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Abstract
In dense biological tissues, cell types performing different roles remain segregated by maintaining
sharp interfaces. To better understand the mechanisms for such sharp compartmentalization, we
study the effect of an imposed heterotypic tension at the interface between two distinct cell types
in a fully 3D Voronoi model for confluent tissues. We find that cells rapidly sort and self-organize
to generate a tissue-scale interface between cell types, and cells adjacent to this interface exhibit
signature geometric features including nematic-like ordering, bimodal facet areas, and registration,
or alignment, of cell centers on either side of the two-tissue interface. The magnitude of these
features scales directly with the magnitude of the imposed tension, suggesting that biologists can
estimate the magnitude of tissue surface tension between two tissue types simply by segmenting a
3D tissue. To uncover the underlying physical mechanisms driving these geometric features, we
develop two minimal, ordered models using two different underlying lattices that identify an
energetic competition between bulk cell shapes and tissue interface area. When the interface area
dominates, changes to neighbor topology are costly and occur less frequently, which generates the
observed geometric features.

1. Introduction

An important collective phenomenon observed in groups of biological cells is the process of cell sorting,
where cells of different types spontaneously spatially segregate into separate compartments. These distinct
compartments not only play an integral role during an organism’s formative stages [1–5], but are also
crucial for the upkeep of normal functioning of organs [6, 7] and for containment of the spread of
diseased/infected tissues [8–11]. Broadly speaking, cell sorting mechanisms can be classified into two
generic categories—(a) biochemical/morphogen gradients [12, 13] and (b) differences in mechanical
properties of individual cells. These mechanical properties can include cell–cell adhesivity [14, 15],
acto-myosin contractility [16–19], a mechano-chemical coupling between both cell–cell adhesivity and
acto-myosin contractility [20–22], or an explicit interfacial tension between unlike cells, often called
heterotypic interfacial tension (HIT) [23–26].

Much of the computational and theoretical work on cell sorting has focused on particle mixture
simulations. In such mixtures, the mechanism for sorting relies heavily on active fluctuations [27–31].
However, an essential feature of cell sorting that is observed in experimental co-cultures is that the interface
is much sharper than what is expected from a particulate mixture [21, 32–36]. While such a straight and
sharp interface is difficult to obtain merely by diffusive morphogens, HITs in confluent tissues, where there
are no gaps between cells, can generate a sharp interface easily [26, 37, 38]. In such cases, the fact that a
confluent monolayer must tessellate space, which is captured in vertex or Voronoi models for tissues, results
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in forces that are discontinuous functions of cell displacements. It is precisely this non-analytic behavior
resulting from topological interactions between cells that drives sharpening in two dimensions. And yet, the
tissue remains fluid-like such that the sharp interface is also easily deformable. Such sharp but deformable
interfaces are not observed in particle-based models with metric interactions between cells.

While confluent monolayers, with a single layer of cells, are biologically relevant, fully three-dimensional
confluent tissues, such as stratified epithelia or early vertebrate embryos, are even more ubiquitous.
Therefore, it is important to determine if/how the topological nature of the interactions between the cells
also drive sharp but deformable interfaces in three dimensions. Prior work on topological models for cell
sorting in three dimensions focused on cells coalescing into small clusters via a Rayleigh–Plateau instability
as well as regions of mixed cell types untangling to facilitate compartmentalization in the absence of
fluctuations [39]. In this manuscript we instead focus on quantifying the dynamics and cell geometries in
the presence of fluctuations, and identifying the topological mechanisms driving cell sorting in three
dimensions.

One goal is to study the dynamics of cell sorting in confluent fluid-like tissues by implementing HIT in
the presence of fluctuating forces in 3D. Indeed, we demonstrate that HIT is an efficient sorting mechanism
and that, unsurprisingly, the magnitude of HIT governs the timescale for segregation in 3D.

Unfortunately, it is rather difficult to test this prediction in experiments, as it is quite difficult to measure
the magnitude of HIT. In laser ablation experiments on monolayers, cuts are made to ablate a cell–cell
junction with the help of a pulsed laser. The resultant relaxation dynamics can help determine line tensions
[40]. However, ablating interfaces and recording retractions along arbitrary interfaces is very difficult in 3D
[41], and has not been yet used to estimate HIT in 3D. Indirect measures using few-cell assays, such as
double pipette aspiration experiments, suggest that HIT can create robust cell sorting in 3D tissues
[6, 19, 42].

However, using isolated cells for measuring effective tension may not provide a complete picture as a
confluent neighborhood can significantly change a cell’s mechanics [25, 26]. Recent work has shown that
geometrical properties of interfacial cells in a confluent neighborhood can be directly affected by increased
interfacial contractility and tension [26, 43, 44]. Therefore, a second goal is to explore the idea that cellular
geometry can perhaps be used as a simpler and more direct readout of HIT in 3D mixtures, as geometric
features have recently become more accessible in experiments due to advances in tissue segmentation
techniques.

In addition to developing tools for measuring HIT, a third goal of this work is to identify the
mechanisms driving cell sorting in 3D. For a fluid-like particulate mixture, the mechanism is simple, as the
minimum energy state is a configuration that minimizes the shared surface area. In the presence of large
enough fluctuations the system can find a simple geometry that achieves this goal via complete spatial
segregation with a strong gradient at the interface [45–47]. In confluent tissues, however, there are cell-scale
geometric constraints that may compete with macroscopic interfacial dynamics. Specifically, in vertex and
Voronoi models for isotropic confluent tissues [21, 48–56], cells attempt to attain a preferred cell shape
index, which is dimensionless ratio of perimeter P and area A i.e. s2D

0 = P/
√

A in 2D [54, 57], and of
surface area S and volume V i.e. s3D

0 = S/V2/3 in 3D [56].
If the cells are able to attain their preferred cell shape, which generally happens in isotropic tissues for

elongated shapes with s2D
0 > 3.81 and s3D

0 > 5.41, then the tissue is fluid-like, while if they are unable to
attain that shape the tissue is solid-like. Importantly, this shape-based rigidity transition appears to be a
robust, universal feature of models of confluent tissues where the cells tessellate space: they occur in vertex
[49, 54], Voronoi [57, 58], and cellular Potts models [59], and even appears in some models where the cells
are deformable but not quite confluent [60, 61]. This indicates that a whole class of models with topological
interactions, where the connectivity of neighbors that matters instead of metric distance between particles,
exhibit similar energy barriers to cell rearrangements. We hypothesize that similar energy barriers affect
surface-tension-driven cell rearrangements as well.

In standard fluids with metric interactions, there are many equivalent methods for measuring surface
tension, which might appear at first glance to be more accessible in biology experiments than the
shape-based methods proposed here. For example, in molecular fluids there is a characteristic width of the
interface between two fluids, set by the magnitude of the interfacial tension.

However, previous work by some of us on 2D models [26] has demonstrated that this relationship
between width and surface tension completely breaks down in both vertex and Voronoi models for
confluent tissues, due to pinning effects generated at cusps in the potential energy landscape at the interface.
As a result, heterotypic interfaces in confluent tissues are much sharper than expected from
fluctuation–dissipation relations, and many of the traditional surface tension measurements based on
capillary length scales will not work to predict HIT in 2D epithelial monolayers. Moreover, as shown below,
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we are able to identify similar cusps in the landscape of the 3D Voronoi model, and so we expect similar
effects persist in 3D.

In addition, these 2D results suggest specific features of the 2D cell-scale geometry help pin cells at a
heterotypic interface, although it is not trivial to generalize the arguments to 3D. Therefore, we study
whether these cell-scale constraints, which vary with tissue rheology, impact cell sorting in 3D. We develop
simple toy models to demonstrate that a competition between the bulk cell shape preference and geometric
pinning of cell shapes at the heterotypic interface drive both cell sorting and the formation of specialized
geometric features at the HIT interface. Finally, we confirm the predictions made by the toy models with
full numerical simulations.

2. Model

To understand the interfacial mechanics between two cell types, we use the recently developed 3D Voronoi
model [56]. Similar models with slight differences in the energy functional have been used to study tissue
growth [62]. A system with periodic boundaries is created using a Voronoi tessellation of the cell centers of
N cells. Individual cells have preferred volumes V0 and surface area S0. The combination of volume
incompressibility and surface area regulation due to adhesion and contractility generate a preferred cell

shape index s0 = S0/V2/3
0 . For example, a regular bcc unit cell (truncated octahedron), has a dimensionless

shape index of s0 ∼ 5.31 [63]. Here we set V0 to 1. Half of the cells are tagged differently, creating a mixture
of two cell types—β = 1 or β = 2, which are otherwise identical except there is heterotypic interface
between cells of different type. Of course, in experimental systems there are likely mechanical differences
between different cell types in addition to HIT. Here we ignore those differences to study effects driven by
HIT, as our previous work in 2D suggests that sorting driven by innate mechanical differences is
significantly weaker than HIT [64]. In addition to the original monodisperse energy functional, we impose
an additional surface tension along the heterotypic interface. Therefore cells minimize their mechanical
energy using the following dimensionless energy functional:

e =
∑

i

[
kv(vi − 1)2 + (si − s0)2

]
+

∑
〈i,j〉

(1 − δαβ)σaij, (1)

where vi denotes the ith cell volume and si denotes its surface area, non-dimensionalized by V0. The unit of
length is defined such that the average cell volume 〈Vi〉 is 1. Additionally, ks = KV/KS sets the ratio between
volume and area stiffnesses, and is also set to unity. The second summation imposes an additional surface
tension between heterotypic cells, where the sum is over all facets with area aij shared between cells i and j
of types α and β respectively. The surface tension σ, for simplicity, is assumed to be the same for all facets.
It is non-dimensionalized by KSV2

0 which is unity for our system. Biological cells can establish heterotypic
tension by co-regulating the acto-myosin network and adhesion molecules [20]. A biologically relevant
estimate of the heterotypic to homotypic tension ratio, based on examination of the contact angles at cell
vertices in ectoderm–mesoderm co-cultures in Xenopus [25], indicates σ ∼ 2 in natural units of the system.
For systems with fluctuations, we analyze the dynamics of over-damped self-propelled particles with a high
angular noise, which effectively leads to Brownian dynamics at the timescales relevant to us. The timescales
are reported in units of the self-diffusivity timescale τ 0

s , details of which are provided in supplemental
section S1 (https://stacks.iop.org/NJP/23/093043/mmedia). While there are other possible dynamical rules,
recent work on 2D mixtures has shown that the properties of an interface between two cells types with HIT
between them is rather robust to the specifics of the dynamical rules [26]. For analyzing behavior in the
absence of fluctuations, we use a conjugate gradient minimizer. See supplemental section S1 for more
details.

3. Results

Demixing parameter: to test if HIT leads to significant segregation in 3D tissues, in a manner similar to that
of 2D mixtures [64], we first focus on a fluid-like parameter regime [56] where cells undergo diffusive
motion (s0 > 5.41). For a fixed shape index s0 = 5.5, we start from an initially mixed configuration
figure 1(a) with a system size of N = 512 cells. We let the system evolve long enough so each cell on average
explores a distance equivalent to 5 cell lengths.

Let us now understand the role of HIT on the bulk demixing. For a fixed σ = 1, a final configuration for
such a mixture is shown in figure 1(b). It is clearly segregated as compared to the initial snapshot. Some
fraction of ensembles are able to create a planar interface as well. To quantify this demixing, we study the
demixing parameter DP [64], which measures the average neighborhood composition of every cell.
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Figure 1. Sorting in fluid-like binary tissue with HIT: initial (a) and final (b) snapshots of a s0 = 5.5 mixture with high tension
of σ = 1 and system size of N = 512. Both cell types denoted by red and blue polyhedra. (c) Quantification of segregation:
demixing parameter DP versus simulation time in units of self-diffusivity timescale τ 0

s for increasing tension
σ = 0.001, 0.003, 0.010, 0.032 (pink to blue).

Defining Ns as the number of homotypic (similar cell type) neighbors and Nt as the total number of
neighbors,

DP = 〈DPi〉 =
〈

2

(
Ns

Nt
− 1

2

)〉
, (2)

where the brackets denote averaging over all cells in the tissue. In a completely mixed state, DP = 0,
whereas in a completely sorted mixture, DP = 1, in the limit of infinite system size. However, as large
system sizes can be time-consuming, we compute the maximum attainable value of demixing (DPmax) for a
particular system size by looking at minimal surface configurations as shown in figure S1. Hence we plot the
demixing parameter relative to this maximum value in figure 1. The value of demixing is zero at the
beginning as both the cell types are seeded at random positions, but it soon attains a high value, very close
to DPmax. In the presence of HIT, the value of demixing increases quickly, indicating that it can efficiently
create robust segregation—very similar to a liquid–liquid particulate mixture and 2D confluent mixtures.

In the presence of fluctuations, we find that HIT efficiently leads to significant segregation in mixed 3D
tissues. We also observe that with higher values of tension, the initial phase of the sorting process becomes
faster as shown in figure 1. This confirms that heterotypic surface tension is very effective at
compartmentalization in 3D, as expected.

Geometric features: while biological cells are capable of upregulating tension cables along heterotypic
interfaces via biochemical pathways, it is very difficult to directly measure this tension within a 3D tissue.
Can features of individual cells at the interface help us quantify such tensions? In this section, we focus
again on fluid-like systems with s0 = 5.5. A visual inspection of the segregated mixture shown in figure 1(b)
indicates that the interfacial cells may be more elongated and nematically ordered as compared to the cells
in the interior. This observation hints at a direct relationship between the applied tension and the
surrounding cellular geometry. To delve deeper into the ways in which the surrounding cells deform, we set
up a maximally segregated mixture. Here, both compartments are placed side by side, similar to previous
work by Sussman et al [26]. We then study the cellular geometry as a function of the applied interfacial
tension. Shape elongation along with the prominent stacking of cells (alignment of the polyhedral long axes
in figure 2(a)) can be observed here as well. We next quantify such geometric effects.

The first quantity is the steady-state cell shape index s. This helps us quantify whether or not the
otherwise homogeneous cells remain homogeneous after HIT is established. We measure the shape of both
interfacial cells–cells that directly touch the boundary (sboundary), and the interior cells (sbulk). This further
helps isolate the shape changes in the immediate neighborhood of the interface. Individual cells have a final
volume Vi and surface area Si. Hence, sboundary is defined as:

sboundary =

〈
S

V2/3

〉
boundary

, (3)
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Figure 2. Cellular geometry changes around the high-tension interface: (a) snapshot of the bilayer arrangement of sorted
compartments for a high value of HIT, σ = 20. Only the blue cell type is emphasized here, colored by major axis length.
Greenish-blue is for elongated and purple for rounder cells. The white rods denote the long axis of the polyhedron. (b) Acquired
cell shape index (s), plotted with respect to tension (σ), is higher for interfacial cells (solid green curve) as compared to the cells
in bulk (dashed blue curve). (c) Rose plot for the distribution of orientation angle of interfacial cells is shown for increasing
tension (σ). The control distribution (σ = 0) is superimposed on a faint black curve that represents the density for uniform
distribution i.e. sin θ. (d) The probability distribution P(a) of heterotypic facet area a is shown for increasing tension
σ = 0.32, 1.00, 2.00 (magenta to blue). For these data, N = 512 and s0 = 5.5.
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and sbulk is similarly averaged over the interior cells. In the absence of HIT (σ = 0), both shapes have the
same value of s0 = 5.5.

Both the shape indices are shown as a function of increasing tension in figure 2(b). For small values of
tension, the shapes indices are very similar at the beginning, but they gradually saturate at a higher value of
disparity. In other words, with a higher interfacial tension, the neighboring cells become more elongated,
whereas the interior cells become more compact/round.

To study the alignment between cells, we next measure the orientation of interfacial polyhedra. We
define orientation vector of a cell as the major axis of its moment of inertia tensor. We then plot the angular
distribution of the angle made by each vector with respect to the normal to the interface (θ), which in this
bilayer arrangement is simply the z axis. For a homogeneous system with no HIT, the angles are very close
to the random distribution density function in 3D, which is proportional to sin θ. But with a slight increase
in tension, the cells polarize and orient themselves perpendicular to the interface, as shown in figure 2(c).

Lastly, we study polygonal faces that make up the heterotypic interface by plotting the facet area
distribution with respect to increasing tension. This is in analogy to the measurement of edge lengths in 2D
work [26]. With no HIT, the distribution is roughly uniform up to a characteristic length scale, whereas,
with increasing tension it becomes bimodal, as shown in figure 2(d). This means that the facets are either
large or vanishingly small at high tensions. With the help of smaller facets, the interfacial vertices come very
close to having a vertex coordination higher than the normal tetrahedral coordination, similar to the
four-fold vertices observed along 2D tension cables. The average area of a facet, 〈a〉, also increased with
increasing tension as shown in figure S2. This quantitatively confirms that HIT indeed affects the geometry
of the surrounding cells, inducing shape changes and nematic-like ordering in an otherwise homogeneous
collection of cells.

Since some similar geometric features have been observed in 2D models for confluent tissues [26], we
hypothesize that the origin of these signatures in 3D might be based on topological interactions between the
cells which have been implicated in 2D.

In order to determine the mechanism driving these geometric changes, we first focus on the specific
geometry of an interfacial cell and ask: what does it take for the system to attain this precise geometry?

A typical interfacial neighborhood is shown in figure 3(a). A right prism can be defined as a polyhedron
with flat top and bottom facets, and perpendicularly aligned lateral facets. The cells here seem to closely
resemble the geometry of a one-sided right prism, with the flat side at the interface. The unique shape can
be attained in a Voronoi tessellation only by fulfilling two conditions: (a) cell heights are arranged in a
plane, and (b) interfacial pairs align their centers so the distance between centers in the XY plane is
minimized. One way to quantify this alignment is to measure it as the registration—R between the cell
centers. We define it as—

R = 1 − d

l0
, (4)

where l0 is the typical lengthscale and d is the distance between centers along the interfacial plane as

depicted in figure 3(a). The value of l0 is set to unity as V1/3
0 = 1 in our systems. When cell centers are

completely registered its value attains a maximum value of unity. We quantify both of the aforementioned
criteria and find them both fulfilled for higher values of tension, as shown in figures 3(b) and (c). Moreover,
the insets to each figure show that the cell geometries approach the right-prism condition monotonically as
a function of increasing HIT.

From work in 2D we understand that perturbations perpendicular to the surface of the interface are very
costly [26], but cell–cell registration requires perturbations to the cell center that are parallel to the
interface. In the SM we extend the 2D calculation to study the effects of parallel perturbations by changing
the cell–cell registration. In the 2D toy model, we find that parallel perturbation incurs exactly the same
energy penalty as a perpendicular perturbation up to linear order. Similar to the perpendicular
perturbation, the parallel perturbation along the heterotypic interface requires the system to form new, high
tension edges which are energetically very costly. Therefore, the cell centers are laterally pinned. In S5 we
explore if de-registration in 3D systems creates a similar effect. We find that in an idealized hexagonal tissue,
such a perturbation creates several new HIT facets, suggesting that a similar mechanism is operating in 3D.

Mechanisms: to better understand the pinning mechanism in 3D, we next develop two ordered toy
models in 3D and study the response in the limit of zero fluctuations. Although the data shown so far, and
work by some of us in 2D [26], focused exclusively on the fluid-like regime with s2D

0 > 3.81 and s3D
0 > 5.41,

we are also interested in how tissues close to the fluid–solid transition balance interfacial and bulk effects.
Therefore, our first toy model is initialized in a bcc lattice, as a ground state for the shape s0 ∼ 5.31. We fix
s0 = 5.31 to this ground state value, which we expect to be solid-like. This is similar to our recent work on
ordered hexagonal monolayers [38], but here we are investigating a different form of local perturbation in
3D.
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Figure 3. Interfacial cells are prism-like: (a) a simulation snapshot highlighting the cells at both sides of the interface. Cell types
are tagged in blue and red and made translucent to make their centers (white solid spheres) visible. To characterize the high
alignment between the heterotypic cell centers we use cell–cell registration R defined in the main text in terms of the distance d
between the centers along the interface (highlighted in red) and the characteristic cell length l0 (denoted by the black scale bar).
(b) Distribution pdf(z) of the heights of cell centers z for blue interface cells is plotted for increasing tension
σ = 0.03, 0.10, 0.31, 1.00 (magenta to blue). The dashed black line depicts a system with no HIT. The inset shows the standard
deviation Δz with as a function of the HIT σ. (c) Distribution of registries pdf(R) between heterotypic cells is plotted for
increasing tension. The inset shows the averaged registry with respect to tension. The lowest value of tension has the same average
distance as no tension at all. The circle radii corresponds to the deviation from the mean values.

In this work, we study the response of the system to a change in the registry R. In these ordered systems,
we now use the lattice spacing as the lengthscale l0 in the definition for registry in equation (4). We enable a
string of polyhedra to slide past the string below (shown in figure 4(a) insets), with an extra surface tension
along the shared interfacial strip between both the sets of polyhedra. We compute the shared surface area
and total energy of the system. We also find the global minima for different values of tension.

We find that the shared surface area is minimized for increased registration values (shown in
figure 4(a)). While this suggests that perhaps complete registration is an energetically preferred state in
some regimes, surprisingly, that is true only after a threshold value of tension. This can be seen by plotting
the change in total energy with respect to increasing registration. One can observe two kinds of minima in
the system—parabolic and ‘cuspy’ [26]. While the former is common in particle-based models, with a
spring-like potential locally around the minima, the later has a discontinuity in its slope due to topological
pinning, which is expected from a 2D calculation as discussed in S4. Physically, this means that the system
experiences a steep linear rise in energy due to the formation of a new interfacial edge along the high
tension cable, resulting in discontinuous pinning forces that are independent of the magnitude of
perturbation, as shown in figure S6(b). The parabolic minima, on the other hand, have a continuous an
linear restoring force, the slope proportional to the stiffness of the parabola. We plot the registration of
energy minima as a function of interfacial tension in figure 4(c).

We observe two different branches corresponding to the two types of minima discussed before. For very
low tension, shape preference dominates (as shown in figure S5(a)) and the system stays in bcc
configuration. For moderate values of tension the system stays in the parabolic branch, but continuously

7
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Figure 4. Global minimum becomes registered for higher tension: (a) shared surface area (shaded in dark for all snapshots) is
computed as a function of the registration between the different cell types. The string of blue cells is allowed to move past the
string of stationary pink cells. Snapshots for no, half and complete registration is shown for encircled points. (b) The change in
the total energy of this system is plotted with respect to registry, for different values of tension ranging from 1 (pink) to 4 (blue)
in increments of 0.25. (c) The ground-state registration is plotted for increasing tension. The solid curve represents the global
minima. The dashed curves represent the local minima, parabolic in blue and cuspy in black. The inset zooms about the critical
tension at which the transitions occurs between both types of minima. For all panels s0 is set to 5.31, the ground state for the bcc
lattice.

transitions to non-zero registry. Just below the critical value of σc ∼ 3, both the shape and interfacial
energies become comparable (figure S5(b)) and at σc the system discontinuously transitions to the
tension-dominated—cuspy branch. The registration value also jumps to R = 1. This branch originates at
σ ∼ 2.

Both kinds of minima become more stable as the tension increases. Stability is parameterized by the
curvature or stiffness for parabolic minima in figure S6(a) and by the linear slope or restoring force for the
cuspy minima in figure S6(c).

In summary, for the solid-like toy model, we find that the physical mechanism that drives registration at
high tension values is very similar to that of 2D systems. However, the story changes at lower values of
tension where shape frustration begins to play a dominant role. This leads to minima that are
partially-registered and exhibit a spring-like response to small perturbations, i.e. states are no longer
topologically pinned.

In 2D studies focused exclusively on fluid-like tissues [26], only the cusp-like states were observed. This
leads us to hypothesize that perhaps we observe a transition between normal, parabolic restoring forces to

8
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Figure 5. Shape frustration is less dominant for more fluid-like cell shapes: (a) and (b) snapshots for both the models are shown
where both cell types are depicted in blue and red. Cell centers are depicted by solid spheres of respective cell color. (c) The
ground-state registration for hcp toy model (filled hexagrams) is plotted with respect to tension, for increasing values of cell
shape s0 = 5.4, 5.5, 5.6, 5.7 from orange to green. For comparison, the registration in bcc model (solid circles) is also shown here
in red.

non-analytic cusp-y restoring forces in tissues that are more solid-like. Perhaps in more fluid-like systems
the interfacial costs always dominate over the cost of cell shapes in the bulk, whereas in more solid-like
systems the bulk effects dominate when the interfacial tension is low.

To test this hypothesis, we develop a second toy model that is also ordered but not constrained to a
string. Instead it is free to move along the 2D interface to change its registration. With this flexibility, we can
explore the energetics of more elongated cell shapes like that of a uniform hexagonal prism (s0 ∼ 5.72). The
interfacial cells can therefore be much more elongated and fluid-like as compared to the
minimal-perimeter-cells in a bcc lattice that have shape values as small as s0 ∼ 5.31. The interfacial layers
are placed in hcp format as shown in figure 5(b). There are buffer cells placed above and below the interface
in a disordered fashion and are allowed to relax during the course of the perturbation.

Analogous to the previous analysis, we compute the shared surface area and change in the energy profile
with respect to registration, but this time for a wide range of cell shapes across the fluid–solid transition.
We find that similar to the bcc toy model, the shared surface area decreases with registration as shown in
figure S7(a). For cell shapes near the rigidity transition, shape frustration plays a dominant role in the
system’s energy (figure S7(b)). However, it becomes negligible for more fluid-like cell shapes as shown in
figure 5. This suggests that in fully disordered fluid-like systems, interfacial tension dominates shape
preferences in determining interface geometry and response.

Finally, we verify the toy model predictions by first studying the geometry of disordered mechanically
stable states in planar segregated HIT simulations, for different values of HIT and preferred cell shape. We
let the system come to a steady state in the presence of fluctuations that can help the system find lower and
lower energy metastable minima in the complex potential energy landscape.

Figure 6 shows the registration as a function of interfacial tension and target cell shape index s0. The
data demonstrate that just as in the toy models, the average registration rises rapidly to unity—its
maximum value—when the interfacial tension increases above a threshold value. Moreover, for solid-like
shapes the onset occurs at a higher threshold tension of order unity, while for fluid-like tissues the onset
occurs when HIT is more than an order of magnitude lower than the typical tensions between homotypic
cells. In the supplement, we also confirm that the highly registered states are associated with cusp-like
restoring forces, highlighted in figure S8. In addition, we show that this geometric signature is not limited to
Voronoi models. Cell–cell registry in two-dimensional vertex model mixtures also develop a strong
preference to higher values with increasing interfacial tension as discussed in detail in supplementary
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Figure 6. Transition to complete registration shifts for fluid-like cell shape in a disordered 3D simulation: a heat-map for the
average steady-state registration is shown as function of cell shape s0 and interfacial tension σ. Yellow denotes complete
registration and blue denotes partial registry. The registry between heterotypic cell-pairs is averaged over 200 different
initializations.

section 9. However, the magnitude of the registration saturates at a lower value in 2D vertex models
(0.6 compared to 1), and also attains this saturation value at a lower value of the heterotypic
tension—between 1% and 10% in 2D vertex models, rather than between 10% and 100% in 3D Voronoi
models as shown in the inset to panel (C) in figure 6. In other words, the quantitative relationship between
registry and the magnitude of HIT is likely model-dependent.

4. Discussion and conclusions

By studying a computational Voronoi model for confluent tissues in the presence of fluctuations, we show
that three-dimensional binary mixtures, with HIT, sort robustly. This supports the claim that HIT is an
important mechanism driving sharp compartmentalization during early embryonic development [25, 37],
and that it may be important for tissue segregation in other situations. In addition to these collective
dynamics, HIT also drives individual cells toward a prism-like geometry at the interface. We find that the
onset of these geometric signatures depends on a balance between the magnitude of interfacial tension and
constraints introduced by the preferred cell shape that also govern the bulk tissue rheology.

To understand the onset of these geometric signatures, we use cell–cell registration at the interface as a
probe of the stability of these prism-like structures. We construct two simple toy models and study their
energetics with respect to registry. In solid-like tissues, we find that for an interfacial tension σ > σc, the
ground state is completely registered, which gives rise to a prismatic geometry. These states are topologically
pinned, due to cusp-like pinning forces, previously observed in 2D mixtures with HIT. But for tensions
σ < σc, interfacial energy is dominated by shape frustration and hence the ground state is less
well-registered. The linear response of these minima is spring-like and not cuspy. Our data suggests that σc

decreases significantly as the tissue becomes more fluid-like. This has important implications for
development and tissue segregation, as it suggests that as tissues are tuned to be more solid-like, topological
pinning at heterotypic interfaces is greatly reduced, thereby reducing the sharpness possible at compartment
boundaries. In other words, it suggests the somewhat counterintuitive design principle for confluent
systems that fluid-like rheologies lead to sharper interfaces.

We have also shown that a change in the magnitude of the interfacial tension can have a pronounced
effect on the neighboring cellular geometry, by elongating interfacial cells into prism-like polyhedra
oriented perpendicular to the interface. The observable facet areas also become larger. While these observed
prism-like geometries have been seen in both vertex and Voronoi models [26], the registry associated with
such shapes differs between vertex and voronoi models. In 3D Voronoi models, the registry varies from zero
to unity over a wide range of tension values (from 10−3 to 10 times the average homotypic interfacial
tension), but in 2D vertex models, the registry varies less—from 0 to 0.6—and attains this saturated value
at lower heterotypic tensions, between 10−2 to 10−1. In other words, the relationship between registry and
heterotypic tension depends on which model best describes a given tissue. Some tissues appear to be
well-described by a Voronoi model [65] and should follow registry predictions in figure 6, while others are
likely best described by vertex models. In those latter systems, if one observes a registry that is at the
saturation value (〈R〉 ∼ 0.6), this is a good indicator that HITs above a certain threshold (1%–10%) are
active in the system, so registry can likely still be used to verify HIT in those co-cultures, but can not be
used to constrain the magnitude. Nevertheless, with the advancement of 3D segmentation techniques
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[66–70], one can use the prism-like shape signatures as a toolkit to probe interfacial tensions in a 3D tissue,
so that cells themselves can tell us about whether HIT is driving tissue segregation.

One example case where this might be useful is in detecting the invasiveness of a carcinoma tumor. Our
simple model would predict that if interfacial cell centers in the tumor are registered to those of the
surrounding healthy tissue, then the interface has a higher surface tension and therefore it may be more
unlikely for cells to exit the tumor and invade their surroundings. It would be interesting to see if there are
any vestiges of this prediction that occur in pre-cancerous situations in real-world systems, such as Ductal
carcinoma in situ (DCIS).

Another example is that of a stratified epithelium, where one can also study the interaction between two
nearby tissue types, such as the basal and suprabasal layers, and look for geometric signatures across the
interface. A prism-like geometry would strongly suggest the presence of an interfacial tension between these
two tissue types. The prism-like geometry of cells can be visually detected using the En Face imaging
technique [6, 71]. As some current segmentation algorithms can also make predictions about 3D shape
from random 2D cross-sections, these geometric signatures could potentially be characterized along the
cross-sections [72]. In general 3D tissue have complex interfacial geometries. Hence, one of the future
avenues of this work would be to study the dependence on the curvature of the interface.

Additional work should also focus on teasing apart how topological pinning affects dynamics in more
general scenarios. For example, a natural extension of our general framework is to study two different cell
shapes mixed together. After all, in realistic situations cells of two different tissue types likely also differ in
preferred cell shape. In 2D, some of us have determined that unique extrusion behavior can emerge due to
differential pinning of cells [64], and something similar could occur in 3D. Topological pinning might be
affecting the cell sorting dynamics as well. Presumably, less pinning can lead to seamless coarsening of
nearby droplets, while more pinning can hinder the coalescence, and alter the sorting process. This would
also be an interesting avenue for future study.

While our work demonstrates that changes to individual cellular geometries are a necessary consequence
of HIT and tissue-scale segregation, these changes to cellular geometry could also be used as a signal to
facilitate downstream patterning near interfaces. For example, the elongation of cells near a high-tension
interface might trigger oriented cell divisions along the long-axis of these cells. We speculate that perhaps
biology can make use of this subtle feedback for processes like targeted cellular proliferation during early
phases of embryonic development.
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