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Figure 1: Overview of our approach. By reconstructing surface textures from a sample book using a photometric reconstruction 
method, we created fabricated replicas. The set of original and replica surface samples were used in a 2-part user study to 
investigate the transfer of tactile properties for additive manufacturing. 

ABSTRACT 
Tactile feedback of an object’s surface enables us to discern its mate-
rial properties and afordances. This understanding is used in digital 
fabrication processes by creating objects with high-resolution sur-
face variations to infuence a user’s tactile perception. As the design 
of such surface haptics commonly relies on knowledge from real-
life experiences, it is unclear how to adapt this information for 
digital design methods. In this work, we investigate replicating 
the haptics of real materials. Using an existing process for cap-
turing an object’s microgeometry, we digitize and reproduce the 
stable surface information of a set of 15 fabric samples. In a psy-
chophysical experiment, we evaluate the tactile qualities of our 
set of original samples and their replicas. From our results, we see 
that direct reproduction of surface variations is able to infuence 
diferent psychophysical dimensions of the tactile perception of 
surface textures. While the fabrication process did not preserve 
all properties, our approach underlines that replication of surface 
microgeometries benefts fabrication methods in terms of haptic 
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perception by covering a large range of tactile variations. Moreover, 
by changing the surface structure of a single fabricated material, its 
material perception can be infuenced. We conclude by proposing 
strategies for capturing and reproducing digitized textures to better 
resemble the perceived haptics of the originals. 
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1 INTRODUCTION 
The sense of touch is one of our most dominant senses. Through 
our fngers, we learn about the outside world [22] and perceive 
the properties of materials that allow us to perform fne control 
tasks [1, 16]. The ubiquitous nature of haptic feedback becomes 
most relevant during its absence. Without the sense of touch, we 
cannot tell if the clothes we wear are comfortable, and our fne 
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motor-control ability is greatly impaired even when directly ob-
serving our hands [58]. Therefore, during fabrication designers 
carefully need to select the haptics of surfaces to convey perceived 
quality and facilitate manipulation. 

Manufacturing faithful tactile experiences is a challenging task. 
The haptic response of an object depends on its geometry, mate-
rial, and the used manufacturing process which makes interactive 
editing of haptic response difcult. Without the option to freely 
alter the haptic feel of a digital design, designers usually resort to 
appropriating experiences from real-life by mimicking the haptics 
of materials they are intimately familiar with. This is commonly 
done by equipping the manufactured models with haptic textures 
from scanned or procedurally generated data sets [80]. It is unclear 
however if such visual representation can truly capture the haptics 
of a surface, nor how we can adapt it for diferent materials or man-
ufacturing techniques. As a result, there is not yet an established 
framework for replicating the haptic properties of materials. 

In this work, we investigate the replication of real-world infor-
mation for the purpose of fabricating tactile variations. Rather than 
aiming for direct reproduction of tactile perception, we investigate 
the change in haptic properties upon replication. To this aim, we 
follow an end-to-end process. We start by capturing the haptic 
properties of materials, which we propose to do by reproducing 
their stable surface geometry. The geometry is captured using a 
photometric sensing technique called GelSight [33] as heightfelds 
of surface samples. This approach works by pressing a soft polymer 
onto the material, similar to the investigation by direct touch. As a 
set of materials, we opted for a set of 15 cloth samples from a fabric 
samples book, depicted in the leftmost image in Figure 1. We opted 
for these challenging materials due to their large coverage of com-
pliance, roughness, and friction properties, as well as their varying 
surface structures. To fabricate the materials we treat the captured 
heightmaps as displacement maps and use an Objet Connex 260 
multi-jet printer with VeroBlack material. 

In a psychophysical experiment, we assess the perception of 
the reproductions based on individually perceived attributes. From 
these results, we conclude that our fabrication process supports a 
wide gamut of feel aesthetics. While direct reproduction of surface 
geometry is not sufcient to consistently replicate the haptics of 
real-life materials, certain stable properties can still be reproduced 
to an extent. By further analyzing the results we discover that our 
reproductions manifest a consistent shift in perceived attributes. 
This suggests that the alteration of haptic feedback due to the se-
lected fabrication technique is systematic and could be reversed 
by adjusting the printing parameters for our surfaces. Therefore, 
we propose a method to appropriate i.e., adapt, the haptic feed-
back of materials for digital fabrication. As a core of our approach, 
we construct a so-called perceptual space of our stimuli in which 
the perceived diference corresponds with measurable physical 
attributes. We leverage the perceptual space to propose several 
strategies for adapting material properties to more closely mimic 
their haptic properties after fabrication. Our results can provide 
insights for the feld of haptic design by supporting hapticians in 
creating versatile haptic experiences through capturing real-world 
information for fabrication processes. 

2 RELATED WORK 
To appropriate haptic feedback perceived by our fnger during 
active exploration, we draw inspiration from perception, surface 
reconstruction, and computational fabrication. Here, we provide 
an overview of work related to our approach. 

2.1 Tactile Perception of Textures 
The human fnger has impressive discriminative power. During 
passive touch, our fngers can identify embossed dots down to 
550 microns in diameter and a height of only 3 microns [85]. Our 
sensitivity to surface texture is increased during active exploration. 
The fnger ridges interact with the underlying substrate and the 
resulting efect of pattern beating heightens our sensitivity which 
allows us to discriminate sinusoidal gratings down to 13 nanometers 
in height [68]. When continually exploring a surface formed of 
various bumps we perceive them as vibrations that are appreciable 
up to 500 Hz with the highest sensitivity around 240 Hz [32]. It is 
due to these capabilities at discriminating individual signals that 
faithful reproduction of haptics is an open and challenging problem. 

The individual signals perceived through our fngertips are in-
tegrated into judgments of tactile properties [90]. To identify the 
governing phenomena Hollins et al. [27] conducted one of the frst 
large scale studies with 17 tactile textures. They discovered that 
participants discriminate the samples based on perceived rough-
ness, compliance, and stickiness. These fndings were supported in 
subsequent studies [78] that also discovered additional dimensions 
for heat transfer [3, 9], and macro-roughness [46, 69]. Reproduc-
ing these perceived quantities is crucial in developing realistic 
virtual haptic experiences [14]. As a result, psychophysical mod-
els for comparing the governing perceptual attributes were devel-
oped [54, 55, 79, 81]. In contrast to previous work in perception, we 
aim to shed light on an open question of how to reproduce the hap-
tic feedback of real textures using additive manufacturing where 
the smallest features are at the order of microns with a typical layer 
height of 10 micrometers [67]. To this end, we focus on identifying 
which perceptual cues are modifed during 3D printing and propose 
a simple yet efective model to appropriate the haptic feedback of a 
digitized texture into the context of additive manufacturing. 

2.2 Recording and Reproduction of Haptic 
Feedback 

Humans rely on their sense of touch to explore materials based 
on various tactile cues. By collecting perceptually motivated cues 
such as hardness, roughness, macroscopic roughness, and friction 
it is possible to identify the material with a high degree of cer-
tainty [71]. Since many of these cues are coupled it is possible to 
encode them using the surface roughness [93]. The roughness can 
be captured via optical proflometers [13], mechanical probes [84], 
accelerometers [15, 25, 59], vision systems [30, 66], or specialty 
build sensors [49]. A particularly interesting approach is rethro-
graphic sensing which is based on a transparent gel sensor covered 
by a difusive flm of known refectance from one side [33]. To 
reconstruct the geometry the difusive part is frst pressed into the 
surface. This causes a deformation that can be measured through the 
clear side of the sensor with a camera using standard shape-from-
shading techniques [95]. This approach can be further extended 
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to improve precision [34], or include additional measurements e.g. 
softness [94], applied force [20], or slip [92]. Moreover, recent work 
has detailed how portable approaches are able to serve in-the-wild 
capturing of surface features [42]. For a recent survey on tactile 
image sensing please see [65]. In this work, we build upon the 
rethrographic approach introduced by [34]. To reproduce the hap-
tics of a surface we start by acquiring its geometry using a GelSight 
scanner and then manufacture replicas with a multi-jet printer. 

The captured surface information can be used to replay the hap-
tic feedback of materials. To reconstruct the haptic response it is 
possible to remodel the interaction in a virtual environment and 
then render the appropriate forces on a haptic device [38, 52, 83]. 
Unfortunately, numerical modeling of the coupled elastofrictional 
contact between a human fnger and the underlying substrate is 
challenging at the rates required for haptic reproduction [41]. As a 
result, many data-driven models were considered [2, 8, 36, 43]. A 
particularly appealing option is to record the forces applied during 
interaction and replay them using a vibromotor [10, 48, 60, 77]. 
Such playback can be enhanced by rendering an infnite stochastic 
signal [24] and even adapted to the interaction speed and pres-
sure [15, 45, 59]. However, the realism of the reproduced feedback 
via active modulation is signifcantly afected by the latency inher-
ent to the systems [1, 7, 26]. Here, we focus on passively reproducing 
the tactile properties of a surface when explored by a bare fnger. 

2.3 Fabrication of Tactile Properties 
Haptic feedback is a crucial asset in designing tangible virtual and 
real interfaces [5, 17, 58, 70]. Through the use of tactile informa-
tion, we can enhance user interfaces to be both more intuitive and 
accessible. Over the years many methods were designed to provide 
tactual information. These methods range from passive, where the 
haptic information is encoded by using e.g., magnetic felds [86– 
89], surface texture [19, 31, 72, 73, 75, 76], or by creating hair-like 
structures [18, 40, 47], to active modulation mediated by vibratory 
signals [10, 36, 59], physical displacement [37, 52, 62], or electrical 
stimulation [2, 23]. However, designing efective haptic experiences 
remains a challenging task, partly because current design tools are 
missing support at diferent stages of the design process [35, 61, 64]. 
In this work, we wish to support the design of haptic experiences 
through appropriation of real world knowledge. 

To fully appreciate an object it is important to faithfully repro-
duce its haptic feel. Torres et al. [80] proposed one of the frst 
systems that allowed to design of objects’ texture, compliance, and 
mass distribution. Since then more specialized methods were pro-
posed to match the desired elastic behavior [44, 50, 63, 96], create 
functional cloth-like materials [29, 51, 56, 57, 74], and to mimic the 
haptic feedback of traditional drawing tools [53]. However, even 
with recent advances, there is no established method for the repro-
duction of haptic feedback experienced during active exploration 
with a fnger. In this work, we tackle this open and challenging 
problem by investigating why directly manufacturing replicas of 
haptic feedback is challenging and by proposing several strategies 
to appropriate the haptics of materials in the context of additive 
manufacturing. 

3 HAPTIC SURFACE REPLICATION 
When exploring an object’s surface, the high spatial acuity of our 
fngertips enables us to distinguish between the minuscule details 
in its texture. During this process, diferent aspects of the mate-
rial are taken into account, most notably roughness, compliance, 
coldness, and slipperiness [3]. Of these features, related work has 
established roughness to be the most important for discrimination 
of haptically explored surface textures [4, 27, 28]. The perception of 
roughness is evoked by an uneven pressure distribution on the skin 
when touched statically, and vibrations when stroked. Physically, 
roughness is related to height diferences on a material’s surface. 

We follow the idea that the geometric roughness of a surface can 
explain its tactile behavior. To reproduce the haptic feedback of real-
life materials, we leverage the capabilities of modern manufacturing 
to reproduce the surface details at micron resolution. Recovering 
the surface information for fabrication requires a capture method 
that estimates the geometric features appreciated by an observer. 
During exploration, our fngers actively contact the underlying 
substrate which causes deformations of surface geometry. As a 
result, estimating the true stable contact requires a scanning method 
capable of inducing and measuring fnger-like deformation of the 
original material. 

3.1 Approach 
Our implementation is based on retrographic sensing [34]. This 
approach also referred to as GelSight, employs a transparent elas-
tomeric silicone coated with a layer of refective paint of which 
the bidirectional refectance distribution function (BDRF) is known. 
When pressing the silicone onto an object, the microscopic de-
formations of the refective layer caused by the object’s surface 
topography are made visible through the clear side of the sensor. 
By capturing the deformation under calibrated lighting conditions 
from diferent angles, the desired 3D shape and texture can be ac-
curately reconstructed using a photometric stereo algorithm. This 
approach is highly fexible as the overall shape, thickness, and hard-
ness of the GelSight sensor do not signifcantly afect the precision 
due to individual calibration [34, 65]. The only practical constraint 
is that the sensor needs to be sufciently large enough to scan the 
area of interest. 

This technique is closely related to the haptic exploration of sur-
face textures with our fngers. While pressing down onto an object, 
stable surface features such as surface variations are perceived by 
the receptors in our fngers and unstable features such as hairs are 
compressed. Additionally, surface reconstruction with a calibrated 
sensor is possible using a single image capture while abstracting 
physical surface information from the visual appearance. 

3.2 Surface Reconstruction 
Building on the GelSight technique, we constructed a sensor, see Fig-
ure 2a, consisting of a hexagonal silicone slab measuring 1.5 cm in 
height and 8 cm in diameter. The clear silicone used has a Shore 
A hardness rating of 151 and was spray-painted with a layer of 
aluminum powder with a purity of 99.7% and a size of −325 mesh 
using a silicone paint base2. The refective layer was powdered with 

1KauPo Solaris® – www.kaupo.de 
2Smooth-On PsychoPaint – www.smooth-on.com 
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(a) Silicone Sensor (b) Bench Setup 

Figure 2: Our reconstruction setup. (a) A silicone slab with a 
refective layer deforms and visualizes the surface texture of 
an object pressed underneath. (b) Using a bench setup, con-
sistent captures are taken with a high resolution camera and 
a macro lens. 

corn starch to reduce stickiness. To capture consistent images, we 
built a bench setup, see Figure 2b. Attached to the top of the setup is 
a Sony Alpha 7s full-frame DSLR camera with a Sony SEL FE 50 mm 
f2.8 macro lens. The camera is pointed towards the silicone sensor 
attached to a 2 mm transparent acrylic support. Driven by an Ar-
duino Uno, 3 LEDs illuminate the sensor from diferent angles, each 
corresponding to a diferent base color, i.e., green, red and blue. The 
base of the setup contains a load cell measuring the applied pressure 
to the surface. The reconstruction process follows a photometric 
stereo algorithm to generate a heightfeld from the object visible 
under the sensor. To calibrate our setup, we capture the sensor’s 
deformation of a 4 mm spherical object in 36 locations across the 
image. For each surface texture to be reconstructed, 4 pictures of 
the sensor’s deformation were taken with the texture in diferent 
locations and orientations. For more details on the reconstruction 
algorithm, please refer to [34]. 

For each recorded texture sample, the resulting heightfeld corre-
sponded to a surface area of 2.8 cm2 of the original texture. As we 
considered this surface area too small to be sufciently explored by 
participants, we upscaled the surface area to a size of 5 cm2 using a 
blended texture tiling approach. Here, each heightfeld was tiled 
in a 4 × 4 grid with a 10% gradually blended overlap. The vertices 
of a 5 × 5 plane were transformed along the Z-axis by using the 
associated heightfeld as a displacement map in Blender3. The edges 
of the plane were extruded downwards along the Z-axis by a factor 
of 0.4 and a bottom face was generated to create a closed cuboid 
with the replicated texture on top. Our models were fabricated 
using an Objet Connex 260 printer with VeroBlack material and 
a layer resolution of 30 µm. VeroBlack is a rigid, durable and high 
resolution photo-polymer with a Shore Hardness of 83–86 (Scale D). 
A step-by-step overview of the reconstruction process is presented 
in Figure 3. 

3.3 Textures 
To study the human perception of materials we seek to construct 
a dataset that covers a wide variety of haptic properties. As we 
were interested in how physical features afect the perception after 
3Blender, a free and open-source 3D creation suite – www.blender.org 
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Table 1: The physical measurements of our texture samples, 
taken from the set of original texture samples before repro-
duction to provide insights into their physical variations in 
terms of roughness, compliance and stickiness. 

Sample Name 

1 Casino 
2 Velvet 
3 Crown 
4 Havanna 
5 Deluxe 
6 Clash 
7 Cosy 
8 Florida 
9 Yelda 
10 Trend 
11 Onyx 
12 Cosmopolitan 
13 Easy Care 
14 Matrix 
15 Vintage 

Mean 
SD 

Roughness Compliance Stickiness 
(RMS) (kg) (angle) 

0.16259 2.82 16.5 
0.01412 1.03 28.0 
0.07589 2.40 26.0 
0.06618 1.75 27.0 
0.07799 2.00 22.0 
0.03667 1.20 20.5 
0.09089 0.52 20.5 
0.09807 1.38 14.5 
0.05816 2.03 19.0 
0.06598 1.36 19.0 
0.15941 1.14 14.5 
0.04553 0.99 24.5 
0.10260 3.75 19.5 
0.01632 3.15 22.0 
0.08882 0.72 15.5 

0.07728 1.75 20.6 
0.04342 0.94 4.37 

reconstruction, we explored a large assortment of materials with 
a high variety of characteristics. For our fnal set of reconstructed 
materials, we decided on 15 samples from a sample book for a 
commercially available sofa. These materials were found to have 
a large range of tactile properties and maintained a stable surface 
suitable for reconstruction. 

After the reconstruction, physical measurements of the samples 
were taken to record their tactile properties of roughness, hard-
ness, and slipperiness, see Table 1. The assessment of roughness 
was determined by calculating the root mean square of the recon-
structed heightfeld [6]. Hardness was measured by recording the 
indicated weight on a load cell when multiple stacked layers of 
the surface with a uniform height were compressed with a fxed 
displacement [50]. Lastly, we recorded the angle of inclination of 
which a fxed object on top of the surface would start a movement 
to assess slipperiness [39]. These data depicted in Table 1, underline 
the wide range of tactile properties present in samples. 

To prepare the cloth samples for our study, we cut 5 cm2 rect-
angles from the bulk material and attached them to 2 mm acrylic 
plates of the same dimensions. The fnal set of samples and their 
heightfeld reconstructions are depicted in Figure 4. 

4 STUDY 
To evaluate the haptic feedback of our original and reproduced 
textures we rely on psychophysical experiments grounded in liter-
ature [82]. More specifcally, we conducted our user study in two 
phases: (A) a self-assessment test in which the participants com-
pare the samples based on a set of perceptual attributes, and (B) a 
magnitude estimation study that recovers the diferences between 
our stimuli in an unsupervised manner. 

www.blender.org
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Figure 3: Reconstruction example. Visually capturing the texture surface (A) yields (B). The GelSight approach captures the 
stable subsurface geometry in a heightfeld (C). From this information, we create a 5 cm2 heightfeld (D) using a combination 
of tiling and blending. The full heightfeld is used as a displacement map to generate a textured surface (E), which is fabricated 
in (F). This process replicates the stable subsurface geometry of (A) in (F). For accuracy estimation, the fabricated sample (F) 
was re-reconstructed, i.e., here (G) is re-reconstructed in (H). 

1 – Casino 2 – Velvet 3 – Crown 4 – Havanna 5 – Deluxe 

6 – Clash 7 – Cosy 8 – Florida 9 – Yelda 10 – Trend 

11 – Onyx 12 – Cosmopolitan 13 – Easy Care 14 – Matrix 15 – Vintage 

Figure 4: Our fnal set of surface textures and their reconstructed heightfelds. 

4.1 Apparatus 
To limit visual cues, participants were seated in front of a screen 
separating them from the experimenter and the surface samples 
(Figure 5). A gap in the screen with a piece of cloth in front allowed 
the participants to reach their hand through to access the presented 
samples. On the other side, the experimenter prepared the samples 
for exploration by the participant. Samples were fxed in place using 
a laser cut MDF frame. The order of presentation of the samples 
was listed in a spreadsheet on a laptop next to the screen. Here, the 
experimenter would also record participants’ answers. 

4.2 Participants 
A total of 20 participants (9 female, 11 male, 24 − 33 years, avg. 
26.6 years) with backgrounds in Computer Science, Microbiology, 
Linguistics, and Law, were recruited for our study. When asked 

about their hand dominance, 19 participants indicated to be right-
handed while 1 participant stated to be ambidextrous. All partici-
pants performed the study with the index fnger of their right hand. 
Participants were informed that they could only use this fnger. 

All participants confrmed that, to the best of their knowledge, 
they did not sufer from any impairment of their haptic perception, 
such as arthritis or hypoesthesia (numbness). Participants rated on 
a scale from 1 (= never) to 5 (= regularly) how often they performed 
precise handwork (� = 2.50, �� = 1.00) and how frequently they 
worked with textiles (� = 1.55, �� = 0.76). The study lasted be-
tween 2 and 2.5 hours depending on the speed of the participant. 
Compensation in the equivalent of AC20 was given to all participants 
not employed in our lab. 
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(a) The experimenter side (b) The participant side 

Figure 5: The experimental setup. (5a) The experimenter pre-
pared the samples for exploration by the participant. (5b) 
The participant rated the tactile perception of the samples 
hidden behind the screen. 

4.3 Procedure 
Before starting the experiment, participants provided written con-
sent and completed a COVID-19 form for contact tracing purposes. 
To comply with data protection regulations, the responses of the 
latter were removed 14 days after participation. The experimenter 
briefed participants on the upcoming events and asked them to seat 
themselves behind a separation screen. 

After introducing the participants to the experimental conditions, 
we conducted a short training session. This training aimed to ensure 
understanding of the perceptual descriptors investigated in the 
study. Participants were presented with exemplar structures for 
each descriptor and asked to explore them under the experimental 
conditions. Once we were confdent participants could identify the 
individual descriptors, we proceeded with the study itself. 

Our study consisted of two phases, i.e., individual surface texture 
assessments (A), and surface texture similarity assessments (B). 
During phase A, the experimenter placed one of the surface samples 
on a fxed location behind the screen. The participant was then 
asked to explore the sample and rate various tactile properties of the 
sample one by one. During this phase, the participant was allowed 
to touch the sample continuously with the index fnger of their 
dominant hand. The experimenter noted the responses for each 
trial and placed the next sample upon completion of the 9 questions. 
The following questions were depicted on a sheet of paper in front 
of the participant: 

Q1: How hard does this surface feel? (1 meaning extremely soft, 9 
meaning extremely hard) 

Q2: How rough does this surface feel? (1 meaning extremely smooth, 
9 meaning extremely rough) 

Q3: How bumpy does this surface feel? (1 meaning extremely fat, 
9 meaning extremely bumpy) 

Q4: How sticky does this surface feel? (1 meaning extremely slip-
pery, 9 meaning extremely sticky) 

Q5: How scratchy does this surface feel? (1 meaning extremely 
dull, 9 meaning extremely scratchy) 

Q6: How hairy does this surface feel? (1 meaning extremely clean, 
9 meaning extremely hairy) 

Q7: How uniform does this surface feel? (1 meaning extremely 
irregular, 9 meaning extremely uniform) 

Q8: How isotropic does this surface feel? (1 meaning extremely 
anisotropic, 9 meaning extremely isotropic) 

Q9: What kind of material is this? (Open question) 

During phase B, the experimenter placed two surface samples 
behind the screen on fxed locations next to each other. The partici-
pant was then asked to explore both samples and rate the similarity 
of the tactile sensations on a 9-point scale, where 1 meant both 
samples were extremely dissimilar, i.e., opposites, and 9 meant 
both samples were extremely similar, i.e., identical. To improve 
consistency, participants were only allowed to use the tip of their 
index fnger on their dominant hand to interact with the samples. 
The interaction window was limited to 5 seconds per sample to 
ensure participants’ frst impressions were communicated to the 
experimenter, and to limit the study duration. Within this time, 
there were no limitations on the interaction mode. Participants 
were allowed to stroke the samples in arbitrary patterns and lightly 
press or tap the samples to assess their hardness. The experimenter 
noted the response for each trial and placed the next samples upon 
completion of the similarity question. 

Breaks were issued between phases, every 100 assessments, or 
when the participant noted a feeling of numbness in their fnger. 
In terms of COVID-19, windows were opened to air the room at 
regular intervals, both the experimenter and the participant wore 
masks, and the setup and all samples were disinfected between 
participants. After the experiment, participants completed a post-
study questionnaire inquiring about their demographics. 

4.4 Design 
We used a within-subjects experimental design with a total set of 30 
samples, consisting of 15 real surface textures and their 15 replicated 
counterparts. In order to counterbalance both study phases for 
carry-over efects, participants were assigned sequence numbers. 
Each evenly numbered participant started with phase A, while each 
unevenly numbered participant frst performed phase B. 

For phase A, we considered the presented sample as the inde-
pendent variable and distinguish 9 dependent variables, i.e., the 
participants’ tactile impressions of a sample in terms of hardness, 
roughness, bumpiness, stickiness, scratchiness, hairiness, unifor-
mity, and to which degree the surface geometry of the sample felt 
isotropic, each on a 1-to-9 Likert scale, 1 indicating a low assessment 
and 9 indicating a high assessment of the respective variable. We 
chose compliance, roughness, and stickiness since they are consid-
ered the base of tactile exploration models [27, 28, 46, 82, 91]. The 
inclusion of bumpiness and scratchiness is motivated by [46] where 
the authors show that roughness can be divided into two dimen-
sions for macro and micro roughness. The inclusion of hairiness, 
uniformity, and isotropy was motivated by the fact that our original 
set of textures were fabric samples. As hairs are inherent to them, 
their lack in the set of replicated structures would show correlations 
to other perceptions, specifcally uniformity and isotropy as the 
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directionality given by the sensing of hairs could infuence these 
factors. The last dependent measure was the open answer in which 
participants stated which material they thought to experience. For 
this open question, participants were not provided a list of materi-
als to choose from but were free to provide any answer they saw 
ft. For counterbalancing measures, we constructed experimental 
design tables using a 30 × 30 Latin square. Here, counter-balancing 
was incomplete as the Latin square was performed for 20 rows, i.e., 
one row per participant. 

For phase B, we distinguish the independent variable as the com-
bination of samples presented to the user. Each participant was 
presented with all 435 possible combinations of our 30 samples. 
The order of sample presentation was randomized while the rel-
ative location of the presented sample for a given combination 
was alternated between participants. This meant that for a given 
combination, a sample was presented on the left side for an evenly 
numbered participant and on the right side of an unevenly num-
bered participant. 

Ethical approval for this study was obtained from the Ethical 
Review Board of the Department of Computer Sciences at Saarland 
University (No. 20-07-2). 

5 RESULTS 
In the following section, we describe the analysis and the obtained 
results from our texture perception study. 

5.1 Individual Tactile Ratings 
To analyze the individual tactile assessments, we conducted Fried-
man tests with posthoc analysis using Wilcoxon signed ranks tests 
and Bonferroni-Holm correction for all comparisons. For complete-
ness, all results are depicted in Appendix A. The ratings per sample 
for each case are depicted in Figure 6. Here, we focus our results 
on the patterns that arise in the analysis, specifcally for the results 
within the set of original texture samples (T), within the set of 
replicated surface samples (R), and their cross-comparison for the 
same surface texture (T-R). 

Hardness. The ratings of hardness were found to signifcantly 
difer depending on the sample (�2 (29) = 445.83, � < .001). Overall, 
the average ratings for the T samples (� = 4.10) were found to be 
lower than the average ratings for the R samples (� = 7.95). From 
our results, we could verify that the original set of samples consisted 
of surfaces with difering degrees of hardness. In contrast, the 
replicated samples were rated consistently high in terms of hardness. 
While this caused most original samples to difer from their replicas 
signifcantly, some similarities remained. The hardness of rough 
samples did not signifcantly difer between the original samples 
and their replicas. This efect was most notable for T15-vintage. From 
these observations, we can conclude that the surface replication 
process afected the tactile perception of hardness. 

Roughness. The ratings of roughness were found to signifcantly 
difer depending on the sample (�2 (29) = 382.29, � < .001). In terms 
of roughness, the T samples’ average ratings (� = 4.26) were found 
to be lower than the R samples (� = 6.82). Diferences in perceived 
roughness were signifcant in both original and replicated samples. 

While the general trend indicates an increase in tactile roughness af-
ter replication, the replication process created a varying set of repli-
cas by partly translating the roughness gamut. Cross-comparisons 
between all T and R samples indicated that 9 of our surface sam-
ples showed roughness to signifcantly increase from their original 
counterpart, while 6 samples preserved their level of roughness. 

Bumpiness. The ratings of bumpiness were found to signifcantly 
difer depending on the sample (�2 (29) = 393.01, � < .001). The 
average ratings for the T samples (� = 3.19) were found to be 
lower than those of the R samples (� = 6.14). Similar to the re-
sults of perceived roughness, the ratings of bumpiness indicate 
diferences within the original samples’ set and within the set of 
replicated samples. The general trend indicates an increase in tactile 
bumpiness, while some variance was preserved after replication. 
Cross-comparisons between all T and R samples indicated 6 samples 
preserved their level of bumpiness. 

Stickiness. The ratings of stickiness were found to signifcantly 
difer depending on the sample (�2 (29) = 172.08, � < .001). The 
average rating of the T samples (� = 3.18) was lower than the R 
samples (� = 4.92). Pair-wise analysis within the set of T samples 
and within the set of R samples indicated no signifcant diferences. 
Cross-comparison between T and R samples revealed that only 
T2-velvet signifcantly difered from its replica. Here, we note that 
both our original and replicated samples were found to be mostly 
neutral in terms of stickiness, and the replication process did not 
alter its perception. 

Scratchiness. The ratings of scratchiness were found to signif-
cantly difer depending on the sample (�2 (29) = 315.01, � < .001). 
In terms of scratchiness, the T samples’ average rating (� = 3.11) 
was lower than the R samples (� = 4.91). Both within the set of 
original samples and the set of replicated samples, diferences in 
perceived scratchiness were signifcant. While the general trend 
indicates an increase in tactile scratchiness after replication, the 
replication process created a varying set of replicas by partly trans-
lating the gamut of scratchiness. Cross-comparisons between all T 
and R samples indicated that only 5 of our surface samples showed 
scratchiness to difer from their original counterpart signifcantly; 
meanwhile, 10 samples preserved their level of scratchiness. 

Hairiness. The ratings of hairiness were found to signifcantly 
difer depending on the sample (�2 (29) = 394.38, � < .001). The 
average rating of hairs on the replicated samples was lower than 
those of the T samples (T, � = 5.63; R, � = 1.78). For some T 
samples, the presence of hairs was signifcantly apparent compared 
to other T samples. As expected, in between all replicated samples, 
no signifcant diferences were found for all combinations. For the 
cross-comparison between T and R samples, we note that the R 
samples were signifcantly diferent from most T samples, excluding 
those with a low hair presence. These results show that participants 
noticed the lack of hairs on the replicated samples. 

Uniformity. The ratings of uniformity were found to signifcantly 
difer depending on the sample (�2 (29) = 329.88, � < .001). On 
average, the T samples’ ratings (� = 7.15) were higher than the set 
of R samples (� = 3.91). While some signifcant diferences were 
found within the original sample set, no diferences were found 
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(a) Hardness. (b) Roughness. 
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(c) Bumpiness. (d) Stickiness. 
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(e) Scratchiness. (f) Hairiness. 
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(g) Uniformity. (h) Isotropy. 

Figure 6: Boxplots indicating the individual assessments for each sample. 
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Figure 7: Correlation plot for the individual assessments. 
The numbers depict the Spearman’s rank order coefcient 
(Rs). All correlations were found to be signifcant (� < .01). 

within the set of replicas. Cross-comparison for the same texture 
showed 6 samples preserved their uniformity while 9 did not. From 
this, we see that the replication process lowered some indications 
of uniformity. 

Isotropy. The ratings of isotropy were found to signifcantly dif-
fer depending on the sample (�2 (29) = 189.08, � < .001). When 
rating the uniformity in all orientations, participants noted higher 
isotropy for the original samples (T, � = 6.33; R, � = 4.20). Only 
three comparisons showed signifcant diferences for all T samples, 
while for all R samples, no signifcant diferences occurred. When 
comparing T samples to their partnered R samples, only T6-clash 
and T14-matrix did not preserve their level of isotropy. These results 
indicate that the replication process did not signifcantly alter the 
perceived isotropy for 13 samples. 

5.2 Tactile Correlations 
Using a Spearman’s rank-order correlation, we found signifcant 
correlations between the diferent tactile assessments provided 
by participants. All correlations with their Spearman’s rank order 
coefcients (Rs) are depicted in Figure 7. Here, all correlations were 
found to be signifcant (� < .01). 

Strong positive correlations were found between the tactile rat-
ings of roughness, bumpiness, and scratchiness. These observations 
were confrmed by the fact that participants noted it was some-
times difcult to distinguish between the individual features. The 
hardness of our samples is with varying efects positively corre-
lated with the roughness, bumpiness, and scratchiness assessments. 
Interestingly, while hairiness is negatively correlated with hardness 
it has almost no efect on roughness, bumpiness, or stickiness. Two 
groups of tactile properties are appearing with opposite correla-
tions with each other. While hairiness, uniformity, and isotropy are 
positively correlated with varying efect sizes, they are negatively 
correlated to the other tactile ratings. 
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Figure 8: NMDS analysis. Here, 8a depicts the stress values 
for solutions using 1 to 6 dimensions, while 8b visualizes 
the relationship between the original and the ordination dis-
tances for a 3-dimensional solution. 

5.3 Material Perceptions 
The anecdotal data of the perceived materials were further analyzed 
by manually extracting the materials and objects identifed by the 
participants. For the R samples, we characterized a set of 12 distinct 
perceived categories, namely plastic-like (28%), stone-like (27%), 
wood-like (27%), fabric-like (3%), paper-like (2%), rubber-like (2%), 
and other (4%, e.g., soap, dry glue, rough human skin, a surface 
with Braille, plastic made to feel like wood). For the T samples, we 
characterized a set of 9 distinct perceived categories, namely fabric-
like (77%), hair-like (6%), sponge-like (6%), leather-like (6%), rubber-
like (6%), plastic-like (6%), paper-like (6%), stone-like (6%), and other 
(6%, e.g., skin, mouse pad, feather, car ceiling). Within the category 
of fabric-like of the latter, we noted 10 recurring indications across 
participants, i.e., carpet, cloth, clothing, velvet, cotton, wool, felt, 
feece, generic fabric, and others (fbers, linen, couch, curtain, and 
pillow). 

5.4 Analysis of Similarities 
To determine consistency across participants, we used Spearman’s 
rank correlation tests on the similarity assessments. Here, we found 
the similarity ratings for each participant to be highly correlated 
with those of every other participant (�� = 0.69, � < .01). Given 
this result, we note that participants rated the similarity assessments 
consistently. 

For further analysis, the similarity assessments (1–9) were con-
verted to normalized dissimilarity ratings (0–1). With these ratings, 
we created a symmetric dissimilarity matrix containing the percep-
tual distances between all original and replicated samples. Using an 
analysis of similarities, we compared diferent groupings within our 
distance matrix. We found a signifcant diference when comparing 
groups of the diferent sample types, i.e., original textures and repli-
cated samples (� = 0.9528, � < 0.001). However, we did not fnd a 
signifcant diference when comparing groups of diferent sample 
numbers, i.e., all diferent sets of textures (� = −0.3456, � = 0.99). 

5.5 Perceptual Space 
For rating perceived similarity between two samples, participants 
were asked to consider all aspects of the tactile perception as they 
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saw ft. This instruction was given in order to not bias the judgments 
and acquire the true similarity assessments between our samples. 

Analogous to literature [82], we used the obtained symmetric 
dissimilarity matrix to perform a non-Metric Multi-Dimensional 
Scaling (NMDS) analysis. NMDS is an indirect gradient analysis 
approach which produces an ordination based on a distance or 
dissimilarity matrix. When dealing with human similarity data, such 
an approach is common for calculating and visualizing perceptual 
spaces of the distances [12, 15, 82]. To understand how many axes 
are sufcient to visualize the perceptual space, we calculated the 
stress values for the frst 6 dimensions, see Figure 8a. Here, the stress 
value of 0.05 for 3 dimensions approaches a faithful representation 
with no prospect of misinterpretation [11]. The low-stress level is 
underlined by the relationship between the original and ordination 
distances in Figure 8b. 

Using Kruskal’s non-metric multidimensional scaling approach, 
we then generated the perceptual space for our recorded assess-
ments. In the resulting representation, the axes are unknown com-
binations as they do not represent apparent tactile assessments. To 
better understand the relationship between samples, we frst build 
a physical space for the original texture samples. To this end, we 
build upon the previous work and use the 3 dominant dimensions 
of the tactile perception of surfaces, i.e., hardness, roughness, and 
stickiness [14, 91]. For each dimension, we use the z-scores of the 
respective recorded physical values for roughness, hardness and 
slipperiness, see subsection 3.2. 

Using a Procrustean randomization test, we calculated the good-
ness of ft and its signifcance between the dissimilarity space of 
the original samples and the physical space (�2 = 0.65, � < 0.01), 
between the dissimilarity space of the replicated samples and the 
physical space (�2 = 0.64, � < 0.01), and between the dissimilarity 
space of the replicated samples and the original samples (�2 = 0.57, 
� < 0.01). These results indicate that all data sets exhibit greater 
concordance than expected at random, indicating an agreement 
between the measurements obtained. Next, we performed a Pro-
crustes analysis to calculate the transformation function from the 
physical space to the original sample’s dissimilarity space such that 
they are in a state of maximal superimposition (�� = 0.64). The 
resulting rotation, translation, and scaling matrices were used to 
transform the physical space onto the perceptual space. Here, we 
included the physical’s space axis as vectors in the transformation 
and label them according to their metrics. We depict the fnal per-
ceptual space using 3 individual plots per dimension combination, 
see Figure 9. 

6 DISCUSSION 
Motivated by the recent advancements in the feld of fabrication, we 
replicated a set of 15 texture samples by capturing and reconstruct-
ing their heightfelds. Rather than aiming for direct reproduction 
of tactile perception, we investigate how the fabrication process 
afects the perceived haptic properties. We frame our discussion 
in two parts by frst elaborating on the obtained results and their 
interpretations and providing insights for the fabrication of haptic 
properties. 

6.1 Surface Haptics Appropriation 
We aimed to determine how our approach infuenced tactile sur-
face properties’ perception and gain insights into the relationship 
between the replication method and material perceptions. As we 
expected to see interactions between the original samples’ tactile 
features and the perception of their replicated counterparts, we 
performed a psychophysical user study to understand these rela-
tionships. Here, we discuss our results that indicate our approach 
is an initial step for appropriating surface haptics and propose 
strategies for fabricating tactile properties. 

Does surface geometry replication reproduce aspects of its feeling? 
The individual assessment results reveal that our set of original 
textures manifests signifcant variations in all observed tactile prop-
erties across samples. While many of the tactile variations of the 
set of replicated surfaces were compressed into smaller ranges, the 
replicas still indicated a degree of diversity. Therefore, appropriat-
ing tactile features from a diverse set of natural surfaces can provide 
an attractive solution for creating diverse haptic impressions on 
fabricated objects. 

When comparing the original textures to their replicas, we ob-
serve that the printed materials do not maintain all the original 
materials’ tactile properties. As is inherent to our replication ap-
proach, in terms of hardness and hairiness, participants’ assess-
ments showed signifcant diferences to occur. However, in terms 
of stickiness and isotropy, most replicas maintained their tactile 
properties, as no signifcant diferences could be found for respec-
tively 14 and 13 pairs. For scratchiness, 10 samples were close to the 
original, while in terms of roughness, bumpiness, and uniformity, 
only 6 pairs did not show any signifcant deviations. In terms of tac-
tile properties, the pairs of T-R1-casino, T-R10-trend, T-R11-onyx were 
not signifcantly diferent for a total of 6 metrics, while T-R7-cosy, 
T-R12-cosmopolitan, T-R13-easycare, and T-R15-vintage for 5; T-R5-deluxe 
for 4, T-R4-havanna and T-R14-matrix for 3, T-R3-crown, T-R6-clash, and 
T-R8-forida and T-R9-yelda for only 2. The composition of T2-velvet 
proved it to be the most challenging surface sample to reproduce. 
Here, participants indicated to be able to quickly identify T2-velvet 
as the tactile perception of velvet was a unique sensation compared 
to all other samples. 

Additionally, we found tactile perceptions to show high corre-
lations with each other. Most importantly, the efect of increasing 
hardness was positively coupled to other properties, such as rough-
ness, or bumpiness. From this, we see that the loss of hardness in 
our replication method infuenced other tactile properties, as our 
manufacturing process only reproduced a surface’s stable geome-
try. Intuitively seen, a hard surface makes the specifc geometrical 
surface features more pronounced as they comply less to touch. 
This interaction may lead to increased subjective ratings of other 
perceptions. While hairiness did negatively correlate to hardness, 
its efect on other tactile assessments seemed to be limited. Here, we 
note that the infuence of highly deformable structures, i.e., hairs, 
is minimized upon direct touch. 

Does surface geometry replication convey the feeling of the original 
material? The high degree with which participants reported the 
original samples’ material as fabric-like indicates that they correctly 
identifed their material properties. Interestingly, in contrast to 
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Figure 9: NMDS Perceptual space. Here, the distances between the original set of samples (blue), their physical measurements 
(red) and the replicated set (green) are visualized. The vectors represent the transformed axes of the physical measurement 
space taken from the original set of samples. 

the original materials, our replicas manifest a wide variation in participant’s perception towards a specifc material, e.g., through 
identifed materials. Our set of reconstructed samples was printed visual priming in a Virtual Reality context. 
using the same plastic material. We see that by changing the surface 
structure, participants indicated to perceive diferent materials. Does surface geometry replication support a wide gamut of feel aes-
This underlines the infuence of surface microgeometry on the thetics? Our perceptual space allows us to inspect how the repli-
perception of materials and its beneft to fabrication processes. Here, cation process infuences the distance between the original and 
an opportunity exists to explore diferent methods to guide the fabricated samples, see Figure 9. We can observe a clear separation 

between original materials and our replicas based on the perceived 
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hardness which is an efect of the manufacturing process that does 
not use elastic materials. However, the space occupied by the set 
of replicas shows the great variety with which microgeometry 
replication infuenced the tactile impressions. 

The similarity analysis results indicate that the replication pro-
cess signifcantly afected the original and replicated samples’ per-
ceived distance. However, the distance created by the fabrication 
process did not seem to vary between diferent textures. From this, 
we can conclude that the replication process uniformly distorted 
perception between original and replicated samples, meaning no 
randomness was introduced in the process. Therefore, optimiz-
ing the replication process would optimize the haptic perception 
distance between the original and replicated sample. 

Further visual analysis of the perceptual space in terms of rough-
ness and stickiness vectors allows us to comprehend the surface 
replication distortion. Here, we observe that the shift between origi-
nal and reproduction potentially leads to perceptually good matches 
for certain other sample combinations, e.g, T-R3-crown with T1-casino, 
T-R2-velvet with T7-cosy, T-R6-clash with T10-trend, and T-R14-matrix 
with T12-cosmopolitan. These results indicate that a potential trans-
formation function of haptic surface appropriation could guide the 
understanding of tactile properties before fabrication. Such a func-
tion can be integrated into existing literature, such as in [80], where 
authors present a tool for designing the feel aesthetics of objects to 
be fabricated. 

6.2 Applications for Fabricating Haptics 
Designing haptic experiences remains a challenging task. Our work 
is motivated by the lack of prototyping methods for haptic de-
sign [61], and the importance of supporting personalization by 
end-users [64]. Rather than relying on computational tools, surface 
capturing methods support both end-users and professionals to 
design their own feel aesthetics [80] guided by real-life tactile expe-
riences. With our approach, designers could use portable capturing 
devices as illustrated in [42], to record information in the world 
around them and build custom tactile libraries. Using these, digital 
objects fabrication can be enriched with tactile properties using 
common modelling tools. 

The results of our study show that stable surface replication 
supports the fabrication of materials with similar haptic properties 
to the originals. Our approach to capturing only the stable features 
corresponds well with how our participants perceived the presented 
materials. We found that the deformable hair-like features of the ma-
terials afect the perceived compliance but do not have an infuence 
on the perceived geometrical attributes like roughness, bumpiness, 
and scratchiness. As a result, deformable hair-like structures can 
be integrated into compliance and do not need to be present on the 
surface of the object. Focusing reproduction efort on stable features 
not only signifcantly facilitates the reproduction process but also 
increases the durability of reproduced surfaces as thin deformable 
features are most likely to be afected by mechanical wear. 

Another exciting result of our study is the discovered coupling 
between the perceived properties. Prior works generally considered 
the perceived compliance, roughness, and stickiness as independent 
orthogonal directions [27, 78]. However, our results suggest that 
the increase in hardness caused the shift in perceived roughness of 

the 3D printed stimuli. We can distill this observation into a simple 
design rule. To successfully reproduce the perceived roughness, the 
designer should decrease the roughness of the object proportionally 
with the increase in hardness. 

The printing process used in our work had a signifcant efect 
on the perceived haptic properties of our samples. Upon closer 
investigation, we observe that the pairwise dissimilarity captured 
by the original materials is still present in our digital replicas. This 
suggests that our manufacturing process applies a systematic trans-
formation that efects the haptics of our digital replicas. This is 
further supported by the anecdotal assessment where participants 
were able to correctly identify the material of the original cloth 
samples but perceived a far wider gamut of materials in the digital 
replicas ranging from plastics, through stone, to wood. These re-
sults underline an uncertainty present in the material perception of 
the replicas, which could be guided through the addition of multi-
sensory perception. As visual and haptic perception are statistically 
integrated [21], our approach could serve material perception using 
passive haptics in immersive virtual environments. 

7 LIMITATIONS AND FUTURE WORK 
While this paper presents a method for appropriating the haptic 
feedback of real-life textures for fabrication, there are several areas 
that should be investigated before such tools can become standard-
ized in production pipelines. 

Surface Texture Dataset. For analyzing the efects of the manufac-
turing process on the printed replicas we needed a representative 
dataset of samples that vary in compliance, geometrical features, 
and used materials. We opted for a set of 15 cloth samples that 
we show achieve good coverage in both measured and perceived 
assessments with the hopes that the results we achieve here would 
generalize to other material categories. An interesting direction of 
future work is to investigate new materials, e.g., leathers, metals, or 
woods, and observe if the results from this work generalize beyond 
our cloth samples. 

Extending the Haptic Gamut. The individual material perceptions 
revealed that our manufacturing device can produce materials with 
a wide range of perceived qualities ranging from plastic-like to 
wood-like. A potential future work lies in further exploring the 
classes of materials that can be manufactured and quantifying the 
haptic gamut of a particular manufacturing device. 

Based on observations from the psychophysical experiment, we 
suggest that reproducing the stable geometry is sufcient for match-
ing the perceived roughness in many cases and that any small de-
formable features on the surface can be interpreted as compliance. 
However, to manufacture perfect replicas thin hair-like structures 
would need to be reproduced as they are perceivable based on the in-
teraction mode. To this aim, the results of existing work could easily 
be leveraged [18, 47]. An interesting future work lies in evaluating 
how important the hair-like structures are to material perception 
and if the perception and afordance of material is signifcantly 
afected by leaving them out. 

Tactile Matching. During the individual assessment analysis, we 
found a surprising result that reproducing the surface geometry 
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is not always sufcient to match the perceived roughness. We ex-
plained this by an efect on the compliance of the sample on the 
perception of roughness. It is possible that such coupled efects 
also afect the perception of other physical attributes like hardness 
and friction. An interesting avenue for future work would be to 
investigate materials that match in a physical property but mani-
fest extreme variation in others. This would allow us to investigate 
how we can leverage the perceptual coupling between individual 
physical parameters to design better haptic experiences. 

Our digital replicas manifest similar perceived friction to the 
original materials. While we did not specifcally optimize for the 
perceived friction our reproduction process relies on mimicking 
the surface geometry which is one of the governing factors for 
friction [69]. The second important factor is the used materials. An 
interesting direction of future work would be to investigate how 
much infuence of perceived friction do common manufacturing 
materials have and how much we can afect the perceived friction 
by adjusting the surface geometry. 

Printing Technology. Our results are dependent on a sufcient 
printing resolution to reproduce the surface microgeometry. Un-
fortunately, common consumer 3D-printing technologies utilize 
FDM approaches, which relies on flaments at scales that dominate 
the haptic feedback of many everyday materials. However, higher 
resolution printing techniques are slowly becoming more accessi-
ble. Resin printers with comparable resolution to multijet printers 
are becoming available at competitive prices to FDMs. We believe 
that now is the correct time to study the haptics achievable with 
higher resolution processes, as the results discovered today will 
help makers design haptic experiences soon. 

Our study focused on the most commonly available material for 
printing, i.e., hard plastics. We believe our results are robust to spe-
cifc plastic selection as the main diference will be in the coefcient 
of friction between the material and the fnger. There seems to be 
only a weak correlation between friction and the remaining percep-
tual attributes. This indicates that changing the plastic material will 
likely not have a signifcant efect on other perceptual attributes. 
An exciting avenue for future work is to investigate the use of 
soft materials as the demonstrated coupling between hardness and 
roughness leads to an interesting optimization problem. 

Future Strategies. The proposed observations and strategies for 
appropriating the haptics of real-life materials are valid only for the 
used fabrication process. Utilizing drastically diferent processes 
and/or materials would lead to perceivable diferences in haptic 
response. While in principle our study design can be replicated for 
each new fabrication setup it might be inefcient in the number 
of samples and participants required. To this end, an interesting 
future work lies in identifying a minimal dataset that should be 
fabricated with a new process to calibrate the haptic reproduction 
capabilities. 

8 CONCLUSION 
In this work, we present an approach for adapting haptic experi-
ences from real-life for manufacturing purposes. To this end, we 
implemented an existing pressure-based geometry acquisition pro-
cess for recovering the stable microgeometry investigated during 

active touch. We use this method on a challenging set of 15 cloth 
samples that manifest a wide range of haptic properties. We evalu-
ate the reproduction quality by conducting individual assessments 
of the perceived qualities. From our results, we see that that direct 
reproduction of a material’s surface can approximate the perceived 
geometry of some materials but it is not sufcient to consistently 
mimic their haptics. However, both in terms of perceptual features, 
such as roughness, and material perceptions, our digital reproduc-
tions show a great variation only through alterations of their surface 
construction. Therefore, our fabrication process supports a wide 
gamut of feel aesthetics. Furthermore, we investigate the shift that 
occurs after replication and discover that the change in perception 
of the reproduced samples was not stochastic but rather followed a 
uniform transformation. To fnd this transformation we conduct a 
magnitude estimation study and recover a perceptual-space of our 
samples which we correlate with measurable physical attributes. 
We leverage our perceptual space to formulate direct strategies that 
can be applied to the digital designs to better resemble the haptic 
sensations of the original materials. We believe that the techniques 
proposed here will have direct benefts for fabrication methods of 
haptic features and that our fndings can serve as a basis for the 
future development of the feld. Our results provide insights for the 
feld of haptic design by supporting hapticians in creating versatile 
haptic experiences through capturing real-world information for 
fabrication processes. 
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Figure 10: P-values (green, < 0.05; blue, >= 0.05) of the Wilcoxon signed ranks tests (Bonferroni-Holm correction) for all 
comparisons for hardness (left) and roughness (right). The ratings of hardness and roughness were found to signifcantly 
difer depending on the sample (hardness, �2 (29) = 445.83, � < .001; roughness, �2 (29) = 382.29, � < .001). 

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
R1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.32 1.00 1.00 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R2 0.02 R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.54 1.00 1.00 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R3 0.81 1.00 R3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.08 1.00 0.94 0.02 1.00 0.61 1.00 1.00 1.00 1.00 1.00 0.40 0.94
R4 0.25 1.00 1.00 R4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.16 1.00 1.00 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00
R5 0.65 1.00 1.00 1.00 R5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.12 1.00 1.00 0.03 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.71 1.00
R6 0.00 1.00 0.82 1.00 1.00 R6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08 1.00 1.00 1.00 0.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R7 1.00 0.43 1.00 1.00 1.00 0.03 R7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 0.11 1.00 1.00 0.03 1.00 0.77 1.00 1.00 1.00 1.00 1.00 0.57 1.00
R8 1.00 1.00 1.00 1.00 1.00 0.32 1.00 R8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.20 1.00 0.92 0.05 1.00 0.81 0.99 1.00 1.00 1.00 1.00 0.72 0.77
R9 1.00 0.20 1.00 1.00 1.00 0.01 1.00 1.00 R9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.50 1.00 1.00 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R10 0.02 1.00 1.00 1.00 1.00 1.00 0.20 1.00 0.08 R10 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.73 1.00 1.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R11 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R11 1.00 1.00 1.00 1.00 1.00 0.03 0.36 1.00 1.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R12 0.00 1.00 0.01 0.06 0.07 1.00 0.00 0.03 0.00 0.63 1.00 R12 1.00 1.00 1.00 1.00 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R13 0.01 1.00 1.00 1.00 1.00 1.00 0.04 0.51 0.01 1.00 1.00 1.00 R13 1.00 1.00 1.00 0.31 1.00 1.00 1.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R14 0.03 1.00 1.00 1.00 1.00 1.00 0.28 1.00 0.15 1.00 1.00 1.00 1.00 R14 1.00 1.00 0.07 1.00 1.00 1.00 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R15 0.22 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 1.00 1.00 R15 1.00 0.00 0.03 0.54 0.28 0.01 1.00 0.16 0.30 0.59 1.00 0.50 1.00 0.11 0.27
T1 1.00 1.00 1.00 1.00 1.00 0.39 1.00 1.00 1.00 1.00 1.00 0.01 0.55 1.00 1.00 T1 0.05 1.00 1.00 1.00 0.32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 T2 1.00 1.00 1.00 1.00 0.16 1.00 1.00 1.00 0.23 1.00 0.17 1.00 1.00
T3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 T3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T4 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.08 0.00 0.00 0.34 1.00 T4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T5 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.33 1.00 1.00 T5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 T6 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00
T7 0.03 1.00 1.00 1.00 1.00 1.00 0.21 1.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.02 0.01 0.00 T7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T8 0.00 0.19 0.00 0.00 0.00 1.00 0.00 0.01 0.00 0.01 0.03 1.00 0.11 1.00 0.01 0.00 0.00 0.06 1.00 1.00 0.01 0.57 T8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T9 0.00 1.00 0.01 0.05 0.04 1.00 0.00 0.02 0.00 0.27 0.48 1.00 1.00 1.00 0.06 0.01 0.00 0.03 1.00 1.00 0.01 1.00 1.00 T9 1.00 1.00 1.00 1.00 1.00 1.00
T10 0.00 1.00 0.26 0.80 0.98 1.00 0.00 0.09 0.00 1.00 1.00 1.00 1.00 1.00 0.72 0.09 0.00 0.00 0.06 0.02 0.00 1.00 1.00 1.00 T10 1.00 1.00 1.00 1.00 1.00
T11 0.00 1.00 0.01 0.04 0.06 1.00 0.00 0.03 0.00 0.43 1.00 1.00 1.00 1.00 0.06 0.01 0.00 0.00 0.16 0.05 0.00 1.00 1.00 1.00 1.00 T11 1.00 1.00 1.00 1.00
T12 0.00 0.07 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.01 1.00 0.03 1.00 0.00 0.00 0.00 0.23 1.00 1.00 0.06 0.20 1.00 1.00 0.56 1.00 T12 1.00 1.00 1.00
T13 0.00 1.00 0.00 0.01 0.01 1.00 0.00 0.01 0.00 0.07 0.17 1.00 1.00 1.00 0.01 0.00 0.01 0.68 1.00 1.00 0.34 1.00 1.00 1.00 1.00 1.00 1.00 T13 1.00 1.00
T14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.54 0.21 0.01 0.01 1.00 1.00 T14 1.00
T15 0.00 0.20 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.04 1.00 0.13 1.00 0.00 0.00 0.00 0.31 1.00 1.00 0.10 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 T15
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Figure 11: P-values (green, < 0.05; blue, >= 0.05) of the Wilcoxon signed ranks tests (Bonferroni-Holm correction) for all 
comparisons for bumpiness (left) and stickiness (right). The ratings of bumpiness and stickiness were found to signifcantly 
difer depending on the sample (bumpiness, �2 (29) = 393.01, � < .001; stickiness, �2 (29) = 172.08, � < .001). 



UIST ’21, October 10–14, 2021, Virtual Event, USA D. Degraen, et al. 

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
R1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.09 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15

R2 0.00 R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.03 0.20 0.00 0.01 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.32
R3 1.00 0.06 R3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.03 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
R4 0.15 0.15 1.00 R4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.03 0.26 0.01 0.01 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.56
R5 1.00 0.05 1.00 1.00 R5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
R6 0.01 1.00 0.89 1.00 1.00 R6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.08 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11
R7 1.00 0.03 1.00 1.00 1.00 0.34 R7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.06 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
R8 1.00 0.00 1.00 0.64 1.00 0.01 1.00 R8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.03 0.26 0.00 0.01 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.49
R9 1.00 0.00 1.00 0.07 0.94 0.00 1.00 1.00 R9 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.09 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.18
R10 1.00 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R10 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.05 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
R11 1.00 0.00 1.00 1.00 1.00 0.11 1.00 1.00 1.00 1.00 R11 1.00 1.00 1.00 1.00 0.00 0.01 0.08 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
R12 0.02 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.02 1.00 0.32 R12 1.00 1.00 1.00 0.00 0.02 0.16 0.00 0.01 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.24
R13 0.19 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.11 1.00 1.00 1.00 R13 1.00 1.00 0.00 0.02 0.14 0.00 0.01 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.25
R14 0.00 1.00 0.09 0.27 0.09 1.00 0.04 0.00 0.00 0.16 0.01 1.00 1.00 R14 1.00 0.00 0.08 0.75 0.02 0.04 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 1.00
R15 1.00 0.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.19 R15 0.00 0.01 0.05 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
T1 0.23 0.01 1.00 1.00 1.00 0.29 1.00 1.00 0.09 1.00 1.00 1.00 1.00 0.01 1.00 T1 1.00 0.15 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10
T2 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00 T2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T3 0.00 1.00 0.01 0.01 0.01 1.00 0.00 0.00 0.00 0.01 0.00 1.00 0.57 1.00 0.02 0.00 1.00 T3 1.00 1.00 1.00 0.00 0.67 1.00 0.15 1.00 0.05 1.00 1.00 1.00
T4 0.00 1.00 0.02 0.03 0.02 1.00 0.01 0.00 0.00 0.02 0.00 1.00 1.00 1.00 0.06 0.00 1.00 1.00 T4 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.45 1.00 1.00 1.00
T5 0.00 1.00 0.13 0.41 0.15 1.00 0.06 0.00 0.00 0.16 0.02 1.00 1.00 1.00 0.22 0.05 0.95 1.00 1.00 T5 1.00 0.02 1.00 1.00 1.00 1.00 0.30 1.00 1.00 1.00
T6 0.00 0.56 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.08 0.04 0.65 0.00 0.00 1.00 1.00 1.00 1.00 T6 0.03 1.00 1.00 1.00 1.00 0.27 1.00 1.00 1.00
T7 0.02 1.00 1.00 1.00 1.00 1.00 0.72 0.06 0.01 1.00 0.39 1.00 1.00 1.00 1.00 1.00 0.15 1.00 1.00 1.00 1.00 T7 1.00 0.33 1.00 0.02 1.00 0.09 0.04 0.00
T8 0.01 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.01 1.00 0.19 1.00 1.00 1.00 1.00 1.00 0.00 0.15 0.17 1.00 0.00 1.00 T8 1.00 1.00 1.00 1.00 1.00 1.00 0.27
T9 0.06 1.00 1.00 1.00 1.00 1.00 1.00 0.27 0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.30 0.70 1.00 0.01 1.00 1.00 T9 1.00 1.00 1.00 1.00 1.00 1.00
T10 0.03 1.00 1.00 1.00 1.00 1.00 1.00 0.11 0.02 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.00 0.51 0.74 1.00 0.01 1.00 1.00 1.00 T10 1.00 1.00 1.00 0.75 0.07
T11 1.00 0.02 1.00 1.00 1.00 0.74 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.04 1.00 1.00 0.00 0.00 0.01 0.06 0.00 1.00 1.00 1.00 1.00 T11 0.63 1.00 1.00 1.00
T12 0.00 1.00 0.17 0.69 0.15 1.00 0.06 0.00 0.00 0.29 0.01 1.00 1.00 1.00 0.26 0.04 0.06 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.09 T12 1.00 0.39 0.03
T13 0.01 1.00 0.75 1.00 1.00 1.00 0.35 0.02 0.01 0.93 0.13 1.00 1.00 1.00 1.00 0.27 0.01 1.00 1.00 1.00 0.23 1.00 1.00 1.00 1.00 0.59 1.00 T13 1.00 1.00
T14 0.00 1.00 0.02 0.05 0.02 1.00 0.01 0.00 0.00 0.03 0.00 1.00 1.00 1.00 0.05 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.58 1.00 1.00 0.01 1.00 1.00 T14 1.00
T15 0.00 1.00 0.44 1.00 0.45 1.00 0.18 0.01 0.00 0.58 0.05 1.00 1.00 1.00 0.64 0.15 0.06 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00 0.25 1.00 1.00 1.00 T15
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Figure 12: P-values (green, < 0.05; blue, >= 0.05) of the Wilcoxon signed ranks tests (Bonferroni-Holm correction) for all 
comparisons for scratchiness (left) and hairiness (right). The ratings of scratchiness and hairiness were found to signifcantly 
difer depending on the sample (scratchiness, �2 (29) = 315.01, � < .001; hairiness, �2 (29) = 394.38, � < .001). 

R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
R1 1.00 1.00 0.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 1.00 1.00 1.00 1.00 0.01 0.21 0.02 1.00 0.00 0.89 0.02 0.42 0.22 1.00 0.08 0.02 0.00 0.07

R2 1.00 R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.12 1.00 0.25 1.00 0.00 1.00 0.17 1.00 1.00 1.00 1.00 0.08 0.00 1.00
R3 1.00 1.00 R3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.89 0.06 1.00 0.00 1.00 0.04 1.00 0.74 1.00 0.22 0.03 0.00 0.19
R4 1.00 1.00 1.00 R4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
R5 1.00 1.00 1.00 1.00 R5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 1.00 0.05 1.00 0.00 1.00 0.03 1.00 0.59 1.00 0.22 0.02 0.00 0.34
R6 0.11 1.00 1.00 1.00 1.00 R6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36 1.00
R7 1.00 1.00 1.00 1.00 1.00 1.00 R7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 1.00 0.15 1.00 0.00 1.00 0.09 1.00 1.00 1.00 0.50 0.08 0.00 0.67
R8 1.00 1.00 1.00 1.00 1.00 0.95 1.00 R8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 1.00 0.50 1.00 0.00 1.00 0.35 1.00 1.00 1.00 1.00 0.24 0.01 1.00
R9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 1.00 0.17 1.00 0.00 1.00 0.15 1.00 1.00 1.00 0.66 0.11 0.00 0.66
R10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R10 1.00 1.00 1.00 1.00 1.00 1.00 0.19 1.00 0.90 1.00 0.01 1.00 0.56 1.00 1.00 1.00 1.00 0.43 0.02 1.00
R11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R11 1.00 1.00 1.00 1.00 1.00 0.02 0.77 0.01 1.00 0.00 1.00 0.01 0.58 0.21 1.00 0.07 0.00 0.00 0.09
R12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R12 1.00 1.00 1.00 1.00 0.54 1.00 1.00 1.00 0.00 1.00 0.81 1.00 1.00 1.00 1.00 0.34 0.01 1.00
R13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.21 1.00
R14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R14 1.00 1.00 0.05 1.00 0.28 1.00 0.00 1.00 0.15 1.00 1.00 1.00 0.80 0.13 0.00 0.72
R15 1.00 1.00 1.00 1.00 1.00 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 R15 1.00 0.13 1.00 0.63 1.00 0.00 1.00 0.20 1.00 1.00 1.00 1.00 0.11 0.00 1.00
T1 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.30 T1 0.37 1.00 1.00 1.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09 1.00
T2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 T2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00
T3 0.00 0.00 0.02 0.06 0.00 0.07 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.83 0.90 T3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
T4 0.00 0.00 0.02 0.10 0.01 0.12 0.00 0.00 0.00 0.01 0.01 0.04 0.01 0.00 0.00 1.00 0.90 1.00 T4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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T9 0.00 0.00 0.03 0.14 0.00 0.22 0.00 0.00 0.00 0.01 0.01 0.08 0.00 0.00 0.00 1.00 0.04 1.00 1.00 1.00 1.00 1.00 1.00 T9 1.00 1.00 1.00 1.00 1.00 1.00
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T12 0.00 0.00 0.02 0.06 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 T12 1.00 1.00 1.00
T13 0.00 0.00 0.03 0.10 0.00 0.18 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.00 0.00 1.00 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 T13 1.00 1.00
T14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 1.00 1.00 1.00 0.34 1.00 0.30 1.00 1.00 0.05 0.00 1.00 1.00 T14 1.00
T15 0.03 0.34 1.00 1.00 1.00 1.00 0.38 0.20 0.16 0.81 1.00 1.00 1.00 0.21 0.02 1.00 0.00 1.00 1.00 1.00 0.16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.13 T15
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Figure 13: P-values (green, < 0.05; blue, >= 0.05) of the Wilcoxon signed ranks tests (Bonferroni-Holm correction) for all 
comparisons for uniformity (left) and isotropy (right). The ratings of uniformity and isotropy were found to signifcantly 
difer depending on the sample (uniformity, �2 (29) = 329.88, � < .001; isotropy, �2 (29) = 189.08, � < .001). 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Tactile Perception of Textures
	2.2 Recording and Reproduction of Haptic Feedback
	2.3 Fabrication of Tactile Properties

	3 Haptic Surface Replication
	3.1 Approach
	3.2 Surface Reconstruction
	3.3 Textures

	4 Study
	4.1 Apparatus
	4.2 Participants
	4.3 Procedure
	4.4 Design

	5 Results
	5.1 Individual Tactile Ratings
	5.2 Tactile Correlations
	5.3 Material Perceptions
	5.4 Analysis of Similarities
	5.5 Perceptual Space

	6 Discussion
	6.1 Surface Haptics Appropriation
	6.2 Applications for Fabricating Haptics

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Individual Tactile Ratings

