
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Mathematical Sciences Technical Reports
(MSTR) Mathematics

12-8-2021

Computer Program Simulation of a Quantum Turing Machine with Computer Program Simulation of a Quantum Turing Machine with

Circuit Model Circuit Model

Shixin Wu
Rose-Hulman Institute of Technology, WUS4@rose-hulman.edu

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

 Part of the Applied Mathematics Commons, Mathematics Commons, Other Computer Sciences

Commons, Quantum Physics Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Wu, Shixin, "Computer Program Simulation of a Quantum Turing Machine with Circuit Model" (2021).
Mathematical Sciences Technical Reports (MSTR). 177.
https://scholar.rose-hulman.edu/math_mstr/177

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been
accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of
Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math
https://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/math_mstr/177?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

Computer Program Simulation of a Quantum Turing Machine with

Circuit Model

Shixin Wu

December 8, 2021

Abstract

Molina and Watrous present a variation of the method to simulate a quantum Turing machine em-
ployed in Yao’s 1995 publication “Quantum Circuit Complexity”. We use a computer program to im-
plement their method with linear algebra and an additional unitary operator defined to complete the
details. Their method is verified to be correct on a quantum Turing machine.

1

1 Introduction

Alan Turing’s paper in 1937 proposed the Turing machine [5]. It is seen as a mathematical abstraction of
computation, and therefore used as a foundation to study quantum computing [1]. For example, Bernstein
and Vazirani study quantum computation from a complexity theoretic viewpoint by going very in depth in
the discussion of quantum Turing machines [4].

However, due to the cumbersome nature of the model and the complexity of the quantum theory, the
Turing machine model is not the best tool to implement a quantum computer [1]. First described by Deutsch
[3], the quantum circuit model has become a more useable tool compared to the quantum Turing machine
after Yao’s proof that they are equivalent by simulating the latter with the former [6]. While Yao’s simulation
method requires solving for a suitable circuit description with linear algebra, Molina and Watrous improved
it by allowing us to directly reading an explicit description of the quantum circuits required to perform the
simulation from a simple equation [1].

Due to the complexity of quantum superposition, one may find it difficult to trace the transitions of a
quantum Turing machine by hand. A working simulation of a quantum Turing machine can serve as a tool
for one to verify one’s expected output given an input and a specific quantum Turing machine. In this paper,
we implement the simulation method described by Molina and Watrous. Given this, our discussion does not
go deep into the quantum circuits. Instead, we will use mathematical abstractions of quantum registers and
quantum gates with column vectors and unitary matrices. As a result, certain operations which are easy to
perform on the quantum circuits will require extra steps in our simulation. We have defined some operators
to finish the details of Molina and Watrous’ method to ease its implementation in programming.

We start off based on Bernstein and Vazirani’s paper. In Section 2, we give the definition of a quantum
Turing machine as well as its related concepts based on that of a deterministic Turing Machine. We will
also introduce the Molina-Watrous algorithm proposed in their paper and the quantum Turing machine to
be simulated in this section. Section 3 and Section 5 discuss our approach based on Molina and Watrous
constructing a column vector representation of a configuration and the unitary matrix representation of
the operator that maps one configuration to another. Both sections include subsections that describe the
algorithms to compute a configuration vector and the operator matrix with pseudocode to avoid confusion
about the syntax of any programming language. Section 5 will give our approach to the additional gate that
completes the implementation of Molina and Watrous’ method. We finish off in Section 6 by stating our
future plans.

2 Preliminaries

2.1 Definition of a Quantum Turing Machine

In this section, we will give the definition of a quantum Turing machine, which is highly based upon the
definition of a deterministic Turing machine.

2.1.1 Definition of a Deterministic Turing Machine

A deterministic Turing machine (DTM) is defined by a triplet (Σ, Q, δ) where Σ is a finite alphabet with an
identified blank symbol #; Q is a finite set of states with an identified start state q1 and a subset of final
states; and δ, the deterministic transition function, is defined by:

δ : Q× Σ→ Σ×Q× {L,R}

where {L,R} indicates the set of tape head movements (L: left; R: right) on an infinitely long two-way tape
[4]. The tape head of a DTM writes down a character in Σ before moving to the left or right on each step.
Its initial position is on the first character of the input.

A configuration of a DTM is an element of Σ∗QΣ∗, which is a complete description of the contents of the
tape, the location of the tape head, and the state of the DTM. Suppose cD = uapbv is a configuration of a
DTM MD where u, v ∈ Σ∗, a, b ∈ Σ, p ∈ Q, then we say the content on the tape of MD is uabv, the location
of the tape head is on b and MD is in the state p.

2

An initial configuration cinit of a DTM is the configuration before the DTM reads any character. A final
configuration cfin of a DTM is the configuration when the DTM is at a final state.

2.1.2 Definition of a Quantum Turing Machine

A quantum Turing machine (QTM) has exactly the same definition as a DTM except for that its transition
function is defined as

δ : Q× Σ→ C̃Σ×Q×{L,R}

where C̃ is the set of α ∈ C such that there is a deterministic algorithm that computes the real and imaginary
parts of α to with in 2−n in time polynomial in n [4]. In other words, every element in C̃ will be calculated
no slower than the transition functions themselves. If p, q ∈ Q, σ, τ ∈ Σ, d ∈ {L,R}, we use the notation

δ(p, σ)[τ, q, d] to mean that the output of δ(p, σ) in C̃Σ×Q×{L,R} takes (τ, q, d) as the input and outputs an

element in C̃.
A configuration of a QTM is an element of a vector space C̃Σ∗QΣ∗ which is the linear combinations of

Σ∗QΣ∗ over C̃ such that

C̃Σ∗QΣ∗ =

{∑
i

χi |ci〉

∣∣∣∣∣χi ∈ C̃, ci ∈ Σ∗QΣ∗

}
where for all c ∈ Σ∗QΣ∗,

|ci〉 =

{
f(c) = 1 (c = ci)

f(c) = 0 (Otherwise)

The definition of the initial and final configuration of a QTM is the same as a DTM.

2.1.3 Definition of a Quantum Turing Machine with a Looped Tape

A quantum Turing machine with a looped tape (QTMLT) has the same definition as a QTM with modifications
to the tape and tape head movement. If a QTMLT halts after k steps, let the tape be, instead of an infinitely
long two-way tape, one that only has (2k + 1) slots in which a slot records a character. Let Λ ≥ 2k + 1 and
index the slots from 1 to Λ. Let the (k + 1)th slot be the starting slot of the tape head.

The modification to the tape head movement is as follows, if the tape head is on the ith slot:

the tape head

goes to the Λ slot (i = 1 and δ yields L for the tape head movement)

goes to the first slot (i = Λ and δ yields R for the tape head movement)

follows the result of δ (Otherwise)

Equivalently, the tape head movement in terms of indexing can be calculated modulo Λ. Let θ, θ′ be the
index of the tape head and the index of the tape head after one step of transition.

θ′ =

{
(θ − 2 mod Λ) + 1 (δ yields L for the tape head movement)

(θ mod Λ) + 1 (δ yields R for the tape head movement)

A configuration of a QTMLT that takes k steps to halt is an element of a vector space C̃ΣaQΣb

which is
the linear combinations of ΣaQΣb over C̃, for a+ b = Λ = 2k + 1, such that

C̃ΣaQΣb

=

{∑
i

χi |ci〉

∣∣∣∣∣χi ∈ C̃, ci ∈ ΣaQΣb

}

where for all c ∈ Σ∗QΣ∗,

|ci〉 =

{
f(c) = 1 (c = ci)

f(c) = 0 (Otherwise)

The definition of the initial and final configuration of a QTMLT is the same as a QTM.

3

2.2 Linear Transformation of Superposed Configurations

The transition function of a QTM M defines a linear operator UM : S → S, called the time evolution
operator of M [4]. Suppose α = δ(p, σ)[τ, q, L] and β = δ(p, σ)[τ, q, R], and, for ci, ciL , ciR ∈ ΣaQΣb, if
|ci〉 = |uapσbv〉, then |ciL〉 = |upaτbv〉 and |ciR〉 = |uaτqbv〉. For s ∈ S, define UM :

UM (s) = UM

(∑
i

χi |ci〉

)
=
∑
i

χiUM |ci〉

=
∑
i,τ,q

χi(α |ciL〉+ β |ciR〉)

=
∑
i,τ,q

χi (δ(p, σ)[τ, q, L] |uapσbv〉+ δ(p, σ)[τ, q, R] |uaτqbv〉)

We have already defined a QTMLT’s configuration and its time evolutionary operator, and now we want to
represent them with a column vector and a square matrix to allow numerical computation by a computer
program.

2.3 The Molina-Watrous Algorithm

Molina and Watrous use a Boolean circuit to simulate an arbitrary QTMLT L that takes at least two steps
for L to halt. Suppose L was given an input that takes k steps to halt. Notice that, according to Molina and
Watrous, the simulation of a QTMLT will not be compromised for any Λ ≥ 2k+ 1 = 5. The Boolean circuit
is a concatenation of k identical subcircuits. Each subcircuit, referred to as Ωg, for g ∈ [1, k] performs one
step of the transition (see Figure 1). An Ωg is a circuit implementation of UM , so it similarly inputs and
outputs superposed configurations, but in their circuit implementations.

Molina and Watrous implement a superposed configuration in a quantum circuit as follows. For every
slot within k steps from the starting slot of M , we use a register that stores an element in Q′ ×Σ where Q′

is the “expanded” set of states. Besides the elements in Q, Q′ also has a zero state q(0) and a set of negative
states {q(−i)|q(i) ∈ Q}. The interpretations of the three kinds of states are, for the register of slot i,

q(i)means

the tape head is on slot i, and the head has already written a character (i < 0)

the tape head is not on slot i (i = 0)

the tape head is on slot i, and the head has not written a character (i > 0)

This alternative configuration representation, different from representing a configuration as an element in
C̃Σ∗QΣ∗ , works because it stores the contents of the tape with the second register of every register and the
state and tape head location with the first. However, Molina and Watrous did not specify the exact detail
of how to store elements in Q′ and Σ which will be discussed in section 3. Recall that we are only concerned

with configurations in C̃ΣaQΣb

. Therefore, if a register takes ι wires to represent, then a configuration needs
ιΛ wires, which is also the input and output of Ω. Let R = {ri|i = 1 . . .Λ} be the set of every register ri.

4

Figure 1: Boolean circuit to simulate a QTM
si and ti are superposed states and characters in the initial configuration

Molina and Watrous construct Ωg as follows. Let Ωg be 3 sub-circuits concatenated, and name them
ω1, ω2, ω3 (see Figure 2). An ω is made up of Λ

3 parallel circuits, and every circuit, named G, takes the input
from registers r(i−1 mod Λ)+1, r(i mod Λ)+1 and r(i+1 mod Λ)+1. Finally, ωΛ−1 consists of Λ parallel F gates
applied to the first register of every register.

Figure 2: An arbitrary Ωi

2.4 A QTM to Simulate

Given the limited available computing resources, we decided to simulate a rather trivial QTMM = (Q,Σ, δ)
where Q = {q1, q2}, with a start state q1 and a finish state q2, Σ = {0, 1,#}, and δ which is defined as

5

follows:
δ(q1, 0) = f δ(q1, 1) = g δ(q1,#) = h

where f, g, h ∈ C̃Σ×Q×{L,R} are defined as follows, for q ∈ Q, τ ∈ Σ, e ∈ {L,R}:

f(q, τ, e) =

1√
2

(q = q1, τ = 0, e = R)
1√
2

(q = q1, τ = 1, e = R)

0 (Otherwise)

g(q, τ, e) =

1√
2

(q = q1, τ = 0, e = R)

− 1√
2

(q = q1, τ = 1, e = R)

0 (Otherwise)

h(q, τ, e) =

{
1 (q = q2, τ = #, e = R)

0 (Otherwise)

We can also show the definition with a traditional graph representation of a Turing machine. Recall that
the graph representation includes a set of vertices Q and directed edges E = Q×Q. A vertex represents a
state, and an edge e = (p, q) for p, q ∈ Q shows that the Turing machine leaves state p and goes into state q.
To fully show the transition of our QTM, we also label the edges. If e is labeled by σ → c̃(τ, d) for σ, τ ∈ Σ,
d ∈ {L,R} and c̃ = δ(p, σ)[τ, q, d], we say if the QTM is at state p and reads σ, the amplitude that it goes to
state q, writes σ and moves the tape head to direction d is c̃. Notice that c̃(τ, d) means that the amplitude
of the situation is 1√

2
for the QTM to be in state q while outputting character τ and moving the tape head

to the direction d. The graph representation of M is in Figure 3.

q1 q2

0 → 1√
2
(0, R)

0 → 1√
2
(0, R)

0 → 1√
2
(0, R)

1 → − 1√
2
(1, R)

→ 1(#, R)

Figure 3: The QTM M

3 Representation of Superposed States and Characters

In order for states and characters to be superposed, we use column vectors to represent states and characters.
Let |q〉 and |σ〉 be the column vector representations of q ∈ Q′ and σ ∈ Σ. Then, in order to write every
superposed state and character in a unique way, let BS = {|q〉}q∈Q′ and BT = {|σ〉}σ∈Σ be orthonormal sets

such that every |q〉 ∈ BS is equal to a different computational basis vector in C̃|Q
′| and that every |σ〉 ∈ BT

is equal to a different computational basis vector in C̃|Σ|. Finally, let S = L(BS) and T = L(BT) be the

Hilbert spaces in C̃|Q
′| and C̃|Σ| of the vector representations of the superposed states and characters.

There are two states in the state set of Section 2.4, so our state set Q′ is {q(−2), q(−1), q(0), q(1), q(2)}. BS
is obtained by assigning every |q〉 to a computational basis vector in C̃5:

|q(−2)〉 =

0
0
0
0
1

 |q(−1)〉 =

0
0
0
1
0

 |q(0)〉 =

0
0
1
0
0

 |q(1)〉 =

0
1
0
0
0

 |q(2)〉 =

1
0
0
0
0

6

Similarly, our character set Σ is {0, 1,#}, and our character column vector basis BT is correspondingly
{|0〉 , |1〉 , |#〉} such that:

|0〉 =

0
0
1

 |1〉 =

0
1
0

 |#〉 =

1
0
0

4 Representation of Superposed Configurations

Now we have finished the representation of a register. Recall that Molina and Watrous use Λ registers to
represent a superposed configuration. Thus, index S and T to be Si and Ti for i ∈ [1,Λ], and let KΛ be the
combined Hilbert space of (S1, T1), . . . , (SΛ, TΛ) such that:

KΛ =

Λ⊗
i=1

(Si ⊗ Ti)

Let BKΛ
be the basis set of KΛ such that, for qi ∈ Q′, σi ∈ Σ and bΛ ∈ BKΛ

bΛ =

Λ⊗
i=1

|qi, σi〉

Let the input to M from Section 2.4 be 0. Since the input 0 only requires 2 steps forM to halt, without
loss of generality, let the tape of M have length 6, a multiple of 3, as recommended by Molina and Watrous.

Therefore, cinit and cfin of M on input 0 are in C̃ΣaQΣb

for a+ b = 6 and defined to be:

cinit = |##q10##〉 cfin =
1√
2
|###q20##〉+

1√
2
|###q21##〉

Let kΛinit and kΛfin
be elements in KΛ such that they record the same configuration respectively as cinit

and cfin:

kΛinit = |q0,#〉 ⊗ |q0,#〉 ⊗ |q1, 0〉 ⊗ |q0,#〉 ⊗ |q0,#〉 ⊗ |q0,#〉

kΛfin
=

1√
2
|q0,#〉 ⊗ |q2,#〉 ⊗ |q0, 0〉 ⊗ |q2,#〉 ⊗ |q0,#〉 ⊗ |q0,#〉

+
1√
2
|q0,#〉 ⊗ |q2,#〉 ⊗ |q0, 1〉 ⊗ |q2,#〉 ⊗ |q0,#〉 ⊗ |q0,#〉

Notice that, due to entanglement, the vector representation of a configuration should only be written as a
linear combination of elements in BKΛ . When preparing the initial and final configuration in the simulation,

it is convenient to use a 2D array of dimension 2Λ to store an element in KΛ, for αj ∈ C̃, qij ∈ Q′ and
σij ∈ Σ

A(kΛ) =

α1,
|q1,1〉 ,
|σ1,1〉 ,
...

|qΛ,1〉 ,
|σΛ,1〉 ,

, . . . ,

αΛ,
|q1,Λ〉 ,
|σ1,Λ〉
...

|qΛ,Λ〉 ,
|σΛ,Λ〉

In our case, for example, the array A(kΛinit

) that stores kΛinit
can be written as:

A(kΛinit) = [[1, |q0〉 , |#〉 , |q0〉 , |#〉 , |q1〉 , |0〉 , |q0〉 , |#〉 , |q0〉 , |#〉 , |q0〉 , |#〉]]

Now we define an algorithm in Algorithm 1 that computes the column vector representation of a configuration
given its representation as an array.

7

Algorithm 1 Compute the column vector of a given configuration in an array

1: function getConfigVector(array A)
2: initialize subArrayResult to 1
3: initialize result to 0
4: for every k ∈ A do
5: for every a ∈ k do . by the order of the array
6: subArrayResult ← subArrayResult ⊗ a
7: end for
8: result ← result+subArrayResult
9: end for

10: return result
11: end function

5 Time Evolutionary Operator as Matrix

As we have discussed in section 2.3, Molina and Watrous represent UK with G and F . We call their unitary
matrix representations in the space of (S⊗T)⊗3 and S respectively by the same name given their equivalence.
In this section, we will first define F and G, expand them into global gates, define ROTij and finally construct
UK with F,G,ROTij .

5.1 The Definition of F

If ql ∈ Q′, then
F |ql〉 = |q−l〉

The exact unitary matrix representation of F of course varies depending on the column vector representation
of |q〉 for some q ∈ Q′, but in our suggested way of representation, F behaves very similarly to the Pauli-X

gate

(
0 1
1 0

)
. They therefore share the similar shape such that, for F of dimension |Q′|

F =

0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
1 0 0 0 0

In the case of M, since |Q′| = 5:

F =

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

5.2 The Definition of G

We defineG based on its transformations of basis vectors in the space (S⊗T)⊗3. We know |qx, σx〉 |qy, σy〉 |qz, σz〉
is a basis vector of (S ⊗ T)⊗3 because |qx〉 , |qy〉 , |qz〉 and |σx〉 , |σy〉 , |σz〉 are the basis vectors of S and T
respectively.

Separate Q′ into three mutually exclusive subsets such that Q = P ∪N ∪{q0} where P and N are the sets
of positive and negative states. The transformations caused by applying G differ according to the subsets
that each qx, qy, qz is a member of. In summary, there are 27 possibilities for (qx, qy, qz), and we summarize
these possibilities into 4 cases such that in each case in each case G transforms a basis vector in (S ⊗ T)⊗3

differently. The 4 cases are:

1. (a) When the tape head is on the yth slot and the transition of the machine has not been conducted:
qx = qz = q0, qy ∈ P

8

(b) When the tape head is on the xth slot and the transition of the machine has been conducted:
qy = qz = q0, qx ∈ N

(c) When the tape head is on the zth slot and the transition of the machine has been conducted:
qx = qy = q0, qz ∈ N

(d) When the tape head is on none of the x, y, zth slot: qx = qy = qz = q0

(e) When the tape head is on more than one of the slots: at most one of {qx, qy, qz} is q0

2. When the tape head is on the yth slot and the transition of the machine has been conducted: qx =
qz = q0, qy ∈ N

3. When the tape head is on the xth slot and the transition of the machine has not been conducted:
qy = qz = q0, qx ∈ P

4. When the tape head is on the zth slot and the transition of the machine has not been conducted:
qx = qy = q0, qz ∈ P

For Case 1, G acts trivially:

G |qx, σx〉 |qy, σy〉 |qz, σz〉 = |qx, σx〉 |qy, σy〉 |qz, σz〉

For Case 2, the result of G is the summation over all the vectors of α |qx, σx〉 |q0, σy〉 |q0, σz〉 such that
α = δ(qx, σx)[qy, σy, R] and all the vectors of β |q0, σx〉 |q0, σy〉 |qz, σz〉 such that β = δ(qz, σz)[qy, σy, L]

G |q0, σx〉 |qy, σy〉 |q0, σz〉

=
∑

qx∈P,σx∈Σ

δ(qx, σx)[q−y, σx, R] |qx, σx〉 |q0, σy〉 |q0, σz〉

+
∑

qz∈P,σz∈Σ

δ(qz, σz)[q−y, σz, L] |q0, σx〉 |q0, σy〉 |qz, σz〉

For Case 3, the result of G is the summation over all the vectors of α |q0, σx〉 |q−y, σy〉 |q0, σz〉 such that
δ(qx, σx)[qy, σy, R] = α and all the vectors of βγ |q, b〉 |q−y, σy〉 |q0, σz〉 for q ∈ Q′ and b ∈ Σ such that, for
r ∈ Q′ and c ∈ Σ, β = δ(qx, σx)[r, c, L] and γ = δ(q, b)[r, c, L].

G |qx, σx〉 |q0, σy〉 |q0, σz〉

=
∑

qy∈P,σx∈Σ

δ(qx, σx)[qy, σx, R] |q0, σx〉 |q−y, σy〉 |q0, σz〉

+
∑

q∈P,b∈Σ
r∈P,c∈Σ

δ(qx, σx)[r, c, L]δ(q, b)[r, c, L] |q, b〉 |q0, σy〉 |q0, σz〉

For Case 4, the result of G is the summation over all the vectors of α |q0, σx〉 |q−y, σy〉 |q0, σz〉 such that
δ(qz, σz)[qy, σy, L] = α and all the vectors of βγ |q0, σz〉 |q−y, σy〉 |q, b〉 for q ∈ Q′ and b ∈ Σ such that, for
r ∈ Q′ and c ∈ Σ, β = δ(qz, σz)[r, c, R] and γ = δ(q, b)[r, c, R].

G |q0, σx〉 |q0, σy〉 |qz, σz〉

=
∑

qy∈P,σx∈Σ

δ(qz, σz)[qy, σz, L] |q0, σx〉 |q−y, σy〉 |q0, σz〉

+
∑

q∈P,b∈Σ
r∈P,c∈Σ

δ(qz, σz)[r, c, R]δ(q, b)[r, c, R] |q0, σx〉 |q0, σy〉 |q, b〉

9

5.2.1 Implementation of G

As the linear transformation of basis vectors byG is case by case, our computation of the linear transformation
is done in the same way. However, every case shares a considerable number of similarities with one another,
so we use Case 2 as an example to illustrate the algorithm of the code implementation.

To enhance the implementation of Case 2, we define a subset ∆ of Q′ ×Σ×Σ×Q′ × {L,R} × (C̃ \ {0})
such that, for (p, σ, τ, q, d, c̃) ∈ ∆, δ(p, σ)[σz, q−y, L] = c̃. A(∆) is the array representation of ∆ where every
sextuple of ∆ is stored as an array of length six where every element in the array has the same location as
in the sextuple. In the pseudocode, we use f to represent an element in A(∆) and indices from 1 to 6 based
on f to represent elements in (p, σ, τ, q, d, c̃) according to their positions in the sextuple.

In Case 2, the result of G’s linear transformation involves two summations which are calculated individu-
ally in the functions searchLeft and searchRight. The left and right come from the tape head movements
of δ(qz, σz)[q−y, σz, L] and δ(qx, σx)[q−y, σx, R] in two equations of summation.

In the function searchLeft, given the input σx, σy, σz ∈ Σ and qy ∈ Q′, after storing |q0〉 ⊗ |σx〉 and
|q0〉 ⊗ |σy〉 to reg1 and reg2, we want to search in ∆ for elements that τ = σz, q = q−y and d = L. For any
e ∈ ∆ that satisfies this condition, we store the tensor product of p and σ in e in reg3, and increase the
incrementor sum by c̃ · reg1 ⊗ reg2 ⊗ reg3. We finally return sum after repeating this process for every e
that satisfies the condition. The process for searchRight is identical to that of searchLeft except for that
we search in ∆ for elements that τ = σx, q = q−y and d = R.

The function searchResult adds the results returned by searchLeft and searchRight, which in the
equation for Case 2 is the addition of the two summations. Recall Case 2 is applicable to every basis vector
in (S ⊗ T)⊗3 that qx = qz = q0, qy ∈ N . Therefore, we use 4 nested for loops in getCaseResult to simulate
this applicability, three of which are for characters σx, σy, σz ∈ Σ and one is for qy. For every iteration, we
perform searchResult whose result is added to an array called caseResult. caseResult is a global array
of column vectors that stores the searchResults for every case. Finally, combining the column vectors in
caseResult obtains G.

Algorithm 2 Compute the array of column vectors produced in Case 6

1: function searchLeft(char σx, char σy, char σz, state qy)
. search for transition rules that write σz, go into state q−y and move the tape head to the left

2: reg1 ← |q0〉 ⊗ |σx〉 . a reg is the vector of a state-character pair
3: reg2 ← |q0〉 ⊗ |σy〉
4: initialize sum
5: for every f ∈ A(∆) do
6: if f [3] = |q−y〉 and f [4] = |σz〉 and f [5] = −1 then . The index of f starts from 1
7: reg3 ← f [1]⊗ f [2]
8: sum← sum+ f [6] · reg1 ⊗ reg2 ⊗ reg3

9: end if
10: end for
11: return sum
12: end function
13:

14: function searchRight(char σx, char σy, char σz, state qy)
. search for transition rules that write σx, go into state q−y and move the tape head to the right

15: reg2 ← |q0〉 ⊗ |σy〉
16: reg3 ← |q0〉 ⊗ |σz〉
17: initialize sum
18: for every f ∈ A(∆) do
19: if f [3] = |q−y〉 and f [4] = |σx〉 and f [5] = 1 then
20: reg1 ← f [1]⊗ f [2]
21: sum← sum+ f [6] · reg1 ⊗ reg2 ⊗ reg3

22: end if
23: end for
24: return sum
25: end function

10

26:

27: function searchResult(char σx, char σy, char σz, state qy)
28: return searchLeft(σx, σy, σz, qy) + searchRight(σx, σy, σz, qy)
29: end function
30: function getCaseResult
31: initialize caseResult
32: for every σx, σy, σz, every qy ∈ Q′ do . This is an abbreviation for 4 nested for loops
33: Append searchResult(σx, σy, σz, qy) to caseResult
34: end for
35: end function

5.3 Local Gates to Global Gates

Recall that the circuit simulation uses ιΛ wires mentioned in Section 2.3. If a gate that operates on φ
consecutive wires and φ < ιΛ, then we say this gate is a local gate; if φ = ιΛ, then we say this gate is a global
gate. G and F in Section 2.3 are examples of local gates. If applying a local gate to some consecutive wires
while applying no gates on other wires and applying a global gate to all wires give the same result on every
wire on the set of ιΛ wires, we say the global gate is an equivalent global gate to the local gate. Because our
simulation uses vectors for configuration and a unitary matrix for UM and a unitary matrix cannot multiply
a vector that has different dimensions, we must construct an equivalent global gate for every local gate we
will use.

To mathematically construct an equivalent global gate in our simulation, if O is the matrix representation
of a local gate that operates on the wires from the (α + 1) to β − 1th wire for α + dimO + β = ιΛ, its
equivalent global gate’s matrix representation Oα+1 is

Oα+1 = Iα ⊗O ⊗ Iβ (1)

5.4 Definition of ROTij

Recall that the circuit simulates a QTM on a looped tape, but it is impossible to loop around wires, vectors,
or matrices. This presents a problem when applying a local gate G to, for example, the wires from the last,
first, and second registers, because a local gate can only apply to consecutive wires. The solution is to apply
a unitary operator that rotates the values in the wires as if the wires are looped around and in a consecutive
order. Then, we may apply G to the consecutive wires and reverse the rotation operation.

For i, j,∈ [1,Λ] and i < j, define two unitary operatorsROTij andROTji overKΛ. Suppose |kΛ〉 , |kΛ〉′ , |kΛ〉′′ ∈
KΛ are the vector representation of the values in the circuit, such that, if |kΛ〉 represents the original value
in the circuit, then |kΛ〉′ and |kΛ〉′′ respectively represent the values in the circuit as if the wires of registers
of index l for l ∈ [i, j] up and down by ι (the number of wires from a register) while not changing the values
in other wires. Then, ROTij |kΛ〉 = |kΛ〉′ and ROTij |kΛ〉 = |kΛ〉′′.

Notice that in Figure 2 that we mainly want to rotate the values of all wires up and down by ι. Therefore,
the operators used for the simulation are ROT1,Λ and ROTΛ,1.

Suppose |ψ〉 ∈ (Sx⊗Tx)⊗ (Sx+1⊗Tx+1) and |ψ′〉 ∈ (Sx+1⊗Tx+1)⊗ (Sx⊗Tx). Then define an operator
SWAP over (S ⊗ T)(⊗2) such that

SWAP =
∑

q,q′∈Q′
σ,σ′∈Σ

|q, σ〉 |q′, σ′〉 〈q′, σ′| 〈q, σ| (2)

As a result, SWAP (|ψ〉) = |ψ′〉. Then, let SWAPx be the matrix representation of the equivalent global
gate of SWAP . Therefore, by Equation 1,

SWAPx = Iι(x−1) ⊗ SWAP ⊗ Iι(Λ−x−1) (3)

We construct ROTij and ROTji by multiplying SWAPx operators such that

ROTij = SWAPi · SWAPi+1 · · · · · SWAPj−1 (4)

ROTji = SWAPj−1 · SWAPj−2 · · · · · SWAPi (5)

11

Algorithm 3 Generate ROTij and ROTji

1: function getSWAP
2: initialize regArray
. Put the vector representations of all possible state-vector pairs into the array regArray

3: for every q ∈ Q′, every σ ∈ Σ do
4: Append |q〉 ⊗ |σ〉 to regArray
5: end for
. Take the summation as in Equation 2

6: d← |Q′| × |Σ|
7: initialize sum = [0]d×d
8: for every |q, σ〉 , |q′, σ′〉 ∈ regSums do
9: sum← sum+ |q, σ〉 〈q′, σ′|

10: end for
11: return sum
12: end function
13:

14: function getSwapx(integer x, integer Λ)
15: d← |Q′| × |Σ|
16: SWAP ← getSWAP ()

. Based on Equation 3
17: return I(d(x−1)) ⊗ SWAP ⊗ Id(Λ−x−1)

18: end function
19:

20: function getROTij(integer i, integer j, integer Λ)
21: l← i
22: initialize result = IΛ(|Q′|+|Σ|)

. Take the matrix products as in Equation 4
23: for l ≤ j do
24: result← result · getSwapx(l,Λ)
25: l← l + 1
26: end for
27: return result
28: end function
29:

30: function getROTji(integer i, integer j, integer Λ)
31: l← i
32: initialize result = IΛ(|Q′|+|Σ|)

. Take the matrix products as in Equation 5
33: for l ≥ i do
34: result← result · getSwapx(l,Λ)
35: l← l − 1
36: end for
37: return result
38: end function

5.5 Global Gates Based on G and F

For i ∈ [1,Λ], let j = (i mod Λ) + 1 and k = (i + 1 mod Λ) + 1. Define Gijk, the global unitary operator
based on G to be:

Gijk =

Gi (j = i+ 1 ∧ k = i+ 2)

ROT1,Λ ·Gi ·ROTΛ,1 (j = i+ 1 ∧ k 6= i+ 2)

ROTΛ,1 ·Gi ·ROT1,Λ (Otherwise)

(6)

12

We then construct the matrix representation Fs of the circuits in the purple section in Figure 2.

Fs =

Λ⊗
i=1

F ⊗ I|Σ| (7)

5.6 Formalization of the Molina-Watrous Algorithm

Now we have finally defined all matrices for the global operators we will use to construct UK. We construct
UK according to Figure 2. Observe that in Figure 2, every 3 registers are applied with a Gijk. Therefore,

UK = Fs ·GΛ,jk ·GΛ−1,jk · · · · ·G1,jk (8)

In the pseudocode, we use getFs and getGijk to obtain Fs and Gijk respectively, according to Equation
6 and Equation 7. Finally, we use getUK to obtain UK according to Equation 8.

Algorithm 4 Generate UK

1: function getFs

. Calculate Fs as in Equation 7
2: initialize result to [1]1×1

3: for i ∈ [1,Λ] do
4: result← result⊗ (F ⊗ I|Σ|)
5: end for
6: return result
7: end function
8:

9: function getGijk(i)
. Calculate Gijk as in Equation 6. Given i, first calculate j and k.

10: j ← (i mod Λ) + 1
11: k ← (i+ 1 mod Λ) + 2
12: ι← |Q′|+ |Σ|
13: Gi ← Iι(i−1) ⊗G⊗ Iι(Λ−i−1)

14: if j = i+ 1 ∧ k = i+ 2 then
15: return Gi
16: end if
17: if j = i+ 1 ∧ k 6= i+ 2 then
18: return getROTij(1,Λ) ·Gi · getROTji(Λ, 1)
19: end if
20: return getROTji(Λ, 1) ·Gi · getROTij(1,Λ)
21: end function
22:

23: function getUK
. Calculate UK as in Equation 8

24: UK ← getFs()
25: i← Λ
26: for every i ≥ 1 do
27: UK ← UK · getGijk(i)
28: Λ = Λ− 1
29: end for
30: return UK
31: end function

6 Conclusion

Recall kΛinit
and kΛfin

from Section 4, and that applying one UK to an element in KΛ is equivalent to one
step of transition of M to the configuration represented by the element in KΛ. Since in the input in our

13

simulation takes two steps for M to halt, UK must be applied twice. By confirming that (UK)2kinit = kfin,
we have confirmed that the method of simulating a QTM proposed by Molina and Watrous works on M.

Although complicated, this is only the start of QTM simulation. An immediate improvement to this
paper is to simulate a less trivial QTM to determine whether there are any uncovered edge cases. We would
also like to investigate the simulation of variations of QTMs, such as those with multiple tapes and/or tape
heads, with tape heads allowed to remain stationary in one transition, and so on. Additionally, Bernstein
and Vazirani have proposed many classifications of QTMs, such as unidirectional QTM, QTM of normal
form, well-formed QTM, well-behaved QTM, etc. [4]. Through variations of our current work, we should be
able to simulate all QTMs above, which would be very helpful in gaining more insight into the significance
of these variations.

14

References

[1] Bernstein, Ethan, and Umesh Vazirani. “Quantum complexity theory.” SIAM Journal on computing 26.5
(1997): 1411-1473.

[2] Deutsch, David. “Quantum theory, the Church–Turing principle, and the universal quantum computer.”
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400.1818 (1985):
97-117.

[3] Deutsch, David. “Quantum computational networks.” Proceedings of the Royal Society of London. A.
Mathematical and Physical Sciences 425.1868 (1989): 73-90.

[4] Molina, Abel, and John Watrous. “Revisiting the simulation of quantum Turing machines by quantum
circuits.” Proceedings of the Royal Society A 475.2226 (2019): 20180767.

[5] Turing, Alan Mathison. “On computable numbers, with an application to the Entscheidungsproblem.”
Proceedings of the London Mathematical Society 2.1 (1937): 230-265.

[6] Yao, A. Chi-Chih. “Quantum circuit complexity.” Proceedings of 1993 IEEE 34th Annual Foundations
of Computer Science. IEEE, (1993): 352-361.

15

	Computer Program Simulation of a Quantum Turing Machine with Circuit Model
	Recommended Citation

	tmp.1638923436.pdf.THOJP

