
124

Value-Centric Dynamic Partial Order Reduction

KRISHNENDU CHATTERJEE, IST Austria, Austria

ANDREAS PAVLOGIANNIS, EPFL, Switzerland

VIKTOR TOMAN, IST Austria, Austria

The verification of concurrent programs remains an open challenge, as thread interaction has to be accounted

for, which leads to state-space explosion. Stateless model checking battles this problem by exploring traces

rather than states of the program. As there are exponentially many traces, dynamic partial-order reduction

(DPOR) techniques are used to partition the trace space into equivalence classes, and explore a few representa-

tives from each class. The standard equivalence that underlies most DPOR techniques is the happens-before

equivalence, however recent works have spawned a vivid interest towards coarser equivalences. The efficiency

of such approaches is a product of two parameters: (i) the size of the partitioning induced by the equivalence,

and (ii) the time spent by the exploration algorithm in each class of the partitioning.

In this work, we present a new equivalence, called value-happens-before and show that it has two appealing

features. First, value-happens-before is always at least as coarse as the happens-before equivalence, and can

be even exponentially coarser. Second, the value-happens-before partitioning is efficiently explorable when

the number of threads is bounded. We present an algorithm called value-centric DPOR (VC-DPOR), which

explores the underlying partitioning using polynomial time per class. Finally, we perform an experimental

evaluation of VC-DPOR on various benchmarks, and compare it against other state-of-the-art approaches. Our

results show that value-happens-before typically induces a significant reduction in the size of the underlying

partitioning, which leads to a considerable reduction in the running time for exploring the whole partitioning.

CCS Concepts: · Theory of computation→ Verification by model checking; · Software and its engi-

neering→ Formal software verification.

Additional Key Words and Phrases: concurrency, stateless model checking, partial-order reduction

ACM Reference Format:

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. 2019. Value-Centric Dynamic Partial Order

Reduction. Proc. ACM Program. Lang. 3, OOPSLA, Article 124 (October 2019), 29 pages. https://doi.org/10.1145/

3360550

1 INTRODUCTION

Model checking of concurrent programs. The formal analysis of concurrent programs is a key
problem in program analysis and verification. Concurrency incurs a combinatorial explosion in

Authors’ addresses: Krishnendu Chatterjee, IST Austria, Am Campus 1, Klosterneuburg, 3400, Austria, krishnendu.

chatterjee@ist.ac.at; Andreas Pavlogiannis, EPFL, Route Cantonale, Lausanne, 1015, Switzerland, pavlogiannis@cs.au.dk;

Viktor Toman, IST Austria, Am Campus 1, Klosterneuburg, 3400, Austria, viktor.toman@ist.ac.at.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART124

https://doi.org/10.1145/3360550

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550

124:2 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

the behavior of the program, which makes errors hard to reproduce by testing (often identified
as Heisenbugs [Musuvathi et al. 2008]). Thus, the formal analysis of concurrent program requires
a systematic exploration of the state space, which is addressed by model checking [Clarke et al.
1999a]. However there are two key issues related to model-checking of concurrent programs: first,
is related to the state-space explosion, and second, is related to the number of interleavings. Below
we describe the main techniques to address these problems.

Stateless model checking.Model checkers typically store a large number of global states, and cannot
handle realistic concurrent programs. The standard solution that is adopted to battle this problem
on concurrent programs is stateless model checking [Godefroid 1996]. Stateless model-checking
methods typically explore traces rather than states of the analyzed program, and only have to
store a small number of traces. In such techniques, model checking is achieved by a scheduler,
which drives the program execution based on the current interaction between the threads. The
depth-first nature of the search enables it to be both systematic and memory-efficient. Stateless
model-checking techniques have been employed successfully in several well-established tools, e.g.,
VeriSoft [Godefroid 1997, 2005] and CHESS [Madan Musuvathi 2007].

Partial-order Reduction (POR). While stateless model checking deals with the state-space issue, one
key challenge that remains is exploring efficiently the exponential number of interleavings, which
results from non-deterministic interprocess communication. There exist various techniques for
reducing the number of explored interleavings, such as depth bounding and context bounding [Lal
and Reps 2009; Musuvathi and Qadeer 2007]. One of the most well-studied techniques is partial-
order reduction (POR) [Clarke et al. 1999b; Godefroid 1996; Peled 1993]. The main principle of
POR is that two interleavings can be regarded as equal if they agree on the order of conflicting
(dependent) events. In other words, POR considers certain pairs of traces to be equivalent, and the
theoretical foundation of POR is the equivalence relation induced on the trace space, known as the
happens-before (or Mazurkiewicz) equivalenceHB [Mazurkiewicz 1987]. POR algorithms explore
at least one trace from each equivalence class and guarantee a complete coverage of all behaviors
that can occur in any interleaving, while exploring only a subset of the trace space. For the most
interesting properties that arise in formal verification, such as safety, race freedom, absence of
global deadlocks, and absence of assertion violations, POR-based algorithms make sound reports of
correctness [Godefroid 1996].

Dynamic Partial-order Reduction (DPOR). Dynamic partial-order reduction (DPOR) is an on-the-fly
version of POR [Flanagan and Godefroid 2005]. DPOR records conflicts that actually occur during
the execution of traces, and thus is able to infer independence more frequently than static POR,
which typically relies on over-approximations of conflicting events. Similar to POR, DPOR-based
algorithms guarantee the exploration of at least one trace in each class of the happens-before
partitioning. Recently, an optimal method for DPOR was developed [Abdulla et al. 2014] that
explores exactly one trace from each happens-before equivalence class.

Efficiency of DPOR techniques. The efficiency of DPOR algorithms typically depends on two param-
eters, namely (i) the size of the trace-space partitioning and (ii) the time required to explore each
class of the partitioning. The overall efficiency of the algorithm is a product of the two above, and
there is usually a trade-off between the two, as coarser partitionings typically make the problem of
moving between different classes of the partitioning computationally harder.

Beyond the Mazurkiewicz equivalence. Lately, there has been a considerable effort into going beyond
Mazurkiewicz equivalence, by developing algorithms that explore partitionings of the trace space
induced by equivalence relations that are coarser than Mazurkiewicz [Albert et al. 2017; Aronis

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:3

Thread p1 :

1. w(x, 1)
Thread p2 :

1. w(x, 2)
2. w(x, 1)
3. r (x)

Fig. 1. A toy program with two threads.

et al. 2018; Chalupa et al. 2017; Huang 2015]. Such approaches can be broadly classified as oracle-
based methods that rely on NP-hard oracles such as SMT-solvers to guide the exploration, and
explicit methods which avoid such computationally expensive oracles. Explicit methods include
DC-DPOR [Chalupa et al. 2017] and Optimal DPOR with Observers [Aronis et al. 2018], which rely
on equivalences provably coarser than the happens-before equivalence, as well as Context-sensitive
DPOR [Albert et al. 2017] which sometimes might be coarser, but not always. On the other hand,
oracle-based methods include MCR [Huang 2015] and SATCheck [Demsky and Lam 2015].

Value-centric DPOR. The happens-before equivalence and most coarser equivalences which admit
an efficient exploration are insensitive to the values that variables take during the execution of
a trace. On the other hand, it is well-understood that equivalences which are sensitive to such
values can be very coarse, thereby reducing the size of the trace-space partitioning. An interesting
approach with a value-centric partitioning was recently explored in [Huang 2015]. However, that
approach is implicit and relies on expensive NP-oracles repeatedly for guiding the exploration of the
partitioning. This NP bottleneck was identified in that work, and was subsequently only partially
improved with static-analysis-based heuristics [Huang and Huang 2017]. Hence, the challenge of
constructing value-centric equivalences that also admit efficient explorations has remained open.
In the next section, we illustrate the benefits of such equivalences on a small example.

1.1 A Small Motivating Example

Consider the simple program given in Figure 1, which consists of two threads communicating over
a global variable x . We have two types of events: p1 writes to x the value 1, whereas p2 first writes
to x the value 2, then writes to x the value 1, and finally it reads the value of x to its local variable.
When we analyze this program, it becomes apparent that a model-checking algorithm can benefit

if it takes into account the values written by the write events. Indeed, denote byw
j
i the j-th write

event of thread i , and by r the unique read event. There exist 4 Mazurkiewicz orderings.

t1 : w
1
1w

1
2w

2
2r t2 : w

1
2w

1
1w

2
2r t3 : w

1
2w

2
2w

1
1r t4 : w

1
2w

2
2rw

1
1

Hence, any algorithm that uses the Mazurkiewicz equivalence for exploring the trace space of
the above program will have to explore at least 4 traces. Moreover, any sound algorithm that is
insensitive to values will, in general, explore at least two traces (e.g., t1, and t3), since the value read
by r can, in principle, be different in both cases. This is true, for example, for DC-DPOR [Chalupa
et al. 2017], which is based on the recently introduced Observation equivalence, as well as the
Optimal DPOR with observers [Aronis et al. 2018] (which explores 3). On the other hand, it is
clear that examining a single trace suffices for visiting all the local states of all threads. Although
minimal, the above example illustrates the advantage that stateless model checking algorithms can
gain by being sensitive to the values used by the events during an execution.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:4 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

1.2 Challenges and Our Contributions

Challenges. The above example illustrates that a value-centric partitioning can be coarse. To our
knowledge, value-centric equivalences have been used systematically (i.e., with provable guaran-
tees) only by implicit methods which rely on NP oracles (e.g., SMT-solvers [Huang 2015; Huang
and Huang 2017]), which makes the exploration of the (reduced) partitionings computationally
expensive. The challenge that arises naturally is to produce a partitioning that (a) is provably always
coarser than Mazurkiewicz trace equivalence; and (b) is efficiently explorable (i.e., the time required
in each step of the search is small/polynomial). In this work we address this challenge.

Our contributions. The main contribution of this work is a new value-centric equivalence, called
value-happens-before (VHB). Intuitively,VHB distinguishes (arbitrarily) a thread of the program,
called the root, from the other threads, called the leaves. The coarsening of the partitioning is
achieved byVHB by relaxing the happens-before orderings between events that belong to the
root and leaf threads. Given two traces t1 and t2 which have the same happens-before ordering on
the events of leaf threads,VHB deems t1 and t2 equivalent by using a combination of (i) the values
and (ii) the causally-happens-before orderings on pairs of events between the root and the leaves.

Properties ofVHB.We discuss two key properties ofVHB.

(1) Soundness. TheVHB equivalence is sound for reporting correctness of local-state properties.
In particular, if t1 ∼VHB t2, then every trace is guaranteed to visit the same local states in both
executions. Thus, in order to report local-state-specific properties (e.g., absence of assertion
violations), it is sound to explore a single representative from each class of the underlying
partitioning. Global-state properties can be encoded as local properties by using a thread to
monitor the global state. Due to this fact, many other recent works on DPOR focus on local-state
properties only [Aronis et al. 2018; Chalupa et al. 2017; Huang 2015; Huang and Huang 2017].

(2) Exponentially coarser than happens-before. TheVHB is always at least as coarse as the happens-
before (or Mazurkiewicz) equivalence, i.e., if two traces areHB-equivalent, then they are also
VHB-equivalent. This implies that the underlying VHB partitioning is never larger than
the HB partitioning. In addition, we show that there exist programs for which the VHB
partitioning is exponentially smaller, thereby getting a significant reduction in one of the two
factors that affect the efficiency of DPOR algorithms. Interestingly, this reduction is achieved
even if there are no concurrent writes in the program.

Value-centric DPOR. We develop an efficient DPOR algorithm that explores theVHB partitioning,
called VC-DPOR. This algorithm is guaranteed to visit every class of theVHB partitioning, and
for a constant number of threads, the time spent in each class is polynomial. Hence, VC-DPOR
explores efficiently a value-centric partitioning without relying on NP oracles. For example, in the
program of Figure 1, VC-DPOR explores only one trace.

Experimental results. Finally, we make a prototype implementation of VC-DPOR and evaluate
it on various classes of concurrency benchmarks. We use our implementation to assess (i) the
coarseness of the VHB partitioning in practice, and (ii) the efficiency of VC-DPOR to explore
such partitionings. To this end, we compare these two metrics with existing state-of-the-art explicit
DPOR algorithms, namely, the Source-DPOR [Abdulla et al. 2014], Optimal-DPOR [Abdulla et al.
2014], Optimal-DPOR with observers [Aronis et al. 2018], as well as DC-DPOR [Chalupa et al.
2017]. Our results show a significant reduction in the size of the partitioning compared to the
partitionings explored by existing techniques, which also typically leads to smaller running times.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:5

2 PRELIMINARIES

2.1 Concurrent Computation Model

In this section we define the model of concurrent programs and introduce general notation. We
follow a standard exposition found in the literature (e.g., [Abdulla et al. 2014; Chalupa et al. 2017]).
For simplicity of presentation we do not consider locks in our model. Later, we remark how locks
can be handled naturally by our approach (see Remark 4).

General notation.Given a natural number i ≥ 1, we denote by [i] the set {1, 2, . . . , i}. Given a map
f : X → Y , we let dom(f) = X and img(f) = Y denote the domain and image sets of f , respectively.
We represent maps f as sets of tuples {(x, f (x))}x . Given two maps f1, f2, we write f1 = f2 to denote
that dom(f1) = dom(f2) and for every x ∈ dom(f1) we have f1(x) = f2(x), and we write f1 , f2
otherwise. A binary relation ∼ on a set X is an equivalence relation iff ∼ is reflexive, symmetric and
transitive. Given an equivalence ∼E and some x ∈ X , we denote by [x]E the equivalence class of x
under ∼E , i.e., [x]E = {y ∈ X : x ∼E y}. The quotient set X/E = {[x]E | x ∈ X } of X under ∼E is
the set of all equivalence classes of X under ∼E .

Concurrent program. We consider a concurrent program H = {pi }ki=1 of k threads communi-
cating over shared memory, where k is some arbitrary constant. For simplicity of presentation,
we neglect dynamic thread creation. We distinguish p1 as the root thread of H , and refer to the
remaining threads p2, . . . ,pk as leaf threads. The shared memory consists of a finite set G of global
variables, where each variable receives values from a finite value domain D. Every thread executes
instructions, which we call events, and are of the following types.

(1) A write event w writes a value v ∈ D to a global variable x ∈ G.
(2) A read event r reads the value v ∈ D of a global variable x ∈ G.
(3) A local (invisible) event is an event that does not access any global variable.

Although typically threads contain local events to guide the control-flow, such events are not
relevant in our setting, and will thus be ignored. For simplicity of exposition, we consider that
every thread is represented as an unrolled tree, which captures its unrolled control-flow, and every
event is a node in this tree. In practice, each event is sufficiently identified by its thread identifier
and an integer that counts how many preceding events of the same thread have been executed
already. Given an event e , we denote by p(e) the thread of e and by loc(e) the unique global variable
that e accesses. We denote by E the set of all events, byW the set of write events, and by R the set
of read events ofH . Given a thread p, we denote by Ep ,Wp and Rp the set of events, read events
and write events of p, respectively. In addition, we let E,p =

⋃

p′,p Ep′ and similarly forW,p and
R,p , i.e., E,p denote the set of events of threads other than thread p, and similarly, forW,p and
R,p . Finally, given a set X ⊆ E, we letW(X) = X ∩W and R(X) = X ∩ R for the set of write and
read events of X , respectively.

Concurrent program semantics. The semantics ofH are defined by means of a transition system
over a state space of global states s = (val,L1, . . . ,Lk), where val : G → D is a value function that
maps every global variable to a value, and Li is a local state of thread pi , which contains the values
of the local variables of each thread. The memory model considered here is sequentially consistent.
Since the setting is standard, we omit here the formal setup and refer the reader to [Godefroid
2005] for details. As usual in stateless model checking, we focus our attention on state spaces SH
that are acyclic (hence our focus is on bounded model checking).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:6 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Traces. A (concurrent) trace is a sequence of events t = e1, . . . , ej that corresponds to a valid
execution of H . Given a trace t , we denote by E(t) the set of events that appear in t , and by
R(t) = E(t) ∩ R (resp.,W(t) = E(t) ∩W) the read (resp., write) events in t . We let enabled(t)
denote the set of enabled events in the state reached after t is executed, and call t maximal if
enabled(t) = ∅. We write TH and Tmax

H for the set of all traces and maximal traces, respectively,
of H . Given a set of events A, we denote by t |A the projection of t on A, which is the unique
subsequence of t that contains all events of A ∩ E(t), and only those.

Observation, side and value functions.Given a trace t and a read event r ∈ R(t), the observation
of r in t is the last write eventw that appears before r in t such that loc(r) = loc(w). The observation
function of t is a function Ot : R(t) → W(t) such that Ot (r) is the observation of r in t . The
side function of t is a function St : R(t) ∩ Rp1 → [2] such that St (r) = 1 if p(Ot (r)) = p1 and
St (r) = 2 otherwise. In other words, a side function is defined for the read events of the root thread,
and assigns 1 (resp., 2) to each read event if it observes a local (resp., remote) write event in the
trace 1. The value function of t is a function valt : E(t) → D such that valt (e) is the value of the
global variable loc(e) after the prefix of t up to e has been executed. Note that since each thread is
deterministic, this value is always unique and thus valt is well-defined.

2.2 Problem and Complexity Parameters

The local-state reachability problem. The problem we address in this work is detecting erro-
neous local states of threads, e.g., whether a thread ever encounters an assertion violation. The
underlying algorithmic problem is that of discovering every possible local state of every thread of
H , and checking whether a bug occurs. In stateless model checking, the focal object for this task
is the trace, and algorithms solve the problem by exploring different maximal traces of the trace
space Tmax

H . DPOR techniques use an equivalence E to partition the trace space into equivalence
classes, and explore the partitioning Tmax

H /E instead of the whole space Tmax
H .

Complexity parameters. Given an equivalence E over Tmax
H , the efficiency of an algorithm that

explores the partitioning Tmax
H /E is typically a product of two factors O(α · β). The first factor α is

the size of the partitioning itself, i.e., α = |Tmax
H /E |, which is typically exponentially large. As we

construct coarser equivalences E, α decreases. The second factor β captures the amortized time on
each explored class, and can be either polynomial (i.e., efficient) or exponential. There is a tradeoff
between α and β : typically, for coarser equivalences E the algorithms spend more time to explore
each class, and hence α is decreased at the cost of increasing β . Hence, the challenge is to make α
as small as possible without increasing β much.

This work. In this work, we introduce the value-happens before equivalence VHB and show
that theVHB-partitioning is efficiently explorable. For a constant number of threads, which is
typically the case, β = poly(n), i.e., β is polynomial in the length of the longest trace in Tmax

H . Since,
on the other hand, α is usually exponentially large in n, we will not focus on establishing the exact
dependency of β on n. This helps to keep the exposition of the main message clear and focused.

Due to space restrictions, proofs and some experimental details appear in a technical report [Chat-
terjee et al. 2019].

1Although the definition of side functions might appear arbitrary, we rely on this definition later for computing the VHB
abstraction.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:7

2.3 Partial Orders

Here we introduce some useful notation around partial orders, which are the central objects of our
algorithms in later sections.

Partial orders. Given a trace t and a set X ⊆ E(t), a (strict) partial order P(X) over X is an
irreflexive, antisymmetric and transitive relation over X (i.e., <P (X)⊆ X ×X). When X is clear from
the context, we will simply write P for the partial order P(X). Given two events e1, e2 ∈ X , we write
e1 ≤P e2 to denote that e1 < e2 or e1 = e2 Given two distinct events e1, e2 ∈ X , we say that e1 and
e2 are unordered by P , denoted by e1 ∥P e2, if neither e1 <P e2 nor e2 <P e1. Given a set Y ⊆ X ,
we denote by P |Y the projection of P on the set Y , i.e., <P |Y ⊆ Y × Y , and for every pair of events
e1, e2 ∈ Y , we have that e1 <P |Y e2 iff e1 <P e2. Given two partial orders P and Q over a common
set X , we say that Q refines P , denoted by Q ⊑ P , if for every pair of events e1, e2 ∈ X , if e1 <P e2
then e1 <Q e2. We writeQ ⊏ P to denote thatQ ⊑ P and P ̸⊑ Q . A linearization of P is a total order
that refines P . Note that a trace t is a partial (and, in fact, total) order over the set E(t).

Conflicting events, width and Mazurkiewicz width. Two events e1, e2 are called conflicting,
written e1 Z e2, if they access the same global variable and at least one writes to the variable. Let P
be a partial order over a set X . The width width(P) of P is the length of its longest antichain, i.e., it
is the smallest integer i such that for every set Y ⊆ X of size i + 1 e1, e2 ∈ Y such that e1 ∦P e2. A
set Y ⊆ X is called pairwise conflicting if for every pair of distinct events e1, e2 ∈ Y , we have that
e1 Z e2. We define the Mazurkiewicz width Mwidth(P) of P as the smallest integer i such that for
every pairwise conflicting set Y ⊆ X of size i + 1 there exists a pair e1, e2 ∈ Y such that e1 ∦P e2.
Intuitively,Mwidth(P) is similar to width(P), with the difference that, in the first case, we focus on
events that are conflicting as opposed to any events.

The thread order TO. The thread order TO ofH is a partial order <TO⊆ E ×E that defines a fixed
order between pairs of events of the same thread. For every trace t ∈ TH , we have that t ⊑ TO|E(t).
Every partial order P used in this work respects the thread order.

Visible, maximal and minimal writes. Consider a partial order P over a set X . Given a read
event r ∈ R(X) we define the set of visible writes of r as

VisibleWP (r) ={w ∈ W(X) : r Z w and r ≮P w and for eachw ′ ∈ W(X)
s.t. r Z w ′, ifw <P w ′ thenw ′ ≮P r }

In words, VisibleWP (r) contains the write eventsw that conflict with r and are not łhiddenž to r
by P , i.e., there exist linearizations t of P such that Ot (r) = w (note that here t is not necessarily
an actual trace ofH). The set of minimal writes MinWP (r) (resp., maximal writes MaxWP (r)) of r
contains the write events that are minimal (resp., maximal) elements in P |VisibleWP (r).

The happens-before partial order. A trace t induces a happens-before partial order→t ⊆ E(t) ×
E(t), which is the smallest transitive relation on E(t) such that (i)→t ⊑ TO|E(t) and (ii) e1→te2 if
e1 <t e2 and e1 Z e2.

The causally-happens-before partial order. A trace t induces a causally-happens-before partial
order 7→t ⊆ E(t)×E(t), which is the smallest transitive relation on E(t) such that (i) 7→t ⊑ TO|E(t)
and (ii) for every read event r ∈ R(t), we have Ot (r)7→tr . In words, 7→ captures the flow of write
events into read events, and is closed under composition with the thread order. Intuitively, for an
event e , the set of events e ′ that causally-happen-before e are the events that need to be present so

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:8 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

that e is enabled. Note that→t ⊑ 7→t , i.e., the happens-before partial order refines the causally-
happens-before partial order.

We refer to Figure 2 for an illustration of the→t and 7→t partial orders.

τ1 τ2 τ3
1 w(x, 1)
2 w(x, 1)
3 w(y, 1)
4 r (y, 1)
5 w(x, 1)
6 w(y, 2)
7 w(y, 1)
8 r (x, 1)

(a) A trace t of three threads.

7→t =TO|E(t) ∪ (thread order)

{e5 7→te8} (on x)

→t =TO|E(t) ∪ (thread order)

{e1→te2→te5→te8} ∪ (on x)

{e3→te4→te6→te7} (on y)

(b) The happens-before→t and causally-happens-before 7→t partial orders.

Fig. 2. A trace (a) and the induced happens-before and causally-happens-before partial orders (b). We use the

notation ei to refer to the i-th event of t .

3 THE VALUE-HAPPENS-BEFORE EQUIVALENCE

In this section we introduce our new equivalence between traces, called value-happens-before, and
prove some of its properties. We start with the happens-before equivalence, which has been used
by DPOR algorithms in the literature.

The happens-before equivalence. Two traces t1, t2 ∈ TH are called happens-before-equivalent

(commonly referred to as Mazurkiewicz equivalent), written t1 ∼HB t2, if the following hold.

(1) E(t1) = E(t2), i.e., they consist of the same set of events.
(2) →t1 =→t2 , i.e., their happens-before partial orders are equal.

The value-happens-before equivalence. Two traces t1, t2 ∈ TH are called value-happens-before-

equivalent, written t1 ∼VHB t2, if the following hold.

(1) E(t1) = E(t2), valt1 = valt2 and St1 = St2 , i.e., they consist of the same set of events, and their
value functions and side functions are equal.

(2) 7→t1 |R = 7→t2 |R, i.e., 7→ti agree on the read events.
(3) →t1 |E,p1 =→t2 |E,p1 , i.e.,→ti agree on the events of the leaf threads.

Remark 1 (Soundness). Since every thread ofH is deterministic, for any two traces t1, t2 ∈ TH such

that E(t1) = E(t2) and valt1 = valt2 , the local states of each thread after executing t1 and t2 agree.

It follows that any algorithm that explores every class of Tmax
H /VHB discovers every local state of

every thread, and thusVHB is a sound equivalence for local-state reachability.

Exponential coarseness.Here we provide two toy examples which illustrate different cases where
VHB can be exponentially coarser thanHB, i.e., TH/HB can have exponentially more classes
than TH/VHB.

Many operations on one variable. First, consider the program shown in Figure 3a which consists of
two threads p1 and p2, with p1 being the root thread. This program has a single global variable x , and
the threads perform operations on x repeatedly. We assume a salient write eventw(x, 0) that writes

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:9

Thread p1 :

1. w(x, 0)
2. w(x, 0)
.

n. w(x, 0)

Thread p2 :

1. r (x)
2. r (x)
.

n. r (x)

(a) Many operations on one variable.

Thread p1 :

1. w(x1, 0)
2. w(x1, 0)
.

2 · n − 1. w(xn, 0)
2 · n. w(xn, 0)

Thread p2 :

1. r (x1)
2. r (x2)
.

n. r (xn)

(b) Few operations on many variables.

Fig. 3. Toy programs whereVHB is exponentially coarser thanHB.

the initial value of x . Consider any two traces t1, t2 that consist of the i ≥ 0 firstw(x) events of p1
and j ≥ 0 first r (x) events of p2 (hence E(t1) = E(t2)). Since eachw(x) writes the same value, we
have valt1 (r) = valt2 (r) for every read event r in p2. Moreover, since the root thread p1 has no read
events, we trivially have St1 = St2 . Since all read events are on thread p2, we have 7→t1 |R = 7→t2 |R =
TO|R(t1). Finally, since we only have one leaf thread,→t1 |E,p1 = →t2 |E,p1 = TO|E,p1 (t1). We
conclude that t1 ∼VHB t2, and thus given i ≥ 0 and j ≥ 0 there exists a single class of ∼VHB that
contains the first i and first j events of p1 and p2, respectively. Thus |TH/VHB| = O(n2). On the
other hand, given the first i ≥ 0 and j ≥ 0 events of threads p1 and p2, respectively, there exist
(i+j)!
i !·j ! =

(i+j
i

)

different ways to order them without violating the thread order. Observe that every

such reordering induces a different happens-before relation. Using Stirling’s approximation, we
obtain

|TH/HB| ≥
(2 · n)!
(n!)2 ≃

√
2 · π · 2 · n · (2 · n/e)2·n
(√

2 · π · n · (n/e)n
)2

= Ω

(

4n
√
n

)

Few operations on many variables. Now consider the example program shown in Figure 3b which
consists of two threads p1 and p2, with p1 being the root thread. We assume a salient write event
w(xi , 0) that writes the initial value of xi . Consider any two traces t1, t2 that consist of the i ≥ 0

first w(x) events of p1 and j ≥ 0 first r (x) events of p2 (hence E(t1) = E(t2)). Since each w(xi , 0)
writes the same value, we have valt1 (r) = valt2 (r) for every read event r in p2. Moreover, since
the root thread p1 has no read events, we trivially have St1 = St2 . Since all read events are on
thread p2, we have 7→t1 |R = 7→t2 |R = TO|R(t1). Finally, since we only have one leaf thread,
→t1 |E,p1 = →t2 |E,p1 = TO|E,p1 (t1). We conclude that t1 ∼VHB t2, and thus given i ≥ 0 and
j ≥ 0 there exists a single class of ∼VHB that contains the first i and first j events of p1 and p2,
respectively. Thus |TH/VHB| = O(n2). On the other hand, given the first i read events of p2 and
2 · i write events of p1, there exist at least 2i different observation functions that map each read
event r to one of the two write events that r observes. Hence |TH/HB| = Ω(2n).

Theorem 3.1. VHB is sound for local-state reachability. Also,VHB is at least as coarse asHB,
and there exist programs whereVHB is exponentially coarser.

4 CLOSED ANNOTATED PARTIAL ORDERS

In this section we develop the core algorithmic concepts that will be used in the enumerative
exploration of the VHB. We introduce annotated partial orders, which are traditional partial
orders over events, with additional constraints. We formulate the question of the realizability of
an annotated partial order P, which asks for a witness trace t that linearizes P and satisfies the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:10 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

constraints. We develop the notion of closure of annotated partial orders, and show that (i) an
annotated partial order is realizable if and only if its closure exists, and (ii) deciding whether the
closure exists can be done efficiently. This leads to an efficient procedure for deciding realizability.

4.1 Annotated Partial Orders

Here we introduce the notion of annotated partial orders, which is a central concept of our work.
We build some definitions and notation, and provide some intuition around them.

Annotated Partial Orders. An annotated partial order is a tuple P = (X1,X2, P, val, S,GoodW)
where the following hold.

(1) X1,X2 are sets of events such that X1 ∩ X2 = ∅.
(2) P is a partial order over the set X = X1 ∪ X2.
(3) val : X → D is a value function.
(4) S : R(X1) → [2] is a side function.
(5) GoodW : R(X) → 2W(X) is a good-writes function such that w ∈ GoodW(r) only if r Z

w and val(r) = val(w) and, if r ∈ X1 thenw ∈ XS (r).
(6) width(P |X1) = Mwidth(P |X2) = 1.

We let the bad-writes function be BadW(r) = {w ∈ W(X) \ GoodW(r) : r Z w}. We call P
consistent if for every thread p, we have that τp = TO|(X ∩ Ep) is a local trace of thread p that
occurs if every event e of τp reads/writes the value val(e). Hereinafter we only consider consistent
annotated partial orders.

The realizability problem for annotated partial orders. Consider an annotated partial order
P = (X1,X2, P, val, S,GoodW). A trace t is a linearization of P if (i) t ⊑ P and (ii) for every read
event r ∈ R(X1 ∪ X2) we have that Ot (r) ∈ GoodW(r). In words, t must be a linearization of the
partial order P with the additional constraint that the observation function of t must agree with
the good-writes function GoodW of P. We call P realizable if it has a linearization. The associated
realizability problem takes as input an annotated partial order P and asks whether P is realizable.

Remark 2 (Realizability to valid traces.). If t is a linearization of some consistent annotated

partial order P then t is a valid (i.e., actual) trace ofH . This holds because of the following observations.

(1) Since t is a linearization of P, we have Ot (r) ∈ GoodW(r) for every read event r ∈ R(t).
(2) Due to the previous item and the consistency of P, for every threadp we have that τp = TO|(X ∩Ep)

is a valid local trace of p.

Intuition. An annotated partial order P contains a partial order P over a set X = X1 ∪ X2 of events
and the value of each event of X . Intuitively, the consistency of P states that we obtain the set of
events X if we execute each thread and force every read event in this execution to observe the
value of a write event according to the good-writes function. In the next section, our VC-DPOR
algorithm uses annotated partial orders to represent different classes of theVHB equivalence in
order to guide the trace-space exploration. The set X1 (resp., X2) will contain the events of the root
thread (resp., leaf threads). We will see that if VC-DPOR constructs two annotated partial orders P
and Q during the exploration, then any two linearizations t1 and t2 of P and Q, respectively, will
satisfy that t1 ̸∼VHB t2, and hence P and Q represent different classes of theVHB partitioning.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:11

Closed annotated partial orders. Consider an annotated partial order P =

(X1,X2, P, val, S,GoodW) and let X = X1 ∪ X2. We say that P is closed if the following
conditions hold for every read event r ∈ R(X).

(1) There exists a write eventw ∈ GoodW(r) ∩MinWP (r) such thatw <P r .
(2) MaxWP (r) ∩ GoodW(r) , ∅.
(3) For every write eventw ′ ∈ BadW(r) ∩MinWP (r) such thatw ′ <P r there exists a write event

w ∈ GoodW(r) ∩ VisibleWP (r) such thatw ′ <P w .

Our motivation behind this definition becomes clear from the following lemma, which states that
closed annotated partial orders are realizable.

Lemma 4.1. If P is closed then it is realizable and a witness can be constructed in O(poly(n)) time.

In particular, the witness trace of P is constructed by the following process.

(1) Create a partial order Q as follows.
(a) For every pair of events e1, e2 with e1 <P e2, we have e1 <Q e2.
(b) For every pair of events e1, e2 with ei ∈ Xi for each i ∈ [2], if e2 ≮P e1 then e1 <Q e2.

(2) Create t by linearizing Q arbitrarily.

The above construction is guaranteed to produce a valid witness trace for P. The consistency
of annotated partial orders guarantees that t is a valid trace of the concurrent program H (see
Remark 2). We provide an illustration of this construction later in Figure 5.

We now introduce the notion of closures. Intuitively, the closure of an annotated partial order P
strengthens P by introducing the smallest set of event orderings such that the resulting annotated
partial order Q is closed. The intuition behind the closure is the following: whenever a rule forces
some ordering, any trace that witnesses the realizability of P also linearizes Q. In some cases
this operation results to cyclic orderings, and thus the closure does not exist. We also show that
obtaining the closure or deciding that it does not exist can be done in polynomial time. Thus, in
combination with Lemma 4.1, we obtain an efficient algorithm for deciding whether P is realizable,
by deciding whether it has a closure.

Closure of annotated partial orders. Consider an annotated partial order P =

(X1,X2, P, val, S,GoodW). We say that an annotated partial order Q = (X1,X2,Q, val, S,GoodW) is
a closure of P if (i)Q ⊑ P , (ii) Q is closed, and (iii) for any partial order K withQ ⊏ K ⊑ P , we have
that the annotated partial order (X1,X2,K, val, S,GoodW) is not closed. As the following lemma
states, P can have at most one closure.

Lemma 4.2. There exists at most one weakest partial order Q such that Q ⊑ P and

(X1,X2,Q, val, S,GoodW) is closed.

Feasible annotated partial orders. In light of Lemma 4.2, we define the closure of P as the unique
annotated partial order Q that is a closure of P, if such Q exists, and⊥ otherwise. We call P feasible

if its closure is not ⊥. We have the following lemma.

Lemma 4.3. P is realizable if and only if it is feasible.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:12 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Intuitively, Lemma 4.3 states that the closure rules give the weakest strengthening of P that is
met by any linearization of P. If that strengthening can be made (i.e., P is feasible), then P has a
linearization. Hence, to decide whether P is realizable, it suffices to decide whether it is feasible, by
computing its closure. In the next section we show that this computation can be done efficiently.

4.2 Computing the Closure

We now turn our attention to computing the closure of annotated partial orders, which will provide
us with a way of solving the realizability problem.

Algorithm Closure. Consider an annotated partial order P = (X1,X2, P, val, S,GoodW) and let
X = X1 ∪ X2. The algorithm Closure either computes the closure of P, or concludes that P is not
feasible, and returns ⊥. Intuitively, the algorithm maintains a partial orderQ , initially identical to P .
The algorithm iterates over every read event r and tests whether r violates Item 1, Item 2 or Item 3
of the definition of closed annotated partial orders. When it discovers that r violates one such
closure rule, Closure calls one of the closure methods Rule1(r), Rule2(r), Rule3(r), for violation of
Item 1, Item 2 and Item 3 of the definition, respectively. In turn, each of these methods inserts a new
ordering e1 → e2 in Q , with the guarantee that if P has a closure F = (X1,X2, F , val, S,GoodW),
then e1 <F e2. Hence, e1 → e2 is a necessary ordering in the closure of P. Finally, when the algorithm
discovers that all closure rules are satisfied by every read event inQ , it returns the annotated partial
order (X1,X2,Q, val, S,GoodW), which, due to Lemma 4.2, is guaranteed to be the closure of P. We
refer to Algorithm 1 for a formal description.

We now provide some intuition behind each of the closure methods. Given an event e ∈ X , we let
IP(e) = i such that e ∈ Xi . Given two events e1, e2 ∈ X , we say that e2 is local to e1 ifIP(e1) = IP(e2),
i.e., e1 and e2 belong to the same set Xi . If e2 is not local to e1, then it is remote to e1.

(1) Rule1(r). This rule is called when Item 1 of closure is violated, i.e., there exists no write event
w ∈ GoodW(r) ∩MinWQ (r) such thatw <Q r . Observe that in this case there is no write event
that is (i) local to r , (ii) good for r and (iii) visible to r . To make r respect this rule, the algorithm
finds the first write event w that is (i) good for r and (ii) visible to r , and orders w → r in Q .
See Figure 4a provides an illustration.

(2) Rule2(r). This rule is violated when MaxWQ (r) ∩ GoodW(r) = ∅, i.e., every maximal write
event is bad for r . To make r respect this rule, the algorithm finds the unique maximal write
eventw that is remote to r and orders r → w in Q . Rule2(r) is called only if r does not violate
Item 1 of closure, which guarantees thatw exists. Figure 4b provides an illustration.

(3) Rule3(r). This rule is violated when there exists a write eventw ∈ BadW(r) ∩MinWQ (r) such
that (i)w <Q r , and (ii) there exists no write eventw ′ ∈ GoodW(r) ∩ VisibleWQ (r) such that
w <Q w ′. To make r respect this rule, the algorithm determines a maximal write eventw that
is (i) remote tow and (ii) a good write for r , and ordersw → w in Q . Rule3(r) is called only if r
does not violate either Item 1 or Item 2 of closure, which guarantees thatw exists. Figure 4c
provides an illustration, depending on whetherw is local or remote to r .

We have the following lemma regarding the correctness and complexity of Closure.

Lemma 4.4. Closure correctly computes the closure of P and requires O(poly(n)) time.

4.3 Realizing Annotated Partial Orders

Finally, we address the question of realizability of annotated partial orders. Lemma 4.3 implies that
in order to decide whether an annotated partial order is realizable, it suffices to compute its closure,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:13

P |Xi P |X3−i

w

w r

(a) Rule1(r)

P |Xi P |X3−i

w r

(b) Rule2(r)

P |Xi P |X3−i

w

w

w

r

P |Xi P |X3−i

w w

r

(c) Rule3(r)

Fig. 4. Illustration of the three closure operations Rule1(r) (a), Rule2(r) (b) and Rule3(r) (c). We follow the

convention that barred and unbarred write events (w andw) are bad writes and good writes for r , respectively.

In each case, the dashed edge shows the new order introduced by the algorithm in Q .

Algorithm 1: Closure(P)
Input: An annotated partial order P = (X1,X2, P, val, S,GoodW).
Output: The closure of P if it exists, else ⊥.

1 Q ← P // We will strengthen Q during the closure computation

2 Flag← True

3 while Flag do

4 Flag← False

5 foreach r ∈ R(X1 ∪ X2) do // Iterate over the reads

6 if r violates Item 1 of closure then

7 Call Rule1(r) // Strengthen Q to remove violation

8 Flag← True // Repeat as new violations might have appeared

9 if r violates Item 2 of closure then

10 Call Rule2(r) // Strengthen Q to remove violation

11 Flag← True // Repeat as new violations might have appeared

12 if r violates Item 3 of closure then

13 Call Rule3(r) // Strengthen Q to remove violation

14 Flag← True // Repeat as new violations might have appeared

15 end

16 end

17 return (X1,X2,Q, val, S,GoodW) // The closure of P

Algorithm 2: Rule1(r)

1 Y ← GoodW(r) ∩ VisibleWQ (r)
2 if Y = ∅ then return ⊥
3 w ← minQ (Y) // Since Rule 1 is violated, minQ (Y) is unique

4 Insertw → r in Q

Algorithm 3: Rule2(r)

1 w ← the unique event in MaxWQ (r) ∩ X3−IP (r) // w exists since Item 1 of closure holds

2 Insert r → w in Q

and Lemma 4.4 states that the closure can be computed efficiently. Together, these two lemmas
yield a simple algorithm for solving the realizability problem.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:14 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Algorithm 4: Rule3(r)

1 w ← the unique event inMinWQ (r) ∩ BadW(r) // w exists since Items 1 and 2 of closure hold

2 w ← the unique event inMaxWQ (r) ∩ X3−IP (w) // w exists since Items 1 and 2 of closure hold

3 Insertw → w in Q

Algorithm Realize. We describe a simple algorithm Realize that decides whether an annotated
partial order P is realizable. The algorithms runs in two steps.

(1) Use Lemma 4.4 to compute the closure of P. If the closure is ⊥, report that P is not realizable.
Otherwise, the closure is an annotated partial order Q.

(2) Use Lemma 4.1 to obtain a witness trace t that linearizes Q. Report that P is linearizable, and t
is the witness trace.

We conclude the results of this section with the following theorem.

Theorem 4.5. Let P be an annotated partial order of n events. Deciding whether P is realizable

requires O(poly(n)) time. If P is realizable, a witness trace can be produced in O(poly(n)) time.

Example on the realizability of annotated partial orders. We illustrate Realize on a simple
example in Figure 5 with an annotated partial order P = (X1,X2, P, val, S,GoodW), which we
assume to be consistent. We have a concurrent program H of two threads. To represent P, we
make the following conventions. We have three global variables x , y, z, and a unique read event
per variable. Event subscripts denote the variable accessed by the corresponding event. For each
variable, we have a unique read event, and barred and unbarred events denote the good and bad
write events, respectively, for that read event. Since we have specified the good-writes for each
read event, the value function val is not important for this example. Note also that S(rx) = 2 (resp.,
S(rz) = 1) since the good writes of rx (resp., rz) are remote (resp., local) to the read event. The
partial order P of P consists of the thread orders of each thread, shown in solid lines in Figure 5a.
The dashed edges of Figure 5a show the strengthening of P performed by the algorithm Closure

(Algorithm 1). The numbers above the dashed edges denote both the order in which these orderings
are added and the closure rule that is responsible for the corresponding ordering. In particular,
algorithm Closure performs the following steps.

(1) Initially there are no dashed edges, and rx violates Item 1 of closure, as there is no good write
event for rx that is ordered before rx . Rule1 inserts an orderingwx → rx (dashed edge 1).

(2) After the previous step, ry violates Item 2 of closure, as at this point, ry has only one maximal
write eventwy , which is bad for ry . Rule2 inserts an ordering ry → wy (dashed edge 2).

(3) After the previous step, rz violates Item 3 of closure, as at this point, rz has a bad minimal
write eventwz that is ordered before rz but not before any good write event. Rule3 inserts an
orderingwz → wz (dashed edge 3).

At this point no closure rule is violated, and Closure returns the closure Q =

(X1,X2,Q, val, S,GoodW) of P where P has been strengthened toQ with the dashed edges. Observe
that Q has Mazurkiewicz width 2 (and not 1), as there still exist pairs of conflicting events that are
unordered, both on variable y and variable z. For example, there exist two write events on variable
y that are unordered, and hence there exist some linearizations that are łbadž in the sense that
the read event ry does not observe the good write eventwy . Nevertheless, Lemma 4.1 guarantees

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:15

that the corresponding annotated partial order is linearizable to a valid trace, which is shown in
Figure 5b We make two final remarks for this example.

(1) Not every linearization of Q produces a valid witness trace for the realizability of Q, as some
linearizations violate the additional constraints that every read event must observe a write
event that is good for the read event. Hence, the challenge is to find a correct witness.

(2) Q has more than one witness of realizability. Figure 5b shows one such witness t , as constructed
by Lemma 4.1. It is easy to verify that t is a valid witness. Due to Remark 2, the consistency of
P guarantees that t is a valid trace of the programH .

P |X1 P |X2

wy

rx

wz

wy

rz

wy

wx

wz

ry

wz

1

2

3

(a) An annotated partial order P and its closure (dashed edges).

τ1 τ2
1 wy

2 wy

3 wx

4 rx
5 wz

6 wz

7 ry
8 wy

9 rz
10 wz

(b) A witness trace that linearizes P.

Fig. 5. Figure 5a shows an annotated partial order P on a concurrent program of two threads. Subscripts

denote the variable accessed by each event. For each variable, we have a unique read event, and barred and

unbarred events denote the good and bad write events, respectively, for that read event. Dashed edges are

added by Closure (Algorithm 1) during closure. Figure 5b shows a witness trace that linearizes P.

5 VALUE-CENTRIC DYNAMIC PARTIAL ORDER REDUCTION

We now present our algorithm VC-DPOR for exploring the partitioning Tmax
H /VHB. Intuitively,

the algorithm manipulates annotated partial orders of the form P = (X1,X2, P, val, S,GoodW),
where X1 ⊆ Ep1 and X2 ⊆ E,p1 , i.e., X1 (resp., X2) contains events of the root thread (resp., leaf
threads). We first introduce some useful concepts and then proceed with the main algorithm.

Trace extensions and inevitable sets. Given a trace t , an extension of t is a trace t ′ such that t is
a prefix of t ′. We say that t ′ is a maximal extension of t if t ′ is an extension of t and t ′ is maximal.
A set of events X is inevitable for t if for every maximal extension t ′ of t we have X ∈ E(t ′). A
write extension of t , denoted by WExtend(t), is any arbitrary largest extension t ′ of t such that
E(t ′) \ E(t) ⊆ W. In words, we obtain each t ′ by extending t arbitrarily until (but not included)
the next read event of each thread. Note that for every such write extension t ′ of t , for every thread
p, the local trace t ′ |E(p) is unique, and the set E(t ′) is inevitable for t . Let P be a closed annotated
partial order over a set X . A set of events Y is inevitable for P if for every linearization t of P and
every maximal extension t ′ of t , we have that Y ⊆ E(t ′).

Leaf refinement andminimal annotated partial orders. Consider two partial orders P ,Q over
a set X . We say that Q leaf-refines P , denoted by Q ≼ P if for every pair of events e1, e2 ∈ X ∩ E,p1 ,
if e1 Z e2 and e1 <P e2 then e1 <Q e2. In words, Q leaf-refines P if Q agrees with P on the order of
every pair of conflicting events that belong to leaf threads. Consider an annotated partial order
P = (X1,X2, P, val, S,GoodW). We call P minimal if for every closed annotated partial order

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:16 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Q = (X1,X2,Q, val, S,GoodW), if Q ≼ P then Q ⊑ P . Intuitively, the minimality of P guarantees
that P is the weakest partial order among all partial orders Q that

(1) agree with P on the order of conflicting pairs of events that belong to leaf threads, and
(2) make the resulting annotated partial order (X1,X2,Q, val, S,GoodW) closed.

Hence P does not contain any unnecessary orderings, given these two constraints. Observe that if P
is minimal and K is the closure of P then K is also minimal. Afterwards, our algorithm VC-DPOR
will use minimal annotated partial orders to represent different classes of theVHB partitioning.

Algorithm Extend(P,X ′, val′, S ′,GoodW′). Let P = (X1,X2, P, val, S,GoodW) be a minimal,
closed annotated partial order, and X = X1 ∪ X2. Consider

(1) a set X ′ with (i) X ′ \ X ⊆ W or |X ′ \ X | = 1 and (ii) X ′ is inevitable for P,
(2) a value function val′ over X ′ such that val ⊆ val′,
(3) a side function S ′ over X ′ such that S ⊆ S ′, and
(4) a good-writes set GoodW′ over X ′ such that GoodW ⊆ GoodW′.

We rely on an algorithm called Extend that constructs an extension of P = (X1,X2, P, val, S,GoodW)
to X ′, val′, S ′ and GoodW′ as a set of minimal closed annotated partial orders {Ki =

(X ′1,X ′2,Ki , val
′
, S ′,GoodW′)}i , where X ′1 ∪ X ′2 = X ′. Intuitively, if t is a linearization of P, then

for every extension t ′ of t such that E(t ′) = X ′, valt ′ = val′ and St ′ = S ′, there exists some Ki

that linearizes to t ′. In VC-DPOR, we will use Extend to extend annotated partial orders with new
events.

We describe Extend for the special case where |X ′ \ X | = 1. When |X ′ \ X | = q > 1, Extend calls
itself recursively for every annotated partial order of its output set on a sequence of sets Y1, . . . ,Yq
where Yq = X ′, Y0 = X and |Yi+1 \ Yi | = 1. Let X ′ \ X = {e}.

(1) If p(e) = p1 (i.e., e belongs to the root thread), the algorithm simply constructs a partial order K
over the set X ′ such that K |X = P and e ′ <K e for every event e ∈ X ′ such that e ′ <TO e . After-
wards, the algorithm constructs the annotated partial order K = (X ′1,X ′2,K, val′, S ′,GoodW′)
and returns the singleton set Aw = {Closure(K)}.

(2) If p(e) , p1 (i.e., e belongs to the leaf threads), the algorithm first constructs a partial order K as
in the previous item. Afterwards, it creates a new partial order Ki for every possible ordering
of e with all events e ′ ∈ X2 such that e Z e ′. Finally, the algorithm constructs the annotated
partial orders A = Ki = (X ′1,X ′2,Ki , val

′
, S ′,GoodW′), and returns the set A = {Closure(Ki) :

Ki ∈ A and Closure(Ki) , ⊥}.

Causally-happens-before maps, guarding reads and candidate writes. A causally-happens-

before (CHB) map is a map C : R → H → R ∪ {⊥, |= } such that for each read event r ∈ dom(C)
and thread p ∈ H we have that C(r)(p) ∈ Rp ∪ {⊥, |= }. In words, C maps read events to functions
that map every thread p ∈ H to a read event of p, or to some initial values {⊥, |= }. Given a trace t
and an event e ∈ E(t), we define the guarding read Guardt (e) of e in t as the last read event of p(e)
that happens before e in t , and Guardt (e) = ⊥ if no such read event exists. Formally,

Guardt (e) = max
t
({r ∈ R(t |p(e)) : r <TO e})

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:17

where we take the maximum of the empty set to be ⊥. Given a trace t , a CHB map C and a read

event r ∈ enabled(t), we define the candidate write set M Ct (r) of r in t given C as follows:

M Ct (r) ={w ∈ W(t) : r Z w and

either Guardt (w) = ⊥ and C(r)(p(w)) = |=

or Guardt (w) , ⊥ and also C(r)(p(w)) ∈ { |= ,⊥} or C(r)(p(w)) <TO Guardt (w)
We refer to Figure 6 for an illustration of the above notation. Intuitively, C(r)(p) encodes the prefix
of the local trace of thread p that contains write events which have already been considered by the
algorithm as good writes for r . Instead of the whole prefix, we store the last read of that prefix.
The two special values ⊥⊥ and ⊥ encode the empty prefix, and the prefix before the first read. The
guarding read of a writew is the last local read event the same thread that appears beforew in the
execution so far. Hence, if the guarding read ofw appears beforeC(r)(p), we know thatw has been
considered as a good write for r . The candidate write set for r contains writes that are considered
as good writes for r in the current recursive step.

τ1 τ2 τ3
1 wx

2 wy

3 wx

4 ry
5 wx

6 ry
7 wx

8 rx
9 wx

(a) A trace t . Threads p1 and p3 have

enabled events r1x and r3x (not shown),

which access the variable x .

enabled(t) ∩ Ep1 = r1x
enabled(t) ∩ Ep3 = r3x

C(r1x) = {(p1,⊥), (p2, e4), (p3, e6)}
C(r3x) = {(p1, |=), (p2, |=), (p3, |=)}

MCt (r1x) = {e9}

MCt (r3x) = {e1, e3, e5, e7, e9}

(b) The candidate write sets of the read events r1x and r3x given

the causally-happens-before map C.

Fig. 6. Example of a trace (Figure 6a) and candidate write sets of read events given their causally-happens-

before maps (Figure 6b). We denote by ei the i-th event of t .

Algorithm 5: VC-DPOR(P = (X1,X2, P, val, S,GoodW), C)
Input: A minimal closed annotated partial order P, a CHB map C.

1 t ′ ← Realize(P) // P is closed hence realizable

2 t ←WExtend(t ′) // Extend t ′ until before the next read of each thread

3 foreach Q ∈ Extend(P, E(t), valt , S,GoodW) do // Extensions of P to E(t)
4 CQ ← C // Create a copy of the CHB C
5 ExtendRoot(Q, t, CQ) // Process the root thread

6 foreach p ∈ H \ {p1} do // Process the leaf threads

7 ExtendLeaf(Q, t, CQ,p)
8 end

9 end

Algorithm VC-DPOR.We are now ready to describe our main algorithm VC-DPOR for the enu-
merative exploration of the partitioning TH/VHB. The algorithm takes as input a minimal closed

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:18 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

annotated partial order P and a CHB map C. First, VC-DPOR calls Realize to obtain a linearization
t ′ of P and constructs the write-extension t of t ′ which reveals new write events in t . Afterwards,
the algorithm extends P to the set E(t) by calling Extend. Recall that Extend returns a set of
minimal closed annotated partial orders. For every annotated partial order Q returned by Extend,
the algorithm calls ExtendRoot to process the read event of the root thread p1 that is enabled in t .
Finally, the algorithm calls ExtendLeaf for every leaf thread p , p1 to process the read event of p
that is enabled in t . For the initial call, we construct an empty annotated partial order P and an
initial CHB map C that for every read event r ∈ R and thread p ∈ H maps C(r)(p) = { |= }.

Algorithm 6: ExtendRoot(Q = (X1,X2,Q, val, S,GoodW), t, CQ)
Input: A minimal closed annotated partial order Q, a trace t , a CHB map CQ .

1 r ← enabled(t,p1) // The next enabled event in p1 is a read

2 Y1 ← M
CQ
t (r) ∩Wp1 // The set of local candidate writes of r

3 Y2 ← M
CQ
t (r) ∩W,p1 // The set of remote candidate writes of r

4 foreach i ∈ [2] do // i = 1 (i = 2) reads from local (remote) writes

5 Sr ← S ∪ {(r , i)} // The new side function

6 Dr ← {valt (w) : w ∈ Yi } // The set of values of candidate writes of r

7 foreach v ∈ Dr do // Every value v that r may read

8 valr ← valt ∪ {(r ,v)} // The new value function

9 GoodWr ← GoodW ∪ {(r , {w ∈ Yi : valt (w) = v})} // The new good-writes function

10 K ← Extend(Q,X1 ∪ X2 ∪ {r }, valr , Sr ,GoodWr) // Returns one element

11 if K , ⊥ then // Extension is successful

12 Call VC-DPOR(K, CQ) // Recurse

13 end

14 end

15 CQ (r) ← {(p,maxt ({R(t)|p})) : p ∈ H} // The last read of each thread in t

Algorithm ExtendRoot. The algorithm takes as input a minimal closed annotated partial order Q,
a trace t and a CHB map CQ , and attempts all possible extensions of Q with the read event r of p1
that is enabled in t to all possible values that are written in t . The algorithm first constructs two sets
Y1 and Y2 which hold the local and remote, respectively, write events of t that are candidate writes
for r according to the CHB map CQ . Then, it iterates over the local (i = 1) and remote (i = 2) write
choices for r in Yi . Finally, the algorithm (i) collects all possible values that r may read from the set
Yi , (ii) constructs the appropriate new side function, value function and good-writes function, and
(iii) calls Extend on these new parameters in order to establish the respective extension for r . For
every such case, Extend returns a new minimal, closed annotated partial order K which is passed
recursively to VC-DPOR.

Algorithm ExtendLeaf. The algorithm ExtendLeaf takes as input a minimal closed partial order Q,
a trace t , a CHB map CQ , and a thread p ∈ H \ {p1}. Similarly to ExtendRoot, ExtendLeaf attempts
all possible extensions of Q with the read event r of p that is enabled in t to all possible values
that are written in t . The main difference compared to ExtendRoot is that since r belongs to a leaf
thread, Extend returns a set of minimal, closed annotated partial orders (as opposed to just one)
which result from all possible orderings of r with the write events of X2 that are conflicting with r .
Then ExtendLeaf makes a recursive call to VC-DPOR for each such annotated partial order.

The following theorem states the main result of this paper.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:19

Algorithm 7: ExtendLeaf(Q = (X1,X2,Q, val, S,GoodW), t, CQ,p)
Input: A minimal closed annotated partial order Q, a trace t , a CHB map CQ , a thread p.

1 r ← enabled(t,p) // The next enabled event in p is a read

2 Dr ← {valt (w) : w ∈ MCQt (r)} // The set of values of candidate writes of r

3 foreach v ∈ Dr do // Every value v that r may read

4 valr ← valt ∪ {(r ,v)} // The new value function

5 GoodWr ← GoodW ∪ {(r , {w ∈ MCQt (r) : valt (w) = v})} // The new good-writes function

6 foreach K ∈ Extend(Q,X1 ∪ X2 ∪ {r }, valr , S,GoodWr) do // Returns many elements

7 Call VC-DPOR(K, CQ) // Recurse

8 end

9 end

10 CQ (r) ← {(p,maxt ({R(t)|p})) : p ∈ H} // The last read of each thread in t

Theorem 5.1. Consider a concurrent programH over a constant number of threads, and let Tmax
H

be the maximal trace space of H . VC-DPOR solves the local-state reachability problem on H and

requires O
(

|Tmax
H /VHB| · poly(n)

)

time, where n is the length of the longest trace in Tmax
H .

We conclude with two remarks on space usage and the way lock events can be handled.

Remark 3 (Space complexity). To make our presentation simpler so far, VC-DPOR and ExtendLeaf

iterate over the set of annotated partial orders returned by Extend, which can be exponentially large.

An efficient variant of VC-DPOR shall explore these sets recursively, instead of computing all elements

of each set imperatively. This results in polynomial space complexity for VC-DPOR.

Remark 4 (Handling locks). For simplicity of presentation, so far we have neglected locks. However,

lock events can be incorporated naturally, as follows.

(1) Each lock-release event is a write event, writing an arbitrary value.

(2) Each lock-acquire event is a read event. Given two lock-acquire events r1, r2 the algorithmmaintains

that GoodW(r1) ∩ GoodW(r2) = ∅

VC-DPOR running example. Figure 7 illustrates the main aspects of VC-DPOR (Algo-
rithms 5, 6, and 7) on a small example. We start with an empty annotated partial order P and a
CHB map C that is empty (i.e., C(r)(p) = { |= } for every read event r ∈ R and thread p ∈ H). The
initial trace obtained in Line 1 of Algorithm 5 is t ′ = ε . Its write-extension t in Line 2 contains the
three writes of p1 and the first write of p2. Next, Line 3 returns an annotated partial order Qa that
corresponds to the thread order TO|E(t). In t , the root thread p1 has an enabled event (which is
always a read), so ExtendRoot (Algorithm 6) is called on Qa and the (empty) CHB map CQa . (†)

The enabled read in Line 1 is r 4p1 , its local candidate write (computed in Line 2) isw3
p1

and its remote

candidate write (computed in Line 3) is w1
p2
. This holds because CQa (r)(p1) = {(p1, |=), (p2, |=)},

which allows any write event to be observed. For the local (Line 4, i = 1) candidate w3
p1
, first

the side function is updated with {(r 4p1, 1)} in Line 5. Then in Line 6, the only considered value

is 1. Thus, in Line 8 the value function is updated with {(r 4p1, 1)}, and in Line 9 the good-writes

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:20 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Thread p1 :

1. w(y, 1)
2. w(y, 2)
3. w(x, 1)
4. r (x)

Thread p2 :

1. w(x, 1)
2. r (x)
3. w(y, 2)
4. r (y)

(a) A concurrent programH .

a

b f i

c д j k

d e h

r4p1 ← {w
3
p1
}
r4p1 ← {w

1
p2
}

r2p2 ← {w
3
p1
,

w1
p2
}

r2p2 ← {w
3
p1
,

w1
p2
}

r2p2 ← {w
3
p1
,

w1
p2
}

r4p2 ← {w
1
p1
} r4p2 ← {w

2
p1
,

w3
p2
}

r4p2 ← {w
1
p1
}

r4p2 ← {w
2
p1
,

w3
p2
} r4p2 ← {w

2
p1
,

w3
p2
}

(b) The VC-DPOR exploration tree.

Fig. 7. A program with two threads (Figure 7a) and the corresponding VC-DPOR exploration (Figure 7b).

function is updated with {(r 4p1, {w3
p1
})}. Then, such an update is successfully realized in Line 10 by

Extend, where the partial order is extended with r 4p1 and afterwards it is closed using algorithm

Closure (Algorithm 1). Thus VC-DPOR (Algorithm 5) is recursively called on the corresponding
annotated partial order Ka (and the empty CHB map CQa), and we proceed to the child b of a.

In node b, no new event is added during the write-extension (Line 2), as r 4p1 is the last event of p1,

and in Line 3 we obtain Qb . The only thread with an enabled read event is p2, so ExtendLeaf

(Algorithm 7) is called on Qb and p2 (and empty CHB map CQb). The enabled read r 2p2 has candidate
writesw3

p1
andw1

p2
, both of which write the same value (c.f. Line 2), and hence the algorithm will

allow r 2p2 to observe either. This is an example of the value-centric gains we obtain in this work.

In Line 4 the value function is updated with {(r 2p2, 1)}, and in Line 5 the good-writes function is

updated with {(r 2p2, {w3
p1
,w1

p2
})}. The realization of this update happens in Line 6 by Extend, where

the partial order is extended with r 2p2 and then closed using algorithm Closure (Algorithm 1). One

annotated partial order Kb is returned and it is the argument of the further VC-DPOR call (with an
empty CHB map CQb), we proceed to the child c of b. In node c , the write-extension adds the event
w3
p2
, which, in similar steps as before, will lead to nodes d and e .

Next, the recursion backtracks to the call of ExtendRoot in the node a (†). The second iteration
(i = 2) of the loop in Line 4 proceeds, where the remote candidate writew1

p2
is considered for r 4p1 .

In a similar fashion, the descendants f , д, and h are created and h concludes with a maximal trace.

Finally, the recursion backtracks to the node a again, where ExtendRoot (†) concludes with updating
the CHB map as follows: CQa (r 4p1) = {(p1,⊥), (p2,⊥)}. The control-flow comes back to the initial

VC-DPOR call (from Line 5), where the annotated partial order Qa with the (now updated) CHB
map CQa is considered. The thread p2 has an enabled read (r 2p2) in t , hence ExtendLeaf is called on

Qa , CQa , and p2. Eventually, the descendants i , j, and k are created and the exploration concludes.
Note that in each of i , j , k , the thread p1 has an enabled read r 4p1 . However, note that Guardt (w3

p1
) =

Guardt (w1
p2
) = ⊥ and in all those nodes we have C(r 4p1)(p1) = {(p1,⊥), (p2,⊥)}, and thusw3

pp1 and

w1
p2

are never considered as candidate writes for r 4p1 . This illustrates how VC-DPOR never explores

the same class ofVHB twice.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:21

6 EXPERIMENTS

We have seen in Theorem 3.1 thatVHB is a coarse partitioning that can be explored efficiently by
VC-DPOR. In this section we present an experimental evaluation of VC-DPOR on various classes
of concurrent benchmarks, to assess

(1) the reduction of the trace-space partitioning achieved byVHB, and
(2) the efficiency with which this partitioning is explored by VC-DPOR.

Implementation and experiments. To address the above questions, we have made a prototype
implementation of VC-DPOR in the stateless model checker Nidhugg [Abdulla et al. 2015], which
works on LLVM IR2. We have tested VC-DPOR on benchmarks coming in four classes:

(1) The TACAS Software Verification Competition (SV-COMP).
(2) Mutual-exclusion algorithms from the literature.
(3) Multi-threaded dynamic-programming algorithms that use memoization.
(4) Individual benchmarks that exercise various concurrency patterns.

Each benchmark comes with a scaling parameter, which is either the number of threads, or an unroll
bound on all loops of the benchmark (often the unroll bound also controls the number of threads that
are spawned.) We have compared our algorithm with three other state-of-the-art DPOR algorithms
that are implemented in Nidhugg, namely Source [Abdulla et al. 2014],Optimal [Abdulla et al. 2014]
and Optimal∗ (łoptimal with observersž) [Aronis et al. 2018], as well as our own implementation of
DC-DPOR [Chalupa et al. 2017]. For our experiments, we have used a Linux machine with Intel(R)
Xeon(R) CPU E5-1650 v3 @ 3.50GHz and 128GB of RAM. We have run Nidhugg with Clang and
LLVM version 3.8. In all cases, we report the number of maximal traces and the total running time
of each algorithm, subject to a timeout of 4 hours, indicated by ł-ž.

Implementation details. Here we clarify some details regarding our implementation.

(1) In our theory so far, we have neglected dynamic thread creation for simplicity of presentation.
In practice, all our benchmarks spawn threads dynamically. This situation is handled straight-
forwardly, by including in our partial orders the orderings that are naturally induced by spawn
and join events.

(2) The root thread is chosen as the first thread that is spawned from the main thread. We make
this choice instead of the main thread as in many benchmarks, the main thread mainly spawns
worker threads and performs only a few concurrent operations.

(3) In our presentation of Extend(P,X ′, val′, S ′,GoodW′), given X ′ \ X = {e} such that e belongs
to a leaf thread, we consider all possible orderings of e with conflicting events from all leaf
threads. In our implementation, we relax this in two ways. Given a write event ew , we say it is
never-good if it does not belong to GoodW′(r) for any read event r . Further, given ew and an
annotated partial order K , we say that ew is unobservable in K , if for every linearization of K
no read event can observe ew . Given two unordered conflicting write events from leaf threads,
we do not order them if (i) both are never-good, or (ii) at least one is unobservable.

Value-centric gains. As a preliminary experimental step, we explore the gains of our value-centric
technique on small variants of the simple benchmark fib_bench from SV-COMP. This benchmark
consists of a main thread and two worker threads, and two global variables x and y. The first
worker thread enters a loop in which it performs the update x ← x + y. Similarly, the second
worker thread enters a loop in which it performs the update y ← y + x . To explore the sensitivity

2Code accessible at https://github.com/ViToSVK/nidhugg/tree/valuecentric_stable

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

https://github.com/ViToSVK/nidhugg/tree/valuecentric_stable

124:22 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

(a) Number of traces. (b) Running time.

Fig. 8. Number of traces (a) and running time (b) on variants of the fib_bench benchmark.

of our value-centric DPOR to values, we have created three variants fib_bench_1, fib_bench_2,
fib_bench_3 of the main benchmark. In variant fib_bench_i each worker thread performs the
addition modulo i . Hence, the first and the second worker performs the update x ← (x +y) mod i

and y ← (y + x) mod i , respectively. For smaller values of i , we expect more write events to write
the same value, and thus VC-DPOR to benefit both in terms of the traces explored and the running
time. Although simple, this experiment serves the purpose of quantifying the value-centric gains
of VC-DPOR in a controlled benchmark. Figure 8 depicts the obtained results for the three variants
of fib_bench, where Modulo = ∞ represents the original benchmark (i.e., without the modulo
operation). We see that indeed, as i gets smaller, VC-DPOR benefits significantly in both number of
traces and running time. Moreover, this benefit gets amplified with higher unroll bounds.

Benchmarks from SV-COMP. Here we present experiments on benchmarks from SV-COMP
(along the industrial benchmark parker) (Table 1). We have replaced all assertions with simple read
events. This way we ensure a fair comparison among all algorithms in exploring the trace-space of
each benchmark, as an assertion violation would halt the search. We have verified that all assertion
violations present in these benchmarks are detected by all algorithms before this modification. The
scaling parameter in each case controls the size of the input benchmark in terms of loop unrolls.

Dynamic-programming benchmarks. Here we present experiments on various multi-threaded
dynamic-programming algorithms (Table 2). For efficiency, these algorithms use memoization to
avoid recomputing instances that correspond to the same sub-problem. The benchmarks consist of
three or four threads. In each case, all-but-one threads are performing the dynamic programming
computation, and one thread reads a flag signaling that the computation is finished, as well as
the result of the computation. Each benchmark name contains either the substring łtdž or the
substringłbuž, denoting that the dynamic programming table is computed top-down or bottom-up,
respectively. The scaling parameter of each benchmark controls the different sizes of the input
problem. The dynamic programming problems we use as benchmarks are the following.

• rod_cut computes, given one rod of a given length and prices for rods of shorter lengths, the
maximum profit achievable by cutting the given rod.
• lis computes, given an array of non-repeating integers, the length of the longest increasing
subsequence (not necessarily contiguous) in the array.
• coin_all computes, given an unlimited supply of coins of given denominations, the total
number of distinct ways to get a desired change.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:23

Table 1. Experimental comparison on SV-COMP benchmarks.

Benchmark Maximal Traces Time

VC-DPOR Source Optimal Optimal∗ DC-DPOR VC-DPOR Source Optimal Optimal∗ DC-DPOR

parker(6) 38670 1100917 1100917 1023567 985807 1m29s 23m5s 24m29s 24m54s 46m41s
parker(7) 52465 1735432 1735432 1613807 1554237 2m23s 41m28s 44m41s 45m13s 1h27m
parker(8) 68360 2576147 2576147 2395947 2307467 3m35s 1h9m 1h15m 1h17m 2h29m
27_Boop(6) 248212 35079696 35079696 4750426 1468774 3m26s 2h54m 2h49m 26m22s 12m33s
27_Boop(7) 420033 - - 10134616 2874202 6m33s - - 1h0m 27m21s
27_Boop(8) 677870 - - 20003512 5268064 11m54s - - 2h7m 56m13s
30_Fun_Point(6) 5040 665280 665280 665280 665280 5.52s 4m2s 4m14s 4m36s 1m34s
30_Fun_Point(7) 40320 17297280 17297280 17297280 17297280 57.50s 2h7m 2h15m 2h29m 51m46s
30_Fun_Point(8) 362880 - - - - 10m51s - - - -
45_monabsex(5) 600 14400 14400 9745 6197 0.44s 2.28s 2.36s 1.86s 1.50s
45_monabsex(6) 13152 518400 518400 291546 180126 14.93s 1m41s 1m41s 1m5s 1m0s
45_monabsex(7) 423360 25401600 25401600 11710405 7073803 13m30s 1h43m 1h40m 51m57s 56m16s
46_monabsex(5) 1064 14400 14400 5566 2653 0.32s 1.98s 2.02s 0.87s 0.51s
46_monabsex(6) 21371 518400 518400 157717 62864 6.26s 1m29s 1m23s 28.04s 10.33s
46_monabsex(7) 621948 25401600 25401600 6053748 2057588 4m9s 1h38m 1h23m 21m3s 7m24s
fk2012_true(3) 12400 42144 42144 42144 33886 5.55s 9.34s 10.59s 11.08s 13.13s
fk2012_true(4) 252586 1217826 1217826 1217826 888404 2m3s 5m6s 5m35s 6m11s 6m30s
fk2012_true(5) 3757292 24580886 24580886 24580886 16494444 37m3s 2h0m 2h12m 2h26m 2h28m
fkp2013_true(5) 17751 86400 86400 48591 25626 3.75s 16.40s 15.20s 9.70s 4.90s
fkp2013_true(6) 513977 3628800 3628800 1672915 786499 2m18s 14m27s 12m55s 6m34s 3m18s
fkp2013_true(7) 20043857 - - - 32244120 2h16m - - - 3h11m
nondet-array(4) 404 2616 2616 688 592 0.13s 0.88s 0.80s 0.27s 0.20s
nondet-array(5) 10804 128760 128760 18665 15449 3.11s 46.23s 46.99s 8.66s 4.26s
nondet-array(6) 430004 9854640 9854640 711276 571476 2m36s 1h15m 1h14m 7m45s 3m30s
pthread-de(7) 327782 4027216 4027216 4027216 829168 1m10s 12m9s 13m32s 17m36s 2m12s
pthread-de(8) 2457752 43976774 43976774 43976774 6984234 10m29s 2h29m 2h46m 3h24m 22m1s
pthread-de(9) 18568126 - - - 59287740 1h33m - - - 3h37m
reorder_5(5) 1016 1755360 1755360 68206 4978 0.21s 9m0s 9m22s 26.45s 0.34s
reorder_5(8) 247684 - - - 437725 1m47s - - - 1m29s
reorder_5(9) 1644716 - - - 1792290 22m53s - - - 12m38s

scull_true(3) 3426 617706 617706 436413 172931 19.77s 9m46s 10m22s 9m7s 4m46s
scull_true(4) 8990 2732933 2732933 1840022 656100 1m7s 51m37s 54m33s 46m12s 25m56s
scull_true(5) 19881 9488043 9488043 6070688 1988798 3m8s 3h29m 3h42m 2h54m 1h47m
sigma_false(7) 12509 135135 135135 30952 30952 10.52s 55.87s 1m0s 18.65s 17.87s
sigma_false(8) 133736 2027025 2027025 325488 325488 2m4s 16m21s 18m45s 4m12s 3m44s
sigma_false(9) 1625040 - - 3845724 3845724 31m53s - - 1h6m 53m28s
check_bad_arr(5) 4046 12838 12838 10989 6689 2.74s 6.98s 6.83s 6.49s 2.72s
check_bad_arr(6) 87473 357368 357368 307097 187377 1m47s 5m21s 4m36s 4m24s 1m33s
check_bad_arr(7) 1856332 8245810 8245810 6943293 4069592 2h11m 3h9m 2h19m 2h12m 1h7m

32_pthread5(1) 20 24 24 24 20 0.05s 0.04s 0.04s 0.06s 0.06s
32_pthread5(2) 1470 1890 1890 1806 1470 0.67s 0.38s 0.45s 0.54s 0.67s
32_pthread5(3) 226800 302400 302400 280800 226800 2m30s 1m14s 1m17s 1m17s 2m21s
fkp2014_true(2) 16 16 16 16 16 0.05s 0.05s 0.04s 0.04s 0.05s
fkp2014_true(3) 1098 1098 1098 1098 1098 0.86s 0.19s 0.20s 0.21s 0.72s
fkp2014_true(4) 207024 207024 207024 207024 207024 3m40s 39.84s 41.70s 44.67s 3m15s
singleton(8) 2 40320 40320 8 8 0.06s 14.92s 15.24s 0.04s 0.09s
singleton(9) 2 362880 362880 9 9 0.09s 2m31s 2m32s 0.05s 0.15s
singleton(10) 2 3628800 3628800 10 10 0.16s 27m33s 28m9s 0.05s 0.19s
stack_true(9) 48620 48620 48620 48620 48620 2m24s 37.55s 38.47s 40.06s 2m23s
stack_true(10) 184756 184756 184756 184756 184756 11m58s 2m31s 2m40s 2m50s 11m1s
stack_true(11) 705432 705432 705432 705432 705432 58m34s 10m32s 11m8s 11m48s 54m42s
48_ticket_lock(2) 6 6 6 6 6 0.05s 0.03s 0.04s 0.04s 0.05s
48_ticket_lock(3) 204 204 204 204 204 0.25s 0.08s 0.10s 0.09s 0.34s
48_ticket_lock(4) 41400 41400 41400 41400 41400 55.67s 13.88s 15.27s 16.56s 52.57s

• coin_min computes, given an unlimited supply of coins of given denominations, the minimum
number of coins required to get a desired change.
• bin_nocon computes the number of binary strings of a given length that do not contain the
substring ’11’.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:24 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Table 2. Experimental comparison on dynamic-programming benchmarks.

Benchmark Maximal Traces Time

VC-DPOR Source Optimal Optimal∗ DC-DPOR VC-DPOR Source Optimal Optimal∗ DC-DPOR

rod_cut_td3(7) 4324 102128 102128 51974 23143 33.23s 4m14s 7m43s 3m47s 1m28s
rod_cut_td3(8) 14744 508646 508646 257707 114624 3m4s 27m32s 57m42s 28m2s 12m9s
rod_cut_td3(9) 50320 2574752 - 1300067 577682 17m24s 3h0m - 3h27m 1h39m
rod_cut_td4(3) 1478 91592 91592 17451 4810 0.97s 1m29s 1m49s 21.79s 1.46s
rod_cut_td4(4) 21358 2459640 2459640 359609 85203 28.55s 1h6m 1h33m 14m2s 57.94s
rod_cut_td4(5) 433371 - - - 2551714 20m57s - - - 1h22m
rod_cut_bu3(6) 19933 183516 183516 147746 71670 56.15s 2m23s 3m59s 3m26s 2m3s
rod_cut_bu3(7) 99622 1101084 1101084 886466 429494 8m6s 17m52s 33m33s 29m19s 21m40s
rod_cut_bu3(8) 498061 6606492 - - 2574902 1h6m 2h12m - - 3h30m
rod_cut_bu4(2) 1901 33912 33912 14667 5377 0.70s 11.76s 13.36s 6.75s 1.15s
rod_cut_bu4(3) 74541 2246424 2246424 913299 292633 46.95s 18m50s 24m12s 11m37s 1m52s
rod_cut_bu4(4) 3007476 - - - - 1h17m - - - -
lis_bu3(8) 118812 1744064 1744064 475986 358347 4m24s 33m22s 1h0m 18m27s 7m24s
lis_bu3(9) 368400 7001792 - 1439130 1092553 15m49s 2h38m - 1h10m 27m6s
lis_bu3(10) 3133740 - - - - 3h59m - - - -
lis_bu4(2) 1137 18522 18522 7936 2828 0.45s 8.45s 9.41s 4.42s 0.52s
lis_bu4(3) 29931 1024002 1024002 364560 101766 12.70s 10m36s 12m49s 5m0s 19.41s
lis_bu4(4) 1222278 - - - 5679067 16m34s - - - 37m20s
coin_all_td3(9) 4015 566214 566214 23308 8071 22.23s 34m25s 1h20m 2m36s 21.13s
coin_all_td3(10) 9052 2444048 - 59168 19829 1m2s 2h56m - 8m20s 1m3s
coin_all_td3(19) 637859 - - - 1528102 2h43m - - - 3h5m
coin_all_td4(2) 5938 6406248 - 74153 20668 4.86s 3h46m - 3m27s 6.47s
coin_all_td4(3) 68966 - - 1549115 319142 1m36s - - 2h15m 2m34s
coin_all_td4(5) 379086 - - - 2857926 16m12s - - - 36m32s
coin_min_td3(8) 46535 1902262 1902262 981936 382275 3m0s 1h13m 2h12m 1h12m 14m0s
coin_min_td3(9) 154663 - - - 1634899 11m36s - - - 1h8m
coin_min_td3(11) 1312252 - - - - 2h4m - - - -
coin_min_td4(4) 9912 1470312 1470312 208367 46634 30.52s 36m17s 51m36s 7m6s 47.93s
coin_min_td4(5) 102154 - - 3534815 718883 6m7s - - 2h59m 14m59s
coin_min_td4(6) 1490420 - - - - 1h52m - - - -
bin_nocon_td3(7) 13202 1664672 1664672 471151 121350 29.57s 48m34s 1h26m 26m11s 2m4s
bin_nocon_td3(8) 44802 - - 2825725 603668 1m54s - - 3h17m 12m32s
bin_nocon_td3(11) 922114 - - - - 1h0m - - - -
bin_nocon_bu3(6) 52500 773122 773122 115625 75000 1m15s 12m37s 19m44s 3m5s 1m8s
bin_nocon_bu3(7) 262500 5411854 5411854 578125 375000 7m27s 1h45m 2h52m 19m54s 6m50s
bin_nocon_bu3(8) 1312500 - - 2890625 1875000 45m2s - - 2h1m 41m9s

Mutual-exclusion benchmarks. Here we present experiments on various mutual-exclusion
algorithms from the literature (Table 3). In particular, we use the two-thread solutions of Dijk-
stra [Dijkstra 1983], Kessels [Kessels 1982], Tsay [Tsay 1998], Peterson [Peterson 1981], Peterson-
Fischer [Peterson and Fischer 1977], Szymanski [Szymanski 1988], Dekker [Knuth 1966], as well
as various solutions of Correia-Ramalhete [Correia and Ramalhete 2016]. In addition, we use the
two-thread and three-thread versions of Burns’s algorithm [Burns and Lynch 1980]. These protocols
exercise a wide range of communication patterns, based, e.g., on the number of shared variables
and the number of sequentially consistent stores/loads required to enter/leave the critical section.
In all these benchmarks, each thread executes the corresponding protocol to enter a (empty) critical
section a number of times, the latter controlled by the scaling parameter.

Individual benchmarks. Here we present experiments on individual benchmarks (Table 4):
eratosthenes consists of two threads computing the sieve of Eratosthenes in parallel;
redundant_co consists of three threads, two of which repeatedly write to a variable and one
reads from it; float_read consists of several threads, each writing once to a variable, and one
reading from it (adapted from [Aronis et al. 2018]); opt_lock consists of three threads in an
optimistic-lock scheme. The scaling parameter controls the size in terms of loop unrolls.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:25

Table 3. Experimental comparison on mutual-exclusion benchmarks.

Benchmark Maximal Traces Time

VC-DPOR Source Optimal Optimal∗ DC-DPOR VC-DPOR Source Optimal Optimal∗ DC-DPOR

tsay(2) 2488 7469 7469 7469 7469 0.81s 2.46s 2.76s 2.99s 1.82s
tsay(3) 241822 1414576 1414576 1414576 1414576 1m38s 10m2s 10m54s 12m1s 7m42s
tsay(4) 24609389 - - - - 3h51m - - - -
peter_fisch(2) 1371 4386 4386 4386 4386 0.69s 1.56s 1.61s 1.73s 1.16s
peter_fisch(3) 70448 430004 430004 430004 430004 34.03s 2m54s 3m10s 3m31s 2m20s
peter_fisch(4) 3747718 - - - - 41m31s - - - -
peterson(5) 86929 268706 268706 268706 256457 32.42s 49.22s 54.60s 1m4s 1m32s
peterson(6) 880069 3462008 3462008 3462008 3303617 7m10s 11m50s 13m18s 15m51s 25m29s
peterson(7) 9013381 45046254 45046254 - - 1h30m 2h56m 3h21m - -
lamport(2) 958 3940 3940 2454 1456 0.39s 0.75s 0.77s 0.59s 0.45s
lamport(3) 57436 741370 741370 328764 130024 28.14s 2m24s 2m43s 1m29s 52.24s
lamport(4) 3723024 - - - 13088038 49m40s - - - 2h26m
dekker(5) 89647 435245 435245 435245 435245 29.78s 1m14s 1m23s 1m37s 2m14s
dekker(6) 932559 6745775 6745775 6745775 6745775 6m44s 21m36s 24m12s 28m22s 42m46s
dekker(7) 9837974 - - - - 1h28m - - - -
X2Tv6(3) 7859 20371 20371 20371 20371 3.89s 5.35s 5.68s 6.58s 7.69s
X2Tv6(4) 152999 596354 596354 596354 596354 1m38s 3m6s 3m23s 3m47s 5m17s
X2Tv6(5) 3058189 17836411 17836411 17836411 17836411 46m41s 1h51m 2h3m 2h21m 3h36m
kessels(3) 8900 13856 13856 13856 13856 2.80s 5.07s 5.45s 5.98s 3.70s
kessels(4) 194858 323400 323400 323400 323400 1m13s 2m19s 2m30s 2m48s 1m41s
kessels(5) 4379904 7763704 7763704 7763704 7763704 35m59s 1h8m 1h13m 1h22m 53m50s
X2Tv7(9) 452142 2004774 2004774 2004774 2004774 7m34s 24m59s 27m10s 29m54s 13m36s
X2Tv7(10) 1721564 7708671 7708671 7708671 7708671 35m19s 1h47m 1h58m 2h10m 1h1m
X2Tv7(11) 6584004 - - - - 2h37m - - - -
X2Tv2(2) 894 1293 1293 1293 1293 0.32s 0.46s 0.46s 0.51s 0.50s
X2Tv2(3) 42141 69316 69316 69316 69316 17.73s 29.21s 31.04s 34.65s 22.01s
X2Tv2(4) 1827915 3552837 3552837 3552837 3552837 17m21s 31m13s 33m46s 37m35s 25m52s
burns(4) 381 140380 140380 140380 140380 0.31s 1m24s 1m28s 1m37s 1m8s
burns(5) 1415 2916980 2916980 2916980 2916980 0.98s 35m29s 38m9s 41m55s 29m25s
burns(11) 4114995 - - - - 1h48m - - - -
burns3(1) 67 849 849 849 849 0.09s 0.45s 0.40s 0.44s 0.49s
burns3(2) 11297 1490331 1490331 1490331 1490331 16.27s 16m49s 17m32s 20m4s 26m4s
burns3(3) 1638338 - - - - 1h0m - - - -
X2Tv10(2) 4130 5079 5079 5079 5079 1.81s 1.94s 1.95s 2.18s 1.71s
X2Tv10(3) 213381 308433 308433 308433 308433 1m47s 2m15s 2m26s 2m39s 1m56s
X2Tv10(4) 10274441 17910500 17910500 17910500 17910500 1h58m 2h48m 3h2m 3h29m 2h35m
X2Tv5(4) 38743 46161 46161 46161 46161 14.34s 21.05s 22.57s 24.92s 15.35s
X2Tv5(5) 595527 730647 730647 730647 730647 4m37s 6m28s 6m57s 7m50s 5m2s
X2Tv5(6) 9312813 11755440 11755440 11755440 11755440 1h26m 2h2m 2h17m 2h33m 1h37m
X2Tv1(6) 224803 253042 253042 253042 253042 1m45s 2m19s 2m27s 2m46s 1m42s
X2Tv1(7) 1880095 2115302 2115302 2115302 2115302 18m4s 21m56s 23m59s 26m35s 17m31s
X2Tv1(8) 15873308 17857733 17857733 - 17857733 2h59m 3h29m 3h49m - 2h51m

X2Tv8(3) 6168 9894 9894 8700 8434 2.79s 2.56s 2.63s 2.64s 3.15s
X2Tv8(4) 122932 228417 228417 194206 186040 1m8s 1m7s 1m13s 1m10s 1m30s
X2Tv8(5) 2503292 5391534 5391534 4428748 4192466 31m12s 31m4s 34m43s 32m37s 44m43s
X2Tv9(3) 7234 7304 7304 7304 7304 2.53s 2.11s 2.23s 2.49s 2.41s
X2Tv9(4) 150535 153725 153725 153725 153725 1m3s 52.80s 56.85s 1m3s 56.86s
X2Tv9(5) 3261067 3324991 3324991 3324991 3324991 29m53s 22m17s 24m10s 27m11s 27m10s
szymanski(3) 27892 27951 27951 27951 27951 12.06s 5.06s 5.66s 6.69s 9.81s
szymanski(4) 395743 396583 396583 396583 396583 4m0s 1m26s 1m39s 1m49s 3m14s
szymanski(5) 5734528 5746703 5746703 5746703 5746703 1h17m 25m17s 28m59s 32m36s 1h1m

Summary. For the sake of completeness, we refer to Table 5 for some statistics on our benchmark
set. Entries marked with łUž denote that the corresponding parameter is controlled by the unroll
bound of the respective benchmark. In a variety of cases, theVHB partitioning is significantly
coarser than each of the partitionings constructed by the other algorithms. This coarseness makes
VC-DPORmore efficient in its exploration than the alternatives. We note that in some cases,VHB
offers little-to-no reduction, and then VC-DPOR becomes slower than the alternatives, due to the
overhead incurred in constructingVHB. For example, for the benchmark reorder_5 of Table 1,
the partitioning reduction achieved by VC-DPOR is large enough compared to Source, Optimal

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:26 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Table 4. Experimental comparison on individual benchmarks.

Benchmark Maximal Traces Time

VC-DPOR Source Optimal Optimal∗ DC-DPOR VC-DPOR Source Optimal Optimal∗ DC-DPOR

eratosthenes(5) 3500 1527736 1527736 27858 19991 16.92s 18m37s 20m39s 41.14s 1m29s
eratosthenes(7) 29320 - - 253792 189653 3m37s - - 9m29s 19m41s
eratosthenes(8) 110380 - - 938756 710551 11m29s - - 42m27s 1h4m
redundant_co(2) 11 1969110 1969110 5401 729 0.06s 7m16s 7m32s 1.51s 0.07s
redundant_co(8) 35 - - 1118305 35937 0.09s - - 13m24s 0.97s
redundant_co(9) 39 - - 1778221 50653 0.07s - - 23m49s 1.35s
float_read(9) 9 3628800 3628800 2305 10 0.05s 26m30s 26m38s 1.27s 0.04s
float_read(15) 15 - - 245761 16 0.65s - - 3m52s 0.74s
float_read(16) 16 - - 524289 17 1.42s - - 9m25s 1.44s
opt_lock(2) 2497 69252 69252 11982 6475 1.50s 15.10s 15.53s 3.25s 2.50s
opt_lock(3) 80805 15036174 15036174 416850 212877 52.13s 1h5m 1h9m 2m9s 1m29s
opt_lock(4) 2543298 - - 14038926 6743831 37m41s - - 1h27m 1h2m

Table 5. Benchmark statistics.

Benchmark LOC Var Locks Threads Benchmark LOC Var Locks Threads Benchmark LOC Var Locks Threads
parker 134 4 0 2 48_ticket_lock 52 3 1 U dekker 91 4 0 2
27_Boop 74 4 0 4 rod_cut_td3 50 51 0 3 X2Tv6 75 4 0 2
30_Fun_Point 67 1 1 U rod_cut_td4 62 51 0 4 kessels 44 3 0 2
45_monabsex 24 1 0 U rod_cut_bu3 36 51 0 3 X2Tv7 83 3 0 2
46_monabsex 22 2 0 U rod_cut_bu4 37 51 0 4 X2Tv2 65 3 0 2
fk2012_true 100 1 2 3 lis_bu3 47 51 0 3 burns 70 3 0 2
fkp2013_true 26 1 0 U lis_bu4 48 51 0 4 burns3 70 4 0 3
nondet-array 29 1 0 U coin_all_td3 51 151 0 3 X2Tv10 91 3 0 2
pthread-de 67 1 1 U coin_all_td4 53 151 0 4 X2Tv5 55 4 0 2
reorder_5 1227 4 0 U coin_min_td3 46 51 0 3 X2Tv1 56 3 0 2
scull_true 389 7 1 3 coin_min_td4 52 51 0 4 X2Tv8 64 4 0 2
sigma_false 36 1 0 U bin_nocon_td3 43 101 0 3 X2Tv9 61 3 0 2
check_bad_arr 33 1 0 U bin_nocon_bu3 53 101 0 3 szymanski 93 3 0 2
32_pthread5 87 4 1 U tsay 54 3 0 2 eratosthenes 25 U 0 2
fkp2014_true 36 2 1 U peter_fisch 59 3 0 2 redundant_co 23 1 0 2
singleton 43 1 0 U peterson 68 4 0 2 float_read 25 1 0 U
stack_true 104 U 1 2 lamport 83 5 0 2 opt_lock 31 2 0 3

and Optimal∗ that makes VC-DPOR significantly faster than each of these techniques. However,
although the partitioning of VC-DPOR is smaller than DC-DPOR, the corresponding reduction is
not large enough to makeVC-DPOR faster thanDC-DPOR in this benchmark (in general,VC-DPOR
has a larger polynomial overhead than DC-DPOR.) Similarly, for the benchmark X2Tv9 of Table 3,
the reduction of theVHB partitioning is quite small, and although Source is the slowest algorithm
in theory, its more lightweight nature makes it faster in practice for this benchmark. Finally, we also
identify benchmarks such as stack_true and 48_ticket_lock where there is no trace reduction
at all, and are better handled by existing methods. We note that our approach is fairly different
from the literature, and our implementation of VC-DPOR still largely unoptimized. We identify
potential for improving the performance of VC-DPOR by improving the closure computation, as
well as reducing (or eliminating) the number of non-maximal traces explored by the algorithm.

7 RELATED WORK AND CONCLUSIONS

The formal analysis of concurrent programs is a major challenge in verification, and has been
a subject of extensive research [Cadiou and Lévy 1973; Clarke et al. 1986; Farzan and Kincaid
2012; Farzan and Madhusudan 2009; Lal and Reps 2009; Lipton 1975; Petri 1962]. Since it is hard to
reproduce bugs by testing due to scheduling nondeterminism, systematic state space exploration
by model checking is an important approach for the problem [Alglave et al. 2013; Andrews et al.
2004; Clarke et al. 1999a; Godefroid 2005; Musuvathi and Qadeer 2007]. In this direction, stateless

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

Value-Centric Dynamic Partial Order Reduction 124:27

model checking has been employed to combat state-space explosion [Godefroid 1996, 1997, 2005;
Madan Musuvathi 2007].

To deal with the exponential number of interleavings faced by the early model checking [Godefroid
1997], several reduction techniques have been proposed such as POR and context bounding [Musu-
vathi and Qadeer 2007; Peled 1993]. Several POR methods, based on persistent set [Clarke et al.
1999b; Godefroid 1996; Valmari 1991] and sleep set techniques [Godefroid 1997], have been studied.
DPOR techniques were first proposed in [Flanagan and Godefroid 2005], and several variants and
improvements have been made since [Lauterburg et al. 2010; Saarikivi et al. 2012; Sen and Agha 2006,
2007; Tasharofi et al. 2012]. In [Abdulla et al. 2014], source sets and wakeup trees were developed to
make DPOR optimal, and the underlying computational problems were further studied in [Nguyen
et al. 2018]. Besides the present work, further improvements over optimal DPOR have been made
in [Aronis et al. 2018; Chalupa et al. 2017], as well as with maximal causal models [Huang 2015;
Huang and Huang 2017]. Other techniques such as unfoldings have also been explored [Kähkönen
et al. 2012; McMillan 1995; Rodríguez et al. 2015]. Techniques for POR have also been applied
to relaxed memory models [Abdulla et al. 2015; Demsky and Lam 2015; Huang and Huang 2016;
Kokologiannakis et al. 2017; Wang et al. 2008] and message passing programs [Godefroid 1996;
Godefroid et al. 1995; Katz and Peled 1992].

In this work, we have introduced a new equivalence on traces, called the value-happens-before
equivalenceVHB, which considers the values of trace events in order to determine whether two
traces are equivalent. We have shown that VHB is coarser than the standard happens-before
equivalence, which is the theoretical foundation of the majority of DPOR algorithms. In fact, this
coarsening occurs even when there are no concurrent write events. In addition, we have developed
an algorithm VC-DPOR that relies onVHB to partition the trace space into equivalence classes
and explore each class efficiently. Our experiments show that, in a variety of benchmarks,VHB
indeed produces smaller partitionings than those explored by alternative, state-of-the-art methods,
which often leads to a large reduction in running times.

ACKNOWLEDGMENTS

The authors would also like to thank anonymous referees for their valuable comments and helpful
suggestions. This work is supported by the Austrian Science Fund (FWF) NFN grants S11407-
N23 (RiSE/SHiNE) and S11402-N23 (RiSE/SHiNE), by the Vienna Science and Technology Fund
(WWTF) Project ICT15-003, and by the Austrian Science Fund (FWF) Schrodinger grant J-4220.

REFERENCES

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal Dynamic Partial Order Reduction

(POPL).

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015. Stateless Model Checking for TSO and PSO. In TACAS.

Elvira Albert, Puri Arenas, María García de la Banda, Miguel Gómez-Zamalloa, and Peter J. Stuckey. 2017. Context-Sensitive

Dynamic Partial Order Reduction. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer

International Publishing, Cham, 526ś543.

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model Checking of

Concurrent Software. In CAV.

Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie. 2004. Zing: A Model Checker for Concurrent

Software. In CAV.

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. 2018. Optimal Dynamic Partial Order Reduction

with Observers. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and Marieke Huisman

(Eds.). Springer International Publishing, Cham, 229ś248.

James Burns and Nancy A Lynch. 1980. Mutual exclusion using invisible reads and writes. In In Proceedings of the 18th

Annual Allerton Conference on Communication, Control, and Computing. Citeseer.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

124:28 Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman

Jean-Marie Cadiou and Jean-Jacques Lévy. 1973. Mechanizable proofs about parallel processes. In SWAT.

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec. 2017), 30 pages. https://doi.org/10.1145/

3158119

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. 2019. Value-centric Dynamic Partial Order Reduction.

arXiv:arXiv:1909.00989

E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. 1999b. State space reduction using partial order techniques. STTT 2, 3

(1999), 279ś287.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of Finite-state Concurrent Systems Using Temporal

Logic Specifications. ACM Trans. Program. Lang. Syst. 8, 2 (1986).

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999a. Model Checking. MIT Press, Cambridge, MA, USA.

Andreia Correia and Pedro Ramalhete. 2016. 2-thread software solutions for the mutual exclusion problem. https:

//github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/cr2t-2016.pdf.

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed Stateless Model Checking for SC and TSO (OOPSLA). ACM,

New York, NY, USA, 20ś36. https://doi.org/10.1145/2814270.2814297

E. W. Dijkstra. 1983. Solution of a Problem in Concurrent Programming Control. Commun. ACM 26, 1 (Jan. 1983), 21ś22.

https://doi.org/10.1145/357980.357989

Azadeh Farzan and Zachary Kincaid. 2012. Verification of parameterized concurrent programs by modular reasoning about

data and control. In CAV.

Azadeh Farzan and P. Madhusudan. 2009. The Complexity of Predicting Atomicity Violations. In TACAS.

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-order Reduction for Model Checking Software. In POPL.

P. Godefroid. 1996. Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion

Problem. Springer-Verlag, Secaucus, NJ, USA.

Patrice Godefroid. 1997. Model Checking for Programming Languages Using VeriSoft. In POPL.

Patrice Godefroid. 2005. Software Model Checking: The VeriSoft Approach. FMSD 26, 2 (2005), 77ś101.

Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. 1995. State-space Caching Revisited. FMSD 7, 3 (1995), 227ś241.

Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal Causality Reduction. In PLDI.

Shiyou Huang and Jeff Huang. 2016. Maximal Causality Reduction for TSO and PSO. SIGPLAN Not. 51, 10 (Oct. 2016),

447ś461. https://doi.org/10.1145/3022671.2984025

Shiyou Huang and Jeff Huang. 2017. Speeding Up Maximal Causality Reduction with Static Dependency Analysis. In

31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain. 16:1ś16:22.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.16

Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. 2012. Using Unfoldings in Automated Testing of Multithreaded Programs.

In ACSD.

Shmuel Katz and Doron Peled. 1992. Defining Conditional Independence Using Collapses. Theor. Comput. Sci. 101, 2 (1992),

337ś359.

J. L. W. Kessels. 1982. Arbitration without common modifiable variables. Acta Informatica 17, 2 (01 Jun 1982), 135ś141.

https://doi.org/10.1007/BF00288966

Donald E. Knuth. 1966. Additional Comments on a Problem in Concurrent Programming Control. Commun. ACM 9, 5 (May

1966), 321ś322. https://doi.org/10.1145/355592.365595

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https://doi.org/10.1145/

3158105

Akash Lal and Thomas Reps. 2009. Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis. FMSD 35,

1 (2009), 73ś97.

Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. 2010. Evaluating Ordering Heuristics for Dynamic

Partial-order Reduction Techniques. In FASE.

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975),

717ś721.

Tom Ball Madan Musuvathi, Shaz Qadeer. 2007. CHESS: A systematic testing tool for concurrent software. Technical Report.

A Mazurkiewicz. 1987. Trace Theory. In Advances in Petri Nets 1986, Part II on Petri Nets: Applications and Relationships to

Other Models of Concurrency. Springer-Verlag New York, Inc., 279ś324.

K. L. McMillan. 1995. A Technique of State Space Search Based on Unfolding. FMSD 6, 1 (1995), 45ś65.

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative Context Bounding for Systematic Testing of Multithreaded Programs.

SIGPLAN Not. 42, 6 (2007), 446ś455.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu. 2008.

Finding and Reproducing Heisenbugs in Concurrent Programs. In OSDI.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
http://arxiv.org/abs/arXiv:1909.00989
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/cr2t-2016.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/cr2t-2016.pdf
https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1145/357980.357989
https://doi.org/10.1145/3022671.2984025
https://doi.org/10.4230/LIPIcs.ECOOP.2017.16
https://doi.org/10.1007/BF00288966
https://doi.org/10.1145/355592.365595
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105

Value-Centric Dynamic Partial Order Reduction 124:29

Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and Laure Petrucci. 2018. Quasi-Optimal Partial Order

Reduction. In Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic

Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II. 354ś371. https://doi.org/10.1007/978-3-319-

96142-2_22

Doron Peled. 1993. All from One, One for All: On Model Checking Using Representatives. In CAV.

Gary L. Peterson. 1981. Myths About the Mutual Exclusion Problem. Inf. Process. Lett. 12 (1981), 115ś116.

Gary L. Peterson and Michael J. Fischer. 1977. Economical Solutions for the Critical Section Problem in a Distributed System

(Extended Abstract). In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing (STOC ’77). ACM, New

York, NY, USA, 91ś97. https://doi.org/10.1145/800105.803398

Carl Adam Petri. 1962. Kommunikation mit Automaten. Ph.D. Dissertation. Universität Hamburg.

César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. 2015. Unfolding-based Partial Order Reduction. In

CONCUR.

Olli Saarikivi, Kari Kahkonen, and Keijo Heljanko. 2012. Improving Dynamic Partial Order Reductions for Concolic Testing.

In ACSD.

Koushik Sen and Gul Agha. 2006. Automated Systematic Testing of Open Distributed Programs. In FASE.

Koushik Sen and Gul Agha. 2007. A Race-detection and Flipping Algorithm for Automated Testing of Multi-threaded

Programs. In HVC.

B. K. Szymanski. 1988. A Simple Solution to Lamport’s Concurrent Programming Problem with Linear Wait. In Proceedings

of the 2Nd International Conference on Supercomputing (ICS ’88). ACM, New York, NY, USA, 621ś626. https://doi.org/10.

1145/55364.55425

Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and Gul Agha. 2012. TransDPOR: A

Novel Dynamic Partial-order Reduction Technique for Testing Actor Programs. In FMOODS/FORTE.

Yih-Kuen Tsay. 1998. Deriving a Scalable Algorithm for Mutual Exclusion. In Proceedings of the 12th International Symposium

on Distributed Computing (DISC ’98). Springer-Verlag, London, UK, UK, 393ś407. http://dl.acm.org/citation.cfm?id=

645955.675799

Antti Valmari. 1991. Stubborn Sets for Reduced State Space Generation. In Petri Nets.

Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. 2008. Peephole Partial Order Reduction. In TACAS.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 124. Publication date: October 2019.

https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1007/978-3-319-96142-2_22
https://doi.org/10.1145/800105.803398
https://doi.org/10.1145/55364.55425
https://doi.org/10.1145/55364.55425
http://dl.acm.org/citation.cfm?id=645955.675799
http://dl.acm.org/citation.cfm?id=645955.675799

	Abstract
	1 INTRODUCTION
	1.1 A Small Motivating Example
	1.2 Challenges and Our Contributions

	2 PRELIMINARIES
	2.1 Concurrent Computation Model
	2.2 Problem and Complexity Parameters
	2.3 Partial Orders

	3 THE VALUE-HAPPENS-BEFORE EQUIVALENCE
	4 CLOSED ANNOTATED PARTIAL ORDERS
	4.1 Annotated Partial Orders
	4.2 Computing the Closure
	4.3 Realizing Annotated Partial Orders

	5 VALUE-CENTRIC DYNAMIC PARTIAL ORDER REDUCTION
	6 EXPERIMENTS
	7 RELATED WORK AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

