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ABSTRACT 

Natural convection heat transfer is present in the most diverse applications of 
Thermal Engineering, such as in electronic equipment, transmission lines, 
cooling coils, biological systems, etc. The correct physical-mathematical 
modeling of this phenomenon is crucial in the applied understanding of its 
fundamentals and the design of thermal systems and related technologies. 
Dimensionless analyses can be applied in the study of flows to reduce 
geometric and experimental dependence and facilitate the modeling process 
and understanding of the main influence physical parameters; besides being 
used in creating models and prototypes. This work presents a methodology 
for dimensionless physical-mathematical modeling of natural convection 
turbulent flows over isothermal plates, located in an “infinite” open 
environment. A consolidated dimensionless physical-mathematical model 
was defined for the studied problem situation. The physical influence of the 
dimensionless numbers of Grashof, Prandtl, and Turbulent Prandtl was 
demonstrated. The use of the Theory of Dimensional Analysis and Similarity 
and its application as a tool and numerical device in the process of building 
and simplifying CFD simulations were discussed. 

Keywords: nondimensionalization, natural convection, physical-
mathematical modeling, turbulence modeling 

NOMENCLATURE 

CDசன κ െ ω	SST parameter 
C෠୮ heat capacity at constant pressure, J/(kg.K) 
Cகଵ empirical constant of κ െ ε model 
Cகଶ empirical constant of κ െ ε model 
Cஜ empirical constant of κ െ ε model 

ॱ 
dimensionless dissipation rate of turbulent 
kinetic energy 

Fଵ first blending function of κ െ ω	SST model 

Fଶ 
second blending function of κ െ ω	SST 
model 

g gravity acceleration, m/s² 
Gr Grashof number 
k୲ thermal conductivity, W/(m. K) 
ॶ dimensionless turbulent kinetic energy 
L୔ plate longitudinal length, m 

Pഥ
mean relative pressure in the RANS model, 
Pa 

P෩
modified relative turbulent transport 
pressure in the model RANS, Pa 

Pୟ୲୫ atmospheric pressure, Pa 
Pr Prandtl number 
Pr୲ turbulent Prandtl number 

ℙ 
dimensionless modified relative turbulent 
transport pressure in the model RANS 

T temperature, K 
Tୖ ୉୊ average reference temperature, K 

Tഥ
average component of temperature in the 
RANS model, K 

T୔ plate temperature, K 
Tஶ free-stream temperature, K 

uనഥ , u఩ഥ  
indicial velocity average components in the 
RANS model, m/s 

Vనഥ , V఩ഥ  Dimensionless indicial velocity average 
components in the RANS model 

ॾ 
dimensionless specific dissipation rate of 
turbulent kinetic energy 
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x୧, x୨ indicial coordinates, m 
X୧, X୨ dimensionless indicial coordinates 

y 
the distance from the field point to the 
nearest wall, m 

ঀ dimensionless y coordinate 
z elevation, m 
Ժ dimensionless z coordinate 

Greek symbols 

α thermal diffusivity, m²/s 

α∗ 
coefficient combination function of κ െ ω	SST 
model, in αଵ

∗  and αଶ
∗  forms 

β thermal coefficient of volume expansion, Kିଵ 
β∗ κ െ ω	SST empirical constant 
δ୨୸ Kronecker's delta function 
βᇱ κ െ ω	SST empirical constant 
ε dissipation rate of turbulent kinetic energy, mଶ/sଷ 
θത dimensionless temperature 
κ turbulent kinetic energy, m²/s² 
μ dynamic viscosity, kg/(m.s) 
μ୲ turbulence dynamic viscosity, kg/(m.s) 
ν kinematic viscosity, m²/s 
ν୲ turbulence kinematic viscosity, m²/s 
ρ fluid density, kg/m³ 
ρത fluid density evaluated in Tഥ, kg/m³ 
σக empirical constant of κ െ ε model 
σச empirical constant of κ െ ε model 
σ୩
∗ κ െ ω	SST empirical constant 

σன 
κ െ ω	SST empirical constant, in σனଵ and σனଶ 
forms 

ω 
specific dissipation rate of turbulent kinetic 
energy, sିଵ 

INTRODUCTION 

Natural convection occurs due to buoyancy 
forces, which are due to the combined effects of 
density gradients in the fluid due to gravitational 
forces (caused by temperature gradients or 
concentration gradients) and (Bergman et al., 2014). 
Compared to forced convection, the natural 
convection differs by the strong mathematical 
coupling of the temperature field with the flow field 
and by the lower heat transfer coefficient by 
convection and consequent higher thermal resistance 
(Bejan, 2013). 

Natural convection cooling systems 
increasingly play a greater influence on the 
operational control and safety of temperatures in 
electronic and power generating devices (Bergman et 
al., 2014). 

More and more studies and researches are being 
carried out by the industry and academic community 
to understand the process, to better model natural 
convection phenomena, obtaining more realistic 
solutions. These studies aim to optimize thermal 
efficiency and increase the applicability of cooling 
systems exclusively by natural convection in current 
technologies. As examples, one can mention the 
following works: Kitamura et al. (2015) conducted an 
experimental study of natural convection from 

upward-facing flat plates, presenting a survey of 
empirical correlations of the Nusselt number versus 
the Rayleigh number, for the laminar and turbulent 
regimes; Frank et al. (2019) analyzed the combined 
cooling of electronic components by natural 
convection with thermal radiation; Verdério Júnior et 
al. (2021) presented a numerical-experimental 
analysis of the parameters that influence the natural 
convection heat transfer rates on isothermal square 
plates, within large cavities; Liu et al. (2021) 
numerically studied steam condensation with air, in 
natural convection conditions, in tubes bundle 
channel; Wang et al. (2021) performed a numerical-
experimental investigation of natural convection heat 
transfer in supercritical water flow in an inclined 
smooth tube; Freile et al. (2021) developed more 
accurate correlations of natural convection heat 
transfer to the reactor pressure vessel cavity cooling 
system; and Silva et al. (2021) who studied two 
different mesh configurations (at different refinement 
levels) for numerical evaluation of the turbulent 
natural convection heat transfer on an isothermal 
rectangular flat plate. 

The present work has as objective to present a 
methodology of dimensionless physical-
mathematical modeling of the natural convection in 
turbulent regime, defined for the particular case of 
flow over an isothermal plate (with generic geometry) 
located in a large open environment. This 
methodology will define a final mathematical model 
of the evaluated problem situation, which will 
subsidize future studies on the subject and in the most 
diverse applications. 

PROBLEM DEFINITION 

The problem under study consists of natural 
convection on an isothermal square plate, with 
temperature ௉ܶ, with generic surface geometry 
(smooth, corrugated, etc.) and located in a large open 
external environment with constant temperature ஶܶ 
and atmospheric pressure ௔ܲ௧௠.  

Figure 1. Schematic graphical representation of the 
studied problem situation. 
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Here, it is assumed that the temperature 
difference between the plate and the ambient is high 
enough to introduce flow perturbation inducing 
turbulence. Figure 1 illustrates the schematic 
arrangement of the problem situation studied. 

SIMPLIFYING HYPOTHESES 

In selecting the governing equations and 
identifying the physical-mathematical model to be 
solved numerically, several simplifying hypotheses 
and physical models were adopted. Based on the 
physical characteristics of the problem and typical 
conditions established in Pope (2000), Bird et al. 
(2002), Versteeg and Malalasekera (2007), Incropera 
et al. (2008), Çengel and Ghajar (2012), Bejan 
(2013), Çengel and Cimbala (2015) and Fox et al. 
(2018), the following conditions were used: 
 Steady state flow.
 Air is a Newtonian fluid, and all thermal physical
properties (viscosity ߤ, thermal conductivity ݇, 
specific heat ܥመ௣) are assumed constant and evaluated 
at the average reference temperature ሺ തܶோாி ൌ ሺܶܲ ൅
ܶ∞ሻ/2ሻ. 
 Use of Boussinesq's approximation for modeling
the buoyancy forces, i.e., density is constant in all
terms, except in the buoyance term, where it can be
linearized with temperature based on the thermal
expansion coefficient	ሺβሻ:

β ൌ െ
1
ρ
൬
∂ρ
∂T
൰
୔ഥ

(1) 

, as: 

ρሺTሻ ൎ ρതሾ1 െ βሺT െ Tஶሻሿ (2) 

Based on the ideal gas law, β ൌ 1 Tഥୖ୉୊⁄ . 

 Thermal radiation heat transfer between the plate
and the environment (non-participating or
transparent) can be neglected.
 The external environment is admitted "infinite",
with dimensions large enough not to exert any
physical influence on the plate region's flow and
convection heat transfer.
 Flow in turbulent regime, with modeling and
treatment using the RANS (Reynolds Averaged 
Navier-Stokes) Method. 
 Turbulence production of κ, ε and ω in their
transport equations was considered negligible. 
 Use of the SIMPLE algorithm (Semi-Implicit
Method for Pressure-Linked Equations) for the 
pressure-velocity-temperature coupling of the 
transport equations. 

PHYSICAL-MATHEMATICAL MODELING 

After identifying the physical-geometric 
characteristics, simplifying hypotheses, and physical 
models that were applied to the analyzed problem 
situation, the physical-mathematical model is 
defined. 

Boussinesq's hypothesis (1897) affirms that 
turbulent dynamic viscosity ሺμ୲ሻ is a property of the 
flow and not of the fluid and that it leads to strong 
nonlinearities in the transport equations. 

From the simplifying hypotheses and physical 
models adopted and from the Boussinesq's hypothesis 
(1897), we have, in that order, the turbulent time-
average equations of Conservation of Mass, 
Momentum Balance (called the Generalized 
Hypothesis of Boussinesq Equation), and 
Conservation of Energy Principle: 

∂uത୧
∂x୧

ൌ 0 (3) 

ρതuത୨
∂uത୧
∂x୨

ൌ
∂
∂x୨

ቈሺμ ൅ μ୲ሻ ቆ
∂uത୧
∂x୨

൅
∂uത୨
∂x୧

ቇ቉ 

െ
∂P෩

∂x୧
െ ρതg୧βሺTഥ െ Tஶሻ 

(4) 

∂
∂x୨

൫ρതuത୨Tഥ൯ ൌ
∂
∂x୨

ቈ൬
μ
Pr
൅
μ୲
Pr୲

൰
∂Tഥ

∂x୨
቉ (5) 

Where the term P෩ is called modified relative turbulent 
transport pressure, defined as: 

P෩ ൌ Pഥ ൅
2
3
ρതκ ൅ ρത|g|z (6) 

Turbulence Modeling 

In solving the mathematical closure problem of 
turbulence modeling, 2nd order models were used, 
with two equations and category I: κ െ ε and	 κ െ
ω	SST; both based on the concept of turbulent 
viscosity (μ୲ or ν୲). Such models are formulated and 
described in greater detail in Pope (2000), Vieser et 
al. (2002) and Menter et al. (2003). 

The semi-empirical formulation of the κ െ ε 
turbulence model is presented in the following 
equations: 

ν୲ ൌ
μ୲
ρത
ൌ Cஜ

κଶ

ε
(7) 

uത୨
∂κ
∂x୨

ൌ
∂
∂x୨

ቈ൬ν ൅
ν୲
σச
൰
∂κ
∂x୨

቉	

൅ν୲ ቆ
∂uത୧
∂x୨

൅
∂uത୨
∂x୧

ቇ
∂uത୧
∂x୨

െ ε 
(8) 

uത୨
∂ε
∂x୨

ൌ
∂
∂x୨

ቈ൬ν ൅
ν୲
σக
൰
∂ε
∂x୨

቉	

൅Cகଵ
ε
κ
ν୲ ቆ

∂uത୧
∂x୨

൅
∂uത୨
∂x୧

ቇ
∂uത୧
∂x୨

െ Cகଶ
εଶ

κ

(9)
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Where the empirical constants of this model are equal 
to Cகଵ ൌ 1.44, Cகଶ ൌ 1.92, Cஜ ൌ 0.09, σச ൌ 1.0 and σக ൌ
1.3. 

The κ െ ω	SST turbulence model combines the 
robust and precise formulation in the treatment of 
regions next to solid walls of the κ െ ω turbulence 
model, with the independence of parameters in free-
stream and outside the boundary layer of the κ െ ε 
turbulence model. Its semi-empirical mathematical 
formulation is described below and according to 
Table 1: 

uത୨
∂κ
∂x୨

ൌ min ቈν୲
∂uത୧
∂x୨

ቆ
∂uത୧
∂x୨

൅
∂uത୨
∂x୧

ቇ ; 10β∗κω቉ 

െβ∗κω ൅
∂
∂x୨

ቈሺν ൅ σச∗ν୲ሻ
∂κ
∂x୨

቉ 
(10) 

uത୨
∂ω
∂x୨

ൌ
α∗

2
ቆ
∂uത୧
∂x୨

൅
∂uത୨
∂x୧

ቇ
ଶ

െ βᇱωଶ	

൅
∂
∂x୨

ቈሺν ൅ σனν୲ሻ
∂ω
∂x୨

቉ ൅ 2ሺ1 െ Fଵሻσனଵ
1
ω
∂κ
∂x୨

∂ω
∂x୨

(11) 

Fଵ ൌ tanh ൝ቊmin ቈmax ቆ
√κ
β∗ωy

,
500ν
yଶω

ቇ ,
4ρതσனଶκ
CDசனyଶ

቉ቋ
ସ

ൡ (12) 

CDசன ൌ max ቆ2ρതσனଶ
1
ω
∂κ
∂x୨

∂ω
∂x୨

, 10ିଵ଴ቇ (13) 

Fଶ ൌ tanh ൥ቈmax ቆ
2√κ
β∗ωy

,
500ν
y2ω

ቇ቉
ଶ

൩ (14) 

ν୲ ൌ
0.3κ

max ቆ0.3ω;√
2
2 ൬

∂uത୧
∂x୨

൅
∂uത୨
∂x୧

൰ Fଶቇ
(15) 

αଵ
∗ ൌ αଵ

∗Fଵ ൅ αଶ
∗ሺ1 െ Fଵሻ (16) 

Table 1. Empirical conditions used in the κ െ ω	SST 
turbulence model, according Menter et al. (2003). 

Constants σ୩
∗ σன βᇱ α∗ 

αଵ
∗	ሺκ െ εሻ 0.85 0.5 0.075 5/9 

αଶ
∗ 	ሺκ െ ωሻ 1.0 0.856 0.0828 0.44 

DIMENSIONLESS FORM OF PHYSICAL-
MATHEMATICAL MODEL 

Definition of dimensionless groups 

After the characterization of the physical-
mathematical model that describes the problem 
situation under study, there is the definition and 
application of the methodology of 
nondimensionalization of the governing equations. 

The nondimensionalization process of the 
transport equations and turbulence models used 
begins with defining the dimension and velocity 

characteristic of the studied problem. The plate 
longitudinal length L୔ was used as the characteristic 
dimension of the studied flow. Because of the 
inexistence of a reference velocity in the study of 
natural convection, it was decided to use an 
analogous term of velocity characteristic to the flow, 
given by the ratio ν/L୔. 

Thus, from the definitions of the parameters 
characteristic of the flow studied, there is the 
definition of the dimensionless groups of interest: 

X୧ ൌ
x୧
L୔

(17) 

X୨ ൌ
x୨
L୔

(18) 

Ժ ൌ
z
L୔

(19) 

Vഥ୧ ൌ
uത୧L୔
ν

(20) 

Vഥ୨ ൌ
uത୨L୔
ν

(21) 

θത ൌ
Tഥ െ Tஶ
T୔ െ Tஶ

(22) 

ℙ ൌ
P෩

ρത ቀ
ν
L୔
ቁ
ଶ (23) 

ॶ ൌ
κ

ቀ νL୔
ቁ
ଶ (24) 

ॱ ൌ
εL୔

ቀ
ν
L୔
ቁ
ଷ (25) 

ॾ ൌ
ωL୔

ቀ
ν
L୔
ቁ

(26) 

ঀ ൌ
y
L୔

(27) 

Dimensionless Transport Equations 

From the application of the dimensionless 
groups previously defined in the Equations of Mass 
Conservation, Momentum Balance, and 
Conservation of Energy Principle – in that order, 
Equations 3 to 5 – we finally have: 

∂Vഥ୧
∂X୧

ൌ 0 (28) 

∂ൣVഥ୨Vഥ୧൧

∂X୨
ൌ

∂
∂X୨

ቈ൬1 ൅
μ୲
μ
൰ ቆ

∂Vഥ୧
∂ X୨

൅
∂Vഥ୨
∂ X୧

ቇ቉ 

െ
∂ℙ
∂X୧

൅ Grθതδ୨୸ 
(29)
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∂ൣVഥ୨θത൧

∂X୨
ൌ

∂
∂X୨

ቈ൬
1
Pr
൅
μ୲
μ

1
Pr୲

൰
∂θത

∂X୨
቉ (30) 

Where the term dimensionless ℙ is calculated using 
the expression: 

ℙ ൌ
Pഥ

ρത ቀ
ν
L୔
ቁ
ଶ ൅

2
3
ॶ ൅

Gr. Ժ
βሺT୔ െ Tஶሻ

 (31) 

From the resulting dimensionless governing 
equations, the physical influences of the Grashof 
number ሺGrሻ, Prandtl number ሺPrሻ and turbulent 
Prandtl number ሺPr୲ሻ on the modeled flow are 
evident. 

The Grashof number measures the ratio between 
buoyant forces and viscous forces, according to 
Incropera et al. (2008). It can be used in the 
classification of flows in natural, forced or mixed 
convection and is calculated using: 

Gr ൌ
|g|βሺT୔ െ TஶሻL୔

ଷ

νଶ
 (32) 

According to Incropera et al. (2008), the Prandtl 
number measures the ratio between momentum and 
thermal diffusivities. It represents how effective is the 
diffusive transport of momentum and energy through 
the flow. Calculated in the form: 

Pr ൌ
μC෠୮
k୲

ൌ
ν
α

(33) 

The turbulent Prandtl number, according to 
Vieser et al. (2002), represents an analogy of heat 
transfer in laminar and turbulent conditions. 
According to experimental results, for boundary 
layers formed in regions of solid walls, it is assumed 
constant and approximately equal to 0.85. 

Dimensionless formulation of the ࣄ െ  turbulence ࢿ
model 

Applying the nondimensionalization process 
developed in Equations (7) to (9), we have the 
dimensionless formulation of the κ െ ε turbulence 
model. Given by: 

ν୲
ν
ൌ Cஜ

ॶଶ

ॱ
(34) 

∂ൣVഥ୨ॶ൧

∂X୨
ൌ

∂
∂X୨

቎ቌ1 ൅
ቀ
ν୲
ν ቁ

σச
ቍ
∂ॶ
∂X୨

቏	

൅
ν୲
ν
ቆ
∂Vഥ୧
∂X୨

൅
∂Vഥ୨
∂X୧

ቇ
∂Vഥ୧
∂X୨

െ ॱ 

(35) 

∂ൣVഥ୨ॱ൧ ∂
቎ቌ1

ቀ
ν୲
ν ቁቍ

∂ॱ
቏

(36) 

൅Cகଵ
ν୲
ν
ॱ
ॶ
ቆ
∂Vഥ୧
∂X୨

൅
∂Vഥ୨
∂X୧

ቇ
∂Vഥ୧
∂X୨

െ Cகଶ
ॱଶ

ॶ

Dimensionless formulation of the ࣄ െ࣓	܂܁܁ 
turbulence model 

Applying again the developed 
nondimensionalization methodology, now in 
Equations (10) to (15), we have the dimensionless 
form of the κ െ ω	SST turbulence model. Given by: 

∂ൣVഥ୨ॶ൧

∂X୨
ൌ min ቈ

ν୲
ν
∂Vഥ୧
∂X୨

ቆ
∂Vഥ୧
∂X୨

൅
∂Vഥ୨
∂X୧

ቇ ; 10β∗ॶॾ቉ 

െβ∗ॶॾ൅
∂
∂X୨

ቈቀ1 ൅ σச∗
ν୲
ν
ቁ
∂ॶ
∂X୨

቉ 
(37) 

∂ൣVഥ୨ॾ൧

∂X୨
ൌ
α∗

2
ቆ
∂Vഥ୧
∂X୨

൅
∂Vഥ୨
∂X୧

ቇ
ଶ

െ βᇱॾଶ	

൅
∂
∂X୨

ቈቀ1 ൅ σன
ν୲
ν
ቁ
∂ॾ
∂X୨

቉ ൅ 2ሺ1 െ Fଵሻσனଵ
1
ॾ

∂ॶ
∂X୨

∂ॾ
∂X୨

(38) 

Fଵ ൌ tanh ൝ቊmin ቈmaxቆ
√ॶ
β∗ॾঀ

,
500
ঀଶॾ

ቇ ,
4ρതσனଶॶ
CDசனঀଶ

νଶ

L୔
ସ ቉ቋ

ସ

ൡ (39) 

CDசன ൌ max ቆ2ρതσனଶ
νଶ

L୔
ସ

1
ॾ

∂ॶ
∂X୨

∂ॾ
∂X୨

, 10ିଵ଴ቇ (40) 

Fଶ ൌ tanh ൥ቈmax ቆ
2√ॶ
β∗ॾঀ

,
500
ঀଶॾ

ቇ቉

ଶ

൩ (41) 

ν୲
ν
ൌ

0.3ॶ

max ቆ0.3ॾ;√
2
2 ቆ

∂Vഥ୧
∂X୨

൅
∂Vഥ୨
∂X୧

ቇ Fଶቇ
(42) 

From all that has been discussed, Equations (3) 
to (5) are applied for the modeling and dimensionless 
study of the turbulent natural convection in an 
isothermal square plate (generic surface geometry 
and placed in an “infinite” environment). The 
solution of the mathematical closure problem of 
turbulence occurs through Equations (34) to (36), for 
the κ െ ε dimensionless turbulence model or through 
Equations (16) and (37) to (42), for the model of 
dimensionless turbulence κ െ ω	SST. 

Applicability Discussions 

The several characteristics, advantages, and 
applications of the Theory of Dimensional Analysis 
and Similarity are widely discussed in the main 
bibliographical references on the subject. However, 
despite being a well-established subject in the 
scientific literature, few bibliographic references –
considering publications from the last five years – 
specifically approach the nondimensionalization 
methodology of transport equations and turbulence 
models. In this sense, this work hopes to help reduce 
these gaps in applications in the study of natural 
convection. 

41
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With the evolution of techniques and 
methodologies applicable in CFD, which are 
increasingly used by the academic community and 
industry, the applications of nondimensionalization 
combined with numerical artifices of computational 
simulation in natural convection deserve to be 
highlighted. As an example, there is the numerical 
and virtual adjustment of the module and/or the 
direction of gravity acceleration, used in the 
construction of numerical simulations in different 
values of the Rayleigh number and/or with 
applications for inclined plates; both, without making 
any geometrical or physical properties changes in the 
constructed numerical model. 

The application of the mentioned numerical 
artifices requires dimensionless physical-
mathematical modeling, with the analysis of the flow 
numerical results also occurring in a dimensionless 
form; everything to ensure the physical consistency 
and validation of numerical results obtained. The 
works of Verdério Júnior et al. (2021) and Silva et al. 
(2021) are strong representative examples of this type 
of study. 

CONCLUSIONS 

This work presented a methodology for 
physical-mathematical modeling of turbulent natural 
convection problems on an isothermal plate in an 
"infinite" open environment, with the application of 
nondimensionalization techniques of transport 
equations and the κ െ ε and κ െ ω	SST turbulence 
models.  The definition of the dimensionless groups 
used observed the physical-geometric characteristics 
of the problem situation and used the terms L୔ and 
ν/L୔ as dimension and velocity that are characteristic 
of the studied flow, in that order. In the end, it has 
been established the dimensionless physical-
mathematical model that describes the behavior of the 
analyzed flow. 

The nondimensionalization methodology 
developed in this work aims to provide, and make 
available in the current scientific literature, a 
physical-mathematical model for the most common 
problem situation for analyzing physical problems 
involving natural convection. Through minor 
adaptations in the definition of dimensionless groups, 
this model can be extrapolated and applied to the 
study of different forms of convection (forced and 
mixed). 

The vast majority of engineering problems are 
evaluated through dimensionless parameters. The 
dimensionless physical-mathematical modeling of 
the problem evidenced the main dimensionless 
physical parameters of the influence of the solution, 
which are the numbers of Grashof, Prandtl and 
Turbulent Prandtl. However, it is not common to find 
studies involving dimensionless analyses in the 
scientific literature for turbulence parameters in 
numerical solutions (such as turbulence models). 

Therefore, the methodology and the dimensionless 
groups of the turbulence parameters κ, ε, ω and μ୲ or 
ν୲  presented in this work will help in the modeling 
process and studies of the most diverse problem 
situations in engineering. 

Finally, it is important to highlight significant 
similarities in constitution and presentation between 
the dimensional and nondimensional forms of the 
physical-mathematical models treated (with the 
transport equations and turbulence models used). 
Such similarities are representative and identify the 
characteristics of physical-geometric and kinematic 
similarity of both formulations. 
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