corresponding buffer-write (resp. memory-write) event.

Given a sequence of events τ , we define the reads-from (RF) function of τ , denoted
RFτ : R(τ)→W(τ), as follows.

RFτ in SC: Given a read event r ∈ R(τ), we have that RFτ (r) is the latest write (of any
thread) conflicting with r and occurring before r in τ , i.e., (i) RFτ (r) ⋊⋉ r, (ii) RFτ (r) <τ r,
and (iii) for each w ∈ W(τ) such that w ⋊⋉ r and w <τ r, we have w ≤τ RFτ (r).

RFτ in TSO/PSO: Given a read event r ∈ R(τ ), consider the set Upd of enqueued conflicting
updates in the same thread that have not yet been dequeued, i.e., Upd = {(wB, wM) ∈
(W(τ))thr(r) | wM ⋊⋉ r, wB <τ r <τ wM}. Then, RFτ (r) = (wB′, wM ′), where one of the
two cases happens:

• Upd ̸= ∅, and (wB′, wM ′) ∈ Upd is the latest in τ , i.e., for each (wB′′, wM ′′) ∈ Upd
we have wB′′ ≤τ wB′.

• Upd = ∅, and wM ′ ∈ WM (τ ), wM ′ ⋊⋉ r, wM ′ <τ r is the latest memory-write (of any
thread) conflicting with r and occurring before r in τ , i.e., for each wM ′′ ∈ WM(τ)
such that wM ′′ ⋊⋉ r and wM ′′ <τ r, we have wM ′′ ≤τ wM ′.

Notice how relaxed memory comes into play in the above definition, as RFτ (r) does not record
which of the two above cases actually happened.

We say that r reads-from RFτ (r) in τ . For simplicity, we assume that P has an initial salient
write event on each variable.

Value functions. Given a trace σ, we define the value function of σ, denoted valσ : E(σ)→ D,
such that valσ(e) is the value of the global variable var(e) after the prefix of σ up to and
including e has been executed. Intuitively, valσ(e) captures the value that a read (resp. write)
event e shall read (resp. write) in σ. The value function valσ is well-defined as σ is a valid
trace and the threads of P are deterministic.

Root thread and Side functions. For certain concepts used in our POR approaches, we
distinguish a single thread thr1 as the root thread of P, and refer to the remaining threads
thr2, . . . , thrk as leaf threads.

One such concept is a side function. Given a sequence of events τ , the side functions of τ
is a function Sτ : R(τ)thr1 → [2] such that Sτ (r) = 1 if thr(RFτ (r)) = thr1 and Sτ (r) = 2
otherwise. In other words, a side function is defined for the read events of the root thread,
and assigns 1 (resp., 2) to each read event if it reads-from a write of the root thread (resp.,
of some leaf thread) in the sequence.

Trace spaces and partitionings. Given a concurrent program P and a memory model
M∈ {SC, TSO, PSO}, we write T all

M (resp., T max
M ) for the set of all traces (resp., the set of

all maximal traces) of the program P under the respective memory model. We sometimes
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omit the subscript and simply write T all resp. T max , when the memory model is clear from
the context.

We call two traces σ1 and σ2 reads-from equivalent (RF equivalent) if E(σ1) = E(σ2) and
RFσ1 = RFσ2 . The corresponding RF equivalence ∼RF partitions the trace space into
equivalence classes T max

M / ∼RF and we call this the RF partitioning. Traces in the same
class of the RF partitioning visit the same set of local states in each thread, and thus the RF
partitioning is a sound partitioning for local state reachability [AAJ+19, CCP+17, KRV19b].

2.3 Partial Orders
Here we present relevant notation around partial orders, which are a central object in our POR
works.

Partial orders. Given a set of events X ⊆ E , a (strict) partial order P over X is an irreflexive,
antisymmetric and transitive relation over X (i.e., <P ⊆ X×X). Given two events e1, e2 ∈ X,
we write e1 ≤P e2 to denote that e1 <P e2 or e1 = e2. Two distinct events e1, e2 ∈ X are
unordered by P , denoted e1 ∥P e2, if neither e1 <P e2 nor e2 <P e1, and ordered (denoted
e1 ̸ ∥P e2) otherwise. Given a set Y ⊆ X, we denote by P |Y the projection of P on the set Y ,
where for every pair of events e1, e2 ∈ Y , we have that e1 <P |Y e2 iff e1 <P e2. Given two
partial orders P and Q over a common set X, we say that Q refines P , denoted by Q ⊑ P , if
for every pair of events e1, e2 ∈ X, if e1 <P e2 then e1 <Q e2. A linearization of P is a total
order that refines P .

Lower sets. Given a pair (X, P ), where X is a set of events and P is a partial order over X,
a lower set of (X, P ) is a set Y ⊆ X such that for every event e1 ∈ Y and event e2 ∈ X
with e2 ≤P e1, we have e2 ∈ Y .

The program order PO. The program order PO of P is a partial order <PO⊆ E × E that
defines a fixed order between some pairs of events of the same thread, reflecting the semantics
of P under the respective memory model.

In TSO/PSO, for each thread thr, the program order PO satisfies the following conditions.

• wB <PO wM for each (wB, wM) ∈ Wthr.

• wB <PO fnc iff wM <PO fnc for each (wB, wM) ∈ Wthr and fence event fnc ∈ Fthr.

• wB1 <PO wB2 iff wM1 <PO wM2 for each (wBi, wMi) ∈ Wthr, i ∈ {1, 2}
(in PSO, this condition is enforced only when var((wB1, wM1)) = var((wB2, wM2))).

For simplicity of presentation, we assume a static set of threads for a given concurrent program.
However, all our POR approaches straightforwardly handle dynamic thread creating, by further
including in the program order PO the orderings naturally induced by thread-spawn and
thread-join events.1

A set of events X ⊆ E is proper if the following hold.

• X is a lower set of (E , PO).
1In all experiments in our POR works, the considered benchmarks spawn threads dynamically.
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• Based on the considered memory model, one of the following holds.

– In SC, for each thread thr, the events Xthr are totally ordered in PO (i.e., for each
distinct e1, e2 ∈ Xthr we have e1 ̸ ∥PO e2).

– In TSO, for each thread thr, its thread events L(X)thr are totally ordered in PO,
and its memory-write events WM(X)thr are totally ordered in PO.

– In PSO, for each thread thr, (i) its thread events L(X)thr are totally ordered in
PO, and (ii) for each variable the memory-write events of this thread and variable
are totally ordered in PO.

A sequence τ is well-formed if (i) its set of events E(τ) is proper, and (ii) τ respects the
program order (formally, τ ⊑ PO|E(τ)). Every trace σ of P is well-formed, as it corresponds
to a concrete valid execution of P. Each event of P is then uniquely identified by its PO
predecessors, and by the values its PO predecessor reads have read.

2.3.1 Partial-Order Concepts for the SC Memory Model
Here we present definitions of several additional objects revolving around partial orders, which
are used in our works analyzing concurrent programs under the SC memory model.

Visible writes. Given a partial order P over a set X, and a read event r ∈ R(X), the set of
visible writes of r is defined as

VisibleWP (r) ={ w ∈ W(X) : (i) r ⋊⋉ w and (ii) r ̸<P w and (iii) for each
w′ ∈ W(X) with r ⋊⋉ w′, if w <P w′ then w′ ̸<P r }

i.e., the set of write events w conflicting with r that are not “hidden” to r by P .

Maximal and minimal writes. Consider a partial order P over a set X. An event e ∈ X is
maximal (resp., minimal) in P if there is no e′ ∈ X such that e <P e′ (resp., e′ <P e). Given
a read event r, the set of maximal writes MaxWP (r) (resp., minimal writes MinWP (r)) of r
contains the write events that are maximal (resp., minimal) elements in P |VisibleWP (r).

Width and Mazurkiewicz width. Let P be a partial order over a set X. The width width(P )
of P is the length of its longest antichain, i.e., it is the smallest integer i such that for every
set Y ⊆ X of size i + 1, there exists a pair e1, e2 ∈ Y with e1 ̸ ∥P e2.

The Mazurkiewicz width Mwidth(P ) of P is the smallest integer i such that the following
holds. For every set Y ⊆ X of size i + 1 such that every pair of distinct events e1, e2 ∈ Y is
conflicting (e1 ⋊⋉ e2), there exists a pair e1, e2 ∈ Y with e1 ̸ ∥P e2. Intuitively, Mwidth(P ) is
similar to width(P ), with the difference that, in the first case, we focus on events that are
conflicting as opposed to any events.

Happens-before partial orders. A trace σ induces a happens-before partial order ↪→σ ⊆
E(σ)× E(σ), which is the weakest partial order such that (i) it refines the program order (i.e.,
↪→σ ⊑ PO|E(σ)), and (ii) for each pair of conflicting events (e1, e2 ∈ E(σ) with e1 ⋊⋉ e2)
such that e1 <σ e2, we have that e1 ↪→σ e2. In other words, ↪→σ retains the program order
and the orderings of conflicting events in σ (hence Mwidth(↪→σ) = 1).

Causally-happens-before partial orders. A trace σ induces a causally-happens-before
partial order 7→σ ⊆ E(σ)× E(σ), which is the weakest partial order such that (i) it refines the
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thr1 thr2 thr3

w(x, 1)

r(x)

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

r(y)

read
by

Figure 2.1: A trace and its causal orderings.

program order (i.e., 7→σ ⊑ PO|E(σ)), and (ii) for every read event r ∈ R(σ), its reads-from
RFσ(r) is ordered before it (i.e., RFσ(r) 7→σ r). Intuitively, 7→σ contains the causal orderings
in σ, i.e., it captures the flow of write events into read events in σ together with the program
order.

Fig. 2.1 presents a trace σ and its causal orderings. The displayed events E(σ) are vertically
ordered as they appear in σ. The solid black edges represent the program order PO. The
dashed red edges represent the reads-from function RFσ. The transitive closure of all the
edges then gives us the causally-happens-before partial order 7→σ.

2.4 Problems and Complexity Parameters
Here we describe the two core algorithmic problems studied in our POR works.

A. Execution consistency verification. One of the most basic problems for a given memory
model is the verification of the consistency of program executions with respect to the given
model [CS20]. The input is a set of thread executions, where each execution performs
operations accessing the shared memory. The task is to verify whether the thread executions
can be interleaved to a concurrent execution, which has the property that every read observes
a specific value written by some write [GK97]. The problem is of foundational importance to
concurrency, and has been studied heavily under SC [CYH+09, CL02, HCC+12].

Problem variants. The input can often be enhanced with additional objects, imposing further
constraints on the acceptable solution. As an example, the input is often enhanced with a
reads-from (RF) map, which further specifies for each read access the write access that the
former should read-from. Under SC, the corresponding problem VSC-rf was shown to be
NP-hard in the landmark work of [GK97], while it was recently shown W[1]-hard [MPV20].
The problem lies at the heart of many verification tasks in concurrency, such as dynamic
analyses [SES+12, KMV17, Pav19, MPV20, RGB20, MPV21], linearizability and transactional
consistency [HW90, BE19], as well as SMC [AAJ+19, CCP+17, KRV19b]. In Chapter 5 we
study the problem of verifying execution consistency with an RF function. In Chapter 3 and
Chapter 4 we study the consistency verification problem where, instead of an RF function, the
input is annotated with more involved objects.

Executions under relaxed memory. The natural extension of verifying execution consistency is
from the SC memory model to relaxed memory models such as TSO and PSO. We denote
by VTSO-rf (resp., VPSO-rf) the problem of verifying execution consistency with an RF
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map under TSO (resp., PSO). Given the importance of VSC-rf for SC, and the success in
establishing both upper and lower bounds, the complexity of VTSO-rf and VPSO-rf is a very
natural question and of equal importance. The verification problem is known to be NP-hard
for most memory models [FMSS15], including TSO and PSO, however, no other bounds are
known. Some heuristics have been developed for VTSO-rf [MH06, ZBEE19], while other
works study TSO executions that are also sequentially consistent [BMM11, BDM13]. In
Chapter 5 we study the problems VTSO-rf and VPSO-rf, while in Chapter 3 and Chapter 4
we study variants of the verification problem under the SC memory model.

B. The local-state reachability. The task here is detecting erroneous local states of threads,
e.g., whether a thread ever encounters an assertion violation. The underlying algorithmic
problem is that of discovering every possible local state of every thread of P, and checking
whether a bug occurs in each local state. The most standard solution to this problem is
stateless model checking (SMC) [God96]. In SMC, the focal object for this task is the trace,
and algorithms solve the problem by exploring different maximal traces of the trace space
T max . Methods that couple SMC with dynamic partial order reduction (DPOR) techniques
use an equivalence E to partition the trace space into equivalence classes, and explore the
partitioning T max/E instead of the whole space T max .

Complexity parameters. Given an equivalence E over T max , the efficiency of an algorithm that
explores the partitioning T max/E is typically a product of two factors O(α ·β). The first factor
α is the size of the partitioning itself, i.e., α = |T max/E|, which is typically exponentially
large. As we construct coarser equivalences E, α decreases. The second factor β captures
the amortized time on each explored class, and can be either polynomial (i.e., efficient) or
exponential. There is a tradeoff between α and β: typically, for coarser equivalences E the
algorithms spend more time to explore each class, and hence α is decreased at the cost of
increasing β. Hence, the challenge is to make α as small as possible without increasing β
much.

In Chapter 5 we consider SMC with the well-established RF equivalence, under the TSO and
PSO memory models. In Chapter 3 and Chapter 4 we consider SMC under the SC memory
model, using novel trace equivalences.
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CHAPTER 3
The Value-Centric Equivalence for the

SC Memory Model

In this chapter we present a new trace equivalence, called the value-centric (VC) equivalence,
and we show that it has two appealing features. First, the VC equivalence is always at least
as coarse as the happens-before (i.e., the Mazurkiewicz) equivalence, and it can be even
exponentially coarser. Second, despite its coarseness properties, the consistency checking
problem of VC (i.e., the problem of deciding whether an abstract description of a VC equivalence
class has a concrete trace realizing it) can be solved in polynomial time, which we demonstrate
in this chapter. As a result, in stateless model checking (SMC) the VC partitioning is efficiently
explorable by dynamic partial order reduction (POR) when the number of threads is bounded.
We present an algorithm called value-centric dynamic partial order reduction (VC-DPOR),
which explores the underlying partitioning while spending polynomial time per equivalence class.
Finally, we perform an experimental evaluation of VC-DPOR on various benchmarks, and
compare it against other state-of-the-art approaches. Our results show that the VC equivalence
typically induces a significant reduction in the size of the underlying partitioning, which leads
to a considerable reduction in the running time for exploring the whole partitioning.

Motivating Example. Consider the simple program given in Fig. 3.1, which consists of two
threads communicating over a global variable x. We have two types of events: thr1 writes
to x the value 1, whereas thr2 first writes to x the value 2, then it writes to x the value 1,
and finally it reads the value of x to its local variable. When we analyze this program, it
becomes apparent that a model-checking algorithm can benefit if it takes into account the
values written by the write events. Indeed, denote by wj

i the j-th write event of thread i, and

Thread thr1 :

1. w(x, 1)

Thread thr2 :

1. w(x, 2)
2. w(x, 1)
3. r(x)

Figure 3.1: A toy program with two threads.
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by r the unique read event. There exist 4 Mazurkiewicz orderings.

σ1 : w1
1w1

2w2
2r σ2 : w1

2w1
1w2

2r σ3 : w1
2w2

2w1
1r σ4 : w1

2w2
2rw1

1

Hence, any algorithm that uses the Mazurkiewicz equivalence for exploring the trace space
of the above program will have to explore at least 4 traces. Moreover, any sound algorithm
that is insensitive to values will, in general, explore at least two traces (e.g., σ1, and σ3), since
the value read by r can, in principle, be different in both cases. On the other hand, it is clear
that examining a single trace suffices for visiting all the local states of all threads. Although
minimal, the above example illustrates the advantage that SMC algorithms can gain by being
sensitive to the values used by the events during an execution.

Challenges. The above example illustrates that a value-sensitive partitioning can be coarse.
The challenge that arises naturally is to produce a value-sensitive partitioning that (a) is
provably always coarser than Mazurkiewicz trace equivalence, and (b) is efficiently explorable
(i.e., the time required for each class of the partitioning is small/polynomial). In this chapter
we address this challenge.

Our contributions. The main contribution of this chapter is a new equivalence sensitive
to values, called the value-centric (VC) equivalence (∼V C). Intuitively, the VC equivalence
distinguishes (arbitrarily) a thread of the program, called the root, from the other threads, called
the leaves. The coarsening of the ∼V C partitioning is achieved by relaxing the happens-before
orderings between events that belong to the root and leaf threads. Given two traces σ1 and
σ2 which have the same happens-before ordering on the events of leaf threads, ∼V C deems σ1
and σ2 equivalent by using a combination of (i) the values and (ii) the causally-happens-before
orderings on pairs of events between the root and the leaves.

Properties of ∼V C. We discuss two key properties of the VC equivalence ∼V C .

1. Soundness. The VC equivalence is sound for reporting correctness of local-state properties.
In particular, if σ1 ∼V C σ2, then the same local states are guaranteed to be visited in
both executions. Thus, in order to report local-state-specific properties (e.g., absence of
assertion violations), it is sound to explore a single representative from each class of the
underlying partitioning. Global-state properties can be encoded as local properties by
using a thread to monitor the global state. Due to this fact, recent works on dynamic
POR focus on local-state properties only [Hua15, HH17, AJLS18, CCP+17].

2. Exponentially coarser than happens-before. The VC equivalence is always at least as
coarse as the happens-before (or the Mazurkiewicz) equivalence, i.e., if two traces
are Mazurkiewicz-equivalent, then they are also ∼V C-equivalent. This implies that
the underlying ∼V C partitioning is never larger than the Mazurkiewicz partitioning.
In addition, we show that there exist programs for which the ∼V C partitioning is
exponentially smaller, thereby getting a significant reduction in one of the two factors
that affect the efficiency of SMC algorithms. Interestingly, this reduction is achieved
even if there are no concurrent writes in the program.

Value-centric DPOR. We develop an efficient SMC algorithm utilizing the dynamic POR
approach that explores the ∼V C partitioning. We call the SMC algorithm VC-DPOR. The
algorithm is guaranteed to visit every class of the ∼V C partitioning, and for a constant number
of threads, the time spent in each class is polynomial. Hence, VC-DPOR explores efficiently
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the VC partitioning without relying on NP oracles. For example, in the program of Fig. 3.1,
VC-DPOR explores only one trace.

Experimental results. Finally, we make a prototype implementation of VC-DPOR and
evaluate it on various classes of concurrency benchmarks. We use our implementation to assess
(i) the coarseness of the ∼V C partitioning in practice, and (ii) the efficiency of VC-DPOR
to explore such partitionings. To this end, we compare these two metrics with existing
state-of-the-art SMC algorithms, namely, Source-DPOR [AAJS14], Optimal-DPOR [AAJS14],
Optimal-DPOR with observers [AJLS18], as well as DC-DPOR [CCP+17]. Our results show
a significant reduction in the size of the partitioning compared to the partitionings explored by
existing techniques, which also typically leads to smaller running times.

3.1 Value-Centric Equivalence
In this section we introduce our new equivalence between traces, called the value-centric (VC)
equivalence, and we prove some of its properties. We start with the Mazurkiewicz equivalence
(also called the happens-before equivalence), which has been used by SMC algorithms in the
literature.

The Mazurkiewicz equivalence. Two traces σ1, σ2 ∈ T all are called Mazurkiewicz-equivalent
(sometimes referred to as happens-before-equivalent), written σ1 ∼Maz σ2, if the following
hold.

1. E(σ1) = E(σ2), i.e., they consist of the same set of events.

2. ↪→σ1 = ↪→σ2 , i.e., their happens-before partial orders are equal.

The value-centric equivalence. Two traces σ1, σ2 ∈ T all are called value-centric-equivalent,
written σ1 ∼V C σ2, if the following hold.

1. E(σ1) = E(σ2), valσ1 = valσ2 and Sσ1 = Sσ2 , i.e., they consist of the same set of events,
and their value functions and side functions are equal.

2. 7→σ1 |R = 7→σ2 |R, i.e., their causally-happens-before partial orders 7→σ1 and 7→σ2 agree
on the read events.

3. ↪→σ1 |E ̸=thr1 = ↪→σ2 |E ̸=thr1 , i.e., their happens-before partial orders ↪→σ1 and ↪→σ2 agree
on the events of the leaf threads. (i.e., the events of all threads except the root thread
thr1).

Remark 3.1 (Soundness). Since every thread of P is deterministic, for any two traces
σ1, σ2 ∈ T all such that E(σ1) = E(σ2) and valσ1 = valσ2 , the local states of each thread
after executing σ1 and σ2 agree. It follows that any algorithm that explores every class of the
partitioning T max/V C provably discovers every reachable local state of every thread, and thus
V C is a sound equivalence for local-state reachability.

Exponential coarseness. Here we provide two toy examples which illustrate different cases
where the V C equivalence can be exponentially coarser than the Mazurkiewicz equivalence
Maz, i.e., T all/Maz can have exponentially more classes than T all/V C.
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Thread1

1. w(x, 0)
2. w(x, 0)

. . . . . .

n. w(x, 0)

Thread2

1. r(x)
2. r(x)

. . . . . .

n. r(x)
(a) Many operations on one variable.

Thread1

1. w(x1, 0)
2. w(x1, 0)
. . . . . .

2n−1. w(xn, 0)
2n. w(xn, 0)

Thread2

1. r(x1)
2. r(x2)

. . . . . .

n. r(xn)

(b) Few operations on many variables.

Figure 3.2: Programs where ∼V C is exponentially coarser than Mazurkiewicz equivalence.

Many operations on one variable. First, consider the program shown in Fig. 3.2a which consists
of two threads thr1 and thr2, with thr1 being the root thread. This program has a single global
variable x, and the threads perform operations on x repeatedly. We assume a salient write
event w(x, 0) that writes the initial value of x. Consider any two traces σ1, σ2 that consist of
the i ≥ 0 first w(x) events of thr1 and j ≥ 0 first r(x) events of thr2 (hence E(σ1) = E(σ2)).
Since each w(x) writes the same value, we have valσ1(r) = valσ2(r) for every read event r in
thr2. Moreover, since the root thread thr1 has no read events, we trivially have Sσ1 = Sσ2 .
Since all read events are on thread thr2, we have 7→σ1 |R = 7→σ2 |R = PO|R(σ1). Finally,
since we only have one leaf thread, ↪→σ1 |E ̸=thr1 = ↪→σ2 |E ̸=thr1 = PO|E ̸=thr1(σ1). We conclude
that σ1 ∼V C σ2, and thus given i ≥ 0 and j ≥ 0 there exists a single class of ∼V C that
contains the first i and first j events of thr1 and thr2, respectively. Thus |T all/V C| = O(n2).
On the other hand, given the first i ≥ 0 and j ≥ 0 events of threads thr1 and thr2, respectively,
there exist (i+j)!

i!·j! =
(

i+j
i

)
different ways to order them without violating the thread order.

Observe that every such reordering induces a different happens-before relation. Using Stirling’s
approximation, we obtain

|T all/Maz| ≥ (2 · n)!
(n!)2 ≃

√
2 · π · 2 · n · (2 · n/e)2·n(√

2 · π · n · (n/e)n
)2 = Ω

(
4n

√
n

)

Few operations on many variables. Now consider the example program shown in Fig. 3.2b which
consists of two threads thr1 and thr2, with thr1 being the root thread. We assume a salient write
event w(xi, 0) that writes the initial value of xi. Consider any two traces σ1, σ2 that consist of
the i ≥ 0 first w(x) events of thr1 and j ≥ 0 first r(x) events of thr2 (hence E(σ1) = E(σ2)).
Since each w(xi, 0) writes the same value, we have valσ1(r) = valσ2(r) for every read event r
in thr2. Moreover, since the root thread thr1 has no read events, we trivially have Sσ1 = Sσ2 .
Since all read events are on thread thr2, we have 7→σ1 |R = 7→σ2 |R = PO|R(σ1). Finally,
since we only have one leaf thread, ↪→σ1 |E ̸=thr1 = ↪→σ2 |E ̸=thr1 = PO|E ̸=thr1(σ1). We conclude
that σ1 ∼V C σ2, and thus given i ≥ 0 and j ≥ 0 there exists a single class of ∼V C that
contains the first i and first j events of thr1 and thr2, respectively. Thus |T all/V C| = O(n2).
On the other hand, given the first i read events of thr2 and 2 · i write events of thr1, there
exist at least 2i different observation functions that map each read event r to one of the two
write events that r observes. Hence |T all/Maz| = Ω(2n).

Theorem 3.1. The V C equivalence is sound for local-state reachability. Also, V C is at least
as coarse as the Mazurkiewicz equivalence, and there exist programs where V C is exponentially
coarser than the Mazurkiewicz equivalence.
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Proof. The fact that V C is sound follows from Remark 3.1. Here we prove that that V C is
at least as coarse as Maz. Then Fig. 3.2 presents two examples where V C can, in fact, be
exponentially coarser.

Consider two traces σ1, σ2 ∈ T all such that σ1 ̸∼V C σ2. If E(σ1) ̸= E(σ2) then σ1 ̸∼Maz σ2.
Else, if valσ1 ̸= valσ2 or Sσ1 ̸= Sσ2 , we have that ↪→σ1 ̸= ↪→σ2 . Else, if 7→σ1 |R ̸= 7→σ2 |R,
then there exists a read event such that RFσ1(r) ̸= RFσ2(r), which implies that ↪→σ1 ̸= ↪→σ2 .
Finally, if ↪→σ1 |E ̸=thr1 ̸= ↪→σ2 |E ̸=thr1 then trivially ↪→σ1 ̸= ↪→σ2 . Hence, in all cases we obtain
σ1 ̸∼Maz σ2. The desired result follows.

3.2 Verifying Annotated Partial Orders
In this section we develop the core algorithmic concepts that will be used in the enumerative
exploration of the V C trace partitioning. We introduce annotated partial orders, which are
traditional partial orders over events, with additional constraints. We formulate the question
of the verification of an annotated partial order P, which asks for a witness trace σ that
linearizes P and satisfies the constraints. We develop the notion of closure of annotated
partial orders, and show that (i) an annotated partial order is realizable if and only if its closure
exists, and (ii) deciding whether the closure exists can be done efficiently. This leads to an
efficient procedure for the verification of annotated partial orders.

3.2.1 Annotated Partial Orders
Here we introduce the notion of annotated partial orders, which is a central concept of our
work. We build some definitions and notation, and provide some intuition around them.

Annotated Partial Orders. An annotated partial order is a tuple P = (X1, X2, P, val, S, GoodW)
where the following hold.

1. X1, X2 are sets of events such that X1 ∩X2 = ∅.

2. P is a partial order over the set X = X1 ∪X2.

3. val : X → D is a value function.

4. S : R(X1)→ [2] is a side function.

5. GoodW : R(X)→ 2W(X) is a good-writes function such that w ∈ GoodW(r) only if
(i) r ⋊⋉ w and (ii) val(r) = val(w) and (iii) if r ∈ X1 then w ∈ XS(r).

6. width(P |X1) = Mwidth(P |X2) = 1.

We let the bad-writes function be BadW(r) = {w ∈ W(X) \ GoodW(r) | r ⋊⋉ w}. Further,
given an event e ∈ X, we let IP(e) = i such that e ∈ Xi.

We call an annotated partial order P consistent if for every thread thr, we have that τthr =
PO|(X ∩ Ethr) is a local trace of thread thr that occurs if every event e of τthr reads/writes
the value val(e). Hereinafter we only consider consistent annotated partial orders.

Verification of annotated partial orders. Consider an annotated partial order P =
(X1, X2, P, val, S, GoodW). A trace σ is a witness of P if (i) σ ⊑ P and (ii) for every read
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event r ∈ R(X1∪X2) we have that RFσ(r) ∈ GoodW(r). In words, σ is a linearization of the
partial order P with the additional constraint that the reads-from function of σ must agree
with the good-writes function GoodW of P. We call P realizable if it has a witness. The
associated problem of verifying annotated partial orders takes as input an annotated partial
order P and asks whether P is realizable.

Remark 3.2 (Verification to valid traces.). If σ is a witness of some consistent annotated
partial order P, then σ is a valid concrete trace of P. This holds because of the following
observations.

1. Since σ is a witness of P , we have RFσ(r) ∈ GoodW(r) for every read event r ∈ R(σ).

2. Due to the previous item and the consistency of P , for every thread thr we have that
τthr = PO|(X ∩ Ethr) is a valid local trace of thr.

Intuition. An annotated partial order P contains a partial order P over a set X = X1 ∪X2
of events and the value of each event of X. Intuitively, the consistency of P states that
we obtain the set of events X if we execute each thread and force every read event in this
execution to observe the value of a write event according to the good-writes function. In the
next section, our VC-DPOR algorithm uses annotated partial orders to represent different
classes of the V C equivalence in order to guide the trace-space exploration. The set X1
(resp., X2) will contain the events of the root thread (resp., leaf threads). We will see that if
VC-DPOR constructs two annotated partial orders P ′ and P ′′ during the exploration, then
any two witnesses σ′ and σ′′ of P ′ and P ′′, respectively, will satisfy that σ′ ̸∼V C σ′′, and
hence P ′ and P ′′ represent different classes of the V C trace partitioning.

3.2.2 Closure of annotated partial orders
We now turn our attention to closed annotated partial orders and closure, which will provide
us with a way of solving the verification problem.

Closed annotated partial orders. Let us consider an annotated partial order P =
(X1, X2, P, val, S, GoodW) and let X = X1 ∪X2. We say that P is closed if the following
conditions hold for every read event r ∈ R(X).

1. There exists a write event w ∈ GoodW(r) ∩MinWP (r) such that w <P r.

2. MaxWP (r) ∩ GoodW(r) ̸= ∅.

3. For every write event w′ ∈ BadW(r) ∩ MinWP (r) such that w′ <P r there exists a
write event w ∈ GoodW(r) ∩ VisibleWP (r) such that w′ <P w.

Our motivation behind this definition becomes clear from the following lemma, which states
that closed annotated partial orders are realizable.

Lemma 3.1. If P is closed then it is realizable and a witness can be constructed in O(poly(n))
time.

Proof. Let P = (X1, X2, val, P, S, GoodW), and we construct a witness σ of P as follows.
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1. Create a partial order Q as follows.

a) For every pair of events e1, e2 with e1 <P e2, we have e1 <Q e2.
b) For every pair of events e1, e2 with ei ∈ Xi for each i ∈ [2], if e2 ̸<P e1 then

e1 <Q e2.

2. Create σ by linearizing Q arbitrarily.

It is easy to see that since width(P |X1) = 1, Q is indeed a partial order and thus σ is well
defined. In addition, the above process takes O(poly(n)) time. We now argue that σ is indeed
a witness trace. It is clear that Q ⊑ P and thus σ is a linearization of P . It remains to argue
that for every read event r ∈ R(X), we have that RFσ ∈ GoodW(r). We distinguish between
the following cases.

1. r ∈ X1. Let w = RFσ(r), and observe that w <P r. Assume towards contradiction
that w ∈ BadW(r). If S(r) = 1, by Item 3 of closed annotated partial orders we
have that there exists a write event w′ ∈ X1 such that w <P w′. Since S(r) = 1,
we have w′ <PO r thus w′ <P r and w ̸∈ VisibleWP (r), a contradiction. Otherwise,
S(r) = 2, and by Item 1 of closed annotated partial orders, there exists a write event
w′ ∈ GoodW(r) ∩ VisibleWP (r) ∩ X2 such that w′ <P r. Observe that in this case
w = w′, a contradiction.

2. r ∈ X2. Let w = RFσ(r), and observe that w ∈ MaxWP (r). Assume towards
contradiction that w ∈ BadW(r). By Item 3 of closed annotated partial orders, we
have that w ̸<P r. In this case w ∈ X1, and since RFσ(r) = w, there exists no
w′ ∈ X2 ∩ GoodWP (r) ∩ VisibleWP (r). It followed that |MaxWP (r)| = 1, and by
Item 2 of closed annotated partial orders we have that w ∈ GoodW(r), a contradiction.

The desired result follows.

We now introduce the notion of closure. Consider an annotated partial order P that is not
closed. Intuitively, the closure of P strengthens P by introducing the smallest set of event
orderings such that the resulting annotated partial order Q is closed. The intuition behind the
closure is the following: whenever a rule forces some ordering, any trace that witnesses the
realizability of P also linearizes Q. In some cases this operation results to cyclic orderings,
and thus the closure does not exist. We also show that obtaining the closure or deciding that
it does not exist can be done in polynomial time. Thus, in combination with Lemma 3.1, we
obtain an efficient algorithm for deciding whether P is realizable, by deciding whether it has a
closure.

Closure of annotated partial orders. Let us consider an annotated partial order P =
(X1, X2, P, val, S, GoodW). An annotated partial order Q = (X1, X2, Q, val, S, GoodW) is
a closure of P if (i) Q ⊑ P , (ii) Q is closed, and (iii) for any partial order K ̸= Q with
Q ⊑ K ⊑ P , we have that the annotated partial order (X1, X2, K, val, S, GoodW) is not
closed. As the following lemma states, P can have at most one closure.

Lemma 3.2. There exists at most one weakest partial order Q such that Q ⊑ P and
(X1, X2, Q, val, S, GoodW) is closed.
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Proof. Assume towards contradiction otherwise, and let Q1, Q2 be two weakest partial orders
(i.e., Qi ̸⊑ Q3−i for each i ∈ [2]) with the stated properties. Let Q = Q1 ∩ Q2, thus
Q1, Q2 ⊑ Q, and we argue that (X1, X2, Q, val, S, GoodW) is closed. Let X = X1 ∪X2 and
consider any read event r ∈ R(X), and we show that each of closure conditions holds for r.

1. Assume that for some i ∈ [2] there exists a write event wi ∈ GoodW(r)∩MinWQi
(r)∩

XIP (r). Since Qi ⊑ Q, we have that wi ∈ MinWQ(r) and thus Item 1 of closure is
satisfied. Otherwise, for each i ∈ [2] there exists a write event wi ∈ GoodW(r) ∩
MinWQi

(r) ∩X3−IP (r) such that wi <Qi
r. Since Mwidth(P |X3−IP (r)) = 1, we have

that wi <Q w3−i for some i ∈ [2], and thus wi <Q r. Finally, since Qi ⊑ Q we have
wi ∈ VisibleWQ(r) and thus wi ∈ MinWQ(r).

2. Assume that for some i ∈ [2] there exists a write event wi ∈ GoodW(r)∩MaxWQi
(r)∩

XIP (r). Since Qi ⊑ Q, we have that wi ∈ MaxWQ(r) and thus Item 2 of closure
is satisfied. Otherwise, for each i ∈ [2] there exists a write event wi ∈ GoodW(r) ∩
MaxWQi

(r) ∩X3−IP (r) such that wi <Qi
r. Since Mwidth(P |X3−IP (r)) = 1, we have

that w3−i <Q wi for some i ∈ [2]. Since Qi ⊑ Q, we have wi ∈ VisibleWQ(r) and
it remains to argue that wi ∈ MaxWQ(r). Indeed, if that is not the case then there
exists a write event w′ ∈ MaxWQ(r) such that wi <Q w. But then wi <Qj

w for each
j ∈ [2] and since w ̸∈ MaxWQj

, we have r <Qj
w for each j ∈ [2]. Hence r <Q w, a

contradiction.

3. Consider any write event w′ ∈ BadW(r) ∩MinWQ(r) such that w′ <Q r, and we have
w′ <Qi

r for each i ∈ [2].
First assume that IP(w) = IP(r). It follows that for each i ∈ [2] there exists a
write event wi ∈ GoodW(r) ∩ MaxWQi

(r) ∩ X3−IP (r) such that w′ <Q wi. Since
Mwidth(P |X3−IP (r)) = 1, we have w3−i <P wi for some i ∈ [2], and thus w′ <Qj

wi

for each j ∈ [2]. Hence w′ <Q wi. Since for each j ∈ [2] we have Qj ⊑ Q, it is
wi ∈ VisibleWQ(r), as desired.
Finally, assume that IP(w) = 3 − IP(r). If for some i ∈ [2] there exists a write
event wi ∈ GoodW(r) ∩ VisibleWQi

∩ XIP (w′) such that w′ <Qi
w, since Qi ⊑ Q

and Mwidth(P |XIP (w′)) = 1 we have wi ∈ VisibleWQ(r) and w′ <Q w as desired.
Otherwise, due to Item 2 of closure it follows that for the unique write event w ∈
XIP (r) ∩ VisibleWQ(r) we have w ∈ GoodW(r).

It follows that Q is closed, a contradiction. The desired result follows.

Feasible annotated partial orders. In light of Lemma 3.2, we define the closure of P as
the unique annotated partial order Q that is a closure of P , if such Q exists, and ⊥ otherwise.
We call P feasible if its closure is not ⊥. We have the following lemma.

Lemma 3.3. P is realizable if and only if it is feasible.

Proof. Let P = (X1, X2, P, val, S, GoodW). We prove each direction separately.

(⇒). If P is feasible, let Q = (X1, X2, Q, val, S, GoodW) be the closure of P. Since Q is
closed, by Lemma 3.1 we have that Q is linearizable to a trace σ. Since Q ⊑ P , we have that
σ is also a linearization of P .
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(⇐). If P is realizable, there exists a trace σ such that σ ⊑ P and for every read event
r ∈ R(σ) we have RFσ(r) ∈ GoodW(r). We can view σ as a partial (total) order, and observe
that the annotated partial order (X1, X2, σ, val, S, GoodW) is closed. Hence P is feasible.

The desired result follows.

Intuitively, Lemma 3.3 states that the closure rules give the weakest strengthening of P that
is met by any witness of P. If that strengthening can be made (i.e., P is feasible), then P
has a witness. Hence, to decide whether P is realizable, it suffices to decide whether it is
feasible, by computing its closure. In the next section we show that this computation can be
done efficiently.

3.2.3 Computing the Closure
We now present an algorithm Closure that computes the closure of annotated partial orders.
This will provide us with a way of solving the problem of verifying annotated partial orders.

Closure algorithm. Consider an annotated partial order P = (X1, X2, P, val, S, GoodW) and
let X = X1 ∪X2. The algorithm Closure(P) either computes the closure of P , or concludes
that P is not feasible, and returns ⊥. Intuitively, the algorithm maintains a partial order Q,
initially identical to P . The algorithm iterates over every read event r and tests whether r
violates Item 1, Item 2 or Item 3 of the definition of closed annotated partial orders. When
it discovers that r violates one such closure rule, Closure calls one of the closure methods
Rule1(r), Rule2(r), Rule3(r), for violation of Item 1, Item 2 and Item 3 of the definition,
respectively. In turn, each of these methods inserts a new ordering e1 → e2 in Q, with the
guarantee that if P has a closure K = (X1, X2, K, val, S, GoodW), then e1 <K e2. Hence,
e1 → e2 is a necessary ordering in the closure of P . Finally, when the algorithm discovers that
all closure rules are satisfied by every read event in Q, it returns the annotated partial order
(X1, X2, Q, val, S, GoodW), which, due to Lemma 3.2, is guaranteed to be the closure of P .
We refer to Algorithm 3.1 for a formal description.

Algorithm 3.1: Closure(P)
Input: An annotated partial order P = (X1, X2, P, val, S, GoodW).
Output: The closure of P if it exists, else ⊥.

1 Q← P // We will strengthen Q during the closure computation

2 Flag← True
3 while Flag do
4 Flag← False
5 foreach r ∈ R(X1 ∪X2) do // Iterate over the reads

6 if r violates Item 1 of closure then
7 Call Rule1(r) // Strengthen Q to remove violation

8 Flag← True // Repeat as new violations might have appeared

9 if r violates Item 2 of closure then
10 Call Rule2(r) // Strengthen Q to remove violation

11 Flag← True // Repeat as new violations might have appeared

12 if r violates Item 3 of closure then
13 Call Rule3(r) // Strengthen Q to remove violation

14 Flag← True // Repeat as new violations might have appeared

15 return (X1, X2, Q, val, S, GoodW) // The closure of P
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Algorithm 3.2: Rule1(r)

1 Y ← GoodW(r) ∩ VisibleWQ(r)
2 if Y = ∅ then return ⊥
3 w ← minQ(Y ) // Since Rule 1 is violated, minQ(Y ) is unique

4 Insert w → r in Q

Algorithm 3.3: Rule2(r)

1 w ← the unique event in MaxWQ(r) ∩X3−IP (r) // w exists since Item 1 holds

2 Insert r → w in Q

Algorithm 3.4: Rule3(r)

1 w ← the unique event in MinWQ(r) ∩ BadW(r) // exists since Items 1 and 2 hold

2 w ← the unique event in MaxWQ(r) ∩X3−IP (w) // exists since Items 1 and 2 hold

3 Insert w → w in Q

We now provide some intuition behind each of the closure methods. Given two events
e1, e2 ∈ X, we say that e2 is local to e1 if IP(e1) = IP(e2), i.e., e1 and e2 belong to the
same set Xi. If e2 is not local to e1, then it is remote to e1. We illustrate the three closure
rules in Fig. 3.3, where we follow the convention that barred and unbarred write events (w
and w) are bad writes and good writes for r, respectively. In each case in Fig. 3.3, the dashed
edge shows the new order introduced by the algorithm in Q.

1. Rule1(r). This rule is called when Item 1 of closure is violated, i.e., there exists no write
event w ∈ GoodW(r) ∩MinWQ(r) such that w <Q r. Observe that in this case there
is no write event that is (i) local to r, (ii) good for r and (iii) visible to r. To make r
respect this rule, the algorithm finds the first write event w that is (i) good for r and
(ii) visible to r, and orders w → r in Q. See Fig. 3.3a provides an illustration.

2. Rule2(r). This rule is violated when MaxWQ(r) ∩ GoodW(r) = ∅, i.e., every maximal
write event is bad for r. To make r respect this rule, the algorithm finds the unique
maximal write event w that is remote to r and orders r → w in Q. Rule2(r) is called
only if r does not violate Item 1 of closure, which guarantees that w exists. Fig. 3.3b
provides an illustration.

3. Rule3(r). This rule is violated when there exists a write event w ∈ BadW(r)∩MinWQ(r)
such that (i) w <Q r, and (ii) there exists no write event w′ ∈ GoodW(r)∩VisibleWQ(r)
such that w <Q w′. To make r respect this rule, the algorithm determines a maximal
write event w that is (i) remote to w and (ii) a good write for r, and orders w → w in
Q. Rule3(r) is called only if r does not violate either Item 1 or Item 2 of closure, which
guarantees that w exists. Fig. 3.3c provides an illustration, depending on whether w is
local or remote to r.

We have the following lemma regarding the correctness and complexity of Closure.

Lemma 3.4. Closure correctly computes the closure of P and requires O(poly(n)) time.
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Figure 3.3: The three closure operations Rule1(r) (a), Rule2(r) (b) and Rule3(r) (c).

Proof. We prove the correctness of Closure and then argue about its complexity.

Correctness. We prove the following two assertions.

1. If Closure(P) returns Q ̸= ⊥ then Q is the closure of P .

2. If Closure(P) returns ⊥ then P is not feasible.

Invariant. We first show that the following invariant holds at all times: if P has a closure
K = (X1, X2, K, val, S) then K ⊑ Q. The claim holds trivially in the beginning of Closure
since Q = P . Now assume that the algorithm inserts an ordering e1 → e2 in Q, let Q′ be the
resulting partial order, and we will argue that K ⊑ Q′. By the induction hypothesis, we have
that K ⊑ Q. We split cases based on which closure rule inserted the ordering e1 → e2.

1. Rule1(r). In this case e2 = r and e1 = w as instantiated in Line 3 of Algorithm 3.2. By
Item 1 of closure, there exists a write event w′ ∈ GoodW(r) ∩MinWK(r) such that
w′ <K r. By the induction hypothesis, we have that K ⊑ Q, thus w′ ∈ VisibleWQ(r).
Observe that since Mwidth(P |X1) = Mwidth(P |X2) = 1 and the rule is violated, we
have that the set Y = GoodW(r)∩VisibleWQ(r) is totally ordered in Q, thus w ≤Q w′,
and thus w <K r, as desired.

2. Rule2(r). In this case e1 = r and e2 = w as instantiated in Line 3 of Algorithm 3.3. By
Item 2 of closure, there exists a write event w′ ∈ MaxWK∩GoodW(r). By the induction
hypothesis, we have that K ⊑ Q, thus w′ ∈ VisibleWQ(r). Observe that IP(w′) =
X3−IP (r), otherwise since Mwidth(P |XIP (r)) = 1 we would have w′ ∈ MaxWQ(r) and
thus Item 2 of closure would not be violated. Since Mwidth(P |X3−IP (r)) = 1, it follows
that w′ <Q w and thus r <K w, as desired.

3. Rule3(r). In this case e1 = w and e2 = w as instantiated in Line 1 and Line 2
of Algorithm 3.4, respectively. Observe that at this point Item 1 of closure is not
violated for r, and thus |MinWQ(r) ∩ BadWQ(r)| = 1, and w is the unique event
in MinWQ(r) ∩ BadW(r). By Item 3 of closure, either w ̸∈ MinWK(r), or there
exists a write event w′ ∈ GoodW(r) ∩ VisibleWK(r) such that w <K w′. Since
Mwidth(K|X1) = Mwidth(K|X2) = 1, it is easy to verify that in both cases there exists
a write event w′′ ∈ MaxWK(r) ∩ X3−IP (w) such that w <K w′′ and w′′ ≤K w, thus
w <K w, as desired.

Main correctness proof. We are now ready to prove the correctness. We examine each item
separately.
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1. If Closure(P) returns Q = (X1, X2, Q, val, S, GoodW) then we have that Q is closed
and Q ⊑ P . It follows that the closure of P exists, and the above invariant establishes
that Q is the closure of P .

2. If Closure(P) returns ⊥, then at some point the algorithm discovers a read event r such
that GoodW(r) ∩ VisibleWQ(r) = ∅. Assume towards contradiction that P is feasible
and K = (X1, X2, K, val, S, GoodW) is the closure of P. By our invariant above, it
follows that K ⊑ Q. But then GoodW(r)∩VisibleWK(r) = ∅, which contradicts Item 1
of closure, a contradiction.

The correctness follows.

Complexity. Let n = |X1 ∪X2|. It is straightforward to see that testing whether Q violates
any of the closure rules in Line 6, Line 9 and Line 12 requires polynomial time in n. Every
time one of these rules is violated, Closure strengthens Q by inserting some new orderings in
Q. Since Closure can insert at most n2 such new orderings, it follows that the running time
of Closure is O(poly(n)).

The desired result follows.

3.2.4 Verification Algorithm
Finally, we address the question of verification of annotated partial orders. Lemma 3.3 implies
that in order to decide whether an annotated partial order is realizable, it suffices to compute
its closure, and Lemma 3.4 states that the closure can be computed efficiently. Together,
these two lemmas yield a simple algorithm for solving the realizability problem.

Verification algorithm. We describe a simple algorithm Witness that decides whether an
annotated partial order P is realizable. The algorithms runs in two steps.

1. Use Lemma 3.4 to compute the closure of P . If the closure is ⊥, report that P is not
realizable. Otherwise, the closure is an annotated partial order Q.

2. Use Lemma 3.1 to obtain a witness trace σ of Q. Report that P is realizable, and σ is
the witness trace.

We conclude the results of this section with the following theorem.

Theorem 3.2. Let P be an annotated partial order of n events. Deciding whether P is
realizable requires O(poly(n)) time. If P is realizable, a witness trace can be produced in
O(poly(n)) time.

Proof. By Lemma 3.3, P is realizable if and only if it is feasible. By Lemma 3.4 the algorithm
Closure(P) runs in O(poly(n)) time and returns the annotated partial order Q that is the
closure of P if and only if P is feasible. If P is realizable, Lemma 3.1 provides a simple
construction of a witness trace in O(poly(n)) time.
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Example (Verification of annotated partial orders). We illustrate Witness on a simple example
in Fig. 3.4 with an annotated partial order P = (X1, X2, P, val, S, GoodW), which we assume
to be consistent. We have a concurrent program P of two threads. To represent P , we make
the following conventions. We have three global variables x, y, z, and a unique read event per
variable. Event subscripts denote the variable accessed by the corresponding event. For each
variable, we have a unique read event, and barred and unbarred events denote the good and
bad write events, respectively, for that read event. Since we have specified the good-writes
for each read event, the value function val is not important for this example. Note also that
S(rx) = 2 (resp., S(rz) = 1) since the good writes of rx (resp., rz) are remote (resp., local) to
the read event. The partial order P of P consists of the thread orders of each thread, shown in
solid lines in Fig. 3.4a. The dashed edges of Fig. 3.4a show the strengthening of P performed
by the algorithm Closure (Algorithm 3.1). The numbers above the dashed edges denote both
the order in which these orderings are added and the closure rule that is responsible for the
corresponding ordering. In particular, algorithm Closure performs the following steps.

1. Initially there are no dashed edges, and rx violates Item 1 of closure, as there is no good
write event for rx that is ordered before rx. Rule1 inserts an ordering wx → rx (dashed
edge 1).

2. After the previous step, ry violates Item 2 of closure, as at this point, ry has only one
maximal write event wy, which is bad for ry. Rule2 inserts an ordering ry → wy (dashed
edge 2).

3. After the previous step, rz violates Item 3 of closure, as at this point, rz has a bad
minimal write event wz that is ordered before rz but not before any good write event.
Rule3 inserts an ordering wz → wz (dashed edge 3).

At this point no closure rule is violated, and Closure returns Q = (X1, X2, Q, val, S, GoodW),
the closure of P , where P has been strengthened to Q with the dashed edges. Observe that
Q has Mazurkiewicz width 2 (and not 1), as there still exist pairs of conflicting events that
are unordered, both on variable y and variable z. For example, there exist two write events
on variable y that are unordered, and hence there exist some linearizations that are “bad” in
the sense that the read event ry does not observe the good write event wy. Nevertheless,
Lemma 3.1 guarantees that the corresponding annotated partial order is linearizable to a valid
trace, which is shown in Fig. 3.4b We make two final remarks for this example.

1. Not every linearization of Q produces a valid witness trace for the verification of Q, as
some linearizations violate the additional constraints that every read event must observe
a write event that is good for the read event. Hence, the challenge is to find a correct
witness (which Lemma 3.1 always achieves for a closed annotated partial order).

2. Q has more than one witness of realizability. Fig. 3.4b shows one such witness σ,
as constructed by Lemma 3.1. It is easy to verify that σ is a valid witness. Due to
Remark 3.2, the consistency of P guarantees that σ is a valid trace of the program P .

3.3 Stateless Model Checking
We now present our SMC algorithm VC-DPOR for exploring the partitioning T max/V C.
Intuitively, the algorithm manipulates annotated partial orders P = (X1, X2, P, val, S, GoodW)
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(b) A witness trace of P.

Figure 3.4: An annotated partial order P and its witness trace.

where X1 ⊆ Ethr1 and X2 ⊆ E ̸=thr1 , i.e., X1 (resp., X2) contains events of the root thread
(resp., leaf threads). We first introduce some useful concepts and then proceed with the main
algorithm.

Trace extensions and inevitable sets. Given a trace σ, an extension of σ is a trace σ′ such
that σ is a prefix of σ′. We say that σ′ is a maximal extension of σ if σ′ is an extension of σ
and σ′ is maximal. A set of events X is inevitable for σ if for every maximal extension σ′ of σ
we have X ∈ E(σ′). A write extension of σ, denoted by WExtend(σ), is any arbitrary largest
extension σ′ of σ such that E(σ′) \ E(σ) ⊆ W . In words, we obtain each σ′ by extending σ
arbitrarily until (but not included) the next read event of each thread. Note that for every
such write extension σ′ of σ, for every thread thr, the local trace σ′|E(thr) is unique, and the
set E(σ′) is inevitable for σ. Let P be a closed annotated partial order over a set X. A set of
events Y is inevitable for P if for every linearization σ of P and every maximal extension σ′

of σ, we have that Y ⊆ E(σ′).

Leaf refinement and minimal annotated partial orders. Consider two partial orders P ,
Q over a set X. We say that Q leaf-refines P , denoted by Q ≼ P if for every pair of events
e1, e2 ∈ X ∩ E ̸=thr1 , if e1 ⋊⋉ e2 and e1 <P e2 then e1 <Q e2. In words, Q leaf-refines P if
Q agrees with P on the order of every pair of conflicting events that belong to leaf threads.
Consider an annotated partial order P = (X1, X2, P, val, S, GoodW). We call P minimal if for
every closed annotated partial order Q = (X1, X2, Q, val, S, GoodW), if Q ≼ P then Q ⊑ P .
Intuitively, the minimality of P guarantees that P is the weakest partial order among all partial
orders Q that

1. agree with P on the order of conflicting pairs of events that belong to leaf threads, and

2. make the resulting annotated partial order (X1, X2, Q, val, S, GoodW) closed.

Hence P does not contain any unnecessary orderings, given these two constraints. Observe
that if P is minimal and K is the closure of P then K is also minimal. Afterwards, our
algorithm VC-DPOR will use minimal annotated partial orders to represent different classes
of the V C partitioning.

Algorithm Extend(P, X ′, val′, S′, GoodW′). Let P = (X1, X2, P, val, S, GoodW) be a
minimal, closed annotated partial order, and X = X1 ∪X2. Consider

30



3.3. Stateless Model Checking

1. a set X ′ with (i) X ′ \X ⊆ W or |X ′ \X| = 1 and (ii) X ′ is inevitable for P ,

2. a value function val′ over X ′ such that val ⊆ val′,

3. a side function S ′ over X ′ such that S ⊆ S ′, and

4. a good-writes set GoodW′ over X ′ such that GoodW ⊆ GoodW′.

We rely on an algorithm called Extend that constructs an extension of P = (X1, X2, P, val, S, GoodW)
to X ′, val′, S ′ and GoodW′ as a set of minimal closed annotated partial orders {Ki =
(X ′

1, X ′
2, Ki, val′, S ′, GoodW′)}i, where X ′

1 ∪X ′
2 = X ′. Intuitively, if σ is a linearization of P ,

then for every extension σ′ of σ such that E(σ′) = X ′, valσ′ = val′ and Sσ′ = S ′, there exists
some Ki that linearizes to σ′. In VC-DPOR, we will use Extend to extend annotated partial
orders with new events.

We describe Extend for the special case where |X ′ \X| = 1. When |X ′ \X| = q > 1, Extend
calls itself recursively for every annotated partial order of its output set on a sequence of sets
Y1, . . . , Yq where Yq = X ′, Y0 = X and |Yi+1 \ Yi| = 1. Let X ′ \X = {e}.

1. If thr(e) = thr1 (i.e., e belongs to the root thread), the algorithm simply constructs a
partial order K over the set X ′ such that K|X = P and e′ <K e for every event e ∈ X ′

such that e′ <PO e. Afterwards, the algorithm constructs the annotated partial order
K = (X ′

1, X ′
2, K, val′, S ′, GoodW′) and returns the singleton set Aw = {Closure(K)}.

2. If thr(e) ̸= thr1 (i.e., e belongs to the leaf threads), the algorithm first constructs a partial
order K as in the previous item. Afterwards, it creates a new partial order Ki for every
possible ordering of e with all events e′ ∈ X2 such that e ⋊⋉ e′. Finally, the algorithm
constructs the annotated partial orders A = Ki = (X ′

1, X ′
2, Ki, val′, S ′, GoodW′), and

returns the set A = {Closure(Ki) : Ki ∈ A and Closure(Ki) ̸= ⊥}.

Causal maps, guarding reads and candidate writes. A causal map is a map C : R →
P → R∪ {⊥, |= } such that for each read event r ∈ dom(C) and thread thr ∈P we have
that C(r)(thr) ∈ Rthr ∪ {⊥, |= }. In words, C maps read events to functions that map every
thread thr ∈P to a read event of thr, or to some initial values {⊥, |= }. Given a trace σ and
an event e ∈ E(σ), we define the guarding read Guardσ(e) of e in σ as the last read event of
thr(e) that happens before e in σ, and Guardσ(e) = ⊥ if no such read event exists. Formally,

Guardσ(e) = max
σ

({r ∈ R(σ|thr(e)) : r <PO e})

where we take the maximum of the empty set to be ⊥. Given a trace σ, a causal map C and
a read event r ∈ enabled(σ), we define the candidate write set FC

σ(r) of r in σ given C as
follows:

FC
σ(r) ={w ∈ W(σ) : r ⋊⋉ w and
either Guardσ(w) = ⊥ and C(r)(thr(w)) = |=

or Guardσ(w) ̸= ⊥ and also C(r)(thr(w)) ∈ { |= ,⊥} or C(r)(thr(w)) <PO Guardσ(w)

We refer to Fig. 3.5 for an illustration of the above notation, where we have a trace (Fig. 3.5a)
and candidate write sets of read events given their causally-happens-before maps (Fig. 3.5b).
Intuitively, C(r)(thr) encodes the prefix of the local trace of thread thr that contains write
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events which have already been considered by the algorithm as good writes for r. Instead of
the whole prefix, we store the last read of that prefix. The two special values |= and ⊥ encode
the empty prefix, and the prefix before the first read. The guarding read of a write w is the
last local read event the same thread that appears before w in the execution so far. Hence, if
the guarding read of w appears before C(r)(thr), we know that w has been considered as a
good write for r. The candidate write set for r contains writes that are considered as good
writes for r in the current recursive step.

τ1 τ2 τ3
11 wx

12 wy

13 wx

14 ry

15 wx

16 ry

17 wx

18 rx

19 wx

(a) A trace σ. Threads thr1 and thr3 have
enabled events r1

x and r3
x (not shown), which

access the variable x.

enabled(σ) ∩ Ethr1 = r1
x

enabled(σ) ∩ Ethr3 = r3
x

C(r1
x) = {(thr1,⊥), (thr2, e4), (thr3, e6)}

C(r3
x) = {(thr1, |= ), (thr2, |= ), (thr3, |= )}

FC
σ(r1

x) = {e9}
FC

σ(r3
x) = {e1, e3, e5, e7, e9}

(b) The candidate write sets of the read events r1
x

and r3
x given the causally-happens-before map C.

We denote by ei the i-th event of σ.

Figure 3.5: Example of candidate write sets.

Algorithm 3.5: VC-DPOR(P = (X1, X2, P, val, S, GoodW), C)
Input: A minimal closed annotated partial order P, a causal map C.

1 σ′ ←Witness(P) // P is closed hence realizable

2 σ ←WExtend(σ′) // Extend σ′ until before the next read of each thread

3 foreach Q ∈ Extend(P, E(σ), valσ, S, GoodW) do // Extensions of P to E(σ)
4 CQ ← C // Create a copy of the CHB C
5 ExtendRoot(Q, σ, CQ) // Process the root thread

6 foreach thr ∈P \ {thr1} do // Process the leaf threads

7 ExtendLeaf(Q, σ, CQ, thr)

Algorithm VC-DPOR. We are now ready to describe our main algorithm VC-DPOR for
the enumerative exploration of the partitioning T all/V C. The algorithm takes as input a
minimal closed annotated partial order P and a causal map C. First, in Line 1 VC-DPOR
calls Witness to obtain a witness σ′ of P, and in Line 2 it constructs the write-extension σ
of σ′ which reveals new write events in σ. Afterwards, in Line 3 the algorithm extends P to
the set E(σ) by calling Extend. Recall that Extend returns a set of minimal closed annotated
partial orders. For every annotated partial order Q returned by Extend, the algorithm first
calls ExtendRoot in Line 5 to process the read event of the root thread thr1 that is enabled
in σ, and then the algorithm calls ExtendLeaf in Line 7 for every leaf thread thr ̸= thr1 to
process the read event of thr that is enabled in σ. For the initial call, we construct an empty
annotated partial order P and an initial causal map C that for every read event r ∈ R and
thread thr ∈P maps C(r)(thr) = { |= }.

Algorithm ExtendRoot. The algorithm takes as input a minimal closed annotated partial
order Q, a trace σ and a causal map CQ, and attempts all possible extensions of Q with the
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Algorithm 3.6: ExtendRoot(Q = (X1, X2, Q, val, S, GoodW), σ, CQ)
Input: A minimal closed annotated partial order Q, a trace σ, a causal map CQ.

1 r ← enabled(σ, thr1) // The next enabled event in thr1 is a read

2 Y1 ← FCQ
σ (r) ∩Wthr1 // The set of local candidate writes of r

3 Y2 ← FCQ
σ (r) ∩W ̸=thr1 // The set of remote candidate writes of r

4 foreach i ∈ [2] do // i = 1 (i = 2) reads from local (remote) writes

5 Sr ← S ∪ {(r, i)} // The new side function

6 Dr ← {valσ(w) : w ∈ Yi} // The set of values of candidate writes of r

7 foreach v ∈ Dr do // Every value v that r may read

8 valr ← valσ ∪ {(r, v)} // The new value function

9 GoodWr ← GoodW ∪ {(r, {w ∈ Yi : valσ(w) = v})} // The new good-writes

10 K ← Extend(Q, X1 ∪X2 ∪ {r}, valr, Sr, GoodWr) // Returns one element

11 if K ̸= ⊥ then // Extension is successful

12 Call VC-DPOR(K, CQ) // Recurse

13 CQ(r)← {(thr, maxσ({R(σ)|thr})) : thr ∈P} // The last read of each thread in σ

read event r of thr1 that is enabled in σ to all possible values that are written in σ. The
algorithm first in Line 2 and Line 3 constructs two sets Y1 and Y2 which hold the local and
remote, respectively, write events of σ that are candidate writes for r according to the causal
map CQ. Then, it iterates over the local (i = 1) and remote (i = 2) write choices for r in Yi.
Finally, the algorithm (i) collects all possible values that r may read from the set Yi (Line 6),
(ii) constructs the appropriate new side function, value function and good-writes function
(Lines 5, 8 and 9), and (iii) calls Extend on these new parameters in Line 10, in order to
establish the respective extension for r. For every such case, Extend returns a new minimal,
closed annotated partial order K which is passed recursively to VC-DPOR in Line 12.

Algorithm 3.7: ExtendLeaf(Q = (X1, X2, Q, val, S, GoodW), σ, CQ, thr)
Input: Minimal closed annotated partial order Q, trace σ, causal map CQ, thread thr.

1 r ← enabled(σ, thr) // The next enabled event in thr is a read

2 Dr ← {valσ(w) : w ∈ FCQ
σ (r)} // The set of values of candidate writes of r

3 foreach v ∈ Dr do // Every value v that r may read

4 valr ← valσ ∪ {(r, v)} // The new value function

5 GoodWr ← GoodW ∪ {(r, {w ∈ FCQ
σ (r) : valσ(w) = v})} // The new good-writes

6 foreach K ∈ Extend(Q, X1 ∪X2 ∪ {r}, valr, S, GoodWr) do // Returns many elements

7 Call VC-DPOR(K, CQ) // Recurse

8 CQ(r)← {(thr, maxσ({R(σ)|thr})) : thr ∈P} // The last read of each thread in σ

Algorithm ExtendLeaf. The algorithm ExtendLeaf takes as input a minimal closed partial
order Q, a trace σ, a causal map CQ, and a leaf thread thr ∈ P \ {thr1}. Similarly to
ExtendRoot, ExtendLeaf attempts all possible extensions of Q with the read event r of thr
that is enabled in σ to all possible values that are written in σ. The main difference compared
to ExtendRoot is that since r belongs to a leaf thread, Extend returns a set of minimal, closed
annotated partial orders (as opposed to just one) which result from all possible orderings of r
with the write events of X2 that are conflicting with r. Then ExtendLeaf makes a recursive
call to VC-DPOR for each such annotated partial order.

Example (VC-DPOR). Fig. 3.6 illustrates the main aspects of VC-DPOR (Algorithms 3.5,
3.6, and 3.7) on a small example. We start with an empty annotated partial order P and a
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Thread thr1 :

1. w(y, 1)
2. w(y, 2)
3. w(x, 1)
4. r(x)

Thread thr2 :

1. w(x, 1)
2. r(x)
3. w(y, 2)
4. r(y)

(a) Program P.

a

b f i

c g j k

d e h

r4
thr1
← {w3

thr1
}
r4

thr1
← {w1

thr2
}

r2
thr2
← {w3

thr1
,

w1
thr2
}

r2
thr2
← {w3

thr1
,

w1
thr2
}

r2
thr2
← {w3

thr1
,

w1
thr2
} r4

thr2
← {w1

thr1
} r4

thr2
← {w2

thr1
,

w3
thr2
}

r4
thr2
← {w2

thr1
,

w3
thr2
} r4

thr2
← {w1

thr1
} r4

thr2
← {w2

thr1
,

w3
thr2
}

(b) The corresponding VC-DPOR exploration tree.

Figure 3.6: VC-DPOR exploration example.

causal map C that is empty (i.e., C(r)(thr) = { |= } for every read event r ∈ R and thread
thr ∈P). The initial trace obtained in Line 1 of Algorithm 3.5 is σ′ = ε. Its write-extension
σ in Line 2 contains the three writes of thr1 and the first write of thr2. Next, Line 3 returns
an annotated partial order Qa that corresponds to the program order PO|E(σ). In σ, the root
thread thr1 has an enabled event (which is always a read), so ExtendRoot (Algorithm 3.6) is
called on Qa and the (empty) causal map CQa . (†)

The enabled read in Line 1 is r4
thr1 , its local candidate write (computed in Line 2) is w3

thr1 and
its remote candidate write (computed in Line 3) is w1

p2 . This holds because CQa(r)(thr1) =
{(thr1, |= ), (thr2, |= )}, which allows any write event to be observed. For the local (Line 4,
i = 1) candidate w3

thr1 , first the side function is updated with {(r4
thr1 , 1)} in Line 5. Then

in Line 6, the only considered value is 1. Thus, in Line 8 the value function is updated
with {(r4

p1 , 1)}, and in Line 9 the good-writes function is updated with {(r4
thr1 , {w3

thr1})}.
Then, such an update is successfully realized in Line 10 by Extend, where the partial order is
extended with r4

thr1 and afterwards it is closed using algorithm Closure (Algorithm 3.1). Thus
VC-DPOR (Algorithm 3.5) is recursively called on the corresponding annotated partial order
Ka (and the empty causal map CQa), and we proceed to the child b of a.

In node b, no new event is added during the write-extension (Line 2), as r4
p1 is the last event

of thr1, and in Line 3 we obtain Qb. The only thread with an enabled read event is thr2,
so ExtendLeaf (Algorithm 3.7) is called on Qb and thr2 (and empty causal map CQb

). The
enabled read r2

thr2 has candidate writes w3
p1 and w1

p2 , both of which write the same value
(c.f. Line 2), and hence the algorithm will allow r2

thr2 to observe either. This is an example of
the value-centric gains we obtain in this work. In Line 4 the value function is updated with
{(r2

thr2 , 1)}, and in Line 5 the good-writes function is updated with {(r2
thr2 , {w3

thr1 , w1
thr2})}.

The realization of this update happens in Line 6 by Extend, where the partial order is extended
with r2

thr2 and then closed using algorithm Closure (Algorithm 3.1). One annotated partial
order Kb is returned and it is the argument of the further VC-DPOR call (with an empty
causal map CQb

), we proceed to the child c of b. In node c, the write-extension adds the event
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w3
thr2 , which, in similar steps as before, will lead to nodes d and e.

Next, the recursion backtracks to the call of ExtendRoot in the node a (†). The second
iteration (i = 2) of the loop in Line 4 proceeds, where the remote candidate write w1

thr2 is
considered for r4

thr1 . In a similar fashion, the descendants f , g, and h are created and h
concludes with a maximal trace.

Finally, the recursion backtracks to the node a again, where ExtendRoot (†) concludes with
updating the causal map as follows: CQa(r4

thr1) = {(thr1,⊥), (thr2,⊥)}. The control-flow
comes back to the initial VC-DPOR call (from Line 5), where the annotated partial order Qa

with the (now updated) causal map CQa is considered. The thread thr2 has an enabled read
(r2

thr2) in σ, hence ExtendLeaf is called on Qa, CQa , and thr2. Eventually, the descendants i,
j, and k are created and the exploration concludes. Note that in each of i, j, k, the thread
thr1 has an enabled read r4

thr1 . However, note that Guardσ(w3
thr1) = Guardσ(w1

thr2) = ⊥ and in
all those nodes we have C(r4

thr1)(thr1) = {(thr1,⊥), (thr2,⊥)}, and thus w3
pthr1 and w1

thr2 are
never considered as candidate writes for r4

thr1 . This illustrates how VC-DPOR never explores
the same class of V C twice.

3.3.1 Properties of VC-DPOR
The following theorem states the main result of this chapter.

Theorem 3.3. Consider a concurrent program P over a constant number of threads, and let
T max be the maximal trace space of P . VC-DPOR solves the local-state reachability problem
on P and requires O (|T max/V C| · poly(n)) time, where n is the length of the longest trace
in T max .

We prove the above theorem by establishing a sequence lemmas. The proof concepts rely on
the tree T induced by the recursive calls of VC-DPOR. We start with introducing the tree T
and proceed with the correctness and complexity statements of VC-DPOR.

The induced tree T . An execution of VC-DPOR induces a tree T , where each node u is
labeled with an annotated partial order Pu constructed at some recursive step by the algorithm.
We have two types of nodes.

1. A type 1 node u is labeled with an annotated partial order Pu such that Pu was passed as
an argument to a recursive call of VC-DPOR. These nodes correspond to all annotated
partial orders returned by the algorithm Extend when invoked from within ExtendRoot
or ExtendLeaf.

2. A type 2 node u is labeled with with an annotated partial order Pu such that Pu was
not passed as an argument to VC-DPOR. These nodes correspond to all annotated
partial orders returned by the algorithm Extend when invoked from within VC-DPOR.

We will use the induced tree T to reason about the correctness and complexity of VC-DPOR.
Note that for every node u of the tree T , the annotated partial order Pu is closed and minimal.

Correctness of Extend. We first prove correctness of the algorithm Extend that constructs
extensions of annotated partial orders in VC-DPOR.

Lemma 3.5. Let A = Extend(P , X ′, val′, S ′, GoodW′). Then Extend runs in O(m · poly(n))
time, where n = |X ′| and m = |A|+ 1, and the following assertions hold.
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1. Every annotated partial order Ki is closed and minimal.

2. For every pair Ki, Kj, we have that Ki ̸≼ Kj and Kj ̸≼ Ki.

3. For every trace σ such that (i) E(σ) = X ′, (ii) for each read event r ∈ R(σ) we have
RFσ(r) ∈ GoodW′ and (iii) (σ|X) ≼ P , there exists an annotated partial order Ki such
that σ is a linearization of Ki.

Proof. We argue separately about correctness and complexity.

Correctness. We first argue about the correctness of the algorithm, i.e., the assertions in
Item 1-Item 3 above.

1. This assertion is an immediate consequence of the facts that (i) P is closed and minimal,
(ii) Extend constructs each annotated partial order simply by ordering conflicting events
that belong to the leaf threads, and (iii) the closure of a minimal annotated partial order
is also minimal.

2. This assertion holds trivially by construction.

3. Since P is minimal, Extend creates an annotated partial orderQ = (X ′
1, X ′

2, Q, val′, S ′, GoodW′)
such that σ ≼ Q and Q is also minimal. Observe that Q is feasible, since σ ⊑ Q and
(X ′

1, X ′
2, σ, val′, S ′GoodW′) is closed. Thus the algorithm will construct Ki = Closure(Q)

and include Ki in A.

Complexity. Since the number of threads is constant, for every recursive call of Extend, Item 2
of the algorithm creates O(poly(n)) partial orders Ki, and since computing the closure of Ki

requires O(poly(n)) time, we have that Extend spends O(poly(n)) in each recursive call. It
follows that constructing the whole set A takes O(m · poly(n)) time, since m is the size of the
output (i.e., the number of leaves in the recursion) and every recursive step takes O(poly(n))
time.

Correctness of VC-DPOR. We now turn our attention to the correctness of VC-DPOR.
We will argue that for every target trace σ∗, the algorithm discovers the value function
valσ∗ . In particular, the induced tree T has a node u such that Pu is of the form Pu =
(X1, X2, P, valσ∗ , S, GoodW), i.e., the value function of Pu is the value function of the target
trace σ∗. In our discussion below, we fix such a target σ∗ and introduce some notation around
it.

Compatible and witness nodes. An annotated partial order P = (X1, X2, P, val, S, GoodW)
is called compatible with σ∗ if the following conditions hold. Let X = X1 ∪X2.

1. X ⊆ E(σ∗), val ⊆ valσ∗ , S ⊆ Sσ∗ and (σ∗|X) ≼ P .

2. For every read event r ∈ R(X) we have that RFσ∗(r) ∈ GoodW(r).
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A node u of the induced tree T is called compatible with σ∗ if Pu is compatible with σ∗. We
call u a witness if valu = valσ, where valu is the value function of the annotated partial order
Pu. Observe that if u is compatible with σ∗ then every ancestor of u is also compatible with
σ∗.

Left and leftmost movers. Consider a node u of the induced tree T such that u is compatible
with σ∗. A child z of u in T is called a left mover if

1. z is compatible with σ∗ and

2. z is the first child of u with this property, in the order the execution of VC-DPOR.

We call u a leftmost mover if u and every ancestor of u (except for the root of T ) is a left
mover. The correctness of VC-DPOR is based on the following lemma.

Lemma 3.6. If u is a leftmost mover then either u is a witness or u has a child that is a
leftmost mover.

Proof. Assume that u is not a witness and we argue that u has a child z such that z is
compatible with σ∗. Since u is a leftmost mover, it will follow that u has a child that is a
leftmost mover. We split cases based on whether u is a type 1 or type 2 node.

The node u is a type 1 node. Recall that Pu = (X1, X2, P, val, S, GoodW) is a minimal,
closed annotated partial order. Consider the trace σ constructed by VC-DPOR in Line 2, and
observe that E(σ) ⊆ E(σ∗), valσ ⊆ valσ∗ and Sσ ⊆ Sσ∗ . Consider the trace σ = σ∗|E(σ), and
observe that (i) for every read event r ∈ R(σ) we have RFσ(r) ∈ GoodW(r), and (ii) σ ≼ P .
By Lemma 3.5, Extend in Line 3 returns an annotated partial order Ki such that σ is a
linearization of Ki. We associate z with Ki.

The node u is a type 2 node. Consider any linearization σ of Pu = (X1, X2, P, val, S, GoodW),
and since u is compatible with σ∗, for every read event r that is enabled in σ we have that
r ∈ E(σ∗). In addition, there exists a read event r that is enabled in σ and RFσ∗(r) ∈ E(σ).
Let w = RFσ∗(r), and we argue that w ∈ FCu

σ (r). We distinguish between the following cases.

1. Cu = |= . Then by definition, w ∈ FCu

σ (r).

2. Cu = ⊥ or Cu ∈ R. Then, there exists a type 2 ancestor q of u and a trace σq that is a
linearization of Pq = (X ′

1, X ′
2, P ′, val′, S ′, GoodW′), r is enabled in σq and w ∈ FCq

σq(r).
It is straightforward to see that at that point the algorithm extended Pq with r and
a good-writes function GoodWq such that w ∈ GoodWq(r). A similar analysis as in
the previous item shows that Extend returned an annotated partial order P ′ that is
compatible. In addition, P ′ is associated with a node of T that is a child of q and that
was visited before the ancestor of u which is also a child of q . This contradicts the fact
that u is a leftmost mover. It follows that w ∈ FCu

σ (r). The rest follows by Lemma 3.5,
similar to the previous case.

The desired result follows.

Lemma 3.7. For every pair of traces σ′
1, σ′

2 constructed by VC-DPOR in Line 1 in two
recursive calls, we have that σ′

1 ̸∼V C σ′
2.
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Proof. Consider the nodes u1, u2 of the induced tree T that correspond to the recursive calls
in which VC-DPOR constructed the traces σ′

1 and σ′
2, respectively. If ui is ancestor of u3−i,

for some i ∈ [2], then clearly E(σ′
i) ̸= E(σ′

3−i). Otherwise, let u be the lowest common
ancestor of u1 and u2 in T . For each i ∈ [2], let zi be the child of u that is also an ancestor
of ui, and let Pzi = (X i

1, X ′
2, P i, vali, Si, GoodWi) be the annotated partial order that labels

node zi. We distinguish between the following cases.

1. If z is a type 2 node, then Pzi only differ on P i. By Lemma 3.5, there exists a pair
of events e1, e2 ∈ X1

2 such that (i) e1 ⋊⋉ e2 and (ii) e1↪→P 1e2 and e2↪→P 2e1. It follows
that e1↪→σ′

1
e2 and e2↪→σ′

2
e1, and since e1, e2 ∈ E ̸=thr1 , we have that σ′

1 ̸∼V C σ′
2.

2. If z is a type 1 node, let σ′ be the trace constructed in Line 1 by the recursive call to
VC-DPOR for node z. We distinguish between the following cases.

a) If Pz1 and Pz2 occur from the same invocation to Extend, then the proof is similar
to the previous item.

b) If Pz1 and Pz2 occur from different invocations to Extend, we examine whether
both Pz1 and Pz2 were constructed by extending to the same read event r or not.
In the former case, we examine the values val1(r) and val2(r) that r was forced
to read. If val1(r) ̸= val2(r) then valσ′

1
(r) ̸= valσ′

2
, whereas if val1(r) = val2(r)

then thr(r) = thr1 and S1(r) ̸= S2(r) and thus Sσ′
1
(r) ̸= Sσ′

2
(r). We are left with

the case where Pz1 and Pz2 were constructed by extending to two different read
events r1 and r2, respectively. Assume wlog that Pz2 was constructed after Pz1 . If
valσ′

2
(r1) ̸= valσ′

1
(r1) we are done. Otherwise, let r = Guardσ′

2
(RFσ(r1)) and note

that r 7→σ′
2
r1. Due to the causally-happens-before map C in that recursive call of

VC-DPOR, we have that r ̸∈ E(σ′) and thus r ̸7→σ′
1
r1.

In all cases, we have σ′
1 ̸∼V C σ′

2, as desired.

Lemma 3.8. VC-DPOR runs in time O (|T max/V C| · poly(n)), where n is the length of the
longest trace in T max .

Proof. Consider two maximal traces σ1, σ2 ∈ T max such that σ1 ∼V C σ2. Let σ′
1, σ′

2 be
prefixes of σ1, σ2, respectively, such that E(σ′

1) = E(σ′
2), and observe that σ′

1 ∼V C σ′
2.

Since we have constantly many threads, it follows that given a maximal trace σ, there exist
O(poly(n)) different sets X ⊆ E(σ) for which there exists a trace σ′ such that (i) E(σ′) = X
and (ii) σ is a maximal extension of σ′. It follows that |T all/V C| = O (|T max/V C| · poly(n)),
and thus it suffices to argue that VC-DPOR runs in time O

(
|T all/V C| · poly(n)

)
. By

Lemma 3.7, for every pair of traces σ′
1 and σ′

2 constructed by VC-DPOR in Line 1, we have
that σ′

1 ̸∼V C σ′
2, and hence each such trace falls into a different class of T all/V C. Thus the

size of the induced tree T is bounded by |T all/V C|. For every internal node u of T , the
children of u in T are produced by O(poly(n)) calls to Extend, which, by Lemma 3.5, requires
O(poly(n)) time per child of u. Hence the total time spent by VC-DPOR is

O(|T | · poly(n)) = O
(
|T all/V C| · poly(n)

)
= O (|T max/V C| · poly(n)) .

The desired result follows.
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Finally, the results of Lemma 3.6 and Lemma 3.8 together provide proof of Theorem 3.3,
as desired. We conclude with two remarks on space usage and the way lock events can be
handled.

Remark 3.3 (Space complexity). To make our presentation simpler so far, VC-DPOR and
ExtendLeaf iterate over the set of annotated partial orders returned by Extend, which can
be exponentially large. An efficient variant of VC-DPOR shall explore these sets recursively,
instead of computing all elements of each set imperatively. This results in polynomial space
complexity for VC-DPOR.

Remark 3.4 (Handling locks). For simplicity of presentation, so far we have neglected locks.
However, lock events can be incorporated naturally, as follows.

1. Each lock-release event is a write event, writing an arbitrary value.

2. Each lock-acquire event is a read event. Given two lock-acquire events r1, r2 the
algorithm maintains that GoodW(r1) ∩ GoodW(r2) = ∅

3.4 Experiments
We have established that V C is a coarse partitioning that can be explored efficiently by
VC-DPOR. In this section we present an experimental evaluation of VC-DPOR on various
classes of concurrent benchmarks, to assess

1. the reduction of the trace-space partitioning achieved by V C, and

2. the efficiency with which this partitioning is explored by VC-DPOR.

Implementation and experiments. To address the above questions, we have made a
prototype implementation of VC-DPOR in the stateless model checker Nidhugg [AAA+15],
which works on LLVM IR. We have tested VC-DPOR on benchmarks coming in four classes:

1. The TACAS Software Verification Competition (SV-COMP).

2. Mutual-exclusion algorithms from the literature.

3. Multi-threaded dynamic-programming algorithms that use memoization.

4. Individual benchmarks that exercise various concurrency patterns.

Each benchmark comes with a scaling parameter, which is either the number of threads, or an
unroll bound on all loops of the benchmark (often the unroll bound also controls the number
of threads that are spawned.) We have compared our algorithm with three other state-of-
the-art SMC algorithms that are implemented in Nidhugg, namely Nidhugg/source [AAJS14],
Optimal [AAJS14] and Optimal∗ (“optimal with observers”) [AJLS18], as well as our own
implementation of DC-DPOR [CCP+17].

Technical details. For our experiments we have used a Linux machine with Intel(R) Xeon(R)
CPU E5-1650 v3 @ 3.50GHz (12 CPUs) and 128GB of RAM. We have run Nidhugg with
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Clang and LLVM version 3.8. In all cases, we report the number of maximal traces and the
total running time of each algorithm, subject to a timeout of 4 hours, indicated by “-”.

Implementation details. Here we clarify some details regarding our implementation.

1. The root thread is chosen as the first thread that is spawned from the main thread. We
make this choice instead of the main thread as in many benchmarks, the main thread
mainly spawns worker threads and performs only a few concurrent operations.

2. In our presentation of Extend(P , X ′, val′, S ′, GoodW′), given X ′ \X = {e} such that e
belongs to a leaf thread, we consider all possible orderings of e with conflicting events
from all leaf threads. In our implementation, we relax this in two ways. Given a write
event ew, we say it is never-good if it does not belong to GoodW′(r) for any read event
r. Further, given ew and an annotated partial order K, we say that ew is unobservable
in K, if for every linearization of K no read event can observe ew. Given two unordered
conflicting write events from leaf threads, we do not order them if (i) both are never-good,
or (ii) at least one is unobservable.

(a) Number of traces. (b) Running time.

Figure 3.7: VC-DPOR on variants of the fib_bench benchmark.

Value-centric gains. As a preliminary experimental step, we explore the gains of our
value-centric technique on small variants of the simple benchmark fib_bench from SV-
COMP. This benchmark consists of a main thread and two worker threads, and two global
variables x and y. The first worker thread enters a loop in which it performs the update
x← x + y. Similarly, the second worker thread enters a loop in which it performs the update
y ← y + x. To explore the sensitivity of our value-centric approach to values, we have created
three variants fib_bench_1, fib_bench_2, fib_bench_3 of the main benchmark. In
variant fib_bench_i each worker thread performs the addition modulo i. Hence, the first
and the second worker performs the update x ← (x + y) mod i and y ← (y + x) mod i,
respectively. For smaller values of i, we expect more write events to write the same value,
and thus VC-DPOR to benefit both in terms of the traces explored and the running time.
Although simple, this experiment serves the purpose of quantifying the value-centric gains
of VC-DPOR in a controlled benchmark. Fig. 3.7 depicts the obtained results for the three
variants of fib_bench, where Modulo =∞ represents the original benchmark (i.e., without
the modulo operation). We see that indeed, as i gets smaller, VC-DPOR benefits significantly
in both number of traces and running time. Moreover, this benefit gets amplified with higher
unroll bounds.
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Benchmark Maximal Traces Time
VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR

parker(6) 38670 1100917 1100917 1023567 985807 1m29s 23m5s 24m29s 24m54s 46m41s
parker(7) 52465 1735432 1735432 1613807 1554237 2m23s 41m28s 44m41s 45m13s 1h27m
parker(8) 68360 2576147 2576147 2395947 2307467 3m35s 1h9m 1h15m 1h17m 2h29m
27_Boop(6) 248212 35079696 35079696 4750426 1468774 3m26s 2h54m 2h49m 26m22s 12m33s
27_Boop(7) 420033 - - 10134616 2874202 6m33s - - 1h0m 27m21s
27_Boop(8) 677870 - - 20003512 5268064 11m54s - - 2h7m 56m13s
30_Fun_Point(6) 5040 665280 665280 665280 665280 5.52s 4m2s 4m14s 4m36s 1m34s
30_Fun_Point(7) 40320 17297280 17297280 17297280 17297280 57.50s 2h7m 2h15m 2h29m 51m46s
30_Fun_Point(8) 362880 - - - - 10m51s - - - -
45_monabsex(5) 600 14400 14400 9745 6197 0.44s 2.28s 2.36s 1.86s 1.50s
45_monabsex(6) 13152 518400 518400 291546 180126 14.93s 1m41s 1m41s 1m5s 1m0s
45_monabsex(7) 423360 25401600 25401600 11710405 7073803 13m30s 1h43m 1h40m 51m57s 56m16s
46_monabsex(5) 1064 14400 14400 5566 2653 0.32s 1.98s 2.02s 0.87s 0.51s
46_monabsex(6) 21371 518400 518400 157717 62864 6.26s 1m29s 1m23s 28.04s 10.33s
46_monabsex(7) 621948 25401600 25401600 6053748 2057588 4m9s 1h38m 1h23m 21m3s 7m24s
fk2012_true(3) 12400 42144 42144 42144 33886 5.55s 9.34s 10.59s 11.08s 13.13s
fk2012_true(4) 252586 1217826 1217826 1217826 888404 2m3s 5m6s 5m35s 6m11s 6m30s
fk2012_true(5) 3757292 24580886 24580886 24580886 16494444 37m3s 2h0m 2h12m 2h26m 2h28m
fkp2013_true(5) 17751 86400 86400 48591 25626 3.75s 16.40s 15.20s 9.70s 4.90s
fkp2013_true(6) 513977 3628800 3628800 1672915 786499 2m18s 14m27s 12m55s 6m34s 3m18s
fkp2013_true(7) 20043857 - - - 32244120 2h16m - - - 3h11m
nondet-array(4) 404 2616 2616 688 592 0.13s 0.88s 0.80s 0.27s 0.20s
nondet-array(5) 10804 128760 128760 18665 15449 3.11s 46.23s 46.99s 8.66s 4.26s
nondet-array(6) 430004 9854640 9854640 711276 571476 2m36s 1h15m 1h14m 7m45s 3m30s
pthread-de(7) 327782 4027216 4027216 4027216 829168 1m10s 12m9s 13m32s 17m36s 2m12s
pthread-de(8) 2457752 43976774 43976774 43976774 6984234 10m29s 2h29m 2h46m 3h24m 22m1s
pthread-de(9) 18568126 - - - 59287740 1h33m - - - 3h37m
reorder_5(5) 1016 1755360 1755360 68206 4978 0.21s 9m0s 9m22s 26.45s 0.34s
reorder_5(8) 247684 - - - 437725 1m47s - - - 1m29s
reorder_5(9) 1644716 - - - 1792290 22m53s - - - 12m38s
scull_true(3) 3426 617706 617706 436413 172931 19.77s 9m46s 10m22s 9m7s 4m46s
scull_true(4) 8990 2732933 2732933 1840022 656100 1m7s 51m37s 54m33s 46m12s 25m56s
scull_true(5) 19881 9488043 9488043 6070688 1988798 3m8s 3h29m 3h42m 2h54m 1h47m
sigma_false(7) 12509 135135 135135 30952 30952 10.52s 55.87s 1m0s 18.65s 17.87s
sigma_false(8) 133736 2027025 2027025 325488 325488 2m4s 16m21s 18m45s 4m12s 3m44s
sigma_false(9) 1625040 - - 3845724 3845724 31m53s - - 1h6m 53m28s
check_bad_arr(5) 4046 12838 12838 10989 6689 2.74s 6.98s 6.83s 6.49s 2.72s
check_bad_arr(6) 87473 357368 357368 307097 187377 1m47s 5m21s 4m36s 4m24s 1m33s
check_bad_arr(7) 1856332 8245810 8245810 6943293 4069592 2h11m 3h9m 2h19m 2h12m 1h7m
32_pthread5(1) 20 24 24 24 20 0.05s 0.04s 0.04s 0.06s 0.06s
32_pthread5(2) 1470 1890 1890 1806 1470 0.67s 0.38s 0.45s 0.54s 0.67s
32_pthread5(3) 226800 302400 302400 280800 226800 2m30s 1m14s 1m17s 1m17s 2m21s
fkp2014_true(2) 16 16 16 16 16 0.05s 0.05s 0.04s 0.04s 0.05s
fkp2014_true(3) 1098 1098 1098 1098 1098 0.86s 0.19s 0.20s 0.21s 0.72s
fkp2014_true(4) 207024 207024 207024 207024 207024 3m40s 39.84s 41.70s 44.67s 3m15s
singleton(8) 2 40320 40320 8 8 0.06s 14.92s 15.24s 0.04s 0.09s
singleton(9) 2 362880 362880 9 9 0.09s 2m31s 2m32s 0.05s 0.15s
singleton(10) 2 3628800 3628800 10 10 0.16s 27m33s 28m9s 0.05s 0.19s
stack_true(9) 48620 48620 48620 48620 48620 2m24s 37.55s 38.47s 40.06s 2m23s
stack_true(10) 184756 184756 184756 184756 184756 11m58s 2m31s 2m40s 2m50s 11m1s
stack_true(11) 705432 705432 705432 705432 705432 58m34s 10m32s 11m8s 11m48s 54m42s
48_ticket_lock(2) 6 6 6 6 6 0.05s 0.03s 0.04s 0.04s 0.05s
48_ticket_lock(3) 204 204 204 204 204 0.25s 0.08s 0.10s 0.09s 0.34s
48_ticket_lock(4) 41400 41400 41400 41400 41400 55.67s 13.88s 15.27s 16.56s 52.57s

Table 3.1: Experimental comparison on SV-COMP benchmarks.
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Benchmark Maximal Traces Time
VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR

rod_cut_td3(7) 4324 102128 102128 51974 23143 33.23s 4m14s 7m43s 3m47s 1m28s
rod_cut_td3(8) 14744 508646 508646 257707 114624 3m4s 27m32s 57m42s 28m2s 12m9s
rod_cut_td3(9) 50320 2574752 - 1300067 577682 17m24s 3h0m - 3h27m 1h39m
rod_cut_td4(3) 1478 91592 91592 17451 4810 0.97s 1m29s 1m49s 21.79s 1.46s
rod_cut_td4(4) 21358 2459640 2459640 359609 85203 28.55s 1h6m 1h33m 14m2s 57.94s
rod_cut_td4(5) 433371 - - - 2551714 20m57s - - - 1h22m
rod_cut_bu3(6) 19933 183516 183516 147746 71670 56.15s 2m23s 3m59s 3m26s 2m3s
rod_cut_bu3(7) 99622 1101084 1101084 886466 429494 8m6s 17m52s 33m33s 29m19s 21m40s
rod_cut_bu3(8) 498061 6606492 - - 2574902 1h6m 2h12m - - 3h30m
rod_cut_bu4(2) 1901 33912 33912 14667 5377 0.70s 11.76s 13.36s 6.75s 1.15s
rod_cut_bu4(3) 74541 2246424 2246424 913299 292633 46.95s 18m50s 24m12s 11m37s 1m52s
rod_cut_bu4(4) 3007476 - - - - 1h17m - - - -
lis_bu3(8) 118812 1744064 1744064 475986 358347 4m24s 33m22s 1h0m 18m27s 7m24s
lis_bu3(9) 368400 7001792 - 1439130 1092553 15m49s 2h38m - 1h10m 27m6s
lis_bu3(10) 3133740 - - - - 3h59m - - - -
lis_bu4(2) 1137 18522 18522 7936 2828 0.45s 8.45s 9.41s 4.42s 0.52s
lis_bu4(3) 29931 1024002 1024002 364560 101766 12.70s 10m36s 12m49s 5m0s 19.41s
lis_bu4(4) 1222278 - - - 5679067 16m34s - - - 37m20s
coin_all_td3(9) 4015 566214 566214 23308 8071 22.23s 34m25s 1h20m 2m36s 21.13s
coin_all_td3(10) 9052 2444048 - 59168 19829 1m2s 2h56m - 8m20s 1m3s
coin_all_td3(19) 637859 - - - 1528102 2h43m - - - 3h5m
coin_all_td4(2) 5938 6406248 - 74153 20668 4.86s 3h46m - 3m27s 6.47s
coin_all_td4(3) 68966 - - 1549115 319142 1m36s - - 2h15m 2m34s
coin_all_td4(5) 379086 - - - 2857926 16m12s - - - 36m32s
coin_min_td3(8) 46535 1902262 1902262 981936 382275 3m0s 1h13m 2h12m 1h12m 14m0s
coin_min_td3(9) 154663 - - - 1634899 11m36s - - - 1h8m
coin_min_td3(11) 1312252 - - - - 2h4m - - - -
coin_min_td4(4) 9912 1470312 1470312 208367 46634 30.52s 36m17s 51m36s 7m6s 47.93s
coin_min_td4(5) 102154 - - 3534815 718883 6m7s - - 2h59m 14m59s
coin_min_td4(6) 1490420 - - - - 1h52m - - - -
bin_nocon_td3(7) 13202 1664672 1664672 471151 121350 29.57s 48m34s 1h26m 26m11s 2m4s
bin_nocon_td3(8) 44802 - - 2825725 603668 1m54s - - 3h17m 12m32s
bin_nocon_td3(11) 922114 - - - - 1h0m - - - -
bin_nocon_bu3(6) 52500 773122 773122 115625 75000 1m15s 12m37s 19m44s 3m5s 1m8s
bin_nocon_bu3(7) 262500 5411854 5411854 578125 375000 7m27s 1h45m 2h52m 19m54s 6m50s
bin_nocon_bu3(8) 1312500 - - 2890625 1875000 45m2s - - 2h1m 41m9s

Table 3.2: Experimental comparison on dynamic-programming benchmarks.

Benchmarks from SV-COMP. In Table 3.1 we present experiments on benchmarks from
SV-COMP (along the industrial benchmark parker). We have replaced all assertions with
simple read events. This way we ensure a fair comparison among all algorithms in exploring
the trace-space of each benchmark, as an assertion violation would halt the search. We have
verified that all assertion violations present in these benchmarks are detected by all algorithms
before this modification. The scaling parameter in each case controls the size of the input
benchmark in terms of loop unrolls.

Dynamic-programming benchmarks. In Table 3.2 we present experiments on various multi-
threaded dynamic-programming algorithms. For efficiency, these algorithms use memoization
to avoid recomputing instances that correspond to the same sub-problem. The benchmarks
consist of three or four threads. In each case, all-but-one threads are performing the dynamic
programming computation, and one thread reads a flag signaling that the computation is
finished, as well as the result of the computation. Each benchmark name contains either
the substring “td” or the substring“bu”, denoting that the dynamic programming table is
computed top-down or bottom-up, respectively. The scaling parameter of each benchmark
controls the different sizes of the input problem. The dynamic programming problems we use
as benchmarks are the following.

• rod_cut computes, given one rod of a given length and prices for rods of shorter
lengths, the maximum profit achievable by cutting the given rod.
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• lis computes, given an array of non-repeating integers, the length of the longest
increasing subsequence (not necessarily contiguous) in the array.

• coin_all computes, given an unlimited supply of coins of given denominations, the
total number of distinct ways to get a desired change.

• coin_min computes, given an unlimited supply of coins of given denominations, the
minimum number of coins required to get a desired change.

• bin_nocon computes the number of binary strings of a given length that do not
contain the substring ’11’.

Mutual-exclusion benchmarks. In Table 3.3 we present experiments on various mutual-
exclusion algorithms from the literature. In particular, we use the two-thread solutions of
Dijkstra [Dij83], Kessels [Kes82], Tsay [Tsa98], Peterson [Pet81], Peterson-Fischer [PF77],
Szymanski [Szy88], Dekker [Knu66], as well as various solutions of Correia-Ramalhete [CR16].
In addition, we use the two-thread and three-thread versions of Burns’s algorithm [BL80].
These protocols exercise a wide range of communication patterns, based, e.g., on the number of
shared variables and the number of sequentially consistent stores/loads required to enter/leave
the critical section. In all these benchmarks, each thread executes the corresponding protocol
to enter a (empty) critical section a number of times, the latter controlled by the scaling
parameter.

Individual benchmarks. In Table 3.4 we present experiments on individual benchmarks:
eratosthenes consists of two threads computing the sieve of Eratosthenes in parallel;
redundant_co consists of three threads, two of which repeatedly write to a variable and
one reads from it; float_read consists of several threads, each writing once to a variable,
and one reading from it (adapted from [AJLS18]); opt_lock consists of three threads in an
optimistic-lock scheme. The scaling parameter controls the size in terms of loop unrolls.

Summary. For the sake of completeness, we refer to Table 3.5 for some statistics on our
benchmark set. Entries marked with “U” denote that the corresponding parameter is controlled
by the unroll bound of the respective benchmark. In a variety of cases, the V C partitioning is
significantly coarser than each of the partitionings constructed by the other algorithms. This
coarseness makes VC-DPOR more efficient in its exploration than the alternatives. We note
that in some cases, V C offers little-to-no reduction, and then VC-DPOR becomes slower
than the alternatives, due to the overhead incurred in constructing V C. For example, for the
benchmark reorder_5 of Table 3.1, the partitioning reduction achieved by VC-DPOR is
large enough compared to Nidhugg/source, Optimal and Optimal∗ that makes VC-DPOR
significantly faster than each of these techniques. However, although the partitioning of
VC-DPOR is smaller than DC-DPOR, the corresponding reduction is not large enough to
make VC-DPOR faster than DC-DPOR in this benchmark (in general, VC-DPOR has a
larger polynomial overhead than DC-DPOR.) Similarly, for the benchmark X2Tv9 of Table 3.3,
the reduction of the V C partitioning is quite small, and although Nidhugg/source is the slowest
algorithm in theory, its more lightweight nature makes it faster in practice for this benchmark.
Finally, we also identify benchmarks such as stack_true and 48_ticket_lock where
there is no trace reduction at all, and are better handled by existing methods. We note that
our approach is fairly different from the literature, and our implementation of VC-DPOR
still largely unoptimized. We identify potential for improving the performance of VC-DPOR
by improving the closure computation, as well as reducing (or eliminating) the number of
non-maximal traces explored by the algorithm.

43



3. The Value-Centric Equivalence for the SC Memory Model

Benchmark Maximal Traces Time
VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR

tsay(2) 2488 7469 7469 7469 7469 0.81s 2.46s 2.76s 2.99s 1.82s
tsay(3) 241822 1414576 1414576 1414576 1414576 1m38s 10m2s 10m54s 12m1s 7m42s
tsay(4) 24609389 - - - - 3h51m - - - -
peter_fisch(2) 1371 4386 4386 4386 4386 0.69s 1.56s 1.61s 1.73s 1.16s
peter_fisch(3) 70448 430004 430004 430004 430004 34.03s 2m54s 3m10s 3m31s 2m20s
peter_fisch(4) 3747718 - - - - 41m31s - - - -
peterson(5) 86929 268706 268706 268706 256457 32.42s 49.22s 54.60s 1m4s 1m32s
peterson(6) 880069 3462008 3462008 3462008 3303617 7m10s 11m50s 13m18s 15m51s 25m29s
peterson(7) 9013381 45046254 45046254 - - 1h30m 2h56m 3h21m - -
lamport(2) 958 3940 3940 2454 1456 0.39s 0.75s 0.77s 0.59s 0.45s
lamport(3) 57436 741370 741370 328764 130024 28.14s 2m24s 2m43s 1m29s 52.24s
lamport(4) 3723024 - - - 13088038 49m40s - - - 2h26m
dekker(5) 89647 435245 435245 435245 435245 29.78s 1m14s 1m23s 1m37s 2m14s
dekker(6) 932559 6745775 6745775 6745775 6745775 6m44s 21m36s 24m12s 28m22s 42m46s
dekker(7) 9837974 - - - - 1h28m - - - -
X2Tv6(3) 7859 20371 20371 20371 20371 3.89s 5.35s 5.68s 6.58s 7.69s
X2Tv6(4) 152999 596354 596354 596354 596354 1m38s 3m6s 3m23s 3m47s 5m17s
X2Tv6(5) 3058189 17836411 17836411 17836411 17836411 46m41s 1h51m 2h3m 2h21m 3h36m
kessels(3) 8900 13856 13856 13856 13856 2.80s 5.07s 5.45s 5.98s 3.70s
kessels(4) 194858 323400 323400 323400 323400 1m13s 2m19s 2m30s 2m48s 1m41s
kessels(5) 4379904 7763704 7763704 7763704 7763704 35m59s 1h8m 1h13m 1h22m 53m50s
X2Tv7(9) 452142 2004774 2004774 2004774 2004774 7m34s 24m59s 27m10s 29m54s 13m36s
X2Tv7(10) 1721564 7708671 7708671 7708671 7708671 35m19s 1h47m 1h58m 2h10m 1h1m
X2Tv7(11) 6584004 - - - - 2h37m - - - -
X2Tv2(2) 894 1293 1293 1293 1293 0.32s 0.46s 0.46s 0.51s 0.50s
X2Tv2(3) 42141 69316 69316 69316 69316 17.73s 29.21s 31.04s 34.65s 22.01s
X2Tv2(4) 1827915 3552837 3552837 3552837 3552837 17m21s 31m13s 33m46s 37m35s 25m52s
burns(4) 381 140380 140380 140380 140380 0.31s 1m24s 1m28s 1m37s 1m8s
burns(5) 1415 2916980 2916980 2916980 2916980 0.98s 35m29s 38m9s 41m55s 29m25s
burns(11) 4114995 - - - - 1h48m - - - -
burns3(1) 67 849 849 849 849 0.09s 0.45s 0.40s 0.44s 0.49s
burns3(2) 11297 1490331 1490331 1490331 1490331 16.27s 16m49s 17m32s 20m4s 26m4s
burns3(3) 1638338 - - - - 1h0m - - - -
X2Tv10(2) 4130 5079 5079 5079 5079 1.81s 1.94s 1.95s 2.18s 1.71s
X2Tv10(3) 213381 308433 308433 308433 308433 1m47s 2m15s 2m26s 2m39s 1m56s
X2Tv10(4) 10274441 17910500 17910500 17910500 17910500 1h58m 2h48m 3h2m 3h29m 2h35m
X2Tv5(4) 38743 46161 46161 46161 46161 14.34s 21.05s 22.57s 24.92s 15.35s
X2Tv5(5) 595527 730647 730647 730647 730647 4m37s 6m28s 6m57s 7m50s 5m2s
X2Tv5(6) 9312813 11755440 11755440 11755440 11755440 1h26m 2h2m 2h17m 2h33m 1h37m
X2Tv1(6) 224803 253042 253042 253042 253042 1m45s 2m19s 2m27s 2m46s 1m42s
X2Tv1(7) 1880095 2115302 2115302 2115302 2115302 18m4s 21m56s 23m59s 26m35s 17m31s
X2Tv1(8) 15873308 17857733 17857733 - 17857733 2h59m 3h29m 3h49m - 2h51m
X2Tv8(3) 6168 9894 9894 8700 8434 2.79s 2.56s 2.63s 2.64s 3.15s
X2Tv8(4) 122932 228417 228417 194206 186040 1m8s 1m7s 1m13s 1m10s 1m30s
X2Tv8(5) 2503292 5391534 5391534 4428748 4192466 31m12s 31m4s 34m43s 32m37s 44m43s
X2Tv9(3) 7234 7304 7304 7304 7304 2.53s 2.11s 2.23s 2.49s 2.41s
X2Tv9(4) 150535 153725 153725 153725 153725 1m3s 52.80s 56.85s 1m3s 56.86s
X2Tv9(5) 3261067 3324991 3324991 3324991 3324991 29m53s 22m17s 24m10s 27m11s 27m10s
szymanski(3) 27892 27951 27951 27951 27951 12.06s 5.06s 5.66s 6.69s 9.81s
szymanski(4) 395743 396583 396583 396583 396583 4m0s 1m26s 1m39s 1m49s 3m14s
szymanski(5) 5734528 5746703 5746703 5746703 5746703 1h17m 25m17s 28m59s 32m36s 1h1m

Table 3.3: Experimental comparison on mutual-exclusion benchmarks.

Benchmark Maximal Traces Time
VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR VC-DPOR Nidhugg/source Optimal Optimal∗ DC-DPOR

eratosthenes(5) 3500 1527736 1527736 27858 19991 16.92s 18m37s 20m39s 41.14s 1m29s
eratosthenes(7) 29320 - - 253792 189653 3m37s - - 9m29s 19m41s
eratosthenes(8) 110380 - - 938756 710551 11m29s - - 42m27s 1h4m
redundant_co(2) 11 1969110 1969110 5401 729 0.06s 7m16s 7m32s 1.51s 0.07s
redundant_co(8) 35 - - 1118305 35937 0.09s - - 13m24s 0.97s
redundant_co(9) 39 - - 1778221 50653 0.07s - - 23m49s 1.35s
float_read(9) 9 3628800 3628800 2305 10 0.05s 26m30s 26m38s 1.27s 0.04s
float_read(15) 15 - - 245761 16 0.65s - - 3m52s 0.74s
float_read(16) 16 - - 524289 17 1.42s - - 9m25s 1.44s
opt_lock(2) 2497 69252 69252 11982 6475 1.50s 15.10s 15.53s 3.25s 2.50s
opt_lock(3) 80805 15036174 15036174 416850 212877 52.13s 1h5m 1h9m 2m9s 1m29s
opt_lock(4) 2543298 - - 14038926 6743831 37m41s - - 1h27m 1h2m

Table 3.4: Experimental comparison on individual benchmarks.
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Benchmark LOC Var Locks Threads Benchmark LOC Var Locks Threads Benchmark LOC Var Locks Threads
parker 134 4 0 2 48_ticket_lock 52 3 1 U dekker 91 4 0 2
27_Boop 74 4 0 4 rod_cut_td3 50 51 0 3 X2Tv6 75 4 0 2
30_Fun_Point 67 1 1 U rod_cut_td4 62 51 0 4 kessels 44 3 0 2
45_monabsex 24 1 0 U rod_cut_bu3 36 51 0 3 X2Tv7 83 3 0 2
46_monabsex 22 2 0 U rod_cut_bu4 37 51 0 4 X2Tv2 65 3 0 2
fk2012_true 100 1 2 3 lis_bu3 47 51 0 3 burns 70 3 0 2
fkp2013_true 26 1 0 U lis_bu4 48 51 0 4 burns3 70 4 0 3
nondet-array 29 1 0 U coin_all_td3 51 151 0 3 X2Tv10 91 3 0 2
pthread-de 67 1 1 U coin_all_td4 53 151 0 4 X2Tv5 55 4 0 2
reorder_5 1227 4 0 U coin_min_td3 46 51 0 3 X2Tv1 56 3 0 2
scull_true 389 7 1 3 coin_min_td4 52 51 0 4 X2Tv8 64 4 0 2
sigma_false 36 1 0 U bin_nocon_td3 43 101 0 3 X2Tv9 61 3 0 2
check_bad_arr 33 1 0 U bin_nocon_bu3 53 101 0 3 szymanski 93 3 0 2
32_pthread5 87 4 1 U tsay 54 3 0 2 eratosthenes 25 U 0 2
fkp2014_true 36 2 1 U peter_fisch 59 3 0 2 redundant_co 23 1 0 2
singleton 43 1 0 U peterson 68 4 0 2 float_read 25 1 0 U
stack_true 104 U 1 2 lamport 83 5 0 2 opt_lock 31 2 0 3

Table 3.5: Benchmark statistics.

45





CHAPTER 4
The Reads-Value-From Equivalence for

the SC Memory Model

In this chapter we present RVF-SMC, a new stateless model checking (SMC) algorithm that
uses a novel reads-value-from (RVF) partitioning. Intuitively, two interleavings are deemed
equivalent if they agree on the value obtained in each read event, and read events induce
consistent causal orderings between them. The RVF partitioning is provably coarser than
recent approaches based on Mazurkiewicz and reads-from (RF) partitionings. Our experimental
evaluation reveals that RVF is quite often a very effective equivalence, as the underlying
partitioning is exponentially coarser than other approaches. Moreover, RVF-SMC generates
representatives very efficiently, as the reduction in the partitioning is often met with significant
speed-ups in the model checking task.

We illustrate the benefits of value-based partitionings with a motivating example. Consider
a simple concurrent program shown in Fig. 4.1. The program has 98 different orderings
of the conflicting memory accesses, and each ordering corresponds to a separate class of
the Mazurkiewicz partitioning. Utilizing the reads-from abstraction reduces the number of
partitioning classes to 9. However, when taking into consideration the values that the events
can read and write, the number of cases to consider can be reduced even further. In this
specific example, there is only a single behavior the program may exhibit, in which both read
events read the only observable value.

Thread1

1. w(x, 1)
2. w(y, 1)

Thread2

1. w(x, 1)
2. w(y, 1)
3. r(x)

Thread3

1. w(x, 1)
2. w(y, 1)
3. r(y)

Equivalence classes:
Mazurkiewicz [AAJS14] 98

reads-from [AAJ+19] 9
value-centric [CPT19] 7

reads-value-from 1

Figure 4.1: Concurrent program and its underlying partitioning classes.

The above benefits have led to recent attempts in performing SMC using a value-based equiv-
alence [Hua15, CPT19]. However, as the realizability problem is NP-hard in general [GK97],
both approaches suffer significant drawbacks. In particular, the work of [CPT19] combines the
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value-centric approach with the Mazurkiewicz partitioning, which creates a refinement with
exponentially many more classes than potentially necessary. The example program in Fig. 4.1
illustrates this, where while both read events can only observe one possible value, the work
of [CPT19] further enumerates all Mazurkiewicz orderings of all-but-one threads, resulting in
7 partitioning classes. Separately, the work of [Hua15] relies on satisfiability modulo theories
(SMT) solvers, thus spending exponential time to solve the realizability problem. Hence,
each approach suffers an exponential blow-up a-priori, which motivates the following question:
is there an efficient parameterized algorithm for the consistency problem? That is, we are
interested in an algorithm that is exponential-time in the worst case (as the problem is NP-hard
in general), but it is efficient when certain natural parameters of the input are small, and thus
it only becomes slow in extreme cases.

Another disadvantage of these previous value-based works is that each of the exploration
algorithms can end up to the same class of the partitioning many times, further hindering
performance. To see an example, consider the program in Fig. 4.1 again. The work of [CPT19]
assigns values to reads one by one, and in this example, it needs to consider as separate cases
both permutations of the two reads as the orders for assigning the values. This is to ensure
completeness in cases where there are write events causally dependent on some read events
(e.g., a write event appearing only if its thread-predecessor reads a certain value). However,
no causally dependent write events are present in this program, and our work uses a principled
approach to detect this and avoid the redundant exploration. While an example to demonstrate
[Hua15] revisiting partitioning classes is a bit more involved one, this property follows from the
lack of information sharing between spawned subroutines, enabling the approach to be massively
parallelized, which has been discussed already in prior works [CCP+17, AAJN18, CPT19].

In this work we tackle the two challenges illustrated in the motivating example in a principled,
algorithmic way. In particular, our contributions are as follows.

1. We study the problem of verifying the sequentially consistent executions. The problem
is known to be NP-hard [GK97] in general, already for 3 threads. We show that the
problem can be solved in O(kd+1 · nk+1) time for an input of n events, k threads
and d variables. Thus, although the problem is NP-hard in general, it can be solved
in polynomial time when the number of threads and number of variables is bounded.
Moreover, our bound reduces to O(nk+1) in the class of programs where every variable
is written by only one thread (while read by many threads). Hence, in this case the
bound is polynomial for a fixed number of threads and without any dependence on the
number of variables.

2. We define a new equivalence between concurrent traces, called the reads-value-from
(RVF) equivalence. Intuitively, two traces are RVF-equivalent if they agree on the value
obtained in each read event, and read events induce consistent causal orderings between
them. We show that RVF induces a coarser partitioning than the partitionings explored
by recent well-studied SMC algorithms [AAJS14, CCP+17, CPT19, AAJ+19], and thus
reduces the search space of the model checker.

3. We develop a novel SMC algorithm called RVF-SMC, and show that it is sound and
complete for local safety properties such as assertion violations. Moreover, RVF-SMC
has complexity kd · nO(k) · β, where β is the size of the underlying RVF partitioning.
Under the hood, RVF-SMC uses our consistency-checking algorithm of Item 1 to visit
each RVF class during the exploration. Moreover, RVF-SMC uses a novel heuristic
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to significantly reduce the number of revisits in any given RVF class, compared to the
value-based explorations of [Hua15, CPT19].

4. We implement RVF-SMC in the stateless model checker Nidhugg [AAA+15]. Our
experimental evaluation reveals that RVF is quite often a very effective equivalence, as
the underlying partitioning is exponentially coarser than other approaches. Moreover,
RVF-SMC generates representatives very efficiently, as the reduction in the partitioning
is often met with significant speed-ups in the model checking task.

4.1 Reads-Value-From Equivalence
In this section we present our new equivalence on traces, called the reads-value-from equivalence
(RVF equivalence, or ∼RV F , for short). Then we illustrate that ∼RV F has some desirable
properties for stateless model checking.

Reads-Value-From equivalence. Given two traces σ1 and σ2, we say that they are reads-
value-from-equivalent, written σ1 ∼RV F σ2, if the following hold.

1. E(σ1) = E(σ2), i.e., they consist of the same set of events.

2. valσ1 = valσ2 , i.e., each event reads resp. writes the same value in both.

3. 7→σ1 |R = 7→σ2 |R, i.e., their causal orderings agree on the read events.

Fig. 4.2 presents an intuitive example of RVF-(in)equivalent traces. It presents three traces σ1,
σ2, σ3, and events of each trace are vertically ordered as they appear in the trace. Traces σ1
and σ2 are RVF-equivalent (σ1 ∼RV F σ2), as they have the same events, same value function,
and the two read events are causally unordered in both. Trace σ3 is not RVF-equivalent with
either of σ1 and σ2. Compared to σ1 resp. σ2, the value function of σ3 differs (r(y) reads a
different value), and the causal orderings of the reads differ (r(x) 7→σ3r(y)).

σ1thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ2thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

σ3thr1 thr2

w(x, 1)

r(x)

w(y, 2)

w(y, 1)

w(x, 1)

r(y)

Figure 4.2: RVF-(in)equivalent traces.

Soundness. The RVF equivalence induces a partitioning on the maximal traces of P. Any
algorithm that explores each class of this partitioning provably discovers every reachable local
state of every thread, and thus RVF is a sound equivalence for local safety properties, such as
assertion violations, in the same spirit as in other recent works [AAJ+19, CCP+17, CPT19,

49



4. The Reads-Value-From Equivalence for the SC Memory Model

Hua15]. This follows from the fact that for any two traces σ1 and σ2 with E(σ1) = E(σ2) and
valσ1 = valσ2 , the local states of each thread are equal after executing σ1 and σ2.

Coarseness. Here we describe the coarseness properties of the RVF equivalence, as compared
to other equivalences used by state-of-the-art approaches in stateless model checking. Fig. 4.3
summarizes the comparison, where an edge from X to Y signifies that Y is always at least as
coarse, and sometimes coarser, than X.

reads-value-from

reads-from[AAJ+19, KRV19b] value-centric[CPT19]

data-centric[CCP+17]

Mazurkiewicz[FG05, AAJS14, KLSV17]

Figure 4.3: SMC trace equivalences.

The SMC algorithms of [AAJ+19] and [KRV19b] operate on a reads-from equivalence, which
deems two traces σ1 and σ2 equivalent if

1. they consist of the same events (E(σ1) = E(σ2)), and

2. their reads-from functions coincide (RFσ1 = RFσ2).

The above two conditions imply that the induced causally-happens-before partial orders are
equal, i.e., 7→σ1 = 7→σ2 , and thus trivially also 7→σ1 |R = 7→σ2 |R. Further, by a simple inductive
argument the value functions of the two traces are also equal, i.e., valσ1 = valσ2 . Hence any
two reads-from-equivalent traces are also RVF-equivalent, which makes the RVF equivalence
always at least as coarse as the reads-from equivalence.

The work of [CPT19] utilizes a value-centric equivalence, which deems two traces equivalent
if they satisfy all the conditions of our RVF equivalence, and also some further conditions
(note that these conditions are necessary for correctness of the SMC algorithm in [CPT19]).
Thus the RVF equivalence is trivially always at least as coarse. The value-centric equivalence
preselects a single thread thr, and then requires two extra conditions for the traces to be
equivalent, namely:

1. For each read of thr, either the read reads-from a write of thr in both traces, or it does
not read-from a write of thr in either of the two traces.

2. For each conflicting pair of events not belonging to thr, the ordering of the pair is equal
in the two traces.

Both the reads-from equivalence and the value-centric equivalence are in turn as coarse as the
data-centric equivalence of [CCP+17]. Given two traces, the data-centric equivalence has the
equivalence conditions of the reads-from equivalence, and additionally, it preselects a single
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thread thr (just like the value-centric equivalence) and requires the second extra condition
of the value-centric equivalence, i.e., equality of orderings for each conflicting pair of events
outside of thr.

Finally, the data-centric equivalence is as coarse as the classical Mazurkiewicz equiva-
lence [Maz87], the baseline equivalence for stateless model checking [FG05, AAJS14, KLSV17].
Mazurkiewicz equivalence deems two traces equivalent if they consist of the same set of events
and they agree on their ordering of conflicting events.

While RVF is always at least as coarse, it can be (even exponentially) coarser, than each of
the other above-mentioned equivalences. Consider the simple programs of Fig. 4.4. In each
program, all traces of the program are pairwise RVF-equivalent (and hence there is only one
RVF-equivalence class), while the reads-from, value-centric, data-centric, and Mazurkiewicz
equivalence all induce exponentially many inequivalent traces.

Thread1

w(x, 1)
w(x, 1)
...

w(x, 1)
w(x, 1)

Thread2

w(x, 1)
r(x)
...

w(x, 1)
r(x)

Thread3

w(x, 1)
w(x, 1)
...

w(x, 1)
w(x, 1)

(a) Many operations on one variable.

Thread1

w(x1, 1)
w(x2, 1)
...

w(xn−1, 1)
w(xn, 1)

Thread2

w(x1, 1)
r(x1)
...

w(xn, 1)
r(xn)

Thread3

w(x1, 1)
w(x2, 1)
...

w(xn−1, 1)
w(xn, 1)

(b) Few operations on many variables.

Thread1

w(x, 1)
r(x)

.....
Threadn

w(x, 1)
r(x)

(c) Many threads and one variable.

Figure 4.4: Programs with one RVF-equivalence class.

We summarize the above observations in the following proposition.

Proposition 4.1. RVF is at least as coarse as each of the Mazurkiewicz equivalence ([AAJS14]),
the data-centric equivalence ([CCP+17]), the reads-from equivalence ([AAJ+19]), and the
value-centric equivalence ([CPT19]). Moreover, RVF can be exponentially coarser than each
of these equivalences.

In this chapter we develop our SMC algorithm RVF-SMC around the RVF equivalence,
with the guarantee that the algorithm explores at most one maximal trace per class of the
RVF partitioning, and thus can perform significantly fewer steps than algorithms based on
the above equivalences. To utilize RVF, the algorithm in each step solves an instance of the
verification of sequential consistency problem, which we tackle in the next section. Afterwards,
we present RVF-SMC.

4.2 Verifying Sequential Consistency
In this section we present our contributions towards the problem of verifying sequential
consistency (VSC). We present an algorithm VerifySC for VSC, and we show how it can be
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efficiently used in stateless model checking.

The VSC problem. Consider an input pair (X, GoodW) where

1. X ⊆ E is a proper set of events, and

2. GoodW : R(X) → 2W(X) is a good-writes function such that w ∈ GoodW(r) only if
r ⋊⋉ w.

A witness of (X, GoodW) is a linearization τ of X (i.e., E(τ) = X) respecting the program
order (i.e., τ ⊑ PO|X), such that each read r ∈ R(τ) reads-from one of its good-writes in τ ,
formally RFτ (r) ∈ GoodW(r) (we then say that τ satisfies the good-writes function GoodW).
The task is to decide whether (X, GoodW) has a witness, and to construct one in case it
exists.

VSC in Stateless Model Checking. The VSC problem naturally ties in with our SMC
approach enumerating the equivalence classes of the RVF trace partitioning. In our approach,
we shall generate instances (X, GoodW) such that (i) each witness σ of (X, GoodW) is a
valid program trace, and (ii) all witnesses σ1, σ2 of (X, GoodW) are pairwise RVF-equivalent
(σ1 ∼RV F σ2).

Hardness of VSC. Given an input (X, GoodW) to the VSC problem, let n = |X|, let k be
the number of threads appearing in X, and let d be the number of variables accessed in X.
The classic work of [GK97] establishes two important lower bounds on the complexity of VSC:

1. VSC is NP-hard even when restricted only to inputs with k = 3.

2. VSC is NP-hard even when restricted only to inputs with d = 2.

The first bound eliminates the possibility of any algorithm with time complexity O(nf(k)),
where f is an arbitrary computable function. Similarly, the second bound eliminates algorithms
with complexity O(nf(d)) for any computable f .

In this work we show that the problem is parameterizable in k + d, and thus admits efficient
(polynomial-time) solutions when both parameters are bounded.

4.2.1 Algorithm for VSC
In this section we present our algorithm VerifySC for the problem VSC. First we define some
relevant notation. In our definitions we consider a fixed input pair (X, GoodW) to the VSC
problem, and a fixed sequence τ with E(τ) ⊆ X.

Active writes. A write w ∈ W(τ) is active in τ if it is the last write of its variable in τ .
Formally, for each w′ ∈ W(τ ) with var(w′) = var(w) we have w′ ≤τ w. We can then say that
w is the active write of the variable var(w) in τ .

Held variables. A variable x ∈ G is held in τ if there exists a read r ∈ R(X) \ E(τ) with
var(r) = x such that for each its good-write w ∈ GoodW(r) we have w ∈ τ . In such a case
we say that r holds x in τ . Note that several distinct reads may hold a single variable in τ .

Executable events. An event e ∈ E(X) \ E(τ ) is executable in τ if E(τ )∪ {e} is a lower set
of (X, PO) and the following hold.
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1. If e is a read, it has an active good-write w ∈ GoodW(e) in τ .

2. If e is a write, its variable var(e) is not held in τ .

Memory maps. A memory map of τ is a function from global variables to thread indices
MMapτ : G → [k] where for each variable x ∈ G, the map MMapτ (x) captures the thread of
the active write of x in τ .

Witness states. The sequence τ is a witness prefix if the following hold.

1. τ is a witness of (E(τ), GoodW|R(τ)).

2. For each r ∈ X \ R(τ) that holds its variable var(r) in τ , one of its good-writes
w ∈ GoodW(r) is active in τ .

Intuitively, τ is a witness prefix if it satisfies all VSC requirements modulo its events, and
if each read not in τ has at least one good-write still available to read-from in potential
extensions of τ . For a witness prefix τ we call its corresponding event set and memory map a
witness state.

Fig. 4.5 provides an example illustrating the above concepts, where for brevity of presentation,
the variables are subscripted and the values are not displayed. The example in Fig. 4.5 presents
an event set X, and a good-writes function GoodW denoted by the green dotted edges. The
solid nodes are ordered vertically as they appear in a sequence τ . The grey dashed nodes are
in X \ E(τ). Events rx and w′

x are executable in τ . Event ry is not, its good-write is not
active in τ . Event wy is also not executable, as its variable y is held by ry. The memory map
of τ is MMapτ (x) = 1 and MMapτ (y) = 3. τ is a witness prefix, and E(τ) with MMapτ

together form its witness state.

thr1 thr2 thr3 thr4

wx

rx w′
x

ry

wy

ry

wx

rx

wy

Figure 4.5: Illustration of the concepts used by VerifySC (Algorithm 4.1).

Algorithm. We are now ready to describe our algorithm VerifySC, in Algorithm 4.1 we present
the pseudocode. We attempt to construct a witness of (X, GoodW) by enumerating the
witness states reachable by the following process. We start (Line 1) with an empty sequence ϵ
as the first witness prefix (and state). We maintain a worklist S of so-far unprocessed witness
prefixes, and a set Done of reached witness states. Then we iteratively obtain new witness
prefixes (and states) by considering an already obtained prefix (Line 3) and extending it with

53



4. The Reads-Value-From Equivalence for the SC Memory Model

each possible executable event (Line 6). Crucially, when we arrive at a sequence τe, we include
it only if no sequence τ ′ with equal corresponding witness state has been reached yet (Line 7).
We stop when we successfully create a witness (Line 4) or when we process all reachable
witness states (Line 9).

Algorithm 4.1: VerifySC(X, GoodW)
Input: Proper event set X and good-writes function GoodW : R(X)→ 2W(X)

Output: A witness τ of (X, GoodW) if (X, GoodW) has a witness, else τ = ⊥
1 S ← {ϵ}; Done← {ϵ}
2 while S ̸= ∅ do
3 Extract a sequence τ from S
4 if E(τ) = X then return τ // All events executed, witness found

5 foreach event e executable in τ do
6 Let τe ← τ ◦ e // Execute e

7 if ̸ ∃τ ′ ∈ Done s.t. E(τe) = E(τ ′) and MMapτe
= MMapτ ′ then

8 Insert τe in S and in Done // New witness state reached

9 return ⊥ // No witness exists

Correctness and Complexity. We now highlight the correctness and complexity properties
of VerifySC. The soundness follows straightforwardly by the fact that each sequence in S is a
witness prefix. This follows from a simple inductive argument that extending a witness prefix
with an executable event yields another witness prefix. The completeness follows from the fact
that given two witness prefixes τ1 and τ2 with equal induced witness state, these prefixes are
“equi-extendable” to a witness. Indeed, if a suffix τ ∗ exists such that τ1 ◦ τ ∗ is a witness of
(X, GoodW), then τ2 ◦ τ ∗ is also a witness of (X, GoodW). The time complexity of VerifySC
is bounded by O(nk+1 · kd+1), for n events, k threads and d variables. The bound follows
from the fact that there are at most nk · kd pairwise distinct witness states. We thus have the
following theorem.

Theorem 4.1. VSC for n events, k threads and d variables is solvable in O(nk+1 · kd+1) time.
Moreover, if each variable is written by only one thread, VSC is solvable in O(nk+1 · k) time.

Proof. We argue separately about soundness, completeness, and complexity of VerifySC
(Algorithm 4.1).

Soundness. We prove by induction that each sequence in the worklist S is a witness prefix.
The base case with an empty sequence trivially holds. For an inductive case, observe that
extending a witness prefix τ with an event e executable in τ yields a witness prefix. Indeed,
if e is a read, it has an active good-write in τ , thus its good-writes condition is satisfied in
τ ◦ e. If e is a write, new reads r may start holding the variable var(e) in τ ◦ e, but for all
these reads e is its good-write, and it shall be active in τ ◦ e. Hence the soundness follows.

Completeness. First notice that for each witness τ of VSC(X, GoodW), each prefix of τ is a
witness prefix. What remains to prove is that given two witness prefixes τ1 and τ2 with equal
induced witness state, if a suffix exists to extend τ1 to a witness of VSC(X, GoodW), then
such suffix also exists for τ2. Note that since τ1 and τ2 have an equal witness state, their length
equals too (since E(τ1) = E(τ2)). We thus prove the argument by induction with respect to
|X \ E(τ1)|, i.e., the number of events remaining to add to τ1 resp. τ2. The base case with
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|X \ E(τ1)| = 0 is trivially satisfied. For the inductive case, let there be an arbitrary suffix τ ∗

such that τ1 ◦ τ ∗ is a witness of VSC(X, GoodW). Let e be the first event of τ ∗, we have that
τ1 ◦ e is a witness prefix. Note that τ2 ◦ e is also a witness prefix. Indeed, if e is a read, the
equality of the memory maps MMapτ1 and MMapτ2 implies that since e reads a good-write
in τ1 ◦ e, it also reads the same good-write in τ2 ◦ e. If e is a write, since E(τ1) = E(τ2), each
read either holds its variable in both τ1 and τ2 or it does not hold its variable in either of τ1 and
τ2. Finally observe that MMapτ1◦e = MMapτ2◦e. We have MMapτ1 = MMapτ2 , if e is a read
both memory maps do not change, and if e is a write the only change of the memory maps as
compared to MMapτ1 and MMapτ2 is that MMapτ1◦e(var(e)) = MMapτ2◦e(var(e)) = thr(e).
Hence we have that τ1 ◦ e and τ2 ◦ e are both witness prefixes with the same induced witness
state, and we can apply our induction hypothesis.

Complexity. There are at most nk · kd pairwise distinct witness states, since the number
of different lower sets of (X, PO) is bounded by nk, and the number of different memory
maps is bounded by kd. Hence we have a bound nk · kd on the number of iterations of the
main while-loop in Line 2. Further, each iteration of the main while-loop spends O(n · k)
time. Indeed, there are at most k iterations of the for-loop in Line 5, in each iteration it takes
O(n) time to check whether the event is executable, and the other items take constant time
(manipulating Done in Line 7 and Line 8 takes amortized constant time with hash sets).
Let us now consider the special case when each variable is written by only one thread. In this
case, the algorithm performs at most nk iterations of the main while-loop in Line 2. This is
due to the fact that each of the nk different lower sets of (X, PO) has a unique corresponding
memory map. Since each iteration of the main while-loop spends O(n · k) time, the overall
time complexity of the algorithm in this case becomes O(nk+1 · k).

Implications. We now highlight some important implications of Theorem 4.1. Although
VSC is NP-hard [GK97], the theorem shows that the problem is parameterizable in k + d, and
thus in polynomial time when both parameters are bounded. Moreover, even when only k is
bounded, the problem is fixed-parameter tractable in d, meaning that d only exponentiates a
constant as opposed to n (e.g., we have a polynomial bound even when d = log n). Finally,
the algorithm is polynomial for a fixed number of threads regardless of d, when every memory
location is written by only one thread (e.g., in producer-consumer settings, or in the concurrent-
read-exclusive-write (CREW) concurrency model). These important facts brought forward by
Theorem 4.1 indicate that VSC is likely to be efficiently solvable in many practical settings,
which in turn makes RVF a good equivalence for SMC.

4.2.2 Practical heuristics for VerifySC in SMC
We now turn our attention to some practical heuristics that are expected to further improve
the performance of VerifySC in the context of SMC.

1. Limiting the Search Space. We employ two straightforward improvements to VerifySC
that significantly reduce the search space in practice. Consider the for-loop in Line 5 of Algo-
rithm 4.1 enumerating the possible extensions of τ . This enumeration can be sidestepped by
the following two greedy approaches.

1. If there is a read r executable in τ , then extend τ with r and do not enumerate other
options.
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2. Let w be an active write in τ such that w is not a good-write of any r ∈ R(X) \ E(τ).
Let w ∈ W(X) \ E(τ) be a write of the same variable (var(w) = var(w)), note that w
is executable in τ . If w is also not a good-write of any r ∈ R(X) \ E(τ ), then extend τ
with w and do not enumerate other options.

The enumeration of Line 5 then proceeds only if neither of the above two techniques can be
applied for τ . This extension of VerifySC preserves completeness (not only when used during
SMC, but in general), and it can be significantly faster in practice. For clarity of presentation
we do not fully formalize this extended version, as its worst-case complexity remains the same.

2. Closure. We introduce closure, a low-cost filter for early detection of VSC instances
(X, GoodW) with no witness. The notion of closure, its beneficial properties and construction
algorithms are well-studied for the reads-from consistency verification problems [CCP+17,
AAJ+19, Pav19], i.e., problems where a desired reads-from function is provided as input instead
of a desired good-writes function GoodW. Further, the work of [CPT19] studies closure with
respect to a good-writes function, but only for partial orders of Mazurkiewicz width 2 (i.e., for
partial orders with no triplet of pairwise conflicting and pairwise unordered events). Here we
define closure for all good-writes instances (X, GoodW), with the underlying partial order (in
our case, the program order PO) of arbitrary Mazurkiewicz width.

Given a VSC instance (X, GoodW), its closure P (X) is the weakest partial order that refines
the program order (P ⊑ PO|X) and further satisfies the following conditions. Given a read
r ∈ R(X), let Cl(r) = GoodW(r) ∩ VisibleWP (r). The following must hold.

1. Cl(r) ̸= ∅.

2. If (Cl(r), P |Cl(r)) has a least element w, then w <P r.

3. If (Cl(r), P |Cl(r)) has a greatest element w, then for each w ∈ W(X) \ GoodW(r)
with r ⋊⋉ w, if w <P r then w <P w.

4. For each w ∈ W(X) \ GoodW(r) with r ⋊⋉ w, if each w ∈ Cl(r) satisfies w <P w,
then we have r <P w.

If (X, GoodW) has no closure (i.e., there is no P with the above conditions), then (X, GoodW)
provably has no witness. If (X, GoodW) has closure P , then each witness τ of VSC(X, GoodW)
provably refines P (i.e., τ ⊑ P ).

Finally, we explain how closure can be used by VerifySC. Given an input (X, GoodW), the
closure procedure is carried out before VerifySC is called. Once the closure P of (X, GoodW)
is constructed, since each solution of VSC(X, GoodW) has to refine P , we restrict VerifySC
to only consider sequences refining P . This is ensured by an extra condition in Line 5
of Algorithm 4.1, where we proceed with an event e only if it is minimal in P restricted to
events not yet in the sequence. This preserves completeness, while further reducing the search
space to consider for VerifySC.

3. VerifySC guided by auxiliary trace. In our SMC approach, each time we generate
a VSC instance (X, GoodW), we further have available an auxiliary trace σ̃. In σ̃, either
all-but-one, or all, good-writes conditions of GoodW are satisfied. If all good writes in GoodW
are satisfied, we already have σ̃ as a witness of (X, GoodW) and hence we do not need to run
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VerifySC at all. On the other hand, if case all-but-one are satisfied, we use σ̃ to guide the
search of VerifySC, as described below.

We guide the search by deciding the order in which we process the sequences of the worklist S
in Algorithm 4.1. We use the auxiliary trace σ̃ with E(σ̃) = X. We use S as a last-in-first-out
stack, that way we search for a witness in a depth-first fashion. Then, in Line 5 of Algorithm 4.1
we enumerate the extension events in the reverse order of how they appear in σ̃. We enumerate
in reverse order, as each resulting extension is pushed into our worklist S, which is a stack
(last-in-first-out). As a result, in Line 3 of the subsequent iterations of the main while loop,
we pop extensions from S in order induced by σ̃.

4.3 Stateless Model Checking
We are now ready to present our SMC algorithm RVF-SMC that uses RVF to model check a
concurrent program. RVF-SMC is a sound and complete algorithm for local safety properties,
i.e., it is guaranteed to discover all local states that each thread visits.

RVF-SMC is a recursive algorithm. Each recursive call of RVF-SMC is argumented by a
tuple (X, GoodW, σ, C) where:

1. X is a proper set of events.

2. GoodW : R(X)→ 2W(X) is a desired good-writes function.

3. σ is a valid trace that is a witness of (X, GoodW).

4. C : R → Threads→ N is a partial function called causal map that tracks implicitly, for
each read r, the writes that have already been considered as reads-from sources of r.

Further, we maintain a function ancestors : R(X) → {true, false}, where for each read
r ∈ R(X), ancestors(r) stores a boolean backtrack signal for r. We now provide details on
the notions of causal maps and backtrack signals.

Causal maps. The causal map C serves to ensure that no more than one maximal
trace is explored per RVF partitioning class. Given a read r ∈ enabled(σ) enabled in a
trace σ, we define forbidsC

σ(r) as the set of writes in σ such that C forbids r to read-
from them. Formally, forbidsC

σ(r) = ∅ if r ̸∈ dom(C), otherwise forbidsC
σ(r) = {w ∈

W(σ) | w is within first C(r)(thr(w)) events of σthr}. We say that a trace σ satisfies C
if for each r ∈ R(σ) we have RFσ(r) ̸∈ forbidsC

σ(r).

Backtrack signals. Each call of RVF-SMC (with its GoodW) operates with a trace σ̃
satisfying GoodW that has only reads as enabled events. Consider one of those enabled reads
r ∈ enabled(σ̃). Each maximal trace satisfying GoodW shall contain r, and further, one of
the following two cases is true:

1. In all maximal traces σ′ satisfying GoodW, we have that r reads-from some write of
W(σ̃) in σ′.

2. There exists a maximal trace σ′ satisfying GoodW, such that r reads-from a write not
in W(σ̃) in σ′.
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Whenever we can prove that the first above case is true for r, we can use this fact to prune
away some recursive calls of RVF-SMC while maintaining completeness. Specifically, we
leverage the following crucial lemma.

Lemma 4.1. Consider a call RVF-SMC(X, GoodW, σ, C) and a trace σ̃ extending σ maximally
such that no event of the extension is a read. Let r ∈ enabled(σ̃) such that r ̸∈ dom(C). If
there exists a trace σ′ that (i) satisfies GoodW and C, and (ii) contains r with RFσ′(r) ̸∈ W(σ̃),
then there exists a trace σ that (i) satisfies GoodW and C, (ii) contains r with RFσ(r) ∈ W(σ̃),
and (iii) contains a write w ̸∈ W(σ̃) with r ⋊⋉ w and thr(r) ̸= thr(w).

Proof. We prove the statement by a sequence of reasoning steps.

1. Let S be the set of writes w∗ ̸∈ W(σ̃) such that there exists a trace σ∗ that (i) satisfies
GoodW and C, and (ii) contains r with RFσ∗(r) = w∗. Observe that RFσ′(r) ∈ S,
hence S is nonempty.

2. Let Y be the set of events containing r and the causal future of r in σ′, formally
Y = {e ∈ E(σ′) | r 7→σe} ∪ {r}. Observe that Y ∩ E(σ̃) = ∅. Consider a subsequence
σ′′ = σ′|(E(σ′) \ Y ) (i.e., subsequence of all events except Y ). σ′′ is a valid trace, and
from Y ∩ E(σ̃) = ∅ we get that σ′′ satisfies GoodW and C.

3. Let T1 be the set of all partial traces that (i) contain all of E(σ̃), (ii) satisfy GoodW
and C, (iii) do not contain r, and (iv) contain some w∗ ∈ S. T1 is nonempty due to (2).

4. Let T2 ⊆ T1 be the traces σ∗ of T1 where for each w∗ ∈ S ∩ E(σ∗), we have that w∗

is the last event of its thread in σ∗. The set T2 is nonempty: since w∗ ̸∈ W(σ̃), the
events of its causal future in σ∗ are also not in E(σ̃), and thus they are not good-writes
to any read in GoodW.

5. Let T3 ⊆ T2 be the traces of T2 with the least amount of read events in total. Trivially
T3 is nonempty. Further note that in each trace σ∗ ∈ T3, no read reads-from any write
w∗ ∈ S ∩ E(σ∗). Indeed, such write can only be read-from by reads r∗ out of E(σ̃)
(traces of T3 satisfy GoodW). Further, events of the causal future of such reads r∗ are
not good-writes to any read in GoodW (they are all out of E(σ̃)). Thus the presence of
r∗ violates the property of having the least amount of read events in total.

6. Let σ1 be an arbitrary partial trace from T3. Let S1 = S ∩ E(σ1), by (3) we have that
S1 is nonempty. Let σ2 = σ1|(E(σ1) \ S1). Note that σ2 is a valid trace, as for each
w∗ ∈ S1, by (4) it is the last event of its thread, and by (5) it is not read-from by any
read in σ1.

7. Since r ∈ enabled(σ̃) and E(σ̃) ⊆ E(σ2) and r ̸∈ E(σ2), we have that r ∈ enabled(σ2).
Let w∗ ∈ S1 arbitrary, by the previous step we have w∗ ∈ enabled(σ2). Now consider
σ = σ2 ◦ r ◦w∗. Notice that (i) σ satisfies GoodW and C, (ii) RFσ(r) ∈ W(σ̃) (there is
no write out of W(σ̃) present in σ2), and (iii) for w∗ ∈ E(σ), since w∗ ∈ S we have
r ⋊⋉ w∗ and thr(r) ̸= thr(w∗).
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Algorithm 4.2: RVF-SMC(X, GoodW, σ, C)
Input: Proper set of events X, good-writes function GoodW, valid trace σ that is a witness

of (X, GoodW), causal map C.
1 σ̃ ← σ ◦ σ̂ where σ̂ extends σ maximally such that no event of σ̂ is a read
2 foreach w ∈ E(σ̂) do // All extension events are writes

3 foreach r ∈ dom(ancestors) do // All ancestor mutations are reads

4 if r ⋊⋉ w and thr(r) ̸= thr(w) then // Potential new source for r to read-from

5 ancestors(r)← true // Set backtrack signal to true

6 mutate← ϵ // Construct a sequence of enabled reads

7 foreach r ∈ enabled(σ̃) do // Enabled events in σ̃ are reads

8 if r ∈ dom(C) then // Causal map C is defined for r

9 mutate← mutate ◦ r // Insert r to the end of mutate
10 else // Causal map C is undefined for r

11 mutate← r ◦mutate // Insert r to the beginning of mutate
12 backtrack← true
13 while backtrack = true and mutate ̸= ϵ do
14 r ← pop front of mutate // Process next read of mutate
15 if r ̸∈ dom(C) then
16 backtrack← false
17 Fr ← VisibleWPO|E(σ̃)(r) \ forbidsC

σ̃
(r) // Visible writes not forbidden by C

18 Dr ← {valσ̃(w) : w ∈ Fr} // The set of values that r may read

19 foreach v ∈ Dr do // Process each value

20 X ′ ← X ∪ E(σ̃) ∪ {r} // New event set

21 GoodW′ ← GoodW ∪ {(r, { w ∈ Fr | valσ̃(w) = v })} // New good-writes

22 σ′ ← VerifySC(X ′, GoodW′) // VerifySC guided by σ̃ ◦ r

23 if σ′ ̸= ⊥ then // (X ′, GoodW′) has a witness

24 C′ ← C
25 ancestors(r)← backtrack // Record ancestor

26 RVF-SMC(X ′, GoodW′, σ′, C′)
27 backtrack← ancestors(r) // Retrieve backtrack signal

28 delete r from ancestors // Unrecord ancestor

29 foreach thr ∈ Threads do // Update causal map C(r) for each thread

30 C(r)(thr)← |E(σ̃)thr| // Number of events of thr in σ̃

Given Lemma 4.1, we compute a boolean backtrack signal for a given RVF-SMC call and
read r ∈ enabled(σ̃) to capture satisfaction of the consequent of Lemma 4.1. If the computed
backtrack signal is false, we can safely stop the RVF-SMC exploration of this specific call
and backtrack to its recursion parent.

Algorithm. We are now ready to describe our algorithm RVF-SMC in detail, Algorithm 4.2
captures the pseudocode of RVF-SMC(X, GoodW, σ, C). First, in Line 1 we extend σ to σ̃
maximally such that no event of the extension is a read. Then in Lines 2–5 we update the
backtrack signals for ancestors of our current recursion call. After this, in Lines 6–11 we
construct a sequence of reads enabled in σ̃. Finally, we proceed with the main while-loop
in Line 13. In each while-loop iteration we process an enabled read r (Line 14), and we
perform no more while-loop iterations in case we receive a false backtrack signal for r. When
processing r, first we collect its viable reads-from sources in Line 17, then we group the sources
by value they write in Line 18, and then in iterations of the for-loop in Line 19 we consider
each value-group. In Line 20 we form the event set, and in Line 21 we form the good-write
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function that designates the value-group as the good-writes of r. In Line 22 we use VerifySC
to generate a witness, and in case it exists, we recursively call RVF-SMC in Line 26 with the
newly obtained events, good-write constraint for r, and witness.
To preserve completeness of RVF-SMC, the backtrack-signals technique can be utilized only
for reads r with undefined causal map r ̸∈ dom(C) (cf. Lemma 4.1). The order of the enabled
reads imposed by Lines 6–11 ensures that subsequently, in iterations of the loop in Line 13 we
first consider all the reads where we can utilize the backtrack signals. This is an insightful
heuristic that often helps in practice, though it does not improve the worst-case complexity.

Thread thr1

1. w1(x, 1)
2. r1(x)
3. w2(y, 1)

Thread thr2

1. w3(x, 1)
2. w4(y, 1)
3. r2(y)
4. w5(x, 2)

A
thr1 thr2
w1

r1
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Figure 4.6: Example of RVF-SMC (Algorithm 4.2).

Example. Fig. 4.6 displays a simple concurrent program on the left, and its corresponding
RVF-SMC (Algorithm 4.2) run on the right. Circles represent nodes of the recursion tree.
Below each circle is its corresponding event set E(σ̃) and the enabled reads (dashed grey).
Writes with green background are good-writes (GoodW) of its corresponding-variable read.
Writes with red background are forbidden by C for its corresponding-variable read. Dashed
arrows represent recursive calls.
We start with RVF-SMC(∅, ∅, ϵ, ∅) (A). By performing the extension (Line 1) we obtain the
events and enabled reads as shown below (A). First we process read r1 (Line 14). The read can
read-from w1 and w3, both write the same value so they are grouped together as good-writes
of r1. A witness is found and a recursive call to (B) is performed. In (B), the only enabled
event is r2. It can read-from w2 and w4, both write the same value so they are grouped for r2.
A witness is found, a recursive call to (C) is performed, and (C) concludes with a maximal
trace. Crucially, in (C) the event w5 is discovered, and since it is a potential new reads-from
source for r1, a backtrack signal is sent to (A). Hence after RVF-SMC backtracks to (A), in
(A) it needs to perform another iteration of Line 13 while-loop. In (A), first the causal map C
is updated to forbid w1 and w3 for r1. Then, read r2 is processed from (A), creating (D). In
(D), r1 is the only enabled event, and w5 is its only C-allowed write. This results in (E) which
reports a maximal trace. The algorithm backtracks and concludes, reporting two maximal
traces in total.
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Theorem 4.2. Consider a concurrent program P of k threads and d variables, with n the
length of the longest trace in P. RVF-SMC is a sound and complete algorithm for local
safety properties in P. The time complexity of RVF-SMC is kd · nO(k) · β, where β is the
size of the RVF trace partitioning of P.

Proof. We argue separately about soundness, completeness, and complexity.

Soundness. The soundness of RVF-SMC follows from the soundness of VerifySC used as a
subroutine to generate traces that RVF-SMC considers.

Completeness. Let nd = RVF-SMC(X, GoodW, σ, C) be an arbitrary recursion node of
RVF-SMC. Let σ′ be an arbitrary valid full program trace satisfying GoodW and C. The goal
is to prove that the exploration rooted at a explores a good-writes function GoodW′ : R(σ′)→
2W(σ′) such that for each r ∈ R(σ′) we have RFσ′(r) ∈ GoodW′(r).

We prove the statement by induction in the length of maximal possible extension, i.e., the
largest possible number of reads not defined in GoodW that a valid full program trace satisfying
GoodW and C can have. As a reminder, given nd = RVF-SMC(X, GoodW, σ, C) we first
consider a trace σ̃ = σ ◦ σ̂ where σ̂ is a maximal extension such that no event of σ̂ is a read.

Base case: 1. There is exactly one enabled read r ∈ enabled(σ̃). All other threads have no
enabled event, i.e., they are fully extended in σ̃. Because of this, our algorithm considers every
possible source r can read-from in traces satisfying GoodW and C. Completeness of VerifySC
then implies completeness of this base case.

Inductive case. Let MAXEXT be the length of maximal possible extension of a recursion node
nd = RVF-SMC(X, GoodW, σ, C). By induction hypothesis, RVF-SMC is complete when
rooted at any node with maximal possible extension length < MAXEXT. The rest of the proof
is to prove completeness when rooted at nd, and the desired result then follows.

Inductive case: RVF-SMC without backtrack signals. We first consider a simpler version
of RVF-SMC, where the boolean signal backtrack is always set to true (i.e., Algorithm 4.2
without Line 16). After we prove the inductive case of this version, we use it to prove the
inductive case of the full version of RVF-SMC.

Let r1, ..., rk be the enabled events in σ̃, nd proceeds with recursive calls in that order (i.e.,
first with r1, then with r2, ..., last with rk). Let σ′ be an arbitrary valid full program trace
satisfying GoodW and C. Trivially, σ′ contains all of r1, ..., rk. Consider their reads-from
sources RFσ′(r1), ..., RFσ′(rk). Now consider two cases:

1. There exists 1 ≤ i ≤ k such that RFσ′(ri) ∈ E(σ̃) ∪ {init_event}.
2. There exists no such i.

Let us prove that (2) is impossible. By contradiction, consider it possible, let rj be the first
read out of r1, ..., rk in the order as appearing in σ′. Consider the thread of RFσ′(rj). It has
to be one of thrr1, ..., thrrk, as other threads have no enabled event in σ̃, thus they are fully
extended in σ̃. It cannot be thrrj, because all thread-predecessors of rj are in E(σ̃). Thus
let it be a thread 1 ≤ m ≤ k, m ̸= j. Since RFσ′(rj) ̸∈ E(σ̃), RFσ′(rj) comes after rm in σ′.
This gives us rm <σ′ RFσ′(rj) <σ′ rj, which is a contradiction with rj being the first out of
r1, ..., rk in σ′. Hence we know that above case (1) is the only possibility.

Let 1 ≤ j ≤ k be the smallest with RFσ′(rj) ∈ E(σ̃)∪{init_event}. Since σ′ satisfies GoodW
and C, we have RFσ′(rj) ̸∈ C(rj). Consider nd performing a recursive call with rj. Since
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RFσ′(rj) ∈ E(σ̃) ∪ {init_event} and RFσ′(rj) ̸∈ C(rj), nd considers for rj (among others) a
good-writes set GoodWj that contains RFσ′(rj), and by completeness of VSC, we correctly
classify GoodW∪{(rj, GoodWj)} as realizable. This creates a recursive call with the following
nd = RVF-SMC(X, GoodW, σ, C):

1. X = E(σ̃) ∪ {rj}.
2. GoodW = GoodW ∪ {(rj, GoodWj)}.
3. σ is a witness trace, i.e., valid program trace satisfying GoodW.
4. C) = C ∪ {(ri, Ci) | 1 ≤ i < j} where Ci are the writes of var(ri) in E(σ̃)∪{init_event}.

Clearly σ′ satisfies GoodW. Note that σ′ also satisfies C), as it satisfies C, and for each
1 ≤ i < j, we have RFσ′(ri) ̸∈ Ci, as RFσ′(ri) ̸∈ E(σ̃) ∪ {init_event}. Hence we can apply
our inductive hypothesis for nd, and we’re done.

Inductive case: RVF-SMC. Let r1, ..., rm be the enabled events (reads) in σ̃ not defined in
C, and let rm+1, ..., rk be the enabled events defined in C. The node nd proceeds with the
recursive calls as follows:

1. nd processes calls with r1, stops if backtrack = false (Line 13), else:
2. nd processes calls with r2, stops if backtrack = false, else .....
3. nd processes calls with rm, stops if backtrack = false, else
4. nd processes calls with rm, then rm+1, ..., finally rk.

Let σ′ be an arbitrary valid full program trace satisfying GoodW and C. Trivially, σ′ contains
all of r1, ..., rk. Consider their reads-from sources RFσ′(r1), ..., RFσ′(rk). Let 1 ≤ j ≤ k
be the smallest with RFσ′(rj) ∈ E(σ̃) ∪ {init_event}. From the above paragraph, we have
that such j exists. From the above paragraph we also have that nd processing calls with
rj explores a good-writes function GoodW′ : R(σ′) → 2W(σ′) such that for each r ∈ R(σ′)
we have RFσ′(r) ∈ GoodW′(r). What remains to prove is that nd will reach the point of
processing calls with rj. That amounts to proving that for each 1 ≤ x ≤ min(m, j − 1),
nd receives backtrack = true when processing calls with rx. For each such x, RFσ′(rx) ̸∈
E(σ̃) ∪ {init_event}. We construct a trace that matches the antecedent of Lemma 4.1.
First denote σ′ = σ1 ◦ RFσ′(rx) ◦ σ2. Let σ3 be the subsequence of σ2, containing only events
of E(σ̃) ∩ E(σ2). Now consider σ4 = σ1 ◦ σ3 ◦ RFσ′(rx) ◦ rx. Note that σ4 is a valid trace
because:

1. Each event of E(σ2) \ E(σ̃) appears in its thread only after all events of that thread in
E(σ̃).

2. Each read of σ3 has GoodW defined, and σ3 does not contain RFσ′(rx) nor any events
of E(σ2) \ E(σ̃).

3. RFσ′(rx) is enabled in σ1 ◦ σ3, since it is already enabled in σ1.
4. r1 is not in σ1 as those events appear before RFσ′(rx) in σ′, also r1 is not in σ3 because

r1 ̸∈ E(σ̃). r1 is enabled in σ1 ◦ σ3 ◦ RFσ′(rx) as it contains all events of E(σ̃).
Hence σ4 is a valid trace containing all events E(σ̃). Further σ4 satisfies GoodW and C,
because σ′ satisfies GoodW and C and σ4 contains the same subsequence of the events E(σ̃).
Finally, RFσ4(rx) = RFσ′(rx) ̸∈ W(σ̃). The inductive case, and hence the completeness result,
follows.

Complexity. Each recursive call of RVF-SMC (Algorithm 4.2) trivially spends nO(k) time in
total except the VerifySC subroutine of Line 22. For the VerifySC subroutine we utilize the
complexity bound O(nk+1 · kd+1) from Theorem 4.1, thus the total time spent in each call of
RVF-SMC is nO(k) ·O(kd).
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Next we argue that no two leaves of the recursion tree of RVF-SMC correspond to the same
class of the RVF trace partitioning. For the sake of reaching contradiction, consider two such
distinct leaves l1 and l2. Let a be their last (starting from the root recursion node) common
ancestor. Let c1 and c2 be the child of a on the way to l1 and l2 respectively. We have
c1 ̸= c2 since a is the last common ancestor of l1 and l2. The recursion proceeds from a to c1
(resp. c2) by issuing a good-writes set to some read r1 (resp. r2). If r1 = r2, then the two
good-writes set issued to r1 = r2 in a differ in the value that the writes of the two sets write
(see Line 18 of Algorithm 4.2). Hence l1 and l2 cannot represent the same RVF partitioning
class, as representative traces of the two classes shall differ in the value that r1 = r2 reads.
Hence the only remaining possibility is r1 ̸= r2. In iterations of Line 13 in a, wlog assume
that r1 is processed before r2. For any pair of traces σ1 and σ2 that are class representatives
of l1 and l2 respectively, we have that RFσ1(r1) ̸= RFσ2(r1). This follows from the update of
the causal map C in Line 29 of the Line 13-iteration of a processing r1. Further, we have that
RFσ2(r1) is a thread-successor of a read r ̸= r1 that was among the enabled reads of mutate
in a. From this we have r 7→σ2r1 and r ̸7→σ1r1. Thus the traces σ1 and σ2 differ in the causal
orderings of the read events, contradicting that l1 and l2 correspond to the same class of the
RVF trace partitioning.

Finally we argue that for each class of the RVF trace partitioning, represented by the
(X, GoodW) of its RVF-SMC recursion leaf, at most nk calls of RVF-SMC can be per-
formed where its X ′ and GoodW′ are subsets of X and GoodW, respectively. This follows
from two observations. First, in each call of RVF-SMC, the event set is extended maximally
by enabled writes, and further by one read, while the good-writes function is extended by
defining one further read. Second, the amount of lower sets of the partial order (R(X), PO)
is bounded by nk.

The desired complexity result follows.

Novelties of the exploration. Here we highlight some key aspects of RVF-SMC. First, we
note that RVF-SMC constructs the traces incrementally with each recursion step, as opposed
to other approaches such as [AAJS14, AAJ+19] that always work with maximal traces. The
reason of incremental traces is technical and has to do with the value-based treatment of
the RVF partitioning. We note that the other two value-based approaches [Hua15, CPT19]
also operate with incremental traces. However, RVF-SMC brings certain novelties compared
to these two methods. First, the exploration algorithm of [Hua15] can visit the same class
of the partitioning (and even the same trace) an exponential number of times by different
recursion branches, leading to significant performance degradation. The exploration algorithm
of [CPT19] alleviates this issue using the causal map data structure, similar to our algorithm.
The causal map data structure can provably limit the number of revisits to polynomial (for a
fixed number of threads), and although it offers an improvement over the exponential revisits,
it can still affect performance. To further improve performance in this work, our algorithm
combines causal maps with a new technique, which is the backtrack signals. Causal maps
and backtrack signals together are very effective in avoiding having different branches of the
recursion visit the same RVF class.

Beyond RVF partitioning. While RVF-SMC explores the RVF partitioning in the worst
case, in practice it often operates on a partitioning coarser than the one induced by the
RVF equivalence. Specifically, RVF-SMC may treat two traces σ1 and σ2 with same events
(E(σ1) = E(σ2)) and value function (valσ1 = valσ2) as equivalent even when they differ in
some causal orderings ( 7→σ1 |R ̸= 7→σ2 |R). To see an example of this, consider the program
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and the RVF-SMC run in Fig. 4.6. The recursion node (C) spans all traces where (i) r1
reads-from either w1 or w3, and (ii) r2 reads-from either w2 or w4. Consider two such traces
σ1 and σ2, with RFσ1(r2) = w2 and RFσ2(r2) = w4. We have r1 7→σ1r2 and r1 ̸7→σ2r2, and yet
σ1 and σ2 are (soundly) considered equivalent by RVF-SMC. Hence the RVF partitioning is
used to upper-bound the time complexity of RVF-SMC. We remark that the algorithm is
always sound, i.e., it is guaranteed to discover all thread states even when it does not explore
the RVF partitioning in full.

4.4 Extensions of the Concurrent Model
For presentation clarity, in our exposition we considered a simple concurrent model with only
read and write events. Here we describe how our approach handles the following extensions of
the concurrent model:

1. Read-modify-write and compare-and-swap events.

2. Mutex events lock-acquire and lock-release.

Read-modify-write and compare-and-swap events. We model a read-modify-write atomic
operation on a variable x as a pair of two events rmwr and rmww, where rmwr is a read event
of x, rmww is a write event of x, and for each trace σ either the events are both not present in
σ, or they are both present and appearing together in σ (rmwr immediately followed by rmww

in σ). We model a compare-and-swap atomic operation similarly, obtaining a pair of events
casr and casw. In addition we consider a local event happening immediately after the read
event casr, evaluating the “compare” condition of the compare-and-swap instruction. Thus,
in traces σ that contain casr and the “compare” condition evaluates to true, we have that
casr is immediately followed by casw in σ. In traces σ′ that contain casr and the “compare”
condition evaluates to false, we have that casw is not present in σ′.

We now discuss our extension of VerifySC to handle the VSC(X, GoodW) problem (Sec-
tion 4.2) in presence of read-modify-write and compare-and-swap events. First, observe that
as the event set X and the good-writes function GoodW are fixed, we possess the information
on whether each compare-and-swap instruction satisfies its “compare” condition or not. Then,
in case we have in our event set a read-modify-write event pair e1 = rmwr and e2 = rmww

(resp. a compare-and-swap event pair e1 = casr and e2 = casw), we proceed as follows. When
the first of the two events e1 becomes executable in Line 5 of Algorithm 4.1 for τ , we proceed
only in case e2 is also executable in τ ◦ e1, and in such a case in Line 6 we consider straight
away a sequence τ ◦ e1 ◦ e2. This ensures that in all sequences we consider, the event pair of
the read-modify-write (resp. compare-and-swap) appears as one event immediately followed
by the other event.

In the presence of read-modify-write and compare-and-swap events, the SMC approach
RVF-SMC can be utilized as presented in Section 4.3, after an additional corner case is
handled for backtrack signals. Specifically, when processing the extension events in Line 2 of
Algorithm 4.2, we additionally process in the same fashion reads casr enabled in σ̃ that are
part of a compare-and-swap instruction. These reads casr are then treated as potential novel
reads-from sources for ancestor mutations cas∗

r ∈ dom(ancestors) (Line 4) where cas∗
r is also

a read-part of a compare-and-swap instruction.
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Mutex events. Mutex events acquire and release are naturally handled by our approach as
follows. We consider each lock-release event release as a write event and each lock-acquire
event acquire as a read event, the corresponding unique mutex they access is considered a
global variable of G.

In SMC, we enumerate good-writes functions whose domain also includes the lock-acquire
events. Further, a good-writes set of each lock-acquire admits only a single conflicting
lock-release event, thus obtaining constraints of the form GoodW(acquire) = {release}.
During closure (Section 4.2.2), given GoodW(acquire) = {release}, we consider the following
condition: thr(acquire) ̸= thr(release) implies release <P acquire. Thus P totally orders
the critical sections of each mutex, and therefore VerifySC does not need to take additional
care for mutexes. Indeed, respecting P trivially solves all GoodW constraints of lock-acquire
events, and further preserves the property that no thread tries to acquire an already acquired
(and so-far unreleased) mutex. No modifications to the RVF-SMC algorithm are needed to
incorporate mutex events.

4.5 Experiments
In this section we describe the experimental evaluation of our SMC approach RVF-SMC.
We have implemented RVF-SMC as an extension in Nidhugg [AAA+15], a state-of-the-
art stateless model checker for multithreaded C/C++ programs that operates on LLVM
Intermediate Representation. First we assess the advantages of utilizing the RVF equivalence
in SMC as compared to other trace equivalences. Then we perform ablation studies to
demonstrate the impact of the backtrack signals technique (cf. Section 4.3) and the VerifySC
heuristics (cf. Section 4.2.2).

In our experiments we compare RVF-SMC with several state-of-the-art SMC tools utilizing dif-
ferent trace equivalences. First we consider VC-DPOR [CPT19], the SMC approach operating
on the value-centric equivalence. Then we consider Nidhugg/rfsc [AAJ+19], the SMC algorithm
utilizing the reads-from equivalence. Further we consider DC-DPOR [CCP+17] that operates
on the data-centric equivalence, and finally we compare with Nidhugg/source [AAJS14] utiliz-
ing the Mazurkiewicz equivalence.1 The works of [AAJ+19] and [LS20] in turn compare the
Nidhugg/rfsc algorithm with additional SMC tools, namely GenMC [KRV19b] (with reads-from
equivalence), RCMC [KLSV17] (with Mazurkiewicz equivalence), and CDSChecker [ND16]
(with Mazurkiewicz equivalence), and thus we omit those tools from our evaluation.

There are two main objectives to our evaluation. First, from Section 4.1 we know that the
RVF equivalence can be up to exponentially coarser than the other equivalences, and we want
to discover how often this happens in practice. Second, in cases where RVF does provide
reduction in the trace-partitioning size, we aim to see whether this reduction is accompanied
by the reduction in the runtime of RVF-SMC operating on RVF equivalence.

Setup. We consider 119 benchmarks in total in our evaluation. Each benchmark comes with a
scaling parameter, called the unroll bound. The parameter controls the bound on the number
of iterations in all loops of the benchmark. For each benchmark and unroll bound, we capture
the number of explored maximal traces, and the total running time, subject to a timeout of
one hour.

1The MCR algorithm [Hua15] is beyond the experimental scope of this work, as that tool handles Java
programs and uses heavyweight SMT solvers that require fine-tuning.
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Handling assertion violations. Some of the benchmarks in our experiments contain assertion
violations, which are successfully detected by all algorithms we consider in our experimental
evaluation. After performing this sanity check, we have disabled all assertions, in order to
not have the measured parameters be affected by how fast a violation is discovered, as the
latter is arbitrary. Our primary experimental goal is to characterize the size of the underlying
partitionings, and the time it takes to explore these partitionings.

Identifying events. As mentioned in Section 2.2, an event is uniquely identified by its
predecessors in PO, and by the values its PO-predecessors have read. In our implementation,
we rely on the interpreter built inside Nidhugg to identify events. An event e is defined by a
pair (ae, be), where ae is the thread identifier of e and be is the sequential number of the last
LLVM instruction (of the corresponding thread) that is part of e (the e corresponds to zero or
several LLVM instructions not accessing shared variables, and exactly one LLVM instruction
accessing a shared variable). It can happen that there exist two traces σ1 and σ2, and two
different events e1 ∈ σ1, e2 ∈ σ2, such that their identifiers are equal, i.e., ae1 = ae2 and
be2 = be2 . However, this means that the control-flow leading to each event is different. In this
case, σ1 and σ2 differ in the value read by a common event that is ordered by the program
order PO both before e1 and before e2, hence e1 and e2 are treated as inequivalent.

Technical details. For our experiments we have used a Linux machine with Intel(R) Xeon(R)
CPU E5-1650 v3 @ 3.50GHz (12 CPUs) and 128GB of RAM. We have run Nidhugg with
Clang and LLVM version 8.

Scatter plots setup. Each scatter plot compares our algorithm RVF-SMC with some other
algorithm X. In a fixed plot, each benchmark provides a single data point, obtained as follows.
For the benchmark, we consider the highest unroll bound where neither of the algorithms
RVF-SMC and X timed out.2 Then we plot the times resp. traces obtained on that benchmark
and unroll bound by the two algorithms RVF-SMC and X.

Experimental tables setup. Here we provide several details regarding our experimental tables.
The unroll bound is shown in the column U. Symbol “-” indicates one-hour timeout. Bold-font
entries indicate the smallest numbers for respective benchmark and unroll. Symbol † indicates
that a particular benchmark operation is not handled by the tool.

Results. We provide a number of scatter plots summarizing the comparison of RVF-SMC
with other state-of-the-art tools. In Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10 we provide
comparison both in runtimes and explored traces, for VC-DPOR, Nidhugg/rfsc, DC-DPOR,
and Nidhugg/source, respectively. In each scatter plot, both its axes are log-scaled, the opaque
red line represents equality, and the two semi-transparent lines represent an order-of-magnitude
difference. The points are colored green when RVF-SMC achieves trace reduction in the
underlying benchmark, and blue otherwise.

Discussion: Significant trace reduction. In Table 4.1 we provide the results for several
benchmarks where RVF achieves significant reduction in the trace-partitioning size. This is
typically accompanied by significant runtime reduction, allowing is to scale the benchmarks to
unroll bounds that other tools cannot handle. Examples of this are 27_Boop4 and scull_loop,
two toy Linux kernel drivers.

2In case one of the algorithms timed out on all attempted unroll bounds, we do not consider this benchmark
when reporting on explored traces, and when reporting on execution times we consider the results on the
lowest unroll bound, reporting the time-out accordingly.
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Figure 4.7: Runtime and traces comparison of RVF-SMC with VC-DPOR.
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Figure 4.8: Runtime and traces comparison of RVF-SMC with Nidhugg/rfsc.
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Figure 4.9: Runtime and traces comparison of RVF-SMC with DC-DPOR.

In several benchmarks the number of explored traces remains the same for RVF-SMC even
when scaling up the unroll bound, see 45_monabsex1, reorder_5 and singleton in Table 4.1.
The singleton example is further interesting, in that while VC-DPOR and DC-DPOR also
explore few traces, they still suffer in runtime due to additional redundant exploration, as
described in the introduction of Chapter 4, and in Section 4.3.

Discussion: Little-to-no trace reduction. Table 4.2 presents several benchmarks where
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Figure 4.10: Runtime and traces comparison of RVF-SMC with Nidhugg/source.

Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

27_Boop4
threads: 4

Traces 10 1337215 1574287 11610040 - -
12 2893039 - - - -

Times 10 837s 1946s 2616s - -
12 2017s - - - -

45_monabsex1
threads: U

Traces 7 1 423360 262144 7073803 25401600
8 1 - 4782969 - -

Times 7 0.09s 784s 33s 3239s 2819s
8 0.09s - 677s - -

reorder_5
threads: U+1

Traces 9 4 1644716 1540 1792290 -
30 4 - 54901 - -

Times 9 0.10s 1711s 0.44s 974s -
30 0.09s - 49s - -

scull_loop
threads: 3

Traces 2 3908 15394 749811 884443 3157281
3 115032 - - - -

Times 2 6.55s 83s 403s 1659s 1116s
3 266s - - - -

singleton
threads: U+1

Traces 20 2 2 20 20 -
30 2 - 30 - -

Times 20 0.07s 179s 0.08s 171s -
30 0.08s - 0.10s - -

Table 4.1: Benchmarks with trace reduction achieved by RVF-SMC.

the RVF partitioning achieves little-to-no reduction. In these cases the well-engineered
Nidhugg/rfsc and Nidhugg/source dominate the runtime.

RVF-SMC ablation studies. Here we demonstrate the effect that follows from our
RVF-SMC algorithm utilizing the approach of backtrack signals (see Section 4.3) and the
heuristics of VerifySC (see Section 4.2.2). These techniques have no effect on the number
of the explored traces, thus we focus on the runtime. The left plot of Fig. 4.11 compares
RVF-SMC as is with a RVF-SMC version that does not utilize the backtrack signals (achieved
by simply keeping the backtrack flag in Algorithm 4.2 always true). The right plot of Fig. 4.11
compares RVF-SMC as is with a RVF-SMC version that employs VerifySC without the
closure and auxiliary-trace heuristics. We can see that the techniques almost always result in
improved runtime. The improvement is mostly within an order of magnitude, and in a few
cases there is several-orders-of-magnitude improvement.

Finally, in Fig. 4.12 we illustrate how much time during RVF-SMC is typically spent on
VerifySC (i.e., on solving VSC instances generated during RVF-SMC).
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Benchmark U RVF-SMC VC-DPOR Nidh/rfsc DC-DPOR Nidh/source

13_unverif
threads: U

Traces 5 14400 14400 14400 14400 14400
6 518400 - 518400 - 518400

Times 5 7.45s 63s 3.33s 68s 2.72s
6 376s - 134s - 84s

approxds_append
threads: U

Traces 6 50897 1256381 198936 1114746 9847080
7 923526 - 4645207 - -

Times 6 60s 995s 67s 944s 2733s
7 2078s - 2003s - -

chase-lev-dq
threads: 3

Traces 4 87807 † 175331 † 175331
5 227654 † 448905 † 448905

Times 4 289s † 71s † 71s
5 995s † 210s † 200s

linuxrwlocks
threads: U+1

Traces 1 56 † 59 † 59
2 62018 † 70026 † 70026

Times 1 0.12s † 0.09s † 0.13s
2 42s † 15s † 9.50s

pgsql
threads: 2

Traces 3 3906 3906 3906 3906 3906
4 335923 335923 335923 335923 335923

Times 3 3.30s 5.98s 1.01s 4.00s 0.51s
4 412s 911s 107s 616s 51s

Table 4.2: Benchmarks with little-to-no trace reduction by RVF-SMC.
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Figure 4.11: RVF-SMC ablation studies (backtrack signals and Section 4.2.2 heuristics).
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Figure 4.12: Percentage of time spent solving VSC instances during RVF-SMC.
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CHAPTER 5
The Reads-From Equivalence for the

TSO and PSO Memory Models

In this chapter we solve the algorithmic problem of consistency verification for the total store
order (TSO) and partial store order (PSO) memory models given a reads-from (RF) map,
denoted VTSO-rf and VPSO-rf, respectively. For an execution of n events over k threads and
d variables, we establish novel bounds that scale as nk+1 for TSO and as nk+1 ·min(nk2

, 2k·d)
for PSO. Consistency verification under a reads-from map allows to compute the reads-
from (RF) equivalence between concurrent traces, with direct applications to areas such as
stateless model checking (SMC). Hence, based on our solutions to VTSO-rf and VPSO-rf, we
develop an SMC algorithm under TSO and PSO that uses the RF equivalence. The algorithm
is exploration-optimal, in the sense that it is guaranteed to explore each class of the RF
partitioning exactly once, and spends polynomial time per class when k is bounded. Finally,
we implement all our algorithms in the SMC tool Nidhugg, and perform a large number of
experiments over benchmarks from existing literature. Our experimental results show that
our algorithms for VTSO-rf and VPSO-rf provide significant scalability improvements over
standard alternatives. Moreover, when used for SMC, the RF partitioning is often much coarser
than the standard Shasha–Snir partitioning for TSO/PSO, which yields a significant speedup
in the model checking task.

Recall that the TSO and PSO memory models introduce buffering mechanisms that can defer
when write operations become visible to the shared memory. To illustrate the intricacies under
the TSO and PSO memory models, consider the examples in Fig. 5.1. On the left, under
sequential consistency (SC), in every execution at least one of r(y) and r′(x) will observe the
corresponding w′(y) and w(x). Under TSO, however, the write events may become visible on
the shared memory only after the read events have executed, and hence both write events go
unobserved. Executions under PSO are even more involved, see the example on the right of

Thread1

1. w(x)
2. r(y)

Thread2

1. w′(y)
2. r′(x)

Thread1

1. w(x)
2. w′(y)

Thread2

1. r(y)
2. r′(x)

Figure 5.1: A TSO example (left) and a PSO example (right).
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Fig. 5.1. Under either SC or TSO, if r(y) observes w′(y), then r′(x) must observe w(x), as
w(x) becomes visible on the shared memory before w′(y). Under PSO, however, there is a
single local buffer for each variable. Hence the order in which w(x) and w′(y) become visible
in the shared memory can be reversed, allowing r(y) to observe w′(y) while r′(x) does not
observe w(x).

The great challenge in verification under relaxed memory is to systematically, yet efficiently,
explore all such extra behaviors of the system as illustrated in Fig. 5.1, i.e., account for the
additional non-determinism that comes from the buffers. In this chapter we tackle this challenge
for two verification tasks under TSO and PSO, namely, (A) for verifying the consistency of
executions, and (B) for stateless model checking.

5.1 Summary of Results
Here we present formally the main results of this chapter. In later sections we present the
details, algorithms, examples and proofs.

A. Verifying execution consistency for TSO and PSO. Our first set of results and the
main contribution of this chapter is on the problems VTSO-rf and VPSO-rf for verifying TSO-
and PSO-consistent executions, respectively. The corresponding problem VSC-rf for SC was
recently shown to be in polynomial time for a constant number of threads [AAJ+19, BE19].

Consider an input to the corresponding problem that consists of k threads and n operations,
where each thread executes write and read operations, as well as fence operations that flush
each thread-local buffer to the main memory. The solution for SC is obtained by essentially
enumerating all the nk possible lower sets of the program order upon the input set of events,
where k is the number of threads, and hence yields a polynomial when k = O(1). For TSO,
the number of possible lower sets is n2·k, since there are k threads and k buffers (one for
each thread). For PSO, the number of possible lower sets is nk·(d+1), where d is the number
of variables, since there are k threads and k · d buffers (d buffers for each thread). Hence,
following an approach similar to [AAJ+19, BE19] would yield a running time of a polynomial
with degree 2 · k for TSO, and with degree k · (d + 1) for PSO (thus the solution for PSO is
not polynomial-time even when the number of threads is bounded). In this chapter we show
that both problems can be solved significantly faster.

Our results are as follows.

1. We present an algorithm that solves VTSO-rf in O(k · nk+1) time. Hence, although for
TSO there are k additional buffers, our result shows that the complexity is only minorly
impacted by an additional factor n, as opposed to nk.

2. We present an algorithm that solves VPSO-rf in O(k · nk+1 ·min(nk·(k−1), 2k·d)) time,
where d is the number of variables. Note that even though there are k · d buffers, one of
our two bounds is independent of d and thus yields polynomial time when the number
of threads is bounded. Moreover, our bound collapses to O(k · nk+1) when there are no
fences, and hence this case is no more difficult that VTSO-rf.

Theorem 5.1. VTSO-rf for n events and k threads is solvable in O(k · nk+1) time.
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Theorem 5.2. VPSO-rf for n events, k threads and d variables is solvable in O(k · nk+1 ·
min(nk·(k−1), 2k·d)). Moreover, if there are no fences, the problem is solvable in O(k · nk+1)
time.

Novelty. For TSO, Theorem 5.1 yields an improvement of order nk−1 compared to the naive
n2·k bound. For PSO, perhaps surprisingly, the first upper-bound of Theorem 5.2 does not
depend on the number of variables. Moreover, when there are no fences, the cost for PSO is
the same as for TSO (with or without fences).

B. Stateless Model Checking for TSO and PSO. Our second result concerns stateless
model checking (SMC) under TSO and PSO using the RF equivalence. We introduce an SMC
algorithm RF-SMC that explores the RF partitioning in the TSO and PSO settings. The
algorithm is based on the RF algorithm for SC [AAJ+19] and uses our solutions to VTSO-rf
and VPSO-rf for visiting each class of the respective partitioning. Moreover, RF-SMC
is exploration-optimal, in the sense that it explores only maximal traces and further it is
guaranteed to explore each class of the RF partitioning exactly once. The properties of
RF-SMC are summarized in the following theorem.

Theorem 5.3. Consider a concurrent program P with k threads and d variables, under a
memory modelM∈ {TSO, PSO} with trace space T max

M and n being the number of events of
the longest trace in T max

M . RF-SMC is a sound, complete and exploration-optimal algorithm
for local state reachability in P, i.e., it explores only maximal traces and visits each class of
the RF partitioning exactly once. The time complexity is O (α · |T max

M / ∼RF|), where

1. α = nO(k) under M =TSO, and

2. α = nO(k2) under M =PSO.

Note that the time complexity per class is polynomial in n when k is bounded. An algorithm
with RF exploration-optimality in SC is presented by [AAJ+19]. Our RF-SMC algorithm
generalizes the above approach to achieve RF exploration-optimality in the relaxed memory
models TSO and PSO. Further, the time complexity of RF-SMC per class of RF partitioning
is equal between PSO and TSO for programs with no fence instructions.

RF-SMC uses the verification algorithms developed in Theorem 5.1 and Theorem 5.2 as black-
boxes to decide whether any specific class of the RF partitioning is TSO- or PSO-consistent,
respectively. We remark that these theorems can potentially be used as black-boxes to other
SMC algorithms that explore the RF partitioning (e.g., [CCP+17, KRV19b, KV20]).

C. Implementation and experiments. We have implemented RF-SMC in the stateless
model checker Nidhugg [AAA+15], and performed an evaluation on an extensive set of
benchmarks from the recent literature. Our results show that our algorithms for VTSO-rf
and VPSO-rf provide significant scalability improvements over standard alternatives, often
by orders of magnitude. Moreover, when used for SMC, the RF partitioning is often much
coarser than the standard Shasha–Snir partitioning for TSO/PSO, which yields a significant
speedup in the model checking task.
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5.2 Verifying TSO and PSO Executions with a
Reads-From Function

In this section we tackle the verification problems VTSO-rf and VPSO-rf. In each case, the
input is a pair (X, RF), where X is a proper set of events of P, and RF : R(X)→W(X)
is a reads-from function. The task is to decide whether there exists a trace σ that is a
linearization of (X, PO) with RFσ = RF, where RFσ is wrt TSO/PSO memory semantics. In
case such σ exists, we say that (X, RF) is realizable and σ is its witness trace. We first define
some relevant notation, and then establish upper bounds for VTSO-rf and VPSO-rf, i.e.,
Theorem 5.1 and Theorem 5.2.

Held variables. Given a trace σ and a memory-write wM ∈ WM (σ) present in the trace, we
say that wM holds variable x = var(wM) in σ if the following hold.

1. wM is the last memory-write event of σ on variable x.
2. There exists a read event r ∈ X \ E(σ) such that RF(r) = (_, wM).

We similarly say that the thread thr(wM) holds x in σ. Finally, a variable x is held in σ if it
is held by some thread in σ. Intuitively, wM holds x until all reads that need to read-from
wM get executed.

Witness prefixes. Throughout this section, we use the notion of witness prefixes. Formally, a
witness prefix is a trace σ that can be extended to a trace σ∗ that realizes (X, RF), under the
respective memory model. Our algorithms for VTSO-rf and VPSO-rf operate by constructing
traces σ such that if (X, RF) is realizable, then σ is a witness prefix that can be extended
with the remaining events and finally realize (X, RF).

Throughout, we assume wlog that whenever RF(r) = (wB, wM) with thr(r) = thr(wB),
then wB is the last buffer-write on var(wB) before r in their respective thread. Clearly, if
this condition does not hold, then the corresponding pair (X, RF) is not realizable in TSO nor
PSO.

5.2.1 Verifying TSO Executions
In this section we establish Theorem 5.1, i.e., we present an algorithm VerifyTSO that solves
VTSO-rf in O(k · nk+1) time. The algorithm relies crucially on the notion of TSO-executable
events, defined below. Throughout this section we consider fixed an instance (X, RF) of
VTSO-rf, and all traces σ considered in this section are such that E(σ) ⊆ X.

TSO-executable events. Consider a trace σ. An event e ∈ X \ E(σ) is TSO-executable (or
executable for short) in σ if E(σ) ∪ {e} is a lower set of (X, PO) and the following conditions
hold.

1. If e is a read event r, let RF(r) = (wB, wM). If thr(r) ̸= thr(wM), then wM ∈ σ.

2. If e is a memory-write event wM then the following hold.

a) Variable var(wM) is not held in σ.
b) Let r ∈ R(X) be an arbitrary read with RF(r) = (wB, wM) and thr(r) ̸=

thr(wM). For each two-phase write (wB′, wM ′) with var(r) = var(wB′) and
wB′ <PO r, we have wM ′ ∈ σ.
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(a) The reads r1 and r4 are TSO-
executable. The read r2 is not TSO-
executable, because E(σ) ∪ {r2} is not
a lower set; neither is the read r3, be-
cause RF(r3) = (_, wM2) has not been
executed yet.
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(b) The memory-write wM4 is TSO-executable. The
other memory-writes are not; E(σ) ∪ {wM3} is not a
lower set, for wM5 resp. wM6, the blue dotted arrows
show the events that they have to wait for, because
of Item 2a resp. Item 2b (some buffer-writes are not
displayed here for brevity).

Figure 5.2: Example on TSO-executability.

Intuitively, the conditions of executable events ensure that executing an event does not
immediately create an invalid witness prefix. The lower-set condition ensures that the program
order PO is respected. This is a sufficient condition for a buffer-write or a fence (in particular,
for a fence this implies that the respective buffer is currently empty). The extra condition for a
read ensures that its reads-from constraint is satisfied. The extra conditions for a memory-write
prevent it from causing some reads-from constraint to become unsatisfiable.

Fig. 5.2 illustrates the notion of TSO-executability on several examples. In the examples, the
already executed events (i.e., E(σ)) are in the gray zone, and the remaining events are outside
the gray zone. The buffer threads are gray and thin, the main threads are black and thick.
Observe that if σ is a valid trace, extending σ with an executable event (i.e., σ ◦ e) also yields
a valid trace that is well-formed, as, by definition, E(σ) ∪ {e} is a lower set of (X, PO).

Algorithm VerifyTSO. We are now ready to describe our algorithm VerifyTSO for the
problem VTSO-rf. At a high level, the algorithm enumerates all lower sets of (WM (X), PO)
by constructing a trace σ with WM(σ) = Y for every lower set Y of (WM(X), PO). The
crux of the algorithm is to maintain the following. Each constructed trace σ is maximal in the
set of thread events, among all witness prefixes with the same set of memory-writes. That is,
for every witness prefix σ′ with WM(σ′) =WM(σ), we have that L(σ) ⊇ L(σ′). Thus, the
algorithm will only explore nk traces, as opposed to n2·k from a naive enumeration of all lower
sets of (X, PO).

The formal description of VerifyTSO is in Algorithm 5.1. The algorithm maintains a worklist
S of prefixes and a set Done of already-explored lower sets of (WM (X), PO). In each iteration,
the Line 4 loop makes the prefix maximal in the thread events, then Line 6 checks if we are
done, otherwise the loop in Line 7 enumerates the executable memory-writes to extend the
prefix with.

We now provide the insights behind the correctness of VerifyTSO. The correctness proof has
two components: (i) soundness and (ii) completeness, which we present below.

Soundness. The soundness follows directly from the definition of TSO-executable events. In
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Algorithm 5.1: VerifyTSO(X, RF)
Input: An event set X and a reads-from function RF : R(X)→W(X)
Output: A witness σ that realizes (X, RF) if (X, RF) is realizable under TSO, else ⊥

1 S ← {ϵ}; Done← {∅}
2 while S ̸= ∅ do
3 Extract a trace σ from S
4 while ∃ thread event e TSO-executable in σ do
5 σ ← σ ◦ e // Execute the thread event e

6 if E(σ) = X then return σ // Witness found

7 foreach memory-write wM that is TSO-executable in σ do
8 σwM ← σ ◦ wM // Execute wM

9 if ̸ ∃σ′ ∈ Done s.t. WM (σwM ) =WM (σ′) then
10 Insert σwM in S and in Done // Continue from σwM

11 return ⊥

particular, when the algorithm extends a trace σ with a read r, where RF(r) = (wB, wM),
the following hold.

1. If thr(r) ̸= thr(wB), then wM ∈ σ, since r became executable. Moreover, when wM
appeared in σ, the variable x = var(wM) became held by wM , and remained held
at least until the current step where r is executed. Hence, no other memory-write
wM ′ with var(wM ′) = x could have become executable in the meantime, to violate
the observation of r. Moreover, r cannot read-from a local buffer write wB′ with
var(wB′) = x, as by definition, when wM became executable, all buffer-writes on x
that are local to r and precede r must have been flushed to the main memory (i.e.,
wM ′ must have also appeared in the trace).

2. If thr(r) = thr(wB), then either wM has not appeared already in σ, in which case r
reads-from wB from its local buffer, or wM has appeared in the trace and held its
variable until r is executed, as in the previous item.

Completeness. Let σ′ be an arbitrary witness prefix, VerifyTSO constructs a trace σ such
that WM (σ) =WM (σ′) and L(σ) ⊇ L(σ′). This is because VerifyTSO constructs for every
lower set Y of (WM(X), PO) a single representative trace σ with WM(σ) = Y . The key
is to make σ maximal on the thread events, i.e., L(σ) ⊇ L(σ′) for any witness prefix σ′

with WM(σ′) = WM(σ), and thus any memory-write wM that is executable in σ′ is also
executable in σ.

We now present the above insight in detail. Indeed, if wM is not executable in σ, one of the
following holds. Let var(wM) = x.

1. x is already held in σ. But since WM (σ′) =WM (σ) and any read of σ′ also appears in
σ, the variable x is also held in σ′, thus wM is not executable in σ′ either.

2. There is a later read r ̸∈ σ that must read-from wM , but r is preceded by a local write
(wB′, wM ′) (i.e., wB′ <PO r) also on x, for which wM ′ ̸∈ σ. Since L(σ) ⊇ L(σ′),
we have r ̸∈ σ′, and as WM(σ′) = WM(σ), also wM ′ ̸∈ σ′. Thus wM is also not
executable in σ′.
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The final insight is on how the algorithm maintains the maximality invariant as it extends
σ with new events. This holds because read events become executable as soon as their
corresponding remote observation wM appears in the trace, and hence all such reads are
executable for a given lower set of (WM(X), PO). All other thread events are executable
without any further conditions. Fig. 5.3 illustrates the intuition behind the maximality invariant.
In Fig. 5.3, the gray zone shows the events of some witness prefix σ′; the lighter gray shows the
events of the corresponding trace σ, constructed by the algorithm, which is maximal on thread
events. Yellow writes (wM2 and wM4) are those that are TSO-executable in σ but not in
σ′. Green writes (wM3) and red writes (wM5) are TSO-executable and non TSO-executable,
respectively.
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Figure 5.3: VerifyTSO maximality invariant.

The following lemma states the formal correctness, which together with the complexity
argument gives us Theorem 5.1.

Lemma 5.1. (X, RF) is realizable under TSO iff VerifyTSO returns a trace σ ̸= ϵ.

Proof. We argue separately about soundness and completeness.

Soundness. We prove by induction that every trace σ extracted from S in Line 3 is a trace
that realizes (X|E(σ), RF|E(σ)) under TSO. The claim clearly holds for σ = ϵ. Now consider
a trace σ such that σ ̸= ∅, hence σ was inserted in S in Line 10 while executing a previous
iteration of the while-loop in Line 2. Let σ′ be the trace that was extracted from S in that
iteration. Observe that σ′ is extended with TSO-executable events in Line 5 and Line 8,
hence it is well-formed. It remains to argue that for every new read r executed in Line 5,
we have RFσ′(r) = RF(r). Assume towards contradiction otherwise, and let r be the first
read for which this equality fails. For the remaining of the proof, we let σ′ be the trace
in the iteration of Line 5 that executed r, i.e., σ′ ends in r. Let RF(r) = (wB, wM) and
RFσ′(r) = (wB′, wM ′). We distinguish the following cases.

1. If r reads-from wB′ in σ′, then thr(r) ̸= thr(wB), while also wM ′ ̸∈ E(σ). Since r
became TSO-executable, we have wM ∈ E(σ′), hence wM has already become TSO-
executable. This violates Item 2b of the definition of TSO-executable memory-writes for
wM , a contradiction.
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2. If r reads-from wM ′ in σ′, then wM ∈ E(σ′) and wM ′ was executed after wM was
executed in σ′. This violates Item 2a of the definition of TSO-executable memory-writes
for wM ′, a contradiction.

It follows that RFσ′(r) = RF(r) for all reads r ∈ R(σ′), and hence σ′ realizes (X|E(σ′), RF|E(σ′))
under TSO. The above soundness argument carries over to executions containing RMW and
CAS instructions, since (i) such instructions are modeled by events of already considered types
(c.f. Section 5.2.4), while respecting the TSO-executability requirements of these events (as
were defined in Section 5.2.1), and (ii) in Line 4 resp. Line 7 we only consider TSO-executable
atomic blocks (described in detail in Section 5.2.4).

Completeness. Consider any trace σ∗ that realizes (X, RF). We show by induction that for
every prefix σ of σ∗, the algorithm examines a trace σ in Line 3 such that (i)WM (σ) =WM (σ),
and (ii) L(σ) ⊆ L(σ). The proof is by induction on the number of memory-writes of σ.
Let σ = σ′ ◦ κ ◦ wM , where κ is a sequence of thread events. Assume by the induction
hypothesis that the algorithm extracts a trace σ′ in Line 3 such that (i) WM(σ′) =WM(σ′),
and (ii) L(σ′) ⊆ L(σ′). (note that the statement clearly holds for the base case where
σ′ = ϵ). By a straightforward induction, all the events of κ not already present in σ′ become
eventually TSO-executable in σ′, and thus appended in σ′, as the algorithm executes the
while-loop in Line 4. Hence, at the end of this while-loop, we have (i) WM(σ′) =WM(σ′),
and (ii) L(σ′) ∪ E(κ) ⊆ L(σ′).

It remains to argue that wM is TSO-executable in σ′ at this point (i.e., in Line 7). Assume
towards contradiction otherwise, hence one of the following hold.

1. There is a read r ∈ R(X) with RF(r) = (wB′, wM ′) and such that (i) r ⋊⋉ wM ,
(ii) wM ̸= wM ′, (iii) wM ′ ∈ σ′, and (iv) r ̸∈ σ′. By the induction hypothesis, we have
WM(σ′) = WM(σ′) and thus wM ′ ∈ σ′. Moreover, we have E(σ′ ◦ κ) ⊆ E(σ′), and
thus r ̸∈ σ′ ◦ κ. This violates the fact that σ is a witness prefix for (X, RF).

2. There is a read r ∈ R(X) with RF(r) = (wB, wM) and such that there exists a
two-phase write (wB′, wM ′) with (i) r ⋊⋉ wB′, (ii) wB′ <PO r, (iii) wM ′ ̸∈ σ′. By the
induction hypothesis, we have WM(σ′) =WM(σ′) and thus wM ′ ̸∈ σ′. Moreover, we
have E(σ′ ◦ κ) ⊆ E(σ′), and thus r ̸∈ σ′ ◦ κ. This violates the fact that σ is a witness
prefix for (X, RF).

Hence wM is TSO-executable in σ′ in Line 7, and thus the algorithm will construct the
trace σ′

wM = σ′ ◦ wM in Line 8. If WM(σ′
wM) ̸∈ Done, the test in Line 9 succeeds, and

the statement holds for σ being σ′
wM extracted from S in a later iteration. Otherwise, the

algorithm previously constructed a trace σ′′ with WM(σ′′) =WM(σ′
wM), and the statement

holds for σ being σ′′ extracted from S in a later iteration.

When arguing about completeness in the presence of RMW and CAS instructions, additional
care needs to be taken, as follows. The above induction argument applies, but it needs to
additionally consider a case with σ = σ′ ◦ κ ◦ r ◦ wB ◦ wM and fnc ∈ E(σ′ ◦ κ), where
fnc together with r ◦ wB ◦ wM represent an atomic RMW resp. CAS instruction with the
write-part designated to be immediately propagated to the shared memory. Let us consider
this case in what follows.

As above, we start with the induction hypothesis that in Line 3 we have σ′ with (i) WM (σ′) =
WM(σ′), and (ii) L(σ′) ⊆ L(σ′). Further, by an argument similar to the above, we reach
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Line 7 where σ′ now satisfies (i) WM(σ′) = WM(σ′), and (ii) L(σ′) ∪ E(κ) ⊆ L(σ′). At
this point, we have fnc ∈ E(σ′ ◦ κ) and fnc ∈ L(σ′). Further, since in our approach we
emplace r, wB and wM in an atomic block, and we never allow execution of a singular
event that is part of some atomic block (described in detail in Section 5.2.4), we have that
E(σ′) ∩ {r, wB, wM} = ∅. As a result, since there are no events between fnc and r in
the thread of the atomic instruction, we have that the buffer of the thread of the atomic
instruction is empty in both σ′ ◦ κ and σ′. What remains to argue is that the atomic block
r ◦wB ◦wM is TSO-executable in σ′. For this, we refer to the TSO-executable conditions of
atomic blocks defined in Section 5.2.4. In turn, utilizing the TSO-executable conditions of (i)
reads, (ii) buffer-writes, and (iii) memory-writes, defined in Section 5.2.1, we show that (i) r
is TSO-executable in σ′, (ii) wB is TSO-executable in σ′ ◦ r, and (iii) wM is TSO-executable
in σ′ ◦ r ◦ wB. This together with E(σ′) ∩ {r, wB, wM} = ∅ gives us that the atomic block
r ◦ wB ◦ wM is TSO-executable in σ′, and thus in Line 8 the algorithm will construct the
trace σ′′ = σ′ ◦ r ◦ wB ◦ wM .

The desired completeness result follows.

Now we can conclude the section with the proof of Theorem 5.1.

Theorem 5.1. VTSO-rf for n events and k threads is solvable in O(k · nk+1) time.

Proof. Lemma 5.1 establishes the correctness, so here we focus on the complexity, and the
following argument applies also to executions containing RMW and CAS instructions.

Since there are k threads, there exist at most nk distinct traces σ1, σ2 withWM (σ1) ̸=WM (σ2).
Hence, the main loop in Line 2 is executed at most nk times. For each of the ≤ nk traces
σ inserted in S in Line 10, there exist at most k − 1 traces that are not inserted in S
because WM(σ) = WM(σ′) (hence the test in Line 9 fails). Hence, the algorithm handles
O(k · nk) traces in total, while each trace is constructed in O(n) time. Thus, the complexity
of VerifyTSO is O(k · nk+1). The desired result follows.

5.2.2 Verifying PSO Executions
In this section we show Theorem 5.2, i.e., we present an algorithm VerifyPSO that solves
VPSO-rf in O(k · nk+1 ·min(nk·(k−1), 2k·d)) time, while the bound becomes O(k · nk+1) when
there are no fences. Similarly to the case of TSO, the algorithm relies on the notion of
PSO-executable events, defined below. We first introduce some relevant notation that makes
our presentation simpler.

Spurious and pending writes. Consider a trace σ with E(σ) ⊆ X. A memory-write
wM ∈ WM(X) is called spurious in σ if the following conditions hold.

1. There is no read r ∈ R(X) \ σ with RF(r) = (_, wM)
(informally, no remaining read wants to read-from wM).

2. If wM ∈ σ, then for every read r ∈ σ with RFσ(r) = (_, wM) we have r <σ wM
(informally, reads in σ that read-from this write read it from the local buffer).

Note that if wM is a spurious memory-write in σ then wM is spurious in all extensions
of σ. We denote by SWM(σ) the set of memory-writes of σ that are spurious in σ. A
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memory-write wM is pending in σ if wB ∈ σ and wM ̸∈ σ, where wB is the corresponding
buffer-write of wM . We denote by PWM(σ, thr) the set of all pending memory-writes wM
in σ with thr(wM) = thr. See Fig. 5.4 for an intuitive illustration of spurious and pending
memory-writes.

SWM (σ) PWM (σ, thr1)

∅

∅

wM1(x)

wM1(x)

∅

wM1(x)

wM1(x)

∅

ρ1 ρ′
1(x)

wB1(x)

r1(x)

wM1(x)

(a) Linearization where wM1 is spurious. The table
shows the spurious and pending writes after each
step.

ρ1 ρ′
1(x)

wB1(x)

r1(x)

wM1(x)

(b) Linearization where wM1 is not spu-
rious; here RFσ(r1) = (_, wM1) and
wM1 <σ r1.

Figure 5.4: Illustration of spurious and pending writes.

PSO-executable events. Similarly to the case of VTSO-rf, we define the notion of PSO-
executable events (executable for short). An event e ∈ X \ E(σ) is PSO-executable in σ if
the following conditions hold.

1. If e is a buffer-write or a memory-write, then the same conditions apply as for TSO-
executable.

2. If e is a fence fnc, then every pending memory-write from thr(fnc) is PSO-executable in
σ, and these memory-writes together with fnc and E(σ) form a lower set of (X, PO).

3. If e is a read r, let RF(r) = (wB, wM). We have wB ∈ σ, and the following conditions.

a) if thr(r) = thr(wB), then E(σ) ∪ {r} is a lower set of (X, PO).
b) if thr(r) ̸= thr(wB), then E(σ) ∪ {wM, r} is a lower set of (X, PO)

and further either wM ∈ σ or wM is PSO-executable in σ.

Fig. 5.5 illustrates several examples of PSO-(un)executable events, where the green events are
PSO-executable and the red events are not. The memory-write wM2(x) is executable, and
thus so are r1(x) and fnc1. The memory-write wM3(y) is not executable, as the variable y is
held by wM1(y) until r2(y) is executed. Consequently, fnc2 and r3(y) are not executable.

Similarly to the case of TSO, the PSO-executable conditions ensure that we do not execute
events creating an invalid witness prefix. The executability conditions for PSO are different
(e.g., there are extra conditions for a fence), since our approach for VPSO-rf fundamentally
differs from the approach for VTSO-rf.

Fence maps. We define a fence map as a function FMapσ : Threads×Threads→ [n] as
follows. First, FMapσ(thr, thr) = 0 for all thr ∈ Threads. In addition, if thr does not have a
fence unexecuted in σ (i.e., a fence fnc ∈ (Xthr \ E(σ))), then FMapσ(thr, thr′) = 0 for all
thr′ ∈ Threads. Otherwise, consider the set of all reads Athr,thr′ such that every r ∈ Athr,thr′

with RF(r) = (wB, wM) satisfies the following conditions.
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Figure 5.5: Example on PSO-executability.

1. thr(r) = thr′ and r ̸∈ σ.

2. thr(wB) ̸∈ {thr, thr′}, and var(r) is held by wM in σ, and there is a pending memory
write wM ′ in σ with thr(wM ′) = thr and var(wM ′) = var(r).

If Athr,thr′ = ∅ then we let FMapσ(thr, thr′) = 0, otherwise FMapσ(thr, thr′) is the largest
index of a read in Athr,thr′ . Given two traces σ1, σ2, FMapσ1 ≤ FMapσ2 denotes that
FMapσ1(thr, thr′) ≤ FMapσ2(thr, thr′) for all thr, thr′ ∈ [k].

The intuition behind fence maps is as follows. Given a trace σ, the index FMapσ(thr, thr′)
points to the latest (wrt PO) read r of thr′ that must be executed in any extension of σ
before thr can execute its next fence. This occurs because the following hold in σ.

1. The variable var(r) is held by the memory-write wM ∈ σ with RF(r) = (_, wM).

2. Thread thr has executed some buffer-write wB′ ∈ σ with var(wB′) = var(r) = var(wM),
but the corresponding memory-write wM ′ has not yet been executed in σ. Hence, thr
cannot flush its buffers in any extension of σ that does not contain r (as wM ′ will not
become executable until r gets executed).

The following lemmas state two key monotonicity properties of fence maps.

Lemma 5.2. Consider two witness prefixes σ1, σ2 such that σ2 = σ1 ◦wM for some memory-
write wM executable in σ1. We have FMapσ1 ≤ FMapσ2 . Moreover, if wM is a spurious
memory-write in σ1, then FMapσ1 = FMapσ2 .

Proof. Since wM is executable in σ1, the variable var(σ1) is not held in σ1. It follows directly
from the definition of fence maps that the read sets Athr,thr′ can only increase in FMapσ2

compared to FMapσ1 . Hence, FMapσ1(thr1, thr2) ≤ FMapσ2(thr1, thr2) for all thr1, thr2.
Moreover, if wM is spurious then the sets Athr,thr′ are identical, thus FMapσ1(thr1, thr2) =
FMapσ2(thr1, thr2) for all thr1, thr2.

The desired result follows.

Lemma 5.3. Consider two witness prefixes σ1, σ2 such that (i) L(σ1) = L(σ2), (ii) FMapσ1 ≤
FMapσ2 , and (iii) WM (σ1) \ SWM (σ1) ⊆ WM (σ2). Let e ∈ L(X) be a thread event that is
executable in σi for each i ∈ [2], and let σ′

i = σi◦e, for each i ∈ [2]. Then FMapσ′
1
≤ FMapσ′

2
.

Proof. We distinguish cases based on the type of e.
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1. If e is a fence fnc, the fence maps do not change, hence the claim holds directly from
the fact that FMapσ1 ≤ FMapσ2 .

2. If e is a read r, observe that FMapσ′
i
≤ FMapσi

for each i ∈ [2]. Hence we must
have FMapσ′

2
(thr1, thr2) < FMapσ2(thr1, thr2), for some thread thr1 ∈ Threads and

thr2 = thr(r). Note that in fact FMapσ′
2
(thr1, thr2) = 0, which occurs because

FMapσ2(thr1, thr2) is the index of r in thr2. Since FMapσ1 ≤ FMapσ2 , we have either
FMapσ1(thr1, thr2) = 0 or FMapσ1(thr1, thr2) = FMapσ2(thr1, thr2). In either case, we
have FMapσ′

1
≤ FMapσ2 = 0, a contradiction.

3. If e is a buffer-write wB, observe that FMapσi
≤ FMapσ′

i
for each i ∈ [2]. Hence we

must have FMapσ1(thr1, thr2) < FMapσ′
1
(thr1, thr2), where thr1 = thr(wB) and thr2 is

some other thread. It follows that v = var(wB) is held in σ1 by an active memory-write
wM ′ (thus wM ′ is not spurious in σ1), and FMapσ′

1
(thr1, thr2) is the index of thr2 that

contains a read r with RF(r) = (_, wM ′). Since WM (σ1) \ SWM (σ1) ⊆ WM (σ2), we
have WM(′) ∈ σ2 Since L(σ1) = L(σ2), we have that wM ′ is an active memory-write
in σ2. Hence FMapσ′

2
(thr1, thr2) ≥ FMapσ′

1
(thr1, thr2), a contradiction.

The desired result follows.

Note that there exist in total at most nk·k different fence maps. Further, the following lemma
gives a bound on the number of different fence maps among witness prefixes that contain the
same thread events.

Lemma 5.4. Let d be the number of variables. There exist at most 2k·d distinct witness
prefixes σ1, σ2 such that L(σ1) = L(σ2) and FMapσ1 ̸= FMapσ2 .

Proof. Given a trace σ, we define the non-empty-buffer map NEBMapσ : Threads×G →
{True, False}, such that NEBMapσ(thr, v) = True iff (i) thr does not hold variable v, and
(ii) the buffer of thread thr on variable v is non-empty. Clearly there exist at most 2k·d

different non-empty-buffer maps. We argue that for every two traces σ1, σ2, if L(σ1) = L(σ2)
and NEBMapσ1 = NEBMapσ2 then FMapσ1 = FMapσ2 , from which the 2k·d bound of the
lemma follows.

Assume towards contradiction that FMapσ1 ̸= FMapσ2 . Hence, wlog, there exist two threads
thr1, thr2 such that FMapσ2(thr1, thr2) > FMapσ1(thr1, thr2). Let FMapσ2(thr1, thr2) = m,
and consider the read r of thr2 at index m. Let v = var(r) and RF(r) = (wB, wM) and
thr3 = thr(wB). By the definition of fence maps, we have that thr3 holds variable v in
σ2. By the definition of non-empty-buffer maps, we have that NEBMapσ2(thr3, v) = False,
and since NEBMapσ1 = NEBMapσ2 , we also have NEBMapσ1(thr3, v) = False. Since
L(σ1) = L(σ2), we have that wB ∈ σ1. Moreover, we have wM ̸∈ σ1, as otherwise, since
NEBMapσ1(thr1) = NEBMapσ1(thr2), we would have FMapσ1(thr1, thr2) ≥ m. Hence, the
buffer of thread thr3 on variable v is non-empty in σ1. Since NEBMapσ1(thr3, v) = False, we
have that thr3 holds v in σ1. Thus, there is a read r′ ̸∈ σ1 with RF(r′) = (wB′, wM ′), where
wM ′ <PO wM . Since L(σ1) = L(σ2), we have that r′ ̸∈ σ2, which violates the observation
of r′ in any extension of σ2.

The desired result follows.
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Algorithm VerifyPSO. We are now ready to describe our algorithm VerifyPSO for the
problem VPSO-rf. In high level, the algorithm enumerates all lower sets of (L(X), PO),
i.e., the lower sets of the thread events. The crux of the algorithm is to guarantee that
for every witness-prefix σ′, the algorithm constructs a trace σ such that (i) L(σ) = L(σ′),
(ii) WM(σ) \ SWM(σ) ⊆ WM(σ′), and (iii) FMapσ ≤ FMapσ′ . To achieve this, for a
given lower set Y of (L(X), PO), the algorithm examines at most as many traces σ with
L(σ) = Y as the number of different fence maps of witness prefixes with the same set of
thread events. Hence, the algorithm examines significantly fewer traces than the nk·(d+1) lower
sets of (X, PO).

Algorithm 5.2 presents a formal description of VerifyPSO. The algorithm maintains a worklist
S of prefixes, and a set Done of explored pairs “(thread events, fence map)”. Consider an
iteration of the main loop in Line 2. First in the loop of Line 4 all spurious executable
memory-writes are executed. Then Line 6 checks whether the witness is complete. In case it
is not complete, the loop in Line 7 enumerates the possibilities to extend with a thread event.
Crucially, the condition in Line 16 ensures that there are no duplicates with the same pair
“(thread events, fence map)”.

Algorithm 5.2: VerifyPSO(X, RF)
Input: An event set X and a reads-from function RF : R(X)→W(X)
Output: A witness σ that realizes (X, RF) if (X, RF) is realizable under PSO, else σ = ⊥

1 S ← {ϵ}; Done← {∅}
2 while S ̸= ∅ do
3 Extract a trace σ from S
4 while ∃ spurious wM PSO-executable in σ do
5 σ ← σ ◦ wM // Flush spurious memory-write wM

6 if E(σ) = X then return σ // Witness found

7 foreach thread event e PSO-executable in σ do
8 Let σe ← σ
9 if e is a read event with RF(r) = (wB, wM) then

10 if thr(r) ̸= thr(wB) and wM ̸∈ σe then
11 σe ← σe ◦ wM // Execute the reads-from of e

12 else if e is a fence event then
13 Let µ← any linearization of (PWM (σ, thr(e)), PO)
14 σe ← σe ◦ µ // Execute pending memory writes

15 σe ← σe ◦ e // Finally, execute e

16 if ̸ ∃σ′ ∈ Done s.t. L(σe) = L(σ′) and FMapσe
= FMapσ′ then

17 Insert σe in S and in Done // Continue from σe

18 return ⊥

Soundness. The soundness of VerifyPSO follows directly from the definition of PSO-
executable events, and is similar to the case of VerifyTSO.

Completeness. For each witness prefix σ′, algorithm VerifyPSO generates a trace σ with
(i) L(σ) = L(σ′), (ii) WM (σ) \ SWM (σ) ⊆ WM (σ′), and (iii) FMapσ ≤ FMapσ′ . This fact
directly implies completeness, and it is achieved by the following key invariant. Consider that
the algorithm has constructed a trace σ, and is attempting to extend σ with a thread event e.
Further, let σ′ be an arbitrary witness prefix with (i) L(σ) = L(σ′), (ii) WM (σ) \ SWM (σ) ⊆
WM (σ′), and (iii) FMapσ ≤ FMapσ′ . If σ′ can be extended so that the next thread event is
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e, then e is also executable in σ, and (by Lemma 5.2 and Lemma 5.3) the extension of σ with
e maintains the invariant.

We now prove the argument in detail for the above σ, σ′ and thread event e. Assume that
σ′ ◦ κ ◦ e is a witness prefix as well, for a sequence of memory-writes κ. Consider the following
cases.

1. If e is a read event, let w = (wB, wM) = RF(e). If it is a local write (i.e., thr(w) =
thr(e)), necessarily wB ∈ σ′ ◦ κ, and since the traces agree on thread events, we have
wB ∈ σ; thus e is executable in σ. Otherwise, w is a remote write (i.e., thr(w) ̸= thr(e)).
Assume towards contradiction that e is not executable in σ; this can happen in two
cases.
In the first case, the variable x = var(e) is held by another (non-spurious) memory-write
wM ′ in σ. Since WM(σ) \ SWM(σ) ⊆ WM(σ′), and L(σ) = L(σ′), the variable
x is also held by wM ′ in σ′ ◦ κ. But then, both wM and wM ′ hold x in σ′ ◦ κ, a
contradiction.
In the second case, there is a write (wB′, wM ′) with var(wM ′) = var(e) and wB′ <PO e
and wM ′ ̸∈ σ. If wM ′ ̸∈ σ′ ◦κ, then e would read-from wB′ from the buffer in σ′ ◦κ◦e,
contradicting RF(e) = (_, wM). Thus wM ′ ∈ σ′ ◦ κ, and further wM ∈ σ′ ◦ κ with
wM ′ <σ′◦κ wM . Since σ′ ◦ κ ◦ e is a witness prefix and wB′ <PO e, we have wB′ ∈ σ′.
From this and L(σ) = L(σ′) we have that wB′ ∈ σ and wM ′ is pending in σ. This
together gives us that wM ′ is spurious in σ. Consider the earliest memory-write pending
in σ on the same buffer (i.e., thr(wM ′) and var(wM ′)), denote it wM ′′. We have that
wM ′′ ≤PO wM ′ and wM ′′ is spurious in σ. Further, wM ′′ is executable in σ. But then
it would have been added to σ in the while loop of Line 4, a contradiction.

2. Assume that e is a fence event, and let wM1, . . . , wMj be the pending memory-writes
of thr(e) in σ. Suppose towards contradiction that e is not executable. Then one of
the wMi is not executable, let x = var(wMi). Similarly to the above, there can be two
cases where this might happen.
The first case is when wMi must be read-from by some read event r ̸∈ σ, but r is
preceded by a local write (wB, wM) (i.e., wB <PO r) on the same variable x while
wM ̸∈ σ. A similar analysis to the previous case shows that the earliest pending write
on thr(wM) for variable x is spurious, and thus already added to σ due to the while
loop in Line 4, a contradiction.
The second case is when the variable x is held in σ. Since FMapσ ≤ FMapσ′ , the
variable x is also held in σ′, and thus wMi is not executable in σ′ either. But then
σ′ ◦ κ ◦ e cannot be a witness prefix, a contradiction.

In Fig. 5.6 we provide an intuitive illustration of the completeness idea. Consider the witness
prefix σ′ (lighter gray) and the corresponding trace σ constructed by the algorithm (darker
gray). The fence fnc1 is PSO-executable in σ but not in σ′, since in the latter, thr(fnc1) has
non-empty buffers, but the variables x and y are held by wM1 and wM2, respectively. This
is equivalent to waiting until after r1 and r2 have been executed. Since executing r2 implies
having executed r1, the fence map FMapσ′(thr3, thr2) compresses this information by only
pointing to r2.

The following lemma states the correctness of VerifyPSO, which together with the complexity
argument establishes Theorem 5.2.
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Figure 5.6: VerifyPSO completeness idea.

Lemma 5.5. (X, RF) is realizable under PSO iff VerifyPSO returns a trace σ ̸= ϵ.

Proof. We argue separately about soundness and completeness.

Soundness. We prove by induction that every trace σ extracted from S in Line 3 is a trace that
realizes (X|E(σ), RF|E(σ)) under PSO. The claim clearly holds for σ = ϵ. Now consider a trace
σ such that σ ̸= ∅, hence σ was inserted in S in Line 17 while executing a previous iteration
of the while-loop in Line 2. Let σ′ be the trace that was extracted from S in that iteration,
and consider the trace σe constructed in Line 15. Since σe is obtained by extending σ′ with
PSO-executable events, it follows that σe is well-formed. It remains to argue that RFσ ⊆ RF.
If e is not a read, then the claim holds by the induction hypothesis as R(σe) = R(σ′). Now
assume that e is a read with RFσe(e) = (wB′, wM ′). Let RF(e) = (wB, wM), and assume
towards contradiction that wB ̸= wB. We distinguish the following cases.

1. If e reads-from wB′ in σe, we have that thr(r) ̸= thr(wB). But then wM ∈ σe, hence
wM has become PSO-executable, and thus wM ′ ∈ σe. Since e is the last event of σe

this violates the fact that e reads-from wB′ in σe.

2. If e reads-from wM ′ in σe, then wM ∈ σ′, and wM ′ was executed after wM in σ′. By
the definition of PSO-executable events, wM ′ could not have been PSO-executable at
that point, a contradiction.

It follows that RFσe(e) = RF(e), and this with the induction hypothesis gives us that
RFσe(r) = RF(r) for all reads r ∈ R(σe). As a result, σe realizes (X|E(σe), RF|E(σe)) under
PSO. The soundness argument carries over directly to executions containing RMW and CAS
instructions. Indeed, since in Line 7 we only consider atomic blocks that are PSO-executable
(described in Section 5.2.4), consequently, the PSO-executable conditions of fences, reads,
buffer-writes and memory-writes (as defined in Section 5.2.2) used to model RMW and CAS
are preserved, which by the above argument implies soundness.
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Completeness. Consider any trace σ∗ that realizes (X, RF). We show by induction that for
every prefix σ of σ∗, the algorithm examines a trace σ in Line 3 such that (i) L(σ) = L(σ),
(ii) WM(σ) \ SWM(σ) ⊆ WM(σ), and (iii) FMapσ ≤ FMapσ.

The proof is by induction on the number of thread events of σ. The statement clearly holds
when σ = ϵ due to the initialization of S. For the inductive step, let σ = σ′ ◦κ◦e, where κ is a
sequence of memory-writes and e is a thread event. By the induction hypothesis, the algorithm
extracts a trace σ′ in Line 3 such that (i) L(σ′) = L(σ′), (ii)WM (σ′)\SWM (σ′) ⊆ WM (σ′),
(iii) FMapσ′ ≤ FMapσ′ . Let σ1 = σ′◦κ, and σ1 be the trace σ′ after the algorithm has extended
σ′ with all events in the while-loop of Line 4. By Lemma 5.2, we have FMapσ′ ≤ FMapσ1 .
Since all events appended to σ′ are spurious memory-writes in σ′, by Lemma 5.2, we have
FMapσ1 = FMapσ′ and thus FMapσ1 ≤ FMapσ1 . Moreover, since the while-loop only
appends spurious memory-writes to σ′, we have WM(σ1) \ SWM(σ1) ⊆ WM(σ1). Finally,
we trivially have L(σ1) = L(σ1).

We now argue that e is PSO-executable in σ1 in Line 7, and the statement holds for the new
trace σe constructed in Line 15. We distinguish cases based on the type of e.

1. If e is a buffer-write, then E(σ1) ∪ {e} is a lower set of (X, RF), hence e is PSO-
executable in σ1. Thus, we have L(σ) = L(σe). Moreover, note that σe = σ1 ◦ e and
σ = σ1 ◦ e. By Lemma 5.3 on σ1 and σ1, we have FMapσe

≤ FMapσ. Finally, we have
WM(σe) =WM(σ1) and thus WM(σe) \ SWM(σe) ⊆ WM(σ).

2. If e is a read, let RF(e) = (wB, wM) and v = var(e). We have wB ∈ σ1 and thus
wB ∈ σ1. If thr(wB) = thr(e), then e is PSO-executable in σ1. Now consider that
thr(wB) ̸= thr(e), and assume towards contradiction that e is not PSO-executable in
σ1. There are two cases where this can happen.
The first case is when the variable v is held by another memory write in σ1. Since
L(σ1) = L(σ1) and WM(σ1) \ SWM(σ1) ⊆ WM(σ1), the variable v is also held by
another memory write in σ1, and thus wM is neither in σ1 nor PSO-executable in σ1.
Thus e is not PSO-executable in σ1 either, a contradiction.
The second case is when there exists a read r ̸∈ σ1 such that RF(r) = (_, wM),
and there exists a local write event w′ = (wB′, wM ′) with thr(wB′) = thr(r) but
wM ′ ̸∈ σ1. Since σ1 is a witness prefix, we have wM ′ ∈ σ1, hence wB′ ∈ σ1, and since
L(σ1) = L(σ1), we also have wB′ ∈ σ1. Thus wM ′ is a pending memory write for the
thread thr′ = thr(wM ′). Let wM ′′ be the earliest (wrt PO) pending memory-write of
thr′ for the variable v. Thus wM ′′ <PO wM ′, and hence wM ′′ ∈ σ1. Note that wM ′′

is not read-from by any read not in σ1, and hence wM ′′ is spurious in σ1. But then, the
while loop in Line 4 must have added wM ′′ in σ1, a contradiction.
It follows that e is PSO-executable in σ1, and thus L(σ) = L(σe). Let σ2 = σ1 if
wM ∈ σ1, else σ2 = σ1 ◦wM . Observe that if wM is PSO-executable in σ1, all pending
memory-writes wM ′ on variable v of threads other than thr(wB) are spurious in σ′,
and thus all such buffers are empty in σ1. It follows that FMapσ2 ≤ FMapσ1 and thus
FMapσ2 ≤ FMapσ1 . Moreover, trivially WM(σ2) \ SWM(σ2) ⊆ σ1. Finally, executing
e in σ2 and σ1, we obtain respectively σe and σ, and by Lemma 5.3, we have FMapσe

≤
FMapσ. Moreover, clearly WM(σe) =WM(σ2) and thus WM(σe) \ SWM(σe) ⊆ σ.

3. If e is a fence, let µ = wM1, . . . , wMj be the sequence of pending memory-writes
constructed in Line 13. By a similar analysis to the case where e is a a read event,
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we have that µ contains at most one memory-write per variable, as all preceding ones
(wrt PO) must be spurious. Assume towards contradiction that some pending memory
write wMi is not PSO-executable in σ, and let v = var(wMi). There are two cases to
consider.

a) wMi is not PSO-executable because v is held in σ1. Let wM be the memory-write
that holds v in σ1, and r be the corresponding read with RF(r) = (_, wM) and
r ̸∈ σ1. Since L(σ1) = L(σ1), we have r ̸∈ σ1. Let thr1 = thr(e), thr2 = thr(r),
and m be the index of r in thr2. We have FMapσ1(thr1, thr2) ≥ m, and since
FMapσ1 ≤ FMapσ′ , we also have FMapσ′(thr1, thr2) ≥ m. But then there is a
pending memory-write wM ′ ∈ σ′ with thr(wM ′) = thr1 and wM ′ ̸∈ σ1. Hence e
is not PSO-executable in σ1, a contradiction.

b) wMi is not PSO-executable because there exists a read r ̸∈ σ1 such that RF(r) =
(_, wMi), and there exists a local write event w = (wB, wM) with thr(wB) =
thr(r) but wM ̸∈ σ1. The analysis is similar to the case of e being a read, which
leads to a contradiction.

Thus, we have that the fence e is PSO-executable in σ1. It is straightforward to see
that WM(σe) \ SWM(σe) ⊆ σ, and thus it remains to argue that FMapσe

≤ FMapσ.
Let σj

1 = σ1 ◦ wM1, . . . , wMj−1. It suffices to argue that FMapσj+1
1
≤ FMapσ1 , as

σe = σj+1
1 ◦ e and σ = σ1 ◦ e, and the claim holds by Lemma 5.3 on σj+1

1 and σ1.
The proof is by induction on σi

1. The claim clearly holds for i = 1, as then σ1
1 = σ1

and we have FMapσ1 ≤ FMapσ1 . Now consider that for some i > 1, there exist
two threads thr1, thr2,∈ Threads such that FMapσi

1
> FMapσi−1

1
(thr1, thr2). Hence,

variable v = var(wM i) is held in σi
1 and wM i is the respective active-memory-write,

and thread thr2 has a read r in index m = FMapσi
1
(thr1, thr2) with RF(r) = (_, wM i).

In addition, there exists a buffer-write wB ∈ σ1 such that thr(wB) = thr1 and
var(wB) = v. Since L(σi

1) = L(σ), we have that wB ∈ σ and r ̸∈ σ. Moreover, since
wM i <PO e, we have wM i ∈ σ. Hence wM i is an active-memory-write in σ as well,
and thus FMapσ(thr1, thr2) ≥ FMapσi

1
(thr1, thr2). At the end of the induction, we

have FMapσj+1
1
≤ FMapσ, as desired.

This concludes the completeness argument for executions without RMW and CAS instructions.

When executions contain RMW and CAS instructions, additional argument has to be made
for completeness, as follows. We proceed with the same induction argument as above, but
additionally consider the inductive case where σ = σ′ ◦ κ ◦ e such that e is an atomic block
corresponding to a RMW or a CAS instruction. In this case, e is a sequence of (i) a read r,
(ii) a buffer-write wB, and optionally (in case the write-part of e is designated to proceed
directly into the shared memory) (iii) a memory-write wM . Finally, e is preceded in its thread
by a fence fnc.

First, since σ is a witness prefix we have fnc ∈ L(σ′), and from the induction hypothesis
regarding σ′ such that L(σ′) = L(σ′) we also have fnc ∈ L(σ′). Thus all buffers of the thread
of e are empty in both σ′ and σ′. Then the argument is followed identically to above until
Line 7, where we have to show that the atomic block e is PSO-executable in σ1 in Line 7, and
that consequently the induction statement holds for the new trace σe constructed in Line 15.

The crucial observation is that no event from the second event onward in the atomic block
e is a read or a fence. This is important as reads and fences may need additional events
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executed right before them (see Lines 9–14), which would invalidate the atomicity of the atomic
block. Given this observation, we simply utilize the PSO-executable requirements to prove
the following. First, using the argument of Item 2 above we show that r is PSO-executable
in σ1, let σr denote the trace resulting after executing r. Second, using Item 1 above we
show that wB is PSO-executable in σr, and further that (i) L(σr ◦wB) = L(σ′ ◦ κ ◦ r ◦wB),
(ii) WM(σr ◦ wB) \ SWM(σr ◦ wB) ⊆ WM(σ′ ◦ κ ◦ r ◦ wB), and (iii) FMapσr◦wB ≤
FMapσ′◦κ◦r◦wB. Finally, in the case where wM is part of the atomic block e, we have that
wM is PSO-executable in σr ◦ wB, resulting in the trace σe. Further, since the induction
statement held already for σr ◦wB with respect to σ′ ◦ κ ◦ r ◦wB (see (i),(ii),(iii) above), we
have that the induction statement holds also for σe with respect to σ, which concludes the
argument.

The desired result follows.

We can now proceed with the proof of Theorem 5.2.

Theorem 5.2. VPSO-rf for n events, k threads and d variables is solvable in O(k · nk+1 ·
min(nk·(k−1), 2k·d)). Moreover, if there are no fences, the problem is solvable in O(k · nk+1)
time.

Proof. Lemma 5.5 establishes the correctness, so here we focus on the complexity, and the
following argument applies also for executions with RMW and CAS instructions. Since there
are k threads, there exist at most nk distinct traces σ1, σ2 with L(σ1) ̸= L(σ2). Because of
the test in Line 16, for any two traces σ1, σ2 inserted in the worklist with L(σ1) = L(σ2), we
have FMapσ1 ≠ FMapσ2 . If there are no fences, there is only one possible fence map, hence
there are nk traces inserted in S. If there are fences, the number of different fence maps with
FMapσ1 ̸= FMapσ2 when L(σ1) = L(σ2) is bounded by 2k·d (by Lemma 5.4) and also by
nk·(k−1) (since there are at most that many difference fence maps). Hence the number of
traces inserted in the worklist is bounded by nk ·min(nk·(k−1), 2k·d). Since there are k threads,
for every trace σ1 inserted in the worklist, the algorithm examines at most k−1 other traces σ2
that are not inserted in the worklist because L(σ1) = L(σ2) and FMapσ1 = FMapσ2 . Hence
the algorithm examines at most k ·nk ·min(nk·(k−1), 2k·d) traces in total, while each such trace
is handled in O(n) time. Hence the total running time is O(k · nk+1 ·min(nk·(k−1), 2k·d)).

Finally, note that if there are no fences present, we can completely drop the fence maps from
the algorithm, which results in complexity O(k · nk+1).

The desired result follows.

We now provide some insights on the relationship between VTSO-rf and VPSO-rf.

Relation between TSO and PSO verification. In high level, TSO might be perceived as a
special case of PSO, where every thread is equipped with one buffer (TSO) as opposed to one
buffer per global variable (PSO). However, the communication patterns between TSO and
PSO are drastically different. As a result, our algorithm VerifyPSO is not applicable to TSO,
and we do not see an extension of VerifyTSO for handling PSO efficiently. In particular, the
minimal strategy of VerifyPSO on memory-writes is based on the following observation: for a
read r observing a remote memory-write wM , it always suffices to execute wM exactly before
executing r (unless wM has already been executed). This holds because the corresponding
buffer contains memory-writes only on the same variable, and thus all such memory-writes
that precede wM cannot be read-from by any subsequent read. This property does not hold
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for TSO: as there is a single buffer, wM might be executed as a result of flushing the buffer
of thread thr(wM) to make another memory-write wM ′ visible, on a different variable than
var(wM), and thus wM ′ might be observable by a subsequent read. Hence the minimal
strategy of VerifyPSO on memory-writes does not apply to TSO. On the other hand, the
maximal strategy of VerifyTSO is not effective for PSO, as it requires enumerating all lower
sets of (WM (X), RF), which are nk·d many in PSO (where d is the number of variables), and
thus this leads to worse bounds than the ones we achieve in Theorem 5.2.

Verifying PSO Executions with Store-store Fences. Here we describe our extension to
handle VPSO-rf in the presence of store-store-fences.

A store-store fence event storefnc happening on a thread thr introduces further orderings into
the program order PO, namely wM <PO wM ′ for each (wB, wM), (wB′, wM ′) ∈ WM

thr with
wB <PO storefnc <PO wB′.

Store-store fences are considered only for the PSO memory model, as they would have no
effect in TSO, since in TSO all memory-writes within the same thread are already ordered.
In fact, the TSO model can be seen as PSO with a store-store fence inserted after every
buffer-write event.

We extend our notion of PSO-executability to accommodate store-store-fences. Given (X, PO)
and σ with E(σ) ⊆ X:

1. A store-store fence storefnc ∈ X \ E(σ) is PSO-executable if E(σ) ∪ {storefnc} is a
lower set of (X, PO).

2. An additional condition for a memory-write wM ∈ X \ E(σ) to be PSO-executable, is
that every memory-write wM ′ ∈ X \ E(σ) with wM ′ <PO wM is PSO-executable.

We consider a notion very similar to the fence maps introduced in Section 5.2.2, to effi-
ciently represent the PSO-executability requirements introduced by store-store fences, namely
store-store fence maps SFMapσ : Threads×Threads→ [n]. While FMapσ(thr) efficiently
captures the requirements for executing a fence event of thr, SFMapσ(thr) captures efficiently,
in the same manner as FMapσ(thr) does, the following. Consider the latest storefnc ∈ E(σ)
of thread thr, and consider that no memory-write of thr has been executed in σ after storefnc
yet. Then, SFMapσ(thr) captures the requirements for executing a memory-write of thr.

We utilize the store-store fence maps to refine our identification of duplicate witness-prefixes.
This then gives us a time-complexity bound of O(k · nk+1 ·min(n2·k·(k−1), 2k·d)).

5.2.3 Closure for VerifyTSO and VerifyPSO
In this section we introduce closure, a practical heuristic to efficiently detect whether a given
instance (X, RF) of the verification problem VTSO-rf resp. VPSO-rf is unrealizable. Closure
is sound, meaning that a realizable instance (X, RF) is never declared unrealizable by closure.
Further, closure is not complete, which means there exist unrealizable instances (X, RF) not
detected as such by closure. Finally, closure can be computed in time polynomial with respect
to the number of events (i.e., size of X), irrespective of the underlying number of threads and
variables.

Given an instance (X, RF), any solution of VTSO-rf/VPSO-rf(X, RF) respects PO|X, i.e.,
the program order upon X. Closure constructs the weakest partial order P (X) that refines
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the program order (i.e., P ⊑ PO|X) and further satisfies for each read r ∈ R(X) with
RF(r) = (wB, wM):

1. If thr(r) ̸= thr(RF(r)), then (i) wM <P r and (ii) wM <P wM for any (wB, wM) ∈
W(Xthr(r)) such that wM ⋊⋉ r and wB <PO r.

2. For any wM ∈ WM(X ̸=thr(r)) such that wM ⋊⋉ r and wM ̸= wM , wM <P r implies
wM <P wM .

3. For any wM ∈ WM(X ̸=thr(r)) such that wM ⋊⋉ r and wM ≠ wM , wM <P wM
implies r <P wM .

If no above P exists, the instance VTSO-rf/VPSO-rf(X, RF) provably has no solution. In
case P exists, each solution σ of VTSO-rf/VPSO-rf(X, RF) provably respects P (formally,
σ ⊑ P ).

ρ1 ρ′
1 ρ′

2 ρ2

wB

r

wM

wB

wM

(a) Rule Item 1. Both new or-
derings are necessary, as a re-
versal of either of them would
“hide” wM from r, making it
impossible for r to read-from
(wB, wM).

ρ1 ρ′
1 ρ′

2 ρ2

wB

r

wM

wB

wM

(b) Rule Item 2. The new or-
dering is necessary; its rever-
sal would make wM appear be-
tween (wB, wM) and r, mak-
ing it impossible for r to read-
from (wB, wM).

ρ1 ρ′
1 ρ′

2 ρ2

wB

r

wM

wB

wM

(c) Rule Item 3. The new or-
dering is necessary; its rever-
sal would make wM appear be-
tween (wB, wM) and r, mak-
ing it impossible for r to read-
from (wB, wM).

Figure 5.7: Illustration of the three closure rules.

The intuition behind closure is as follows. The construction starts with the program order
PO|X, and then, utilizing the above rules Item 1, Item 2 and Item 3, it iteratively adds
further event orderings such that every witness execution provably has to follow the orderings.
Consequently, if the added orderings induce a cycle, this serves as a proof that there exists no
witness of the input instance (X, RF). The rules Item 1, Item 2 and Item 3 can intuitively
be though of as simple reasoning arguments why specific orderings have to be present in
each witness of (X, RF), and Fig. 5.7 provides an illustration of the rules. In each example
of Fig. 5.7, the read r has to read-from the write (wB, wM), i.e., RF(r) = (wB, wM). All
depicted events are on the same variable (which is omitted for clarity). The gray solid edges
illustrate orderings already present in the partial order, and the red dashed edges illustrate the
resulting new orderings enforced by the specific rule.

We leverage the guarantees of closure by computing it before executing VerifyTSO resp.
VerifyPSO. If no closure P of (X, RF) exists, the algorithm VerifyTSO resp. VerifyPSO
does not need to be executed at all, as we already know that (X, RF) is unrealizable. Otherwise
we obtain the closure P , we execute VerifyTSO/VerifyPSO to search for a witness of (X, RF),
and we restrict VerifyTSO/VerifyPSO to only consider prefixes σ′ respecting P (formally,
σ′ ⊑ P |E(σ′)), since we know that each solution of VTSO-rf/VPSO-rf(X, RF) has to respect
P .
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The notion of closure, its beneficial properties, as well as construction algorithms are well-
studied for the SC memory model [CCP+17, AAJ+19, Pav19]. Our conditions above extend
this notion to TSO and PSO. Moreover, the closure we introduce here is complete for
concurrent programs with two threads, i.e., if P exists then there is a valid trace realizing
(X, RF) under the respective memory model.

5.2.4 Verifying Executions with Atomic Primitives
For clarity of presentation of the core algorithmic concepts, we have thus far neglected more
involved atomic operations, namely atomic read-modify-write (RMW) and atomic compare-
and-swap (CAS). We show how our approach handles verification of TSO and PSO executions
that also include RMW and CAS operations here in a separate section. Importantly, our
treatment retains the complexity bounds established in Theorem 5.1 and Theorem 5.2.

Atomic instructions. We consider the concurrent program under the TSO resp. PSO
memory model, which can further atomically execute the following types of instructions.

1. A read-modify-write instruction rmw executes atomically the following sequence. It (i)
reads, with respect to the TSO resp. PSO semantics, the value v of a global variable
x ∈ G, then (ii) uses v to compute a new value v′, and finally (iii) writes the new value
v′ to the global variable x. An example of a typical rmw computation is fetch-and-add
(resp. fetch-and-sub), where v′ = v + c for some positive (resp. negative) constant c.

2. A compare-and-swap instruction cas executes atomically the following sequence. It (i)
reads, with respect to the TSO resp. PSO semantics, the value v of a global variable
x ∈ G, (ii) compares it with a value c, and (iii) if v = c then it writes a new value v′ to
the global variable x.

Each instruction of the above two types blocks (i.e., it cannot get executed) until the buffer of
its thread is empty (resp. all buffers of its thread are empty in PSO). Finally, the instruction
specifies the nature of its final write. This write is either enqueued into its respective buffer
(to be dequeued into shared memory at a later point), or it gets immediately flushed into the
shared memory.

Atomic instructions modeling. In our approach we handle atomic RMW and CAS instruc-
tions without introducing them as new event types. Instead, we model these instructions as
sequences of already considered events, i.e., reads, buffer-writes, memory-writes, and fences.
We annotate some events of an atomic instruction to constitute an atomic block, which
intuitively indicates that the event sequence of the atomic block cannot be interleaved with
other events, thus respecting the semantics of the instruction.

1. A read-modify-write instruction rmw on a variable x is modeled as a sequence of four
events: (i) a fence event, (ii) a read of x, (iii) a buffer-write of x, and (iv) a memory-write
of x. The read and buffer-write events (ii)+(iii) are annotated as constituting an atomic
block; in case the write of rmw is specified to proceed immediately to the shared memory,
the memory-write event (iv) is also part of the atomic block.

2. For a compare-and-swap instruction cas we consider separately the following two cases. A
successful cas (i.e., the write proceeds) is modeled the same way as a read-modify-write.
A failed cas (i.e., the write does not proceed) is modeled simply as a fence followed by
a read, with no atomic block.
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Executable atomic blocks. Here we describe the TSO- and PSO-executability conditions
for an atomic block. No further additions for executability are required, since no new event
types are introduced to handle RMW and CAS instructions.

Consider an instance (X, RF) of VTSO-rf, and a trace σ with E(σ) ⊆ X. An atomic block
containing a sequence of events e1, ..., ej is TSO-executable in σ if:

1. for each 1 ≤ i ≤ j we have that ei ∈ X \ E(σ), and

2. for each 1 ≤ i ≤ j we have that ei is TSO-executable in σ ◦ e1...ei−1.

Intuitively, an atomic block is TSO-executable if it can be executed as a sequence at once
(i.e., without other events interleaved), and the TSO-executable conditions of each event (i.e.,
a read or a buffer-write or a memory-write or a fence) within the block are respected.

The PSO-executable conditions are analogous. Given an instance (X, RF) of VPSO-rf and a
trace σ with E(σ) ⊆ X, an atomic block of events e1, ..., ej is PSO-executable in σ if:

1. for each 1 ≤ i ≤ j we have that ei ∈ X \ E(σ), and

2. for each 1 ≤ i ≤ j we have that ei is PSO-executable in σ ◦ e1...ei−1.

Execution verification. Given the above executable conditions, the execution verification
algorithms VerifyTSO and VerifyPSO only require minor technical modifications to verify
executions including RMW and CAS instructions.

The core idea of the VerifyTSO resp. VerifyPSO modifications is to not extend prefixes with
single events that are part of some atomic block, and instead extend the atomic blocks fully.
This way, a lower set of (X, PO) is considered only if for each atomic block, the block is either
fully present or fully not present in the lower set.

In VerifyTSO (Algorithm 5.1), in Line 4 we further consider each TSO-executable atomic
block e1, ..., ej not containing any memory-write event, and then in Line 5 we extend the prefix
with the entire atomic block, i.e., σ ← σ ◦ e1, ..., ej. Further, in Line 7 we further consider
each TSO-executable atomic block e1, ..., ej containing a memory-write event, and in Line 8
we then extend the prefix with the whole atomic block, i.e., σ ← σ ◦ e1, ..., ej.

In VerifyPSO (Algorithm 5.2), in the loop of Line 7 we further consider each PSO-executable
atomic block. Consider a fixed iteration of this loop with an atomic block e1, ..., ej. The first
event of the atomic block e1 is a read, thus the condition in Line 9 is evaluated true with
e1 and the control flow moves to Line 10. Later, the condition in Line 12 is evaluated false
(since e1 is a read). Finally, in Line 15 the prefix is extended with the whole atomic block, i.e.,
σe ← σe ◦ e1, ..., ej.

For VerifyTSO the argument of maintaining maximality in the set of thread events applies also
in the presence of RMW and CAS, and thus the bound of Theorem 5.1 is retained. Similarly,
for VerifyPSO the enumeration of fence maps and the maximality in the spurious writes is
preserved also with RMW and CAS, and hence the bound of Theorem 5.2 holds.

Closure. When verifying executions with RMW and CAS instructions, while the closure retains
its guarantees as is, it can more effectively detect unrealizable instances with additional rules.
Specifically, the closure P of (X, RF) satisfies the rules 1–3 described in Section 5.2.3, and
additionally, given an event e and an atomic block e1, ..., ej, P satisfies the following.
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4. If ei <P e for any 1 ≤ i ≤ j, then ej <P e (i.e., if some part of the block is before e
then the entire block is before e).

5. If e <P ei for any 1 ≤ i ≤ j, then e <P e1 (i.e., if e is before some part of the block
then e is before the entire block).

5.3 Reads-From SMC for TSO and PSO
In this section we present RF-SMC, an exploration-optimal reads-from SMC algorithm for
TSO and PSO. The algorithm RF-SMC is based on the reads-from algorithm for SC [AAJ+19],
and adapted in this work to handle the relaxed memory models TSO and PSO. The algorithm
uses as subroutines VerifyTSO (resp. VerifyPSO) to decide whether any given class of the
RF partitioning is consistent under the TSO (resp. PSO) semantics.

RF-SMC is a recursive algorithm, each call of RF-SMC is argumented by a tuple (τ, RF, σ, mrk)
where the following points hold:

• τ is a sequence of thread events. Let X denote the set of events of τ together
with their memory-write counterparts, formally X = E(τ) ∪ {wM : ∃(wB, wM) ∈
W such that wB ∈ WB(τ)}.

• RF : R(X)→W(X) is a desired reads-from function.

• σ is a concrete valid trace that is a witness of (X, RF), i.e., E(σ) = X and RFσ = RF.

• mrk ⊆ R(τ) is a set of reads that are marked to be committed to the source they
read-from in σ.

Further, a globally accessible set of schedule sets called schedules is maintained throughout
the recursion. The schedules set is initialized empty (schedules = ∅) and the initial call of the
algorithm is argumented with empty sequences and sets — RF-SMC(ϵ, ∅, ϵ, ∅).

Algorithm 5.3 presents the pseudocode of RF-SMC. In each call of RF-SMC, a number of
possible changes (or mutations) of the desired reads-from function RF is proposed in iterations
of the loop in Line 5. Consider the read r of a fixed iteration of the Line 5 loop. First, in
Lines 6–8 a partial order P is constructed to capture the causal past of write events. In
Lines 9–11 the set of mutations for r is computed. Then in each iteration of the Line 12 loop
a mutation is constructed (Lines 13–16). Here the partial order P is utilized in Line 13 to help
determine the event set of the mutation. The constructed mutation, if deemed novel (checked
in Line 17), is probed whether it is realizable (in Line 18). In case it is realizable, it gets added
into schedules in Line 21. After all the mutations are proposed, then in Lines 22–25 a number
of recursive calls of RF-SMC is performed, and the recursive RF-SMC calls are argumented
by the specific schedules retrieved.

Example. Fig. 5.8 illustrates the run of RF-SMC on a simple concurrent program (the run is
identical under both TSO and PSO). The gray boxes represent individual calls to RF-SMC.
The sequence of events inside a gray box is the trace σ̃; the part left of the ||-separator is σ
(before extending), and to the right is σ̂ (the extension). The red dashed arrows represent the
reads-from function RFσ̃. Each black solid arrow represents a recursive call, where the arrow’s
outgoing tail and label describes the corresponding mutation. An initial trace (A) is obtained
where r1(y) reads-from the initial event and r2(x) reads-from w1(x). Here two mutations
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Algorithm 5.3: RF-SMC(τ, RF, σ, mrk)
Input: Sequence τ , desired reads-from RF, valid trace σ with RFσ = RF, marked reads mrk.

1 σ̃ ← σ ◦ σ̂ where σ̂ is an arbitrary maximal extension of σ // Maximally extend trace σ

2 τ̃ ← τ ◦ σ̂|L(σ̂) // Extend τ with the thread-events subsequence of extension σ̂

3 foreach r ∈ R(σ̂) do // Reads of the extension σ̂

4 schedules(preτ̃ (r))← ∅ // Initialize new schedule set

5 foreach r ∈ R(τ̃) \mrk do // Unmarked reads

6 P ← PO|E(σ̃) // Program order on all the events of σ̃

7 foreach r′ ∈ R(τ̃) \ {r} with thr(r′) ̸= thr(RFσ̃(r′)) do
8 insert wM → r′ into P where RFσ̃(r′) = wM // Add reads-from ordering into P

9 mutations← {(wB, wM) ∈ W(σ̃) | r ⋊⋉ wM} \ {RFσ̃(r)}
10 if r ̸∈ R(σ̂) then // If r is not part of the extension then

11 mutations← mutations ∩W(σ̂) // Only consider writes of the extension

12 foreach (wB, wM) ∈ mutations do // Considered mutations

13 causesafter← {e ∈ E(τ̃) | r <τ̃ e and e ≤P wB} // Causal past of wB after r

14 τ ′ ← preτ̃ (r) ◦ τ̃ |causesafter // r-prefix followed by causesafter
15 X ′ ← E(τ ′) ∪ {wM ′ : (wB′, wM ′) ∈ W(σ̃) and wB′ ∈ WB(τ ′)} // New event set

16 RF′ ← {(r′, RFσ̃(r′)) : r′ ∈ R(τ ′) and r′ ̸= r} ∪ {(r, (wB, wM))} // New reads-from

17 if (τ ′, RF′, _, _) ̸∈ schedules(preτ̃ (r)) then // If this is a new schedule

18 σ′ ←Witness(X ′, RF′) // VerifyTSO or VerifyPSO
19 if σ′ ̸= ⊥ then // If the mutation is realizable

20 mrk′ ← (mrk ∩R(τ ′)) ∪R(causesafter) // New marked reads

21 add (τ ′, RF′, σ′, mrk′) to schedules(preτ̃ (r)) // Add the new schedule

22 foreach r̂ ∈ R(σ̂) in the reverse order of <σ̂ do // Extension reads from the end

23 foreach (τ ′, RF′, σ′, mrk′) ∈ schedules(preτ̃ (r̂)) do // Schedules mutating r̂

24 RF-SMC(τ ′, RF′, σ′, mrk′) // Recursive call on the schedule

25 delete schedules(preτ̃ (r̂)) // The set is explored, hence it can be deleted

are probed and both are realizable. In the first mutation (B), r1(y) is mutated to read-from
w2(y) and r2(x) is not retained (since it appears after r1(y) and it is not in the causal past
of w2(y)). In the second mutation (C), r2(x) is mutated to read-from the initial event and
r1(y) is retained (since it appears before r2(x)) with initial event as its reads-from. After
both mutations are added to schedules, recursive calls are performed in the reverse order of
reads appearing in the trace, thus starting with (C). Here no mutations are probed since there
are no events in the extension, the algorithm backtracks to (A) and a recursive call to (B) is
performed. Here one mutation (D) is added, where r2(x) is mutated to read-from the initial
event and r1(y) is retained (it appears before r2(x)) with w2(y) as its reads-from. The call to
(D) is performed and here no mutations are probed (there are no events in the extension).
The algorithm backtracks and concludes, exploring four RF partitioning classes in total.

Extension from SC to TSO and PSO. The fundamental challenge in extending the SC
algorithm of [AAJ+19] to TSO and PSO is verifying execution consistency for TSO and PSO,
which we address in Section 5.2 (Line 18 of Algorithm 5.3 calls our algorithms VerifyTSO and
VerifyPSO). The main remaining challenge is then to ensure that the exploration optimality is
preserved. To that end, we have to exclude certain events (in particular, memory-write events)
from subsequences and event subsets that guide the exploration of Algorithm 5.3. Specifically,
the sequences τ , τ ′, and τ̃ invariantly contain only the thread events, which is ensured in
Line 2, Line 13 and Line 14, and then in Line 15 the absent memory-writes are reintroduced.
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Figure 5.8: Visualization of a RF-SMC run.

No such distinction is required under SC.

RF-SMC is sound, complete and exploration-optimal, and we formally state this in Theorem 5.3.

Theorem 5.3. Consider a concurrent program P with k threads and d variables, under a
memory modelM∈ {TSO, PSO} with trace space T max

M and n being the number of events of
the longest trace in T max

M . RF-SMC is a sound, complete and exploration-optimal algorithm
for local state reachability in P, i.e., it explores only maximal traces and visits each class of
the RF partitioning exactly once. The time complexity is O (α · |T max

M / ∼RF|), where

1. α = nO(k) under M =TSO, and

2. α = nO(k2) under M =PSO.

Proof. Let M be the memory model from {TSO, PSO}. We sketch the correctness (i.e.,
soundness and completeness), exploration-optimality, and time complexity of RF-SMC.

Soudness. The soundness trivially follows from soundness of VerifyTSO used in TSO and of
VerifyPSO used in PSO, which are used as subroutines for verifying execution consistency.

Completeness. The completeness of RF-SMC rests upon the completeness of its variant for
SC introduced by [AAJ+19]. We now argue that the modifications to accomodate TSO and
PSO have no effect on completeness. First, consider in each recursive call the sequences τ
(argument of the call) and τ̃ (Line 2 of Algorithm 5.3). The sequence τ (resp. τ̃) in each
call contains exactly the thread events of the trace σ (resp. σ̂) in that call. Thus τ (resp. τ̃)
contains exactly the events of local traces of each thread in σ (resp. σ̂). This gives that the
usage of τ̃ to manipulate schedules is equivalent to the SC case where there are only thread
events. Second, the proper event set formed in Line 15 of Algorithm 5.3 is uniquely determined,
and mirrors the set of events E(τ ′) of the sequence τ ′ created in Line 14 of Algorithm 5.3. The
set of events E(τ ′) would be considered for the mutation in the SC case, given that we consider
buffer-writes of E(τ ′) as simply atomic write events that SC models. Finally, the witness
subroutine is handled by VerifyTSO for TSO and VerifyPSO for PSO, whose completeness is
established in Lemma 5.1 and Lemma 5.5. Thus the completeness of RF-SMC follows.
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Exploration-optimality. The exploration-optimality argument mirrors the one made by [AAJ+19],
and can be simply established by considering the sequence τ̃ (Line 2 of Algorithm 5.3) of each
recursive call. The sequences τ̃ of all calls, coalesced together with equal events merged, form
a rooted tree. Each node in the tree with multiple children is some read r. Let us label each
child branch by the source r reads-from, in the trace of the same call that owns the sequence
introducing the child branch. The source for r is different in each branch, and thus the same
trace can never appear when following two different branches of r. The exploration-optimality
follows.

Time complexity. From exploration-optimality we have that a run of RF-SMC performs exactly
|T max

M / ∼RF| calls. It remains to argue that each class of T max
M / ∼RF spends time O(α) where

1. α = nk+O(1) under M = TSO, and

2. α = nk+O(1) ·min(nk·(k−1), 2k·d) under M = PSO.

We split this argument to three parts.

1. Lines 1-4 spend O(n) time per call.

2. One call of VerifyTSO resp. VerifyPSO spends O(α) time by Theorem 5.1 resp. Theo-
rem 5.2. Thus Lines 5-21 spend O(n2 · α) time per call.

3. The total number of mutations added into schedules (on Line 21) equals |T max
M / ∼RF|−1,

i.e., it equals the total number of calls minus the initial call. However, we note that (i)
each call adds only polynomialy many new schedules, and (ii) a call to a new schedule is
considered work spent on the class corresponding to the new schedule. Thus Lines 22-25
spend O(1) amortized time per recursive call, and O(1) time is spent in this location
per partitioning class.

The complexity result follows.

Remark 5.1 (Handling locks and atomic primitives). For clarity of presentation, so far we
have neglected locks in our model. However, lock events can be naturally handled by our
approach as follows. We consider each lock-release event release as an atomic write event
(i.e., its effects are not deferred by a buffer but instead are instantly visible to each thread).
Then, each lock-acquire event acquire is considered as a read event that accesses the unique
memory location.

In SMC, we enumerate the reads-from functions that also consider locks, thus having con-
straints of the form RF(acquire) = release. This treatment totally orders the critical sections
of each lock, which naturally solves all reads-from constraints of locks, and further en-
sures that no thread acquires an already acquired (and so-far unreleased) lock. Therefore
VerifyTSO/VerifyPSO need not take additional care for locks. The approach to handle locks
by [AAJ+19] directly carries over to our exploration algorithm RF-SMC.

The atomic operations read-modify-write (RMW) and compare-and-swap (CAS) are modeled
as in Section 5.2.4, except for the fact that the atomic blocks are not necessary for SMC.
Then RF-SMC can handle programs with such operations as described by [AAJ+19]. In

96



5.4. Experiments

particular, the modification of RF-SMC (Algorithm 5.3) to handle RMW and CAS operations
is as follows.

Consider an iteration of the loop in Line 5 where r is the read-part of either a RMW or a
successful CAS, denoted e, and let (wB′′, wM ′′) = RFσ̃(r). Then, in Line 9 we additionally
consider as an extra mutation each atomic instruction e′ satisfying:

1. The read-part r′ of e′ reads-from the write-part (wB, wM) of e (i.e., RFσ̃(r′) =
(wB, wM)), and

2. e′ is either a RMW, or it will be a successful CAS when it reads-from (wB′′, wM ′′). In
this case, let (wB′, wM ′) denote the write-part of e′.

When considering the above mutation in Line 12, we set RF′(r′) = (wB′′, wM ′′) and RF′(r) =
(wB′, wM ′) in Line 16, which intuitively aims to “reverse” e and e′ in the trace.

5.4 Experiments
In this section we report on an experimental evaluation of the consistency verification algorithms
VerifyTSO and VerifyPSO, as well as the reads-from SMC algorithm RF-SMC. We have
implemented our algorithms as an extension in Nidhugg [AAA+15], a state-of-the-art stateless
model checker for multithreaded C/C++ programs with pthreads library, operating on LLVM
IR.

Benchmarks. For our experimental evaluation of both the consistency verification and
SMC, we consider 109 benchmarks coming from four different categories, namely: (i) SV-
COMP benchmarks, (ii) benchmarks from related papers and works [AAJ+19, AAA+15,
HH16, CPT19], (iii) mutual-exclusion algorithms, and (iv) dynamic-programming benchmarks
of [CPT19]. Although the consistency and SMC algorithms can be extended to support
atomic compare-and-swap and read-modify-write primitives (cf. Remark 5.1), our current
implementation does not support these primitives. Therefore, we used all benchmarks without
such primitives that we could obtain (e.g., we include every benchmark of the relevant SC reads-
from work [AAJ+19] except the one benchmark with compare-and-swap). Each benchmark
comes with a scaling parameter, called the unroll bound, which controls the bound on the
number of iterations in all loops of the benchmark (and in some cases it further controls the
number of threads).

Technical details. For all our experiments we have used a Linux machine with Intel(R)
Xeon(R) CPU E5-1650 v3 @ 3.50GHz (12 CPUs) and 128GB of RAM. We have run the
Nidhugg version of 26. November 2020, with Clang and LLVM version 8.

5.4.1 Experiments on Execution Verification for TSO and PSO
In this section we perform an experimental evaluation of our execution verification algorithms
VerifyTSO and VerifyPSO. For the purpose of comparison, we have also implemented
within Nidhugg the naive lower-set enumeration algorithm of [AAJ+19, BE19], extended to
TSO and PSO. Intuitively, this approach enumerates all lower sets of the program order
restricted to the input event set, which yields a better complexity bound than enumerating
write-coherence orders (even with just one location). The extensions to TSO and PSO are
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called NaiveVerifyTSO and NaiveVerifyPSO, respectively, and their worst-case complexity is
n2·k and nk·(d+1), respectively (as discussed in Section 5.1). Further, for each of the above
verification algorithms, we consider two variants, namely, with and without the closure heuristic
of Section 5.2.3.

Setup. We evaluate the verification algorithms on execution consistency instances induced
during SMC of the benchmarks. For TSO we have collected 9400 instances, 1600 of which are
not realizable. For PSO we have collected 9250 instances, 1400 of which are not realizable.
For each instance, we run the verification algorithms subject to a timeout of one minute, and
we report the average time achieved over 5 runs.

We generate and collect the VTSO-rf and VPSO-rf instances that appear during SMC of
our benchmarks using the reads-from SMC algorithm RF-SMC. We supply the unroll bounds
to the benchnmarks so that the created VTSO-rf/VPSO-rf instances are solvable in a time
reasonable for experiments (i.e., more than a tiny fraction of a second, and within a minute).
We run each benchmark with several such unroll bounds. Further, as a filter of too small
instances, we only consider realizable instances where at least one verification algorithm without
closure took at least 0.05 seconds.

For each SMC run, to collect a diverse set of instances, we collect every fifth realizable instance
we encounter, and every fifth unrealizable instance we encounter. In this way we collect 50
realizable instances and 20 unrealizable instances. For each collected instance, we run all
verification algorithms and closure/no-closure variants 5 times, and average the results. We
run all verification algorithms subject to a timeout of one minute.

Below we present the results using logarithmically scaled plots, where the opaque and semi-
transparent red lines represent identity and an order-of-magnitude difference, respectively.
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Figure 5.9: Verification in TSO (left) and PSO (right) with closure.

Results – algorithms with closure. Here we evaluate the verification algorithms that
execute the closure as the preceding step. The plots in Fig. 5.9 present the results for TSO
and PSO.

In TSO, our algorithm VerifyTSO is similar to or faster than NaiveVerifyTSO on the realizable
instances (blue dots), and the improvement is mostly within an order of magnitude. All
unrealizable instances (green squares) were detected as such by closure, and hence the
closure-using VerifyTSO and NaiveVerifyTSO coincide on these instances.
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We make similar observations in PSO, where VerifyPSO is similar or superior to NaiveVerifyPSO
for the realizable instances, and the algorithms are indentical on the unrealizable instances,
since these are all detected as unrealizable by closure.
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Figure 5.10: Verification in TSO (left) and PSO (right) without closure.

Results – algorithms without closure. Here we evaluate the verification algorithms without
the closure. The plots in Fig. 5.10 present the results for TSO and PSO.

In TSO, the algorithm VerifyTSO outperforms NaiveVerifyTSO on most of the realizable
instances (blue dots). Further, VerifyTSO significantly outperforms NaiveVerifyTSO on
the unrealizable instances (green squares). This is because without closure, a verification
algorithm can declare an instance unrealizable only after an exhaustive exploration of its
respective lower-set space. VerifyTSO explores a significantly smaller space compared to
NaiveVerifyTSO, as outlined in Section 5.1.

Similar observations as above hold in PSO for the algorithms VerifyPSO and NaiveVerifyPSO
without closure, both for the realizable and the unrealizable instances.

Results – effect of closure. Here we compare each verification algorithm against itself,
where one version uses closure and the other one does not. Recall that closure constructs a
partial order that each witness has to satisfy, and declares an instance unrealizable when it
detects that the partial order cannot be constructed for this instance (we refer to Section 5.2.3
for details).

Fig. 5.11 presents the comparison of VerifyTSO (used for VTSO-rf) and VerifyPSO (used
for VPSO-rf) with and without closure. For both memory models, we see that for instances
that are realizable (blue dots), the version without closure is superior, sometimes even beyond
an order of magnitude. This suggests that computing the closure-partial-order takes more
time than is subsequently saved by utilizing it during the witness search. On the other hand,
we observe that for the instances that are not realizable (green squares), the version with
closure is orders-of-magnitude faster. This signifies that closure detects unrealizable instances
much faster than complete exploration of a consistency verification algorithm.

Fig. 5.12 presents the comparison of NaiveVerifyTSO (used for VTSO-rf) and NaiveVerifyPSO
(used for VPSO-rf) with and without closure. We observe trends similar to the paragraph
above. Specifically, both NaiveVerifyTSO and NaiveVerifyPSO are mostly faster without
closure on realizable instances, while they are significantly faster with closure on unrealizable
instances.
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Figure 5.11: VerifyTSO (left) and VerifyPSO (right) with and without closure.
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Figure 5.12: NaiveVerifyTSO (left) and NaiveVerifyPSO (right) with and without closure.

For each verification algorithm, its version without closure is faster on most instances that
are realizable (i.e., a witness exists). This means that the overhead of computing the closure
typically outweighs the consecutive benefit of the verification being guided by the partial order.

On the other hand, for each verification algorithm, its version with closure is significantly
faster on the unrealizable instances (i.e., no witness exists). This is because a verification
algorithm has to enumerate all its lower sets before declaring an instance unrealizable, and
this is much slower than the polynomial closure computation.

Results – verification with atomic operations. Here we present additional experiments
to evaluate TSO verification algorithms VerifyTSO and NaiveVerifyTSO on executions
containing atomic operations read-modify-write (RMW) and compare-and-swap (CAS). To
that end, we consider 1088 verification instances (779 realizable and 309 not realizable) that
arise during stateless model checking of benchmarks containing RMW and CAS, namely:

• synthetic benchmarks casrot [AAJ+19] and cinc [KRV19b],

• data structure benchmarks barrier, chase-lev, ms-queue and linuxrwlocks [ND13, KRV19b],
and

• Linux kernel benchmarks mcs_spinlock and qspinlock [KRV19b].
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Figure 5.13: Verification in TSO with (left) and without (right) closure; RMW/CAS.

The results are presented in Fig. 5.13. The left plot depicts the results for VerifyTSO and
NaiveVerifyTSO when closure is used as a preceding step. Here the results are all within
an order-of-magnitude difference, and they are identical for unrealizable instances, since all
of them were detected as unrealizable already by the closure. The right plot depicts the
results for VerifyTSO and NaiveVerifyTSO without using the closure. Here the difference for
realizable instances is also within an order of magnitude, but for some unrealizable instances
the algorithm VerifyTSO is significantly faster. Generally, the observed improvement of our
VerifyTSO as compared to NaiveVerifyTSO is somewhat smaller in Fig. 5.13, which could
be due to the fact that executions with RMW and CAS instructions typically have fewer
concurrent writes (indeed, in an execution where each write event is a part of a RMW/CAS
instruction, each conflicting pair of writes is inherently ordered by the reads-from orderings
together with PO).
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Figure 5.14: VerifyTSO (left) and NaiveVerifyTSO (right) closure effect; RMW/CAS.

Finally, Fig. 5.14 presents the effect of closure for VerifyTSO and NaiveVerifyTSO on
verification instances that contain RMW and CAS instructions. Similarly to the verification
without RMW and CAS instructions, both verification algorithms are somewhat slower when
using closure on the realizable instances, and they are significantly faster when using closure
on the unrealizable instances.
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5.4.2 Experiments on SMC for TSO and PSO
In this section we focus on assessing the advantages of utilizing the reads-from equivalence for
SMC in TSO and PSO.

Setup. We have used RF-SMC for stateless model checking of 109 benchmarks under each
memory model M∈ {SC, TSO, PSO}, where SC is handled in our implementation as TSO
with a fence after each thread event.

Handling assertion violations. We note that not all benchmarks behave as intended under
all memory models, e.g., a benchmark might be correct under SC, but contain bugs under
TSO. However, this is not an issue, as our goal is to characterize the size of the underlying
partitionings, rather than detecting assertion violations. We have disabled all assertions, in
order to not have the measured parameters be affected by how fast a violation is discovered,
as the latter is arbitrary. As a sanity check, we have confirmed that for each memory model,
all algorithms considered for that model discover the same bugs when assertions are enabled.

Identifying events. Our implementation extends the Nidhugg model checker and we rely on the
interpreter built inside Nidhugg to identify events. An event e is defined by a triple (ae, be, ce),
where ae is the thread-id of e, be is the id of either the buffer of ae or the main-thread of
ae that e is a part of, and ce is the sequential number of the last LLVM instruction (of the
corresponding thread/buffer) that is part of e. It can happen that there exist two traces σ1
and σ2, and two different events e1 ∈ σ1, e2 ∈ σ2, such that their identifiers are equal, i.e.,
ae1 = ae2 , be2 = be2 , and ce1 = ce2 . However, this means that the control-flow leading to each
event is different. In this case, σ1 and σ2 differ in the reads-from of a common event that is
ordered by the program order PO both before e1 in σ1 and before e2 in σ2, and hence e1 and
e2 are treated as inequivalent.

Comparison. As a baseline for comparison, we have also executed Nidhugg/source [AAJS14],
which is implemented in Nidhugg and explores the trace space using the partitioning based
on the Shasha–Snir equivalence. In SC, we have further executed Nidhugg/rfsc [AAJ+19],
the Nidhugg implementation of the reads-from SMC algorithm for SC by [AAJ+19]. Both
Nidhugg/rfsc and Nidhugg/source are well-optimized, and recently started using advanced
data-structures for SMC [LS20]. The works of [KRV19b, KV20] provide a general interface
for reads-from SMC in relaxed memory models. However, they handle a given memory model
assuming that an auxiliary consistency verification algorithm for that memory model is provided.
No such consistency algorithm for TSO or PSO is presented by [KRV19b, KV20], and, to our
knowledge, the tool implementations of [KRV19b, KV20] also lack a consistency algorithm for
both TSO and PSO. Thus these tools are not included in the evaluation.1

Evaluation objective. Our objective for the SMC evaluation is three-fold. First, we want
to quantify how each memory model M ∈ {SC, TSO, PSO} impacts the size of the RF
partitioning. Second, we are interested to see whether, as compared to the baseline Shasha–Snir
equivalence, the RF equivalence leads to coarser partitionings for TSO and PSO, as it does
for SC [AAJ+19]. Finally, we want to determine whether a coarser RF partitioning leads to
faster exploration. Theorem 5.3 states that RF-SMC spends polynomial time per partitioning
class, and we aim to see whether this is a small polynomial in practice.

1Another related work is MCR [HH16], however, the corresponding tool operates on Java programs and
uses heavyweight SMT solvers that require fine tuning, and thus is beyond the experimental scope of this
work.
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Figure 5.15: Traces as RF-SMC moves from SC to TSO (left) to PSO (right).

Results. We illustrate the obtained results with several scatter plots. Each plot compares
two algorithms executing under specified memory models. Then for each benchmark, we
consider the highest attempted unroll bound where both the compared algorithms finish before
the one-hour timeout. Green squares indicate that a trace reduction was achieved on the
underlying benchmark by the algorithm on the y-axis as compared to the algorithm on the
x-axis. Benchmarks with no trace reduction are represented by the blue dots. All scatter
plots are in log scale, the opaque and semi-transparent red lines represent identity and an
order-of-magnitude difference, respectively.
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Figure 5.16: Traces for RF-SMC and Nidhugg/source on TSO (left) and PSO (right).

The plots in Fig. 5.15 illustrate how the size of the RF partitioning explored by RF-SMC
changes as we move to more relaxed memory models (SC to TSO to PSO). The plots in
Fig. 5.16 capture how the size of the RF partitioning explored by RF-SMC relates to the size
of the Shasha–Snir partitioning explored by Nidhugg/source. Finally, the plots in Fig. 5.17
demonstrate the time comparison of RF-SMC and Nidhugg/source when there is some (green
squares) or no (blue dots) RF-induced trace reduction.

Below we discuss the observations on the obtained results. Table 5.1 captures detailed results
on several benchmarks that we refer to as examples in the discussion. In the table, U denotes
the unroll bound, the timeout of one hour is indicated by “-”, and bold-font entries indicate
the smallest numbers for the respective memory model.
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Figure 5.17: Times for RF-SMC and Nidhugg/source on TSO (left) and PSO (right).

Benchmark U Seq. Consistency Total Store Order Partial Store Order
RF-SMC Source RF-SMC Source RF-SMC Source

27_Boop4
threads: 4

Traces 1 2902 21948 3682 36588 8233 572436
4 197260 3873348 313336 9412428 1807408 -

Times 1 1.22s 1.74s 1.46s 6.18s 4.40s 169s
4 124s 550s 182s 2556s 1593s -

eratosthenes
threads: 2

Traces 17 4667 100664 29217 4719488 253125 -
21 19991 1527736 223929 - - -

Times 17 6.70s 46s 32s 2978s 475s -
21 41s 736s 342s - - -

fillarray_false
threads: 2

Traces 3 14625 47892 14625 59404 14625 63088
4 471821 2278732 471821 3023380 471821 3329934

Times 3 12s 6.18s 12s 12s 18s 39s
4 553s 331s 547s 778s 930s 2844s

Table 5.1: SMC results on several benchmarks.

Discussion. We notice that the analysed programs can often exhibit additional behavior in
relaxed memory settings. This causes an increase in the size of the partitionings explored
by SMC algorithms (see 27_Boop4 in Table 5.1 as an example). Fig. 5.15 illustrates the
overall phenomenon for RF-SMC, where the increase of the RF partitioning size (and hence
the number of traces explored) is sometimes beyond an order of magnitude when moving from
SC to TSO, or from TSO to PSO.

We observe that across all memory models, the reads-from equivalence can offer significant
reduction in the trace partitioning as compared to Shasha–Snir equivalence. This leads to
fewer traces that need to be explored, see the plots of Fig. 5.16. As we move towards
more relaxed memory (SC to TSO to PSO), the reduction of RF partitioning often becomes
more prominent (see 27_Boop4 in Table 5.1). Interestingly, in some cases the size of the
Shasha–Snir partitioning explored by Nidhugg/source increases as we move to more relaxed
settings, while the RF partitioning remains unchanged (cf. fillarray_false in Table 5.1).
All these observations signify advantages of RF for analysis of the more complex program
behavior that arises due to relaxed memory.

We now discuss how trace partitioning coarseness affects execution time, observing the plots of
Fig. 5.17. We see that in cases where RF partitioning is coarser (green squares), our RF algo-
rithm RF-SMC often becomes significantly faster than the Shasha–Snir-based Nidhugg/source,
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allowing us to analyse programs scaled several levels further (see eratosthenes in Ta-
ble 5.1). In cases where the sizes of the RF partitioning and the Shasha–Snir partitioning
coincide (blue dots), the well-engineered Nidhugg/source outperforms our RF-SMC imple-
mentation. The time differences in these cases are reasonably moderate, suggesting that the
polynomial overhead incurred to operate on the RF partitioning is small in practice.

Further results. We now provide further results of the SMC experiments via several scatter
plots to compactly illustrate the full experimental results. For each fixed plot comparing two
algorithms, we plot the execution times and the numbers of explored maximal traces as follows.
For each benchmark, we consider the highest attempted unroll bound where both compared
algorithms finish before the one-hour timeout. Then we plot the time and the number of
traces obtained by the two algorithms on the benchmark scaled with the above unroll bound.
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Figure 5.18: Times as RF-SMC moves from SC to TSO (left) to PSO (right).

Fig. 5.18 captures how analyzing a concurrent program by RF-SMC under more relaxed
memory settings affects the execution time. Unsurprisingly, when a program exhibits additional
behavior under a more relaxed model, more time is required to fully analyze it under the more
relaxed model. Green squares represent such programs. On the other hand, for programs
(represented by blue dots) where the number of traces stays the same in the more relaxed
model, the time required for analysis is only minorly impacted.
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Figure 5.19: Times (left) and traces (right) for RF-SMC and Nidhugg/source on SC.

Fig. 5.19 compares in SC the algorithm Nidhugg/source with our algorithm RF-SMC that
handles SC as TSO where a fence event is inserted after every buffer-write event. Similar
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Figure 5.20: Times for RF-SMC and Nidhugg/rfsc on SC.

trends are observed as when Nidhugg/source and RF-SMC are compared in TSO and PSO.
Specifically, there are cases where the RF partitioning offers reduction of the trace space size
to be explored (green squares), and this often leads to significant speedup of the exploration.
On the other hand, Nidhugg/source dominates in cases where no RF-based partitioning is
induced (blue dots).

Further, Fig. 5.20 compares in SC the algorithm RF-SMC with Nidhugg/rfsc, the reads-
from SMC algorithm for SC presented by [AAJ+19]. These two are essentially identical
algorithms, thus unsurprisingly, the number of explored traces coincides in all cases. However,
the well-engineered implementation of Nidhugg/rfsc is faster than our implementation of
RF-SMC. This comparison provides a rough illustration of the effect of the optimizations and
data-structures recently employed by Nidhugg/rfsc in the work of [LS20].
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Figure 5.21: Times for RF-SMC with and without closure on TSO (left) and PSO (right).

In Section 5.4.1 we have seen that utilizing closure in consistency verification of realizable
instances is mostly detrimental, whereas in consistency verification of unrealizable cases it is
extremely helpful. This naturally begs a question whether it is overall beneficial to use closure
in SMC. The plots in Fig. 5.21 present the time results for such an experiment (the number
of explored traces coincide, as expected). The plots demonstrate that the time differences
are negligible. The number of traces is, unsurprisingly, unaffected (it is also supposed to be
unaffected, since closure is sound and VerifyTSO/VerifyPSO are sound and complete).
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We have further considered an auxiliary-trace heuristic for guiding VerifyTSO resp. VerifyPSO,
similar to the heuristic reported by [AAJ+19]. Similar to the paragraph above, this heuristic
provided little-to-no time difference in the model checking task in our experiments.

107





CHAPTER 6
Symbolic Algorithms for Fairness

Objectives

In this chapter we present faster symbolic algorithms for graphs and Markov decision processes
(MDPs) with strong fairness (also known as Streett) objectives. While explicit algorithms
for graphs and MDPs with Streett objectives have been widely studied, there has been no
improvement of the basic symbolic algorithms. The worst-case numbers of symbolic steps
required for the basic symbolic algorithms are as follows: quadratic for graphs and cubic
for MDPs. In this work we present the first sub-quadratic symbolic algorithm for graphs
with Streett objectives, and our algorithm is sub-quadratic even for MDPs. Based on our
algorithmic insights we present an implementation of the new symbolic approach and we show
that it improves the existing approach on several academic benchmark examples.

Previous Results. The most basic algorithm for the problem for graphs is based on repeated
strongly connected component (SCC) computation, and informally can be described as follows:
for a given SCC, (a) if for every request type that is present in the SCC the corresponding grant
type is also present in the SCC, then the SCC is identified as “good”, (b) else vertices of each
request type that has no corresponding grant type in the SCC are removed, and the algorithm
recursively proceeds on the remaining graph. Finally, reachability to good SCCs is computed.
The current best-known symbolic algorithm for SCC computation requires O(n) symbolic
steps, for graphs with n vertices [GPP08], and moreover, the algorithm is optimal [CDHL18].
For MDPs, the SCC computation has to be replaced by maximal end-component (MEC)
computation, and the current best-known symbolic algorithm for MEC computation requires
O(n2) symbolic steps. While there have been several explicit algorithms for graphs with Streett
objectives [HT96, CHL15], MEC computation [CH11, CH12, CH14], and MDPs with Streett
objectives [CDHL16], as well as symbolic algorithms for MDPs with Büchi objectives [CHJS13],
the current best-known bounds for symbolic algorithms with Streett objectives are obtained
from the basic algorithms, which are O(n ·min(n, k)) for graphs and O(n2 ·min(n, k)) for
MDPs, where k is the number of types of request-grant pairs.

Our Contributions. In this work our main contributions are as follows:

1. We present a symbolic algorithm that requires O(n ·
√

m log n) symbolic steps, both for
graphs and MDPs, where m is the number of edges. In the case k = O(n), the previous
worst-case bounds are quadratic (O(n2)) for graphs and cubic (O(n3)) for MDPs. In
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Symbolic Operations

Problem Basic Algorithm Improved Algorithm Reference

Graphs with Streett O(n ·min(n, k)) O(n
√

m log n) Theorem 6.2
MDPs with Streett O(n2 ·min(n, k)) O(n

√
m log n) Theorem 6.5

MEC decomposition O(n2) O(n
√

m) Theorem 6.4

Table 6.1: Symbolic algorithms for Streett objectives and MEC decomposition.

contrast, we present the first sub-quadratic symbolic algorithm both for graphs as well
as MDPs. Moreover, in practice, since most graphs are sparse (with m = O(n)), the
worst-case bounds of our symbolic algorithm in these cases are O(n ·

√
n log n). Another

interesting contribution of our work is that we also present an O(n ·
√

m) symbolic
steps algorithm for MEC decomposition, which is relevant for our results as well as of
independent interest, as MEC decomposition is used in many other algorithmic problems
related to MDPs. Our results are summarized in Table 6.1.

2. While our main contribution is theoretical, based on the algorithmic insights we also
present a new symbolic algorithm implementation for graphs and MDPs with Streett ob-
jectives. We show that the new algorithm improves (by around 30%) the basic algorithm
on several academic benchmark examples from the VLTS benchmark suite [CWI].

Technical Contributions. The two key technical contributions of our work are as follows:

1. Symbolic Lock Step Search: We search for newly emerged SCCs by a local graph
exploration around vertices that lost adjacent edges. In order to find small new SCCs
first, all searches are conducted “in parallel”, i.e., in lock-step, and the searches stop
as soon as the first one finishes successfully. This approach has successfully been used
to improve explicit algorithms [HT96, CJH03, CH12, CDHL16]. Our contribution is
a non-trivial symbolic variant (Section 6.2) which lies at the core of the theoretical
improvements.

2. Symbolic Interleaved MEC Computation: For MDPs the identification of vertices that
have to be removed can be interleaved with the computation of MECs such that
in each iteration the computation of SCCs instead of MECs is sufficient to make
progress [CDHL16]. We present a symbolic variant of this interleaved computation. This
interleaved MEC computation is the basis for applying the lock-step search to MDPs.

6.1 Definitions
6.1.1 Basic Problem Definitions

Markov decision processes (MDPs) and Graphs. An MDP M = ((V, E), (V1, VR), δ)
consists of a finite directed graph G = (V, E) with a set of n vertices V and a set of m
edges E, a partition of the vertices into player 1 vertices V1 and random vertices VR, and a
probabilistic transition function δ. We call an edge (u, v) with u ∈ V1 a player 1 edge and an
edge (v, w) with v ∈ VR a random edge. For v ∈ V we define In(v) = {w ∈ V | (w, v) ∈ E}
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and Out(v) = {w ∈ V | (v, w) ∈ E}. The probabilistic transition function is a function from
VR to D(V ), where D(V ) is the set of probability distributions over V and a random edge
(v, w) ∈ E if and only if δ(v)[w] > 0. Graphs are a special case of MDPs with VR = ∅.

Plays and Strategies. A play or infinite path in M is an infinite sequence ω = ⟨v0, v1, v2, . . .⟩
such that (vi, vi+1) ∈ E for all i ∈ N; we denote by Ω the set of all plays. A player 1
strategy λ : V ∗ · V1 → V is a function that assigns to every finite prefix ω ∈ V ∗ · V1 of a play
that ends in a player 1 vertex v a successor vertex λ(ω) ∈ V such that (v, λ(ω)) ∈ E; we
denote by Λ the set of all player 1 strategies. A strategy is memoryless if we have λ(ω) = λ(ω′)
for any ω, ω′ ∈ V ∗ · V1 that end in the same vertex v ∈ V1.

Objectives. An objective ϕ is a subset of Ω said to be winning for player 1. We say that a play
ω ∈ Ω satisfies the objective ϕ if ω ∈ ϕ. For a vertex set T ⊆ V the reachability objective
is the set of infinite paths that contain a vertex of T , i.e., Reach(T ) = {⟨v0, v1, v2, . . .⟩ ∈
Ω | ∃j ≥ 0 : vj ∈ T }. Let Inf(ω) for ω ∈ Ω denote the set of vertices that occur infinitely
often in ω. Given a set SP of k pairs (Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k,
the Streett objective is the set of infinite paths for which it holds for each 1 ≤ i ≤ k that
whenever a vertex of Li occurs infinitely often, then a vertex of Ui occurs infinitely often, i.e.,
Streett(SP) = {ω ∈ Ω | Li ∩ Inf(ω) = ∅ or Ui ∩ Inf(ω) ̸= ∅ for all 1 ≤ i ≤ k}.

Almost-Sure Winning Sets. For any measurable set of plays A ⊆ Ω we denote by Prλ
v (A)

the probability that a play starting at v ∈ V belongs to A when player 1 plays strategy λ. A
strategy λ is almost-sure (a.s.) winning from a vertex v ∈ V for an objective ϕ if Prλ

v (ϕ) = 1.
The almost-sure winning set ⟨⟨1⟩⟩as (M , ϕ) of player 1 is the set of vertices for which player 1
has an almost-sure winning strategy. In graphs the existence of an almost-sure winning strategy
corresponds to the existence of a play in the objective, and the set of vertices for which player 1
has an (almost-sure) winning strategy is called the winning set ⟨⟨1⟩⟩ (M , ϕ) of player 1.

Symbolic Encoding of MDPs. Symbolic algorithms operate on sets of vertices, which are
usually described by Binary Decision Diagrams (bdds) [Lee59, Ake78]. In particular Ordered
Binary Decision Diagrams [Bry85] (Obdds) provide a canonical symbolic representation of
Boolean functions. For the computation of almost-sure winning sets of MDPs it is sufficient
to encode MDPs with Obdds and one additional bit that denotes whether a vertex is in V1
or VR.

Symbolic Steps. One symbolic step corresponds to one primitive operation as supported
by standard symbolic packages like CuDD [Som15]. In this paper we only allow the same
basic set-based symbolic operations as in [RBS00, GPP03, BGS06, CHJS13], namely set
operations and the following one-step symbolic operations for a set of vertices Z: (a) the
one-step predecessor operator Pre(Z) = {v ∈ V | Out(v)∩Z ≠ ∅}; (b) the one-step successor
operator Post(Z) = {v ∈ V | In(v) ∩ Z ̸= ∅}; and (c) the one-step controllable predecessor
operator CPreR(Z) = {v ∈ V1 | Out(v) ⊆ Z} ∪ {v ∈ VR | Out(v) ∩ Z ̸= ∅} ; i.e., the CPreR

operator computes all vertices such that the successor belongs to Z with positive probability.
This operator can be defined using the Pre operator and basic set operations as follows:
CPreR(Z) = Pre(Z) \ (V1 ∩ Pre(V \ Z)) . We additionally allow cardinality computation and
picking an arbitrary vertex from a set as in [CHJS13].

Symbolic Model. Informally, a symbolic algorithm does not operate on explicit representation
of the transition function of a graph, but instead accesses it through Pre and Post operations.
For explicit algorithms, a Pre/Post operation on a set of vertices (resp., a single vertex) requires
O(m) (resp., the order of indegree/outdegree of the vertex) time. In contrast, for symbolic

111



6. Symbolic Algorithms for Fairness Objectives

algorithms Pre/Post operations are considered unit-cost. Thus an interesting algorithmic
question is whether better algorithmic bounds can be obtained considering Pre/Post as unit-
cost operations. Moreover, the basic set operations are computationally less expensive (as
they encode the relationship between the state variables) compared to the Pre/Post symbolic
operations (as they encode the transitions and thus the relationship between the present
and the next-state variables). In all presented algorithms, the number of set operations is
asymptotically at most the number of Pre/Post operations. Hence in the sequel we focus on
the number of Pre/Post operations of algorithms.

Algorithmic Problem. Given an MDP M (resp. a graph G) and a set of Streett pairs SP,
the problem we consider asks for a symbolic algorithm to compute the almost-sure winning
set ⟨⟨1⟩⟩as (M , Streett(SP)) (resp. the winning set ⟨⟨1⟩⟩ (G, Streett(SP))), which is also called
the qualitative analysis of MDPs (resp. graphs).

6.1.2 Basic Concepts related to Algorithmic Solution

Reachability. For a graph G = (V, E) and a set of vertices S ⊆ V the set GraphReach(G, S)
is the set of vertices of V that can reach a vertex of S within G, and it can be identified with
at most |GraphReach(G, S) \ S|+ 1 many Pre operations.

Strongly connected components (SCCs). For a set of vertices S ⊆ V we denote by
G[S] = (S, E ∩ (S × S)) the subgraph of the graph G induced by the vertices of S. An
induced subgraph G[S] is strongly connected if there exists a path in G[S] between every pair
of vertices of S. A strongly connected component (SCC) of G is a set of vertices C ⊆ V such
that the induced subgraph G[C] is strongly connected and C is a maximal set in V with this
property. Given an MDP M = ((V, E), (V1, VR), δ), a set of vertices C ⊆ V is an SCC of M
if it is an SCC of the corresponding graph (V, E). We call an SCC trivial if it only contains a
single vertex and no edges; and non-trivial otherwise. The SCCs of G partition its vertices
and can be found in O(n) symbolic steps [GPP08]. A bottom SCC C in a directed graph G is
an SCC with no edges from vertices of C to vertices of V \ C, i.e., an SCC without outgoing
edges. Analogously, a top SCC C is an SCC with no incoming edges from V \ C. For more
intuition for bottom and top SCCs, consider the graph in which each SCC is contracted into a
single vertex (ignoring edges within an SCC). In the resulting directed acyclic graph the sinks
represent the bottom SCCs and the sources represent the top SCCs. Note that every graph
has at least one bottom and at least one top SCC. If the graph is not strongly connected, then
there exist at least one top and at least one bottom SCC that are disjoint and thus one of
them contains at most half of the vertices of G.

Random Attractors. In an MDP M the random attractor AttrR(M , W ) of a set of vertices
W is defined as AttrR(M , W ) = ⋃

j≥0 Zj where Z0 = W and Zj+1 = Zj ∪ CPreR(Zj) for all
j > 0. The attractor can be computed with at most |AttrR(M , W ) \W |+ 1 many CPreR

operations.

Maximal end-components (MECs). Let X be a vertex set without outgoing random
edges, i.e., with Out(v) ⊆ X for all v ∈ X ∩ VR. A sub-MDP of an MDP M induced by
a vertex set X ⊆ V without outgoing random edges is defined as M [X] = ((X, E ∩ (X ×
X), (V1 ∩X, VR ∩X), δ). Note that the requirement that X has no outgoing random edges
is necessary in order to use the same probabilistic transition function δ. An end-component
of an MDP M is a set of vertices X ⊆ V such that (a) X has no outgoing random edges,
i.e., M [X] is a valid sub-MDP, (b) the induced sub-MDP M [X] is strongly connected, and
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(c) M [X] contains at least one edge. Intuitively, an end-component is a set of vertices for
which player 1 can ensure that the play stays within the set and almost-surely reaches all the
vertices in the set (infinitely often). An end-component is a maximal end-component (MEC)
if it is maximal under set inclusion. An end-component is trivial if it consists of a single vertex
(with a self-loop), otherwise it is non-trivial. The MEC decomposition of an MDP consists of
all MECs of the MDP.

Good End-Components. All algorithms for MDPs with Streett objectives are based on
finding good end-components, defined below. Given the union of all good end-components,
the almost-sure winning set for the Streett objective is obtained by computing the almost-sure
winning set for the reachability objective with the union of all good end-components as the
target set. The correctness of this approach is shown in [CDHL16, Loi16] (see also [BK08,
Chap. 10.6.3]). For Streett objectives a good end-component is defined as follows. In the
special case of graphs they are called good components.

Definition (Good end-component). Given an MDP M and a set SP = {(Lj, Uj) | 1 ≤ j ≤ k}
of target pairs, a good end-component is an end-component X of M such that for each
1 ≤ j ≤ k either Lj ∩ X = ∅ or Uj ∩ X ̸= ∅. A maximal good end-component is a good
end-component that is maximal with respect to set inclusion.

Lemma 6.1 (Correctness of Computing Good End-Components [Loi16, Corollary 2.6.5,
Proposition 2.6.9]). For an MDP M and a set SP of target pairs, let X be the set of all maximal
good end-components. Then ⟨⟨1⟩⟩as (M , Reach(⋃X∈X X)) is equal to ⟨⟨1⟩⟩as (M , Streett(SP)).

Iterative Vertex Removal. All the algorithms for Streett objectives maintain vertex sets
that are candidates for good end-components. For such a vertex set S we (a) refine the
maintained sets according to the SCC decomposition of M [S] and (b) for a set of vertices W
for which we know that it cannot be contained in a good end-component, we remove its
random attractor from S. The following lemma shows the correctness of these operations.

Lemma 6.2 (Correctness of Vertex Removal [Loi16, Lemma 2.6.10]). Given an MDP M =
((V, E), (V1, VR), δ), let X be an end-component with X ⊆ S for some S ⊆ V . Then

(a) X ⊆ C for one SCC C of M [S] and

(b) X ⊆ S \ AttrR(M ′, W ) for each W ⊆ V \X and each sub-MDP M ′ containing X.

Let X be a good end-component. Then X is an end-component and for each index j,
X ∩ Uj = ∅ implies X ∩ Lj = ∅ . Hence we obtain the following corollary.

Corollary 6.1 ([Loi16, Corollary 4.2.2]). Given an MDP M , let X be a good end-component
with X ⊆ S for some S ⊆ V . For each i with S ∩ Ui = ∅ it holds that X ⊆ S \
AttrR(M [S], Li ∩ S).

For an index j with S ∩ Uj = ∅ we call the vertices of S ∩ Lj bad vertices. The set of all bad
vertices Bad(S) = ⋃

1≤i≤k{v ∈ Li∩S | Ui∩S = ∅} can be computed with 2k set operations.
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6.2 Symbolic Divide-and-Conquer with Lock-Step
Search

In this section we present a symbolic version of the lock-step search for strongly connected
subgraphs [HT96]. This symbolic version is used in all subsequent results of this chapter, i.e.,
the sub-quadratic symbolic algorithms for graphs and MDPs with Streett objectives, and for
MEC decomposition.

Divide-and-Conquer. The common property of the algorithmic problems we consider in this
work is that the goal is to identify subgraphs of the input graph G = (V, E) that are strongly
connected and satisfy some additional properties. The difference between the problems lies in
the required additional properties. We describe and analyze the Algorithm 6.1 that we use in
all our improved algorithms to efficiently implement a divide-and-conquer approach based on
the requirement of strong connectivity, that is, we divide a subgraph G[S], induced by a set of
vertices S, into two parts that are not strongly connected within G[S], or we detect that G[S]
is indeed strongly connected.

Algorithm 6.1: Lock-Step-Search(G, S, HS, TS)
Input: Graph G, set of vertice S and its subsets HS and TS .
/* Pre and Post defined w.r.t. to G */

1 foreach v ∈ HS ∪ TS do
2 Cv ← {v}
3 while true do
4 H ′

S ← HS , T ′
S ← TS

5 foreach h ∈ HS do // search for top SCC

6 C ′
h ← (Ch ∪ Pre(Ch)) ∩ S

7 if |C ′
h ∩H ′

S | > 1 then
8 H ′

S ← H ′
S \ {h}

9 else
10 if C ′

h = Ch then
11 return (Ch, H ′

S , TS)
12 Ch ← C ′

h

13 foreach t ∈ TS do // search for bottom SCC

14 C ′
t ← (Ct ∪ Post(Ct)) ∩ S

15 if |C ′
t ∩ T ′

S | > 1 then
16 T ′

S ← T ′
S \ {t}

17 else
18 if C ′

t = Ct then
19 return (Ct, H ′

S , T ′
S)

20 Ct ← C ′
t

21 HS ← H ′
S , TS ← T ′

S

Start Vertices of Searches. The input to Algorithm 6.1 is a set of vertices S ⊆ V and two
subsets of S denoted by HS and TS. In the algorithms that call the procedure as a subroutine,
vertices contained in HS have lost incoming edges (i.e., they were a “head” of a lost edge) and
vertices contained in TS have lost outgoing edges (i.e., they were a “tail” of a lost edge) since
the last time a superset of S was identified as being strongly connected. For each vertex h of
HS the procedure conducts a backward search (i.e., a sequence of Pre operations) within G[S]
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to find the vertices of S that can reach h; and analogously a forward search (i.e., a sequence
of Post operations) from each vertex t of TS is conducted.

Intuition for the Choice of Start Vertices. If the subgraph G[S] is not strongly connected,
then it contains at least one top SCC and at least one bottom SCC that are disjoint. Further,
if for a superset S ′ ⊃ S the subgraph G[S ′] was strongly connected, then each top SCC of
G[S] contains a vertex that had an additional incoming edge in G[S ′] compared to G[S], and
analogously each bottom SCC of G[S] contains a vertex that had an additional outgoing edge.
Thus by keeping track of the vertices that lost incoming or outgoing edges, the following
invariant will be maintained by all our improved algorithms.

Invariant 6.1 (Start Vertices Sufficient). We have HS, TS ⊆ S. Either (a) HS ∪ TS = ∅ and
G[S] is strongly connected or (b) at least one vertex of each top SCC of G[S] is contained in
HS and at least one vertex of each bottom SCC of G[S] is contained in TS.

Lock-Step Search. The searches from the vertices of HS ∪ TS are performed in lock-step,
that is, (a) one step is performed in each of the searches before the next step of any search is
done and (b) all searches stop as soon as the first of the searches finishes. This is implemented
in Algorithm 6.1 as follows. A step in the search from a vertex t ∈ TS (and analogously for
h ∈ HS) corresponds to the execution of the iteration of the for-each loop for t ∈ TS. In an
iteration of a for-each loop we might discover that we do not need to consider this search
further (see the paragraph on ensuring strong connectivity below) and update the set TS (via
T ′

S) for future iterations accordingly. Otherwise the set Ct is either strictly increasing in this
step of the search or the search for t terminates and we return the set of vertices in G[S]
that are reachable from t. So the two for-each loops over the vertices of TS and HS that are
executed in an iteration of the while-loop perform one step of each of the searches and the
while-loop stops as soon as a search stops, i.e., a return statement is executed and hence this
implements properties (a) and (b) of lock-step search. Note that the while-loop terminates,
i.e., a return statement is executed eventually because for all t ∈ TS (and resp. for all h ∈ HS)
the sets Ct are monotonically increasing over the iterations of the while-loop, we have Ct ⊆ S,
and if some set Ct does not increase in an iteration, then it is either removed from TS and
thus not considered further or a return statement is executed. Note that when a search from
a vertex t ∈ TS stops, it has discovered a maximal set of vertices C that can be reached from
t; and analogously for h ∈ HS.

h1

t1

t2

h1

t1

t2

h1

t2

Figure 6.1: An example of symbolic lock-step search.

Figure 6.1 shows a small intuitive example of a call to Algorithm 6.1. The example shows the
first three iterations of the main while-loop. Note that during the second iteration, the search
started from t1 is disregarded since it collides with t2. In the subsequent fourth iteration, the
search started from t2 is returned by the algorithm.
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Comparison to Explicit Algorithm. In the explicit version of the algorithm [HT96, CDHL16]
the search from vertex t ∈ TS performs a depth-first search that terminates exactly when
every edge reachable from t is explored. Since any search that starts outside of a bottom
SCC but reaches the bottom SCC has to explore more edges than the search started inside of
the bottom SCC, the first search from a vertex of TS that terminates has exactly explored
(one of) the smallest (in the number of edges) bottom SCC(s) of G[S]. Thus on explicit
graphs the explicit lock-step search from the vertices of HS ∪ TS finds (one of) the smallest
(in the number of edges) top or bottom SCC(s) of G[S] in time proportional to the number of
searches times the number of edges in the identified SCC. In symbolically represented graphs
it can happen (1) that a search started outside of a bottom (resp. top) SCC terminates earlier
than the search started within the bottom (resp. top) SCC and (2) that a search started in a
larger (in the number of vertices) top or bottom SCC terminates before one in a smaller top
or bottom SCC. We discuss next how we address these two challenges.

Ensuring Strong Connectivity. First, we would like the set returned by Algorithm 6.1 to
indeed be a top or bottom SCC of G[S]. For this we use the following observation for bottom
SCCs that can be applied to top SCCs analogously. If a search starting from a vertex of
t1 ∈ TS encounters another vertex t2 ∈ TS, t1 ̸= t2, there are two possibilities: either (1)
both vertices are in the same SCC or (2) t1 can reach t2 but not vice versa. In Case (1) the
searches from both vertices can explore all vertices in the SCC and thus it is sufficient to only
search from one of them. In Case (2) the SCC of t1 has an outgoing edge and thus cannot be
a bottom SCC. Hence in both cases we can remove the vertex t1 from the set TS while still
maintaining Invariant 6.1. By Invariant 6.1 we further have that each search from a vertex of
TS that is not in a bottom SCC encounters another vertex of TS in its search and therefore
is removed from the set TS during Algorithm 6.1 (if no top or bottom SCC is found earlier).
This ensures that the returned set is either a top or a bottom SCC.1

Bound on Symbolic Steps. Second, observe that we can still bound the number of symbolic
steps needed for the search that terminates first by the number of vertices in the smallest
top or bottom SCC of G[S], since this is an upper bound on the symbolic steps needed for
the search started in this SCC. Thus provided Invariant 6.1, we can bound the number of
symbolic steps in Algorithm 6.1 to identify a vertex set C ⊊ S such that C and S \C are not
strongly connected in G[S] by O((|HS|+ |TS|) ·min(|C|, |S \ C|)). In the algorithms that
call Algorithm 6.1 we charge the number of symbolic steps in the procedure to the vertices
in the smaller set of C and S \ C; this ensures that each vertex is charged at most O(log n)
times over the whole algorithm. We obtain the following result.

Theorem 6.1 (Lock-Step Search). Provided Invariant 6.1 holds, Algorithm 6.1(G, S, HS,
TS) returns a top or bottom SCC C of G[S]. It uses O((|HS| + |TS|) · min(|C|, |S \ C|))
symbolic steps if C ̸= S and O((|HS|+ |TS|) · |C|) otherwise.

Proof. We argue separately about correctness and complexity.

Strong connectivity. We want to show that C ← Algorithm 6.1(G, S, HS, TS) is a top or
bottom SCC of G[S] given Invariant 6.1 is satisfied. By the invariant at least one vertex of
each top SCC of G[S] is contained in HS and at least one vertex of each bottom SCC of G[S]
is contained in TS. Suppose C is the set obtained from a search conducted by Post operations
that started from within a bottom SCC C̃ of G[S]. Since C̃ is a bottom SCC and we update

1To improve the practical performance, we return the updated sets HS and TS . By the above argument
this preserves Invariant 6.1.
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the search by executing Post operations (and moreover intersect with S at every update),
we have C ⊆ C̃. Further, since C̃ is an SCC, the updates with Post eventually cover all
vertices of C̃, which gives us C = C̃. A set Ct constructed with Post operations whose start
vertex t is not contained in a bottom SCC of G[S] can not yield the set C since eventually it
contains a bottom SCC of G[S], and by Invariant 6.1 this SCC contains a candidate in TS;
therefore |Ct ∩ TS| > 1 is satisfied at some point in the construction of Ct and then search
is canceled by removing t from TS; note that a search starting from a bottom SCC can be
canceled only if another vertex of the bottom SCC remains in TS. By the symmetric argument
for searches conducted by Pre operations that started from a vertex of a top SCC we have
that the returned set C is either a top or a bottom SCC of G[S].

Bound on symbolic steps. Consider (one of) the smallest top or bottom SCCs C̃ of G[S].
Suppose w.l.o.g. that C̃ is a bottom SCC. By Invariant 6.1 there is a search, conducted by
Post operations, that starts from a vertex t ∈ TS within C̃ and that is not canceled, and
therefore this search terminates after at most |C̃| many Post operations. Other searches may
terminate earlier but this gives an upper bound of O((|HS|+ |TS|) · |C̃|) on the number of
symbolic steps until the lock-step search terminates. Finally, consider the returned set C ←
Algorithm 6.1(G, S, HS, TS). There are two possible cases: either (i) S = C, which implies
C = C̃ so the number of symbolic steps can be bounded by O((|HS| + |TS|) · |C|), or (ii)
S ̸= C. In the second case, since C̃ is (some) smallest SCC, C is an SCC, and S \C contains
at least one SCC, we have |C̃| ≤ |C| and |C̃| ≤ |S \C|, and hence we can bound the number
of symbolic steps in this case by O((|HS|+ |TS|) ·min(|C|, |S \ C|)).

6.3 Graphs with Streett Objectives
In this section we present the basic and improved symbolic algorithms for graphs with Streett
objectives.

6.3.1 Basic Symbolic Algorithm for Graphs with Streett Objectives
Recall that for a given graph (with n vertices) and a Streett objective (with k target pairs)
each non-trivial strongly connected subgraph without bad vertices is a good component. The
basic symbolic algorithm for graphs with Streett objectives repeatedly removes bad vertices
from each SCC and then recomputes the SCCs until all good components are found. The
winning set then consists of the vertices that can reach a good component. We refer to this
algorithm as StreettGraphBasic. The pseudocode of the basic symbolic algorithm for graphs
with Streett objectives is given in Algorithm 6.2.

The basic symbolic algorithm for Streett objectives on graphs StreettGraphBasic finds good
components as follows. The algorithm maintains two sets of vertex sets: goodC contains
identified good components and is initially empty; X contains candidates for good components
and is initialized with the SCCs of the input graph G. The sets in X are strongly connected
subgraphs of G throughout the algorithm. In each iteration of the while-loop one of the
candidate sets S maintained in X is considered. If the set S does not contain bad vertices
and contains at least one edge, then it is a good component and added to goodC. Otherwise,
the set of bad vertices B in S is removed from S; the subgraph induced by S ′ = S \B might
not be strongly connected but every good component contained in S ′ must still be strongly
connected, therefore the maximal strongly connected subgraphs of G[S ′] are added to X
as new candidates for good components. By Lemma 6.2 and Corollary 6.1 this procedure
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maintains the property that every good component of G is completely contained in one of
the vertex sets of goodC or X . Further in each iteration either (a) vertices are removed or
separated into different vertex sets or (b) a new good component is identified. Thus after
at most O(n) iterations the set X is empty and all good components of G are contained
in goodC. Furthermore, whenever bad vertices are removed from a given candidate set, the
number of target pairs this candidate set intersects is reduced by one. Thus each vertex is
considered in at most O(k) iterations of the main while-loop. Finally, the set of vertices
that can reach a good component is determined (by O(n) Pre operations) and output as the
winning set. Since computing SCCs can be done in O(n) symbolic steps, the total number of
symbolic steps of the basic algorithm is bounded by O(n ·min(n, k)).

Algorithm 6.2: StreettGraphBasic: Basic Algorithm for Graphs with Streett Obj.
Input : graph G = (V, E) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : ⟨⟨1⟩⟩ (G, Streett(SP))

1 X ← allSCCs(G); goodC← ∅
2 while X ̸= ∅ do
3 remove some S ∈ X from X
4 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

5 if B ̸= ∅ then
6 S ← S \B
7 X ← X ∪ allSCCs(G[S])
8 else
9 if Post(S) ∩ S ̸= ∅ then // G[S] contains at least one edge

10 goodC← goodC ∪ {S}
11 return GraphReach(G,

⋃
C∈goodC C)

Proposition 6.1. Algorithm 6.2 correctly computes the winning set in graphs with Streett
objectives and requires O(n ·min(n, k)) symbolic steps.

6.3.2 Improved Symbolic Algorithm for Graphs with Streett
Objectives

In our improved symbolic algorithm we replace the recomputation of all SCCs with the search
for a new top or bottom SCC with Algorithm 6.1 from vertices that have lost adjacent edges
whenever there are not too many such vertices. We present the improved symbolic algorithm
for graphs with Streett objectives in more detail as it also conveys important intuition for the
MDP case. The pseudocode is given in Algorithm 6.3.

Iterative Refinement of Candidate Sets. The improved algorithm maintains a set goodC
of already identified good components that is initially empty and a set X of candidates for
good components that is initialized with the SCCs of the input graph G. The difference to
the basic algorithm lies in the properties of the vertex sets maintained in X and the way we
identify sets that can be separated from each other without destroying a good component.
In each iteration one vertex set S is removed from X and, after the removal of bad vertices
from the set, either identified as a good component or split into several candidate sets. By
Lemma 6.2 and Corollary 6.1 the following invariant is maintained throughout the algorithm
for the sets in goodC and X .
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Invariant 6.2 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint and for every
good component C of G there exists a set Y ⊇ C such that either Y ∈ X or Y ∈ goodC.

Lost Adjacent Edges. In contrast to the basic algorithm, the subgraph induced by a set S
contained in X is not necessarily strongly connected. Instead, we remember vertices of S that
have lost adjacent edges since the last time a superset of S was determined to induce a strongly
connected subgraph; vertices that lost incoming edges are contained in HS and vertices that
lost outgoing edges are contained in TS. In this way we maintain Invariant 6.1 throughout the
algorithm, which enables us to use Algorithm 6.1 with the running time guarantee provided by
Theorem 6.1.

Identifying SCCs. Let S be the vertex set removed from X in a fixed iteration of Algorithm 6.3
after the removal of bad vertices in the inner while-loop. First note that if S is strongly
connected and contains at least one edge, then it is a good component. If the set S was
already identified as strongly connected in a previous iteration, i.e., HS and TS are empty,
then S is identified as a good component in Line 14. If many vertices of S have lost adjacent
edges since the last time a super-set of S was identified as a strongly connected subgraph,
then the SCCs of G[S] are determined as in the basic algorithm. To achieve the optimal
asymptotic upper bound, we say that many vertices of S have lost adjacent edges when we
have |HS|+ |TS| ≥

√
m/ log n, while lower thresholds are used in our experimental results.

Otherwise, if not too many vertices of S lost adjacent edges, then we start a symbolic lock-step
search for top SCCs from the vertices of HS and for bottom SCCs from the vertices of TS

using Procedure 6.1. The set returned by the procedure is either a top or a bottom SCC C
of G[S] (Theorem 6.1). Therefore we can from now on consider C and S \ C separately,
maintaining Invariants 6.1 and 6.2.

Algorithm 6.3 (StreettGraphImpr). A succinct description of the pseudocode is as
follows: Lines 1–3 initialize the set of candidates for good components with the SCCs of
the input graph. In each iteration of the main while-loop one candidate is considered and
the following operations are performed: (a) Lines 6–11 iteratively remove all bad vertices;
if afterwards the candidate is still strongly connected (and contains at least one edge), it is
identified as a good component in the next step; otherwise it is partitioned into new candidates
in one of the following ways: (b) if many vertices lost adjacent edges, Lines 15–23 partition the
candidate into its SCCs (this corresponds to an iteration of the basic algorithm); (c) otherwise,
Lines 24–33 use symbolic lock-step search to partition the candidate into one of its SCCs
and the remaining vertices. The while-loop terminates when no candidates are left. Finally,
vertices that can reach some good component are returned. We have the following result.

Theorem 6.2 (Improved Algorithm for Graphs). Algorithm 6.3 correctly computes the winning
set in graphs with Streett objectives and requires O(n ·

√
m log n) symbolic steps.

To prove Theorem 6.2, we first establish the following lemma.

Lemma 6.3 (Invariants of Improved Algorithm for Graphs). Invariant 6.1 and Invariant 6.2
are preserved throughout Algorithm 6.3, i.e., they hold before the first iteration, after each
iteration, and after termination of the main while-loop. Further, Invariant 6.1 is preserved
during each iteration of the main while-loop.

Proof.
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Algorithm 6.3: StreettGraphImpr: Improved Alg. for Graphs with Streett Obj.
Input : graph G = (V, E) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : ⟨⟨1⟩⟩ (G, Streett(SP))

1 X ← allSCCs(G); goodC← ∅
2 foreach C ∈ X do
3 HC ← ∅; TC ← ∅
4 while X ̸= ∅ do
5 remove some S ∈ X from X
6 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

7 while B ̸= ∅ do
8 S ← S \B
9 HS ← (HS ∪ Post(B)) ∩ S

10 TS ← (TS ∪ Pre(B)) ∩ S
11 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

12 if Post(S) ∩ S ̸= ∅ then // G[S] contains at least one edge

13 if |HS |+ |TS | = 0 then
14 goodC← goodC ∪ {S}
15 else if |HS |+ |TS | ≥

√
m/ log n then

16 delete HS and TS

17 C ← allSCCs(G[S])
18 if |C| = 1 then
19 goodC← goodC ∪ {S}
20 else
21 foreach C ∈ C do
22 HC ← ∅; TC ← ∅
23 X ← X ∪ C
24 else
25 (C, HS , TS) ← Lock-Step-Search(G, S, HS , TS)
26 if C = S then
27 goodC← goodC ∪ {S}
28 else // separate C and S \ C

29 S ← S \ C
30 HC ← ∅; TC ← ∅
31 HS ← (HS ∪ Post(C)) ∩ S
32 TS ← (TS ∪ Pre(C)) ∩ S
33 X ← X ∪ {S} ∪ {C}
34 return GraphReach(G,

⋃
C∈goodC C)

Invariant 6.1. Whenever a new candidate S is added as a result from allSCCs, it is strongly
connected, and we set HS = TS = ∅; this in particular implies that the invariant is satisfied
after the initialization of the algorithm.

By induction and Theorem 6.1, the invariant is satisfied whenever Procedure 6.1 returns a
candidate C and we set HC = TC = ∅.

Now consider an update of a candidate S where some subset B is deleted from it and assume
the invariant holds before the update. In these cases we update HS and TS by setting
HS ← (HS ∪ Post(B))∩ S and TS ← (TS ∪ Pre(B))∩ S. This adds the vertices that remain
in S and have an edge from a vertex of B to HS and those with an edge to B to TS. Suppose
a new top (resp. bottom) SCC S̃ ⊆ S emerges in S by the removal of B from S. Then
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some vertex of S̃ had an outgoing edge to B (resp. an incoming edge from B) and thus is
contained in the updated set TS (resp. HS), maintaining the invariant. This happens whenever
we remove Bad(S) from S, and whenever we subtract a result from Procedure 6.1 C from S.

Invariant 6.2 – Disjointness. The sets in X ∪ goodC are pairwise disjoint at the initialization
since goodC is initialized as ∅. Furthermore, whenever a set S is added to goodC in an
iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in the same iteration of
the while-loop. Therefore by induction the disjointness of the sets in X ∪ goodC is preserved.

Invariant 6.2 – Containment of good components. At initialization, X contains all SCCs of
the input graph G. Each good component C of G is strongly connected, so there exists an
SCC Y ⊇ C such that Y ∈ X for each good component C.

Consider a set S ∈ X that is removed from X at the beginning of an iteration of the main
while-loop. Consider further a good component C of G such that C ⊆ S. We require that a
set Y ⊇ C is added to either X or goodC in this iteration of the main while-loop.

First, whenever we remove Bad(S) from S, by Corollary 6.1 we maintain the fact that C ⊆ S.
Second, G[S] contains an edge since C ⊆ S. Finally, one of the three cases happens:

Case (1): If |HS|+ |TS| = 0, then the set S ⊇ C is added to goodC.

Case (2): If |HS|+ |TS| ≥
√

m/ log n, then the algorithm computes the SCCs of G[S]. Since
C ⊆ S is strongly connected, it is completely contained in some SCC Y of G[S], and Y is
added either to X or to goodC.

Case (3): If 0 < |HS|+ |TS| <
√

m/ log n, then the algorithm either adds S ⊇ C to goodC,
or partitions S into S̃ and S \ S̃. Suppose the latter case happens, then by Theorem 6.1 we
have that S̃ is an SCC of G[S]. Further, since C ⊆ S is strongly connected, it is completely
contained in some SCC of G[S]. Therefore either C ⊆ S̃ or C ⊆ (S \ S̃), and both S̃ and
S \ S̃ are added to X .

By the above case analysis we have that a set Y ⊇ C is added to either X or goodC in the
iteration of the main while-loop, and thus the invariant is preserved throughout the algorithm.

We are now ready to prove the main result of this section, Theorem 6.2.

Proof of Theorem 6.2.

Correctness. Whenever a candidate set S is added to goodC, it contains an edge by the check
at Line 12, and Bad(S) = ∅ by the check at Line 7. Furthermore, (a) at Line 14, S is strongly
connected by Invariant 6.1, (b) at Line 19, S is strongly connected by the result of allSCCs,
and (c) at Line 27, S is strongly connected by Theorem 6.1. Therefore we have that whenever
a candidate set is added to goodC, it is indeed a good component (soundness).

Finally, by soundness, Invariant 6.2, the termination of the algorithm (shown below), and the
fact that X = ∅ at the termination of the algorithm, we have that goodC contains all good
components of G (completeness).
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Symbolic steps analysis. By [GPP08], the initialization with the SCCs of the input graph takes
O(n) symbolic steps. Furthermore, the reachability computation in the last step takes O(n)
Pre operations.

In each iteration of the outer while-loop, a set S is removed from X and either (a) a set
S ′ ⊆ S is added to goodC and no set is added to X or (b) at least two sets that are (proper
subsets of) a partition of S are added to X . Both can happen at most O(n) times, thus
there can be at most O(n) iterations of the outer while-loop. The Pre and Post operations at
Lines 12, 31, and 32 can be charged to the iterations of the outer while-loop.

An iteration of the inner while-loop (Lines 7-11) is executed only if some vertices B are
removed from S; the vertices of B are then not considered further. Thus there can, in total,
be at most O(n) Pre and Post operations over all iterations of the inner while-loop.

Note that every vertex in each of HS and TS can be attributed to at least one unique implicit
edge deletion since we only add vertices to HS resp. TS that are successors resp. predecessors
of vertices that were separated from S (or deleted from the maintained graph). Whenever the
case |HS|+ |TS| ≥

√
m/ log n occurs, for all subsets C ⊆ S that are then added to X , we

initialize HC = TC = ∅. Therefore the case |HS| + |TS| ≥
√

m/ log n can happen at most
O(
√

m log n) times throughout the algorithm since there are at most m edges that can be
deleted, and hence in total takes O(n ·

√
m log n) symbolic steps.

It remains to bound the number of symbolic steps in Procedure 6.1. Let C be the set returned
by the procedure; we charge the symbolic steps in this call of the procedure to the vertices of
the smaller set of C and S \ C. By Theorem 6.1 we have either (a) C = S, the number of
symbolic steps in this call is bounded by O(

√
m/ log n · |C|), and the set S is added to goodC

or (b) min(|C|, |S \ C|) ≤ |S|/2 and the number of symbolic steps in this call is bounded by
O(
√

m/ log n ·min(|C|, |S \ C|)). Case (a) can happen at most once for the vertices of C,
and for case (b) note that the size of a set containing a specific vertex can be halved at most
O(log n) times; thus we charge each vertex at most O(log n) times. Hence we can bound the
total number of symbolic steps in all calls to the procedure by O(n ·

√
m log n).

6.4 Symbolic MEC Decomposition
In this section we present a short description of the basic symbolic algorithm for MEC
decomposition and then present the improved algorithm.

6.4.1 Basic Symbolic Algorithm for MEC decomposition
Recall that an end-component is a set of vertices that (a) has no random edges to vertices
not in the set and its induced sub-MDP is (b) strongly connected and (c) contains at least
one edge. The basic symbolic algorithm for MEC decomposition maintains a set of identified
MECs and a set of candidates for MECs, initialized with the SCCs of the MDP. Whenever a
candidate is considered, either (a) it is identified as a MEC or (b) it contains vertices with
outgoing random edges, which are then removed together with their random attractor from
the candidate, and the SCCs of the remaining sub-MDP are added to the set of candidates.
We refer to the algorithm as MECBasic, and the pseudocode is in Algorithm 6.4.
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Algorithm 6.4 computes all maximal end-components of a given MDP and is formulated as to
highlight the similarities to the algorithms for graphs and MDPs with Streett objectives. The
algorithm maintains two sets, the set goodC of identified maximal end-components that is
initially empty and the set X of candidates for maximal end-components that is initialized
with the SCCs of the MDP. In each iteration of the while-loop one set S is removed from X
and either (1a) identified as a maximal end-component and added to goodC or (1b) removed
because the induced sub-MDP does not contain an edge or (2) it contains vertices with
outgoing random edges. In the latter case these vertices rout are identified and their random
attractor is removed from S. After this step the sub-MDP induced by the remaining vertices
of S might not be strongly connected any more. Therefore the SCCs of this sub-MDP are
determined and added to X as new candidates for maximal end-components. Note that this
maintains the invariants that (i) each set in X induces a strongly connected subgraph and
(ii) each end-component is a subset of one set in either goodC or X . By (i) a set in X is an
end-component if it does not have outgoing random edges and the induced sub-MDP contains
an edge, i.e., in particular this holds for the sets added to goodC (soundness). By (ii) and
X = ∅ at termination of the while-loop the algorithm identifies all maximal end-components
of the MDP (completeness). Since both (1) and (2) can happen at most O(n) times, there
are O(n) iterations of the while-loop. In each iteration the most expensive operations are the
computation of a random attractor and of SCCs, which can both be done in O(n) symbolic
steps. Thus Algorithm 6.4 correctly computes all maximal end-components of an MDP and
takes O(n2) symbolic steps.

Algorithm 6.4: MECBasic: Basic Algorithm for Maximal End-Components
Input : an MDP M = (G = (V, E), (V1, VR))
Output : the set of maximal end-components of M

1 goodC← ∅
2 X ← allSCCs(G)
3 while X ̸= ∅ do
4 remove some S ∈ X from X
5 rout← S ∩ VR ∩ Pre(V \ S)
6 if rout ̸= ∅ then
7 S ← S \ AttrR(G, rout)
8 X ← X ∪ allSCCs(G[S])
9 else

10 if Post(S) ∩ S ̸= ∅ then // G[S] contains at least one edge

11 goodC← goodC ∪ {S}
12 return goodC

Proposition 6.2. Algorithm 6.4 correctly computes the MEC decomposition of MDPs and
requires O(n2) symbolic steps.

6.4.2 Improved Symbolic Algorithm for MEC decomposition
The improved symbolic algorithm for MEC decomposition uses the ideas of symbolic lock-step
search presented in Section 6.2. Informally, when considering a candidate that lost a few edges
from the remaining graph, we use the symbolic lock-step search to identify some bottom SCC.
We refer to the algorithm as MECImpr and present the pseudocode in Algorithm 6.5.
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Algorithm 6.5: MECImpr: Improved Algorithm for Maximal End-Components
Input : an MDP M = (G = (V, E), (V1, VR))
Output : the set of maximal end-components of M

1 X ← allSCCs(G); goodC← ∅
2 foreach C ∈ X do
3 TC ← ∅
4 while X ̸= ∅ do
5 remove some S ∈ X from X
6 rout← S ∩ VR ∩ Pre(V \ S)
7 A← AttrR(G, rout)
8 S ← S \A
9 TS ← (TS ∪ Pre(A)) ∩ S

10 if Post(S) ∩ S ̸= ∅ then // G[S] contains at least one edge

11 if |TS | = 0 then
12 goodC← goodC ∪ {S}
13 else if |TS | ≥

√
m then

14 delete TS

15 C ← allSCCs(G[S])
16 if |C| = 1 then
17 goodC← goodC ∪ {S}
18 else
19 foreach C ∈ C do
20 TC ← ∅
21 X ← X ∪ C
22 else
23 C ← Lock-Step-Search(G, S, ∅, TS)
24 if Post(C) ∩ C ̸= ∅ then // G[C] contains at least one edge

25 goodC← goodC ∪ {C}
26 S ← S \ C
27 TS ← (TS ∪ Pre(C)) ∩ S
28 X ← X ∪ {S}
29 return goodC

Informal description. We show how to determine all maximal end-components (MECs) of
an MDP in O(n

√
m) symbolic operations. The difference to the basic algorithm lies in the

way strongly connected parts of the MDP are identified after the deletion of vertices that
cannot be contained in a MEC. For this the symbolic lock-step search from Section 6.2 is used
whenever not too many edges have been deleted since the last re-computation of SCCs.

Let M be the given MDP and G = (V, E) its underlying graph. The algorithm maintains
two sets of vertex sets: the set goodC of already identified MECs that is initialized with the
empty set and the set X that is initialized with the SCCs of G and contains vertex sets that
are candidates for MECs. The algorithm preserves the following invariant for the goodC and
X over the iterations of the while-loop and returns the set goodC when the set X is empty
after an iteration of the while-loop.

Invariant 6.3 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint and for every
maximal end-component X of G there exists a set Y ⊇ X such that either Y ∈ X or
Y ∈ goodC.
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For each vertex set S in X additionally a subset TS of S is maintained that contains vertices
that have lost outgoing edges since the last time a superset of S was identified as strongly
connected. We use the following restrictions of Invariant 6.1 and Theorem 6.1 (presented in
Section 6.2) to bottom SCCs only.

Invariant 6.4 (Start Vertices BSCC). Either (a) TS is empty and G[S] is strongly connected
or (b) at least one vertex of each bottom SCC of G[S] is contained in TS.

Theorem 6.3 (Lock-Step Search BSCC). Provided Invariant 6.4 holds, Algorithm 6.1(G, S,
∅, TS) returns a bottom SCC C ⊆ S of G[S] in O(|TS| · |C|) symbolic steps.

Proof. The proof of Theorem 6.3 is a straightforward simplification of the proof of Theorem 6.1.

Initially the sets TS are empty. The algorithm maintains Invariant 6.4 for all S ∈ X . This will
ensure the correctness and the number of symbolic steps of Algorithm 6.1 (Section 6.2) as
called by the algorithm.

In each iteration of the while-loop one vertex set S is removed from X and processed. First
the random vertices of S with edges to vertices of V \ S are identified and their random
attractor is removed from S. After this step, there are no random vertices with edges from
S to V \ S. The predecessors of the removed vertices that are contained in S are added to
TS and additionally TS is updated to only include vertices that are still in S. This preserves
Invariant 6.4 (see also [Loi16, Lemma 4.5.2]). The number of symbolic steps for the attractor
computation can be charged to the removed vertices and is therefore bounded by O(n) in
total.

If afterwards G[S] does not contain an edge anymore, then S is not considered further and
the algorithm continues with the next iteration. Otherwise one of three cases happens.

Case (1): If TS is empty, then by Invariant 6.4 G[S] is strongly connected, contains at least one
edge and does not contain a random vertex with edges to V \ S, i.e., S is an end-component,
and by Invariant 6.3 it is a MEC. In this case the algorithm adds the set S to goodC, which
preserves both invariants and can happen at most O(n) times.

Case (2): If there are at least
√

m vertices in TS, then the set TS is deleted and as in the
basic algorithm all SCCs of G[S] are computed and add to X as new candidates for MECs.
For each of the SCCs C a set TC is initialized with the empty set. As a vertex is added to a
set TS only if one of its incoming edges is removed by the algorithm, Case (2) can happen
only O(

√
m) times over the whole algorithm. Thus the total number of symbolic steps for

this case is O(n
√

m). Note that the Invariants 6.4 and 6.3 are preserved.

Case (3): If TS contains less than
√

m vertices, then Algorithm 6.1(G, S, ∅, TS) is called. By
Invariant 6.4 and Theorem 6.3 the procedure returns a bottom SCC C of G[S] in O(|TS| · |C|)
many symbolic steps. Since there are no random edges between S and V \ S in M and C
has no outgoing edges in G[S], we have that C is an end-component if it contains at least
one edge. By Invariant 6.3 it is also a MEC and is correctly added to goodC. As the sets
in goodC are not considered further by the algorithm, we can charge the symbolic steps of
Algorithm 6.1 to the vertices of C. Thus this part takes at most O(n

√
m) symbolic steps over

the whole algorithm. The vertices of S \C are added back to X , which preserves Invariant 6.3.
The predecessors of C in S \ C are added to TS\C and vertices of C are removed from TS\C ,
which preserves Invariant 6.4.
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By the above case analysis we have that each vertex set that is added to goodC is indeed a
MEC (soundness). By Invariant 6.3 and X = ∅ at termination of the algorithm we further
have completeness. In each iteration either S does not contain an edge and is not considered
further, a set is added to goodC (and not contained in X after that) or case (2) happens.
Thus there are at most O(n +

√
m) iterations of the algorithm. The symbolic operations we

have not yet accounted for in the analysis of the number of symbolic steps are of O(1) per
iteration. Hence Algorithm 6.5 takes O(n

√
m) symbolic steps and correctly computes the

MECs of the given MDP M .

Lemma 6.4 (Invariants of Improved Algorithm for MEC). Invariant 6.4 and Invariant 6.3
are preserved throughout Algorithm 6.5, i.e., they hold before the first iteration, after each
iteration, and after termination of the main while-loop. Further, Invariant 6.4 is preserved
during each iteration of the main while-loop.

Proof.

Invariant 6.4. The proof of maintaining Invariant 6.4 in Algorithm 6.5 is a straightforward
simplification of the proof of maintaining Invariant 6.1 in Algorithm 6.3.

Invariant 6.3 – Disjointness. The sets in X ∪ goodC are pairwise disjoint at the initialization
since goodC is initialized as ∅. Furthermore, whenever a set S is added to goodC in an
iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in the same iteration of
the while-loop. Therefore by induction the disjointness of the sets in X ∪ goodC is preserved.

Invariant 6.3 – Containment of maximal end-components. At initialization, X contains all
SCCs of G. Each maximal end-component X of M = (G = (V, E), (V1, VR), δ) is strongly
connected, so there exists an SCC Y ⊇ X of G such that Y ∈ X .

Consider a set S ∈ X that is removed from X at the beginning of an iteration of the main
while-loop. Consider further a maximal end-component X of M such that X ⊆ S. We require
that a set Y ⊇ X is added to either X or goodC in this iteration of the main while-loop.

First, after we remove AttrR(G, S ∩ VR ∩ Pre(V \ S)) from S, we maintain the fact that
X ⊆ S by Lemma 6.2. Second, G[S] contains an edge since X ⊆ S. Finally, one of the three
cases happens:

Case (1): If |TS| = 0, then the set S ⊇ X is added to goodC.

Case (2): If |TS| ≥
√

m, then the algorithm computes the SCCs of G[S]. Since X ⊆ S is
strongly connected, it is completely contained in some SCC Y of G[S], and Y is added to X .

Case (3): If 0 < |TS| <
√

m, then the algorithm partitions S into C and S \ C. By
Theorem 6.3 we have that C is a (bottom) SCC of G[S]. Since X ⊆ S is strongly connected,
it is completely contained in some SCC of G[S]. Therefore either X ⊆ C or X ⊆ (S \ C).
The set S \ C is added to X . If X ⊆ C, then in particular G[C] contains an edge, and C is
added to goodC.

By the above case analysis we have that a set Y ⊇ X is added to either X or goodC in the
iteration of the main while-loop.

We summarize with the main result of this section.
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Theorem 6.4 (Improved Algorithm for MEC). Algorithm 6.5 correctly computes the MEC
decomposition of MDPs and requires O(n ·

√
m) symbolic steps.

Proof.

Correctness. A candidate set can be added to goodC in three cases. When S is added to
goodC at Line 12 (resp. at Line 17), then it contains an edge by the check at Line 10, it
is strongly connected by |TS| = 0 and Invariant 6.4 (resp. by the result of allSCCs), and it
has no random vertices with edges to V \ S by the random attractor removal at Lines 6–9.
When C is added at Line 25, then it contains an edge by the check at Line 24, it is strongly
connected by Theorem 6.3, it contains no random vertices with edges to V \ S by the random
attractor removal at Lines 6–9, and it contains no random vertices with edges to S \C by the
fact that C is a bottom SCC of G[S] (see Theorem 6.3). Therefore we have that whenever a
candidate set is added to goodC, it is an end-component, and by induction and Invariant 6.3
we have that it is a maximal end-component (soundness).

Finally, by soundness, Invariant 6.3, the termination of the algorithm (shown below), and the
fact that X = ∅ at the termination of the algorithm, we have that goodC contains all the
maximal end-components of M (completeness).

Symbolic steps analysis. By [GPP08], the initialization with the SCCs of a given MDP takes
O(n) symbolic steps.

In each iteration of the outer while-loop, a set S is removed from X and (a) S is added to
goodC, or (b) at least two sets that are (subsets of) a partition of S are added to X , or (c) S
is partitioned into two sets, one of them may be added to goodC and the other is added to
X . All three cases can happen at most O(n) times, so there can be at most O(n) iterations
of the outer while-loop. The Pre and Post operations at Lines 6, 9, 10, 24, and 27 can be
charged to the iterations of the outer while-loop.

Each CPreR operation executed as a part of the random attractor computation at Line 7 adds
at least one vertex to A, and the vertices of A are then not considered any further in the
algorithm. Therefore there can, in total, be at most O(n) CPreR operations over all attractor
computations at Line 7.

Note that every vertex in each of TS can be attributed to at least one unique implicit edge
deletion since we only add vertices to TS that are predecessors of the vertices that were
separated from S (or deleted from the maintained graph). Whenever the case |TS| ≥

√
m

occurs, for all subsets C ⊆ S that are then added to X , we initialize TC = ∅. Therefore, the
case |TS| ≥

√
m can happen at most O(

√
m) times throughout the algorithm since there are

at most m edges that can be deleted. By [GPP08] we have a bound O(n) for one iteration, so
we can bound the total number of symbolic steps in all iterations of this case by O(n ·

√
m).

It remains to bound the number of symbolic steps in Algorithm 6.1. Let C be the set returned
by Lock-Step-Search(G, S, ∅, TS). By Theorem 6.3 and the fact that |TS| <

√
m, the

number of symbolic steps in this call is bounded by O(
√

m · |C|), and the set C is not
considered further in the algorithm after this call. Hence we can bound the total number of
symbolic steps in all calls of the procedure by O(n ·

√
m).
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6.5 MDPs with Streett Objectives
In this section we present the basic and improved symbolic algorithms for model checking
MDPs with Streett objectives.

6.5.1 Basic Symbolic Algorithm for MDPs with Streett Objectives

We refer to the basic symbolic algorithm for MDPs with Streett objectives as StreettMDPbasic,
and the pseudocode is given in Algorithm 6.6. The key differences compared to Algorithm 6.2
are as follows: (a) SCC computation is replaced by MEC computation; (b) along with the
removal of bad vertices, their random attractor is also removed; and (c) removing the attractor
ensures that the check required for trivial SCCs for graphs (Line 9) is not required any further.

To compute the almost-sure winning set for MDPs with Streett objectives, we first find all
(maximal) good end-components and then solve almost-sure reachability with the union of
the good end-components as target set as the last step of the algorithm. This is correct by
Lemma 6.1. Towards finding all good end-components, the algorithm maintains two sets,
the set goodEC of identified good end-components that is initially empty and the set X of
end-components that are candidates for good end-components that is initialized with the
MECs of the MDP. In each iteration of the while-loop one set S is removed from the set of
candidates X and the set of bad vertices Bad(S) of S is determined. If Bad(S) is empty, then
S is a good end-component and added to goodEC. Otherwise the random attractor of Bad(S)
in M [S] is removed from S, which by Corollary 6.1 does not remove any vertices that are in a
good end-component. The remaining vertices of S have no outgoing random edges and thus
still induce a sub-MDP but the sub-MDP might not be strongly connected any more. Then
the MECs of this sub-MDP are added to X . These operations maintain the invariants that (i)
each set in X is an end-component and (ii) each good end-component is a subset of one set
in either goodEC or X . By (i) a set in X is a (maximal) good end-component if it does not
contain any bad vertices, i.e., in particular this holds for the sets added to goodEC (soundness).
By (ii) and X = ∅ at termination of the while-loop the algorithm identifies all (maximal) good
end-components of the MDP (completeness). Since in each iteration of the while-loop either
(1) a set is removed from X and added to goodEC or (2) bad vertices are removed from
a set and not considered further by the algorithm, there can be at most O(n) iterations of
the while-loop. Furthermore, whenever bad vertices are removed, then the number of target
pairs a given candidate set intersects is reduced by one. Thus each vertex is considered in at
most O(k) iterations of the while-loop. The most expensive operation in the while-loop is the
computation of the MECs. Denoting the number of symbolic steps for the MEC computation
with O(mec), the number of symbolic steps of Algorithm 6.6 is O(min(n, k) ·mec) (assuming
that the number of symbolic steps for the almost-sure reachability computation is lower than
that).

Proposition 6.3. Algorithm 6.6 correctly computes the almost-sure winning set in MDPs
with Streett objectives and requires O(n2 ·min(n, k)) symbolic steps.

Remark 6.1. The above bound uses the basic symbolic MEC decomposition algorithm. Using
our improved symbolic MEC decomposition algorithm, the above bound could be improved to
O(n ·

√
m ·min(n, k)).
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Algorithm 6.6: StreettMDPbasic: Basic Algorithm for MDPs with Streett Obj.
Input : MDP M = ((V, E), (V1, VR), δ) and pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : ⟨⟨1⟩⟩as (M , Streett(SP))

1 X ← allMECs(M ); goodEC← ∅
2 while X ̸= ∅ do
3 remove some S ∈ X from X
4 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

5 if B ̸= ∅ then
6 S ← S \ AttrR(M [S], B)
7 X ← X ∪ allMECs(M [S])
8 else
9 goodEC← goodEC ∪ {S}

10 return ⟨⟨1⟩⟩as

(
M , Reach(

⋃
X∈goodEC X)

)

6.5.2 Improved Symbolic Algorithm for MDPs with Streett
Objectives

We refer to the improved symbolic algorithm for model checking MDPs with Streett objectives
as StreettMDPimpr, and the algorithm is in Algorithm 6.7. First we present the main ideas
for the improved symbolic algorithm. Then we explain the key differences compared to the
improved symbolic algorithm for graphs.

Main Ideas.

1. First, we improve the algorithm by interleaving the symbolic MEC computation with
the detection of bad vertices [CDHL16, Loi16]. This allows to replace the computation
of MECs in each iteration of the while-loop with the computation of SCCs and an
additional random attractor computation.

a) Intuition of interleaved computation. Consider a candidate for a good end-
component S after a random attractor to some bad vertices is removed from
it. After the removal of the random attractor, the set S does not have random
vertices with outgoing edges. Consider that further Bad(S) = ∅ holds. If S is
strongly connected and contains an edge, then it is a good end-component. If S
is not strongly connected, then M [S] contains at least two SCCs and some of
them might have random vertices with outgoing edges. Since end-components are
strongly connected and do not have random vertices with outgoing edges, we have
that (1) every good end-component is completely contained in one of the SCCs
of M [S] and (2) the random vertices of an SCC with outgoing edges and their
random attractor do not intersect with any good end-component (see Lemma 6.2).

b) Modification from basic to improved algorithm. We use these observations to
modify the basic algorithm as follows: First, for the sets that are candidates for good
end-components, we do not maintain the property that they are end-components,
but only that they do not have random vertices with outgoing edges (it still holds
that every maximal good end-component is either already identified or contained in
one of the candidate sets). Second, for a candidate set S, we repeat the removal
of bad vertices until Bad(S) = ∅ holds before we continue with the next step of
the algorithm. This allows us to make progress after the removal of bad vertices

129



6. Symbolic Algorithms for Fairness Objectives

by computing all SCCs (instead of MECs) of the remaining sub-MDP. If there is
only one SCC, then this is a good end-component (if it contains at least one edge).
Otherwise (a) we remove from each SCC the set of random vertices with outgoing
edges and their random attractor and (b) add the remaining vertices of each SCC
as a new candidate set.

2. Second, as for the improved symbolic algorithm for graphs, we use the symbolic lock-
step search to quickly identify a top or bottom SCC every time a candidate has lost a
small number of edges since the last time its superset was identified as being strongly
connected. The symbolic lock-step search is described in detail in Section 6.2.

Differences to the Improved Graph Algorithm. Using interleaved MEC computation and
lock-step search leads to a similar algorithmic structure for Algorithm 6.7 as for our improved
symbolic algorithm for graphs (Algorithm 6.3). The key differences are as follows: First, the
set of candidates for good end-components is initialized with the MECs of the input graph
instead of the SCCs. Second, whenever bad vertices are removed from a candidate, also their
random attractor is removed. Further, whenever a candidate is partitioned into its SCCs,
for each SCC, the random attractor of the vertices with outgoing random edges is removed.
Finally, whenever a candidate S is separated into C and S \ C via symbolic lock-step search,
the random attractor of the vertices with outgoing random edges is removed from C, and the
random attractor of C is removed from S.

The following invariant is maintained throughout Algorithm 6.7 for the sets in goodEC and X .

Invariant 6.5 (Maintained Sets). The sets in X ∪ goodEC are pairwise disjoint and for
every good end-component C of G there exists a set Y ⊇ C such that either Y ∈ X or
Y ∈ goodEC.

Furthermore, the algorithm maintains the invariant that each candidate for a good end-
component S ∈ X contains no random edges to vertices not in S.

Invariant 6.6 (No Random Outgoing Edges). Given an MDP M and its underlying graph
G = (V, E), for each set S ∈ X there are no random vertices in S with edges to vertices
in V \ S.

Finally, for each candidate set S ∈ X the algorithm remembers sets HS and TS of vertices
that have lost incoming resp. outgoing edges since the last time a superset of S was identified
as being strongly connected. The algorithm maintains Invariant 6.1 and therefore it can use
Algorithm 6.1 together with its correctness guarantee and bound on symbolic steps provided
by Theorem 6.1.

Lemma 6.5 (Invariants of Improved Algorithm for MDPs). Invariant 6.1, Invariant 6.5, and
Invariant 6.6 are preserved throughout Algorithm 6.7, i.e., they hold before the first iteration,
after each iteration, and after termination of the main while-loop. Further, Invariant 6.1 is
preserved during each iteration of the main while-loop.

Proof.

Invariant 6.1. The proof is a minor extension of the maintenance proof for Algorithm 6.3.
In terms of strong connectivity of a candidate S and the maintenance of the sets HS and
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Algorithm 6.7: StreettMDPimpr: Improved Alg. for MDPs with Streett Obj.
Input : MDP M = ((V, E), (V1, VR), δ) and pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : ⟨⟨1⟩⟩as (M , Streett(SP))

1 X ← allMECs(M ); goodEC← ∅
2 foreach C ∈ X do HC ← ∅; TC ← ∅
3 while X ̸= ∅ do
4 remove some S ∈ X from X
5 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

6 while B ̸= ∅ do
7 A← AttrR(M [S], B)
8 S ← S \A
9 HS ← (HS ∪ Post(A)) ∩ S

10 TS ← (TS ∪ Pre(A)) ∩ S
11 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

12 if Post(S) ∩ S ̸= ∅ then // M [S] contains at least one edge

13 if |HS |+ |TS | = 0 then goodEC← goodEC ∪ {S}
14 else if |HS |+ |TS | ≥

√
m/ log n then

15 delete HS and TS

16 C ← allSCCs(M [S])
17 if |C| = 1 then goodEC← goodEC ∪ {S}
18 else
19 foreach C ∈ C do
20 rout← C ∩ VR ∩ Pre(S \ C)
21 A← AttrR(M [C], rout)
22 C ← C \A
23 HC ← Post(A) ∩ C
24 TC ← Pre(A) ∩ C
25 X ← X ∪ {C}
26 else
27 (C, HS , TS) ← Lock-Step-Search(G, S, HS , TS)
28 if C = S then goodEC← goodEC ∪ {S}
29 else // separate C and S \ C

30 routC ← C ∩ VR ∩ Pre(S \ C) // empty if C bottom SCC

31 AC ← AttrR(M [C], routC) // = AttrR(M [S], S \ C) ∩ C

32 AS ← AttrR(M [S], C)
33 C ← C \AC

34 S ← S \AS

35 HC ← Post(AC) ∩ C
36 TC ← Pre(AC) ∩ C
37 HS ← (HS ∪ Post(AS)) ∩ S
38 TS ← (TS ∪ Pre(AS)) ∩ S
39 X ← X ∪ {S} ∪ {C}
40 return ⟨⟨1⟩⟩as

(
M , Reach(

⋃
C∈goodEC C)

)
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TS, the only difference to the graph case is that after an SCC C is computed by allSCCs
or Algorithm 6.1, another subset of vertices A (vertices with outgoing random edges and
their random attractor) is removed from C. In this case the invariant is maintained by
initializing HC resp. TC with the vertices of C \A with edges from resp. to vertices of A, i.e.,
HC ← Post(A) ∩ C and TC ← Pre(A) ∩ C.

Invariant 6.5 – Disjointness. The sets in X ∪ goodEC are pairwise disjoint at the initialization
since goodEC is initialized as ∅. Furthermore, whenever a set S is added to goodEC in an
iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in the same iteration of
the while-loop. Therefore by induction the disjointness of the sets in X ∪ goodEC is preserved.

Invariant 6.5 – Containment of good end-components. At initialization, X contains all MECs
of the input MDP M = (G = (V, E), (V1, VR), δ). Each good end-component C of P is an
end-component, so there exists a MEC Y ⊇ C such that Y ∈ X for each good end-component
C.

Consider a set S ∈ X that is removed from X at the beginning of an iteration of the main
while-loop. Consider further a good end-component C of P such that C ⊆ S. We require
that a set Y ⊇ C is added to either X or goodEC in this iteration of the main while-loop.

First, whenever we remove AttrR(M [S], Bad(S)) from S, by Corollary 6.1, we maintain the
fact that C ⊆ S. Second, P [S] contains an edge since C ⊆ S. Finally, one of the three cases
happens:

Case (1): If |HS|+ |TS| = 0, then the set S ⊇ C is added to goodEC.

Case (2): If |HS|+ |TS| ≥
√

m/ log n, then the algorithm computes the SCCs of M [S]. If
S itself is the (sole) SCC of M [S], then it is added to goodEC. Otherwise, since C ⊆ S is
strongly connected, it is completely contained in some SCC Y of M [S]. Furthermore, since
C has no outgoing random edges, by Lemma 6.2 it is contained in Y even after we remove
AttrR(M [Y ], Y ∩ VR ∩ Pre(S \ Y )) from it. Finally, Y is added to X .

Case (3): If 0 < |HS|+ |TS| <
√

m/ log n, then the algorithm either adds S ⊇ C to goodEC,
or partitions S into S̃ and S \ S̃. Suppose the latter case happens, then by Theorem 6.1 we
have that S̃ is an SCC of M [S]. Further, since C ⊆ S is strongly connected, it is completely
contained in some SCC of M [S]. Therefore either C ⊆ S̃ or C ⊆ (S \ S̃). If C ⊆ S̃, then
by Lemma 6.2 after the removal of AttrR(M [S̃], S̃ ∩ VR ∩ Pre(S \ S̃)) from S̃ we maintain
that C ⊆ S̃. If C ⊆ (S \ S̃), then by Lemma 6.2 after the removal of AttrR(M [S], S̃) from
(S \ S̃) we maintain that C ⊆ (S \ S̃). Finally, both S̃ and S \ S̃ are added to X .

By the above case analysis we have that a set Y ⊇ C is added to either X or goodEC in the
iteration of the main while-loop.

Invariant 6.6. Given an MDP, the set X is initialized with the MECs of the MDP, and by
definition they have no random outgoing edges. Therefore the invariant holds before the first
iteration of the main while-loop.

Consider a candidate set S ∈ X in a given iteration of the main while-loop. By the induction
hypothesis, S has no random vertices with edges to V \ S. First, some bad vertices can be
iteratively removed from S. At each such removal, the random attractor to these vertices is
removed from S as well. After the removal, by the definition of a random attractor, S has no
random outgoing edges to the attractor, and therefore by induction has no random outgoing
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edges to V \ S. Second, S may be partitioned into at least two proper subsets. Then for each
such subset C, the random attractor to random vertices in C with edges to S \ C is removed
from C. By induction and the definition of a random attractor, after the removal C contains
no random outgoing edges to V \ C and adding it to X preserves the invariant.

We are now ready to present the main result of this section, which establishes the properties
of StreettMDPimpr.

Theorem 6.5 (Improved Algorithm for MDPs). Algorithm 6.7 correctly computes the almost-
sure winning set in MDPs with Streett objectives and requires O(n ·

√
m log n) symbolic

steps.

Proof. Correctness. Whenever a candidate set S is added to goodEC, it contains an edge by
the check at Line 12, Bad(S) = ∅ by the check at Line 6, and it has no outgoing random
edges by Invariant 6.6 and the random attractor removal at Line 8. Furthermore, (a) at
Line 13, S is strongly connected by Invariant 6.1, (b) at Line 17, S is strongly connected by
the result of allSCCs, and (c) at Line 28, S is strongly connected by Theorem 6.1. Therefore
we have that whenever a candidate set is added to goodEC, it is indeed a good end-component
(soundness).

Finally, by soundness, Invariant 6.5, the termination of the algorithm (shown below), and the
fact that X = ∅ at the termination of the algorithm, we have that goodEC contains all good
end-components of G (completeness).

Symbolic steps analysis. When using our improved symbolic algorithm for MEC decomposition,
the initialization takes O(n ·

√
m) symbolic steps by Theorem 6.4.

In each iteration of the outer while-loop, a set S is removed from X and either (a) a set
S ′ ⊆ S is added to goodEC and no set is added to X or (b) at least two sets that are
(subsets of) a partition of S are added to X . Both can happen at most O(n) times, thus
there can be at most O(n) iterations of the outer while-loop. The Pre and Post operations at
Lines 12, 30, 35, 36, 37, and 38 can be charged to the iterations of the outer while-loop.

An iteration of the inner while-loop (Line 6) is executed only if some vertices B are removed
from S; the vertices of B are then not considered further. Thus there can, in total, be at
most O(n) Post operations at Line 9 and Pre operations at Line 10 over all iterations of the
inner while-loop.

Similarly, each CPreR operation executed as a part of a random attractor computation adds at
least one vertex to the attractor, and the vertices of the attractor are then not considered any
further in the algorithm. Therefore there can, in total, be at most O(n) CPreR operations
over all attractor computations at Lines 7, 21, 31, and 32.

Note that every vertex in each of HS and TS can be attributed to at least one unique implicit
edge deletion since we only add vertices to HS resp. TS that are successors resp. predecessors
of vertices that were separated from S (or deleted from the maintained graph). Whenever
the case |HS|+ |TS| ≥

√
m/ log n occurs, for all subsets C ⊆ S that are then added to X ,

we initialize HC = TC = ∅. Therefore, the case |HS| + |TS| ≥
√

m/ log n can happen at
most O(

√
m log n) times throughout the algorithm since there are at most m edges that can
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be deleted. In one iteration of this case, the number of symbolic steps executed by allSCCs
together with symbolic steps executed at Lines 20, 23, and 24, is bounded by O(n) [GPP08].

It remains to bound the number of symbolic steps in Algorithm 6.1. Let C be the set returned
by the procedure; we charge the symbolic steps in this call of the procedure to the vertices of
the smaller set of C and S \ C. By Theorem 6.1 we have either (a) C = S, the number of
symbolic steps in this call is bounded by O(

√
m/ log n · |C|), and the set S is added to goodEC

or (b) min(|C|, |S \ C|) ≤ |S|/2 and the number of symbolic steps in this call is bounded by
O(
√

m/ log n ·min(|C|, |S \ C|)). Case (a) can happen at most once for the vertices of C,
and for case (b) note that the size of a set containing a specific vertex can be halved at most
O(log n) times; thus we charge each vertex at most O(log n) times. Hence we can bound the
total number of symbolic steps in all calls to the procedure by O(n ·

√
m log n).

6.6 Experiments
We present a basic prototype implementation of our algorithm and compare against the basic
symbolic algorithm for graphs and MDPs with Streett objectives.

Models. We consider the academic benchmarks from the VLTS benchmark suite [CWI],
which gives representative examples of systems with nondeterminism, and has been used in
previous experimental evaluation (such as [BCvdP11, CHJS13]).

Specifications. We consider random linear-temporal-logic formulas and use the tool Ra-
binizer [KK14] to obtain deterministic Rabin automata. Then the negations of the formulas
give us Streett automata, which we consider as the specifications.

Graphs. For the models of the academic benchmarks, we first compute SCCs, as all algorithms
for Streett objectives compute SCCs as a preprocessing step. For SCCs of the model benchmarks
we consider products with the specification Streett automata, to obtain graphs with Streett
objectives, which are the benchmark examples for our experimental evaluation. The number
of vertices in the benchmarks ranges from 50K to 200K, and the number of transitions ranges
from 300K to 5Million.

MDPs. For MDPs, we consider the graphs obtained as above and consider a fraction of the
vertices of the graph as random vertices, which is chosen uniformly at random. We consider
10%, 20%, and 50% of the vertices as random vertices for different experimental evaluation.

Experimental evaluation – symbolic steps. In the experimental evaluation we compare
the number of symbolic steps (i.e., the number of Pre/Post operations2) executed by the
algorithms. As the initial preprocessing step is the same for all the algorithms (computing all
SCCs for graphs and all MECs for MDPs), the comparison presents the number of symbolic
steps executed after the preprocessing. The experimental results for graphs are shown in
Figure 6.2 and the experimental results for MDPs are shown in Figure 6.3 (in each figure the
two lines represent equality and an order-of-magnitude improvement, respectively).

Discussion. Note that the lock-step search is the key reason for theoretical improvement,
however, the improvement relies on a large number of Streett pairs. In the experimental
evaluation, the linear-temporal-logic formulas generate Streett automata with small number of

2Recall that the basic set operations are cheaper to compute, and asymptotically at most the number of
Pre/Post operations in all the presented algorithms.

134



6.6. Experiments

Figure 6.2: Comparison of symbolic steps for graphs with Streett objectives.

(a) 10% random vertices. (b) 20% random vertices.

(c) 50% random vertices.

Figure 6.3: Comparison of symbolic steps for MDPs with Streett objectives.
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Figure 6.4: Comparison of time for graphs with Streett objectives.

pairs, which after the product with the model accounts for an even smaller fraction of pairs as
compared to the size of the state space. This has two effects:

• In the experiments the lock-step search is performed for a much smaller parameter value
(O(log n) instead of the theoretically optimal bound of

√
m/ log n), and leads to a small

improvement.

• For large graphs, since the number of pairs is small as compared to the number of states,
the improvement over the basic algorithm is minimal.

In contrast to graphs, in MDPs even with small number of pairs as compared to the state-
space, the interleaved MEC computation has a notable effect on practical performance, and
we observe performance improvement even in large MDPs.

Experimental evaluation – runtime. We further present the results of the experimental
evaluation when comparing based on the time. In all the figures, both axes plot the amount
of seconds spent on the execution. Similar to the case of the symbolic steps, we begin the
measurement after the initial preprocessing step (computing all SCCs for graphs and all MECs
for MDPs) is finished. The comparison of running time yields similar results to the comparison
of the number of symbolic steps; the results for graphs are shown in Figure 6.4 and the results
for MDPs are shown in Figure 6.5.
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(a) 10% random vertices. (b) 20% random vertices.

(c) 50% random vertices.

Figure 6.5: Comparison of time for MDPs with Streett objectives.
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CHAPTER 7
Conclusions

In this thesis we have presented several novel works for improved verification of concurrent
systems. We have proposed new techniques for stateless model checking (SMC) of concurrent
programs using dynamic partial order reduction (POR), and further we have presented new
symbolic model-checking algorithms for graphs and Markov decision processes (MDPs) that
are used to model finite-state concurrent systems.

In Chapter 3 we have introduced a new equivalence on concurrent traces, called the value-
centric (VC) equivalence, which operates under the sequential consistency (SC) memory model
and considers the values of trace-events in order to determine whether two traces are equivalent.
We have shown that the VC equivalence is coarser than the standard Mazurkiewicz equivalence,
while the corresponding consistency checking problem remains solvable in polynomial time.
In fact, the coarsening of the VC equivalence can occur even when there are no concurrent
write events. In addition, we have developed an SMC algorithm VC-DPOR that relies on
the VC equivalence to partition the trace space into classes and explore each class efficiently.
Our experiments show that, in a variety of benchmarks, the VC equivalence indeed produces
smaller partitionings than those explored by alternative, state-of-the-art methods, which often
leads to a large reduction in running times.

In Chapter 4 we have developed RVF-SMC, a new SMC algorithm for the verification of
concurrent programs under SC using a novel equivalence called reads-value-from (RVF).
On our way to RVF-SMC, we have revisited the famous sequential-consistency checking
problem [GK97]. Despite its NP-hardness, we have shown that the problem is parameterizable
in k + d (for k threads and d variables), and becomes even fixed-parameter tractable in d
when k is constant. We have further developed practical heuristics that solve the problem
efficiently in many practical settings. Our RVF-SMC algorithm couples our solution for the
sequential-consistency checking to a novel exploration of the underlying RVF partitioning, and
is able to model check many concurrent programs where previous approaches time-out. Our
experimental evaluation reveals that RVF is very often the most effective equivalence, as the
underlying partitioning is exponentially coarser than other approaches. Moreover, RVF-SMC
generates representatives very efficiently, as the reduction in the partitioning is often met with
significant speed-ups in the model checking task.

In Chapter 5 we have solved the consistency verification problem under a reads-from map for the
total store order (TSO) and partial store order (PSO) relaxed memory models. Our algorithms
scale as O(k · nk+1) for TSO, and as O(k · nk+1 ·min(nk·(k−1), 2k·d)) for PSO, for n events,
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k threads and d variables. Thus, they both become polynomial-time for a bounded number of
threads, similar to the case for SC that was established recently [AAJ+19, BE19]. In practice,
our algorithms perform much better than the standard baseline methods, offering significant
scalability improvements. Encouraged by these scalability improvements, we have used these
algorithms to develop, for the first time, SMC under TSO and PSO using the reads-from (RF)
equivalence, as opposed to the standard Shasha–Snir equivalence. Our experiments show that
the underlying RF partitioning is often much coarser than the Shasha–Snir partitioning, which
yields a significant speedup in the model checking task.

In Chapter 6 we have considered symbolic algorithms for graphs and MDPs with Streett
objectives, as well as for maximal end-component (MEC) decomposition. With these algorithms
we have established new superior algorithmic bounds for the respective problems, and our
algorithmic bounds match for both graphs and MDPs. In contrast, while strongly connected
components (SCCs) can be computed in linearly many symbolic steps, no such algorithm is
known for MEC decomposition.

There are many exciting areas for future work on verification of concurrent systems. In SMC,
interesting future work includes further improvements over consistency checking solutions in
various settings and memory models, as well as extensions of coarse SMC (e.g., RVF-SMC
of Chapter 4) to relaxed memory models. In symbolic algorithms, an interesting direction is to
explore further improved symbolic algorithms for MEC decomposition, and further improved
symbolic algorithms for graphs and MDPs with various classes of objectives.

Moreover, there is potential in exploring other areas that cross over with the topics explored
in this thesis. As an example, we remark that consistency-verification algorithms have
direct applications beyond SMC. In particular, most predictive dynamic analyses solve a
consistency-verification problem in order to infer whether an erroneous execution can be
generated by a concurrent system [SES+12, KMV17, Pav19, MPV20, RGB20, MPV21]. Hence,
novel consistency checking solutions allow to extend predictive analyses to new settings, e.g.
TSO/PSO, in a scalable way that does not sacrifice precision. Further, combination of dynamic
POR with symbolic techniques (such as symbolic execution) or static analyses (as in [HH17])
can lead to very practical verification solutions.
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