

Faculty of Information and Communication Technology

AN S-CURVE EFFICIENT FRONTIER FOR EVALUATION MODEL

Fadzilah binti Salim

Doctor of Philosophy

2021

C Universiti Teknikal Malaysia Melaka

AN S-CURVE EFFICIENT FRONTIER FOR EVALUATION MODEL

FADZILAH BINTI SALIM

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "An S-curve Efficient Frontier For Evaluation Model" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	- for	بابره	hSali
Name) : Fadzilah B	inti Sa	lim
Date	ہ 	7	2021

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of Doctor of Philosophy.

Signature	July Muli
Supervisor Name	: Associate Professor Dr. Nor Azman Bin Abu
Date	

DEDICATION

Bismillahirrahmanirrahim

To Shahrin, Azam, Ida and little Aysar, Umar, Syifa and little Khalis, Amirah,

Aiman and Afnan ... Nothing is impossible if Allah wills it ...

ABSTRACT

A normal distribution has been an ideal model in providing mental picture on a distribution of an object. A normal distribution projects a global view on a variation of an object which is expected to spread. This mental picture signifies an ideal view on statistic motion in the past three centuries. A simple linear regression has been a practical predictive model following a normal distribution along an independent variable. While a linear model provides a compact support at a central mean, a distribution of a predicted value on both ends of a simple linear regression widens as an independent variable moves further away from its central mean. A simple linear regression gives a good fit on average for an expected predicted value. This present research study is looking at feasible maximum output along an independent variable called an efficient frontier. At the same time, a simple linear regression gives a more accurate prediction near a central mean. This research study focuses on a particular attention on both far ends of an efficient frontier curve. A non-linear model is presumed to perform better than a linear model. Upon overcoming the challenge of producing a practical non-linear model, a new S-curve efficient frontier for evaluation model is proposed in this study for better and practical estimation on an optimal output. An efficient frontier denotes an optimal curve in a nonlinear model. This new S-curve efficient frontier reflects a non-linear model from a single independent variable to a prediction valuation that has a positive first derivative throughout its progression. This non-linear S-curve model is proposed as an ideal projection in a scientific valuation model. Two types of quantitative secondary data have been collected, namely second-hand car prices and market equity share prices, to test on this model generation and validation. An S-curve efficient frontier model gives a better forecast along dynamic progress on an efficient frontier projection from a simple linear regression. Hence, this novel non-linear S-curve efficient frontier predictive for evaluation model may serve as an ideal projection to many real scenarios within positive derivative progression. More importantly, this S-curve model prescribes an ideal view on a statistical motion for future endeavours. An S-curve efficient frontier for evaluation model will provide and add a dynamic mental picture in addition to a normal distribution.

AMBANG EFISIEN LENGKUK S SEBAGAI MODEL PENILAIAN

ABSTRAK

Taburan normal telah menjadi model yang ideal dalam memberikan gambaran mental mengenai taburan objek. Taburan normal berfungsi untuk mengunjurkan pandangan global mengenai variasi objek yang diharap dapat disebarkan. Gambaran mental ini memberikan pandangan yang ideal mengenai tebaran statistik pada tiga abad yang lalu. Regresi linear mudah telah menjadi model ramalan praktikal berikutan taburan normal di sepanjang pemboleh ubah bebas. Walaupun model linear memberikan sokongan padat pada min pusat, taburan nilai yang diramalkan pada kedua-dua hujung regresi linear mudah melebar ketika pemboleh ubah bebas bergerak lebih jauh dari min pusatnya. Regresi linear mudah memberikan kesesuaian yang rata-rata untuk nilai ramalan yang diharapkan. Kajian penyelidikan ini sedang melihat output maksimum yang layak di sepanjang pemboleh ubah bebas yang disebut sempadan efisien. Pada masa yang sama, regresi linear mudah memberikan ramalan yang lebih tepat berhampiran min pusat. Kajian penyelidikan ini menumpukan perhatian khusus pada kedua hujung lengkung sempadan yang efisien. Model tidak linear dianggap berprestasi lebih baik daripada model linear. Setelah mengatasi cabaran menghasilkan model praktikal bukan linear, model ambang efisien lengkuk-S sebagai model penilaian yang baru dicadangkan dalam kajian ini untuk anggaran yang lebih baik dan praktikal pada output yang optimum. Batas yang efisien menunjukkan lengkuk yang optimum dalam model yang tidak linear. Frontier efisien lengkuk S baru ini mencerminkan model bukan linear dari pemboleh ubah bebas tunggal hingga penilaian ramalan yang mempunyai pembezaan pertama positif sepanjang perkembangannya. Model lengkuk S tidak linear ini dicadangkan sebagai unjuran ideal dalam model penilaian saintifik. Dua jenis data sekunder kuantitatif telah dikumpulkan, iaitu harga kereta terpakai dan harga saham ekuiti pasaran, untuk menguji penjanaan dan pengesahan model ini. Model ambang efisien lengkuk S memberikan ramalan yang lebih baik sepanjang kemajuan dinamik pada unjuran perbatasan yang efisien dari regresi linear mudah. Oleh itu, model ramalan ambang efisien lengkuk S sebagai model penilaian tidak linear baru ini akan berfungsi sebagai unjuran yang ideal untuk banyak senario sebenar dalam perkembangan terbitan positif. Lebih penting lagi, model lengkuk S ini menetapkan pandangan yang ideal mengenai gerakan statistik pada masa hadapan. Model ambang efisien lengkuk S sebagai model penilaian akan menyediakan satu lagi gambaran mental yang dinamik sebagai tambahan kepada taburan normal.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for allowing me to further my study in UTeM, granting with a full paid study leave for three years and nine months, and providing the research platform.

My sincere gratitude and special thanks goes to my main supervisor, Associate Professor Dr. Nor Azman Bin Abu, Faculty of Information and Communication Technology (FTMK), for all his guidance, help, support, advice, feedback and constructive comments. His constant patience for guiding and providing priceless insights and immense knowledge will forever be remembered. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisor for my PhD study.

I would also like to thank my co-supervisor, Professor Dr. Faaizah Binti Shahbodin, Faculty of Information and Communications Technology, who has supported my journey. And not forgetting, a big thank you from the bottom of my heart to colleagues at FTMK, for their great warmth and friendships throughout my stay at FTMK for almost four years.

Last but not least, a heartfelt gratitude to my beloved husband, Professor Datuk Ts. Dr. Shahrin Bin Sahib, for his constant prayers, love, encouragement and support throughout my study and to my life in general. To all my beloved children and my beloved daughters in law, Azam and Ida, Umar and Syifa, Amirah, Aiman, Afnan, and my beloved little grandsons, Aysar and Khalis, your constant love, patience, understanding and prayers have made my PhD journey worthwhile. Finally, thank you to all the individual(s) who have provided me the assistance and support along the way.

TABLE OF CONTENTS

DE	CLAR	ATION	
DE	DICAT	FION	
AB	STRA	CT	i
AB	STRAI	K	ii
AC	KNOV	VLEDGEMENTS	iii
ТА	BLE O	FCONTENTS	iv
LIS	ST OF	TABLES	vii
	ST OF	FIGURES	viii
	ST OF	APPENDICES	xvi
LIS	ST OF	ABREVIATIONS	xvii
LIS	ST OF	PUBLICATIONS	xix
			23128
СН		R	
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem statement	5
	1.3	Research objectives	6
	1.4	Scope of research	6
	1.5	Contribution of research	7
	1.6	Thesis outline	8
	110	1.6.1 Chapter 1: Introduction	8
		1.6.2 Chapter 2: Literature review	9
		1 6 3 Chapter 3: Research methodology	10
		1 6 4 Chapter 4: Second-hand car prices	10
		1.6.5 Chapter 5: Capital asset pricing model	10
		1.6.6 Chapter 6: A conceptual model of income sales	10
		nrojection	11
		1.6.7 Chapter 7: Conclusion	11
	17	Summary	11
	1.7	Summary	11
2.	LIT	ERATURE REVIEW	13
	2.1	Introduction	13
	2.2	A mathematical model	14
	2.3	Regression analysis	16
	2.4	Linear regression	19
	2.5	Valuation models	23
	2.6	Linear capital asset pricing model (CAPM)	27
	2.7	Issues pertaining to linear regression in valuation model	30
	2.8	Non-linear selection models	32
	2.9	A theoretical foundation on maximum random variables	35
	2.10	Maximum profit or return	37
	2.11	Summary	40
3	MF	THODOLOGY	42
	3 1	Introduction	42
	3.2	Recapitulation of linear regression	42
	33	Research approach	43
	3.4	Research framework and phases	44
	~·· ·		

Research framework and phases 3.4

		3.4.1 Phase 1: Literature review	45
		3.4.2 Phase 2: From a simple linear to an S-shaped curve	
		model	46
		3.4.3 Phase 3: An S-shaped curve model design in calculus	53
		3.4.4 Phase 4: A new S-curve efficient frontier equation	
		model construction	55
		3.4.5 Phase 5: Data collection	59
		3.4.6 Phase 6: Model generation and validation	62
	3.5	An efficient frontier	
	3.6	Distribution on predicted value	63
	3.7	Best fit least square method	68
	3.8	Summary	69
4.	SEC	OND-HAND CAR PRICES	70
	4.1	Introduction	70
	4.2	Second-hand car price prediction	70
	4.3	Statistical methods versus machine learning	72
	4.4	Data collection and data cleansing	73
	4.5	BMW	77
		4.5.1 Data analysis	77
		4.5.2 Model generation and validation	89
	4.6	Perodua Myvi 1.5	92
		4.6.1 Data analysis	92
	4 7	4.6.2 Model generation and validation	100
	4./	1 oyota Camry 2.5	103
		4.7.2 Model concertion and validation	103
	10	4.7.2 Model generation and validation	115
	4.8 4.9	Conclusion	117
5	САР	ITAL ASSET PRICING MODEL	128
5.	5 1	Introduction	120
	5.2	Risk-free asset	120
	5.3	Data collection and data analysis	130
	5.4	Model generation and validation	134
	5.5	Discussion	139
	5.6	Conclusion	146
6.	A CO	DNCEPTUAL MODEL OF S-CURVE EFFICIENT	147
	FRO	UNTIER MODEL ON INCOME SALES PROJECTION	4 4 -
	6.1	Introduction	14/
	6.2	Income projection	14/
	0.3	An S average concentral model	148
	0.4	An S-curve conceptual model Discussion on the conceptual model	152
	0.5	Conclusion	154
	0.0	CONCLUSION	138
7.	CON	CLUSION	159
	7.1	Introduction	159
	7.2	Research objectives	159

	7.2.1	Analyses of linear and non-linear valuation models	160
	7.2.2	Construction of a new non-linear predictive model	
		that follows the S shape to offer better and practical	160
		value estimation	
	7.2.3	Validation on a suitability and practicality of this new	
		S-curve predictive model in efficient frontier	161
		estimation	
7.3	Resea	rch contributions	161
	7.3.1	General contributions	162
	7.3.2	Specific contributions	162
	7.3.3	Disseminations of new knowledge through	
		publications	162
7.4	Recor	nmendations for future research	163
	7.4.1	Enhancement to the proposed S-curve model	163
	7.4.2	Extension into new areas of investigation	164
7.5	Limit	ations of the study	164
7.6	Concl	usion	165
REFERE	NCES		166
APPEND	ICES		186

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary of studies on predictive modelling	18
2.2	Summary of some general studies on valuation model	26
2.3	Summary of Maximum Pricing / Profit / Return / Revenue Studies	39
4.1	Data extraction crawling activities by nKabot crawler from	
	carlist.my website	73
4.2	Data extraction crawling activities by nKabot crawler from	
	motortrader.com website	73
4.3	Data extraction crawling activities by nKabot crawler from	
	mudah.my website	73
4.4	Summary data of the three car models selected for the study	74
4.5	Summary of cleaned sample data set	76

vii

LIST OF FIGURES

FIGUR	E TITLE	PAGE
1.1	Malaysia's journal publication in Scopus indexed from 1996 – 2017	
	followed a pattern of an "S". Source: Abd Manaf (2019)	4
1.2	A linear model	6
1.3	An S-curve model	6
1.4	Research process of this thesis	9
2.1	A summary of the literature review process	14
2.2	Modelling Process – from a system to a model	15
2.3	Classifications of Models	16
2.4	A prediction interval of predicted value	22
3.1	The six phases of research methodology	44
3.2	The classification fields of research	45
3.3	A Prospect Theory	47
3.4	Roger's S-curve of technological adoption from the diffusion-	
	innovation model	48
3.5	A sigmoid function forms an ideal S-shaped function	49
3.6	Comparative investment returns. Source:	
	https://goldseek.com/article/dawn-gold	51
3.7	A graph of an S-shaped Membership Function with and	52
3.8	A continuously differentiable S-curve	54

viii

3.9	A proposed S-curve efficient frontier model	56
3.10	Markowitz's efficient frontier	62
3.11	An ideal probability density function (p.d.f) centred at mean zero and	
	standard deviation one	63
3.12	An ideal cumulative probability density function (c.d.f) centred at	
	mean zero and standard deviation one	64
3.13	Skewed to the left or negatively skewed distribution	65
3.14	Skewed to the right or positively skewed distribution	66
4.1	Price distribution of BMW 330e second-hand cars for 1999 make year	
	with skewness = 0.167	78
4.2	Price distribution of BMW 330e second-hand cars for 2000 make year	
	with skewness = 0.184	78
4.3	Price distribution of BMW 330e second-hand cars for 2001 make year	
	with skewness = 0.727	79
4.4	Price distribution of BMW second-hand cars for 2002 make year with	
	skewness = 0.274	79
4.5	Price distribution of BMW 330e second-hand cars for 2003 make year	
	with skewness = -0.054	80
4.6	Price distribution of BMW 330e second-hand cars for 2004 make year	
	with skewness $= 0.606$	80
4.7	Price distribution of BMW 330e second-hand cars for 2005 make year	
	with skewness = 1.169	81
4.8	Price distribution of BMW 330e second-hand cars for 2006 make year	
	with skewness $= 0.263$	81

ix

4.9	Price distribution of BMW 330e second-hand cars for 2007 make year	
	with skewness = 1.207	82
4.10	Price distribution of BMW 330e second-hand cars for 2008 make year	
	with skewness $= 0.418$	82
4.11	Price distribution of BMW 330e second-hand cars for 2009 make year	
	with skewness $= 0.390$	83
4.12	Price distribution of BMW 330e second-hand car for the make year	
	2010 with skewness = 0.098	83
4.13	Price distribution of BMW 330e second-hand cars for 2011 make year	
	with skewness = 0.305	84
4.14	Price distribution of BMW 330e second-hand cars for 2012 make year	
	with skewness = -0.394	84
4.15	Price distribution of BMW 330e second-hand cars for 2013 make year	
	with skewness $= 0.208$	85
4.16	Price distribution of BMW 330e second-hand cars for 2014 make year	
	with skewness $= 0.345$	85
4.17	Price distribution of BMW 330e second-hand cars for 2015 make year	
	with skewness = -0.153	86
4.18	Price distribution of BMW 330e second-hand cars for 2016 make year	
	with skewness = -0.152	86
4.19	Price distribution of BMW 330e second-hand cars for 2017 make year	
	with skewness = -0.168	87
4.20	Price distribution of BMW 330e second-hand cars for 2018 make year	
	with skewness = -1.293	87

4.21	Price distribution of BMW 330e second-hand cars for 2019 make year	
	with skewness = -1.216	88
4.22	The S-curve efficient frontier model for BMW 330e second-hand car	
	prices with $\alpha = 2$, $\beta = 2$ and $R^2 = 0.77$	91
4.23	Price distribution of Perodua Myvi 1.5 second-hand cars for 2005	
	make year with skewness = -0.016	92
4.24	Price distribution of Perodua Myvi 1.5 second-hand cars for 2006	
	make year with skewness = -0.020	93
4.25	Price distribution of Perodua Myvi 1.5 second-hand cars for 2007	
	make year with skewness = -0.129	93
4.26	Price distribution of Perodua Myvi 1.5 second-hand cars for 2008	
	make year with skewness $= 0.538$	94
4.27	Price distribution of Perodua Myvi 1.5 second-hand cars for 2009	
	make year with skewness $= 0.196$	94
4.28	Price distribution of Perodua Myvi 1.5 second-hand cars for 2010	
	make year with skewness $= 0.135$	95
4.29	Price distribution of Perodua Myvi 1.5 second-hand cars for 2011	
	make year with skewness $= 0.190$	95
4.30	Price distribution of Perodua Myvi 1.5 second-hand cars for 2012	
	make year with skewness $= 0.052$	96
4.31	Price distribution of Perodua Myvi 1.5 second-hand cars for 2013	
	make year with skewness = -0.413	96
4.32	Price distribution of Perodua Myvi 1.5 second-hand cars for 2014	
	make year with skewness $= -0.134$	97

4.33	Price distribution of Perodua Myvi 1.5 second-hand cars for 2015	
	make year with skewness = -0.111	97
4.34	Price distribution of Perodua Myvi 1.5 second-hand cars for 2016	
	make year with skewness $= 0.008$	98
4.35	Price distribution of Perodua Myvi 1.5 second-hand cars for 2017	
	make year with skewness = -0.198	98
4.36	Price distribution of Perodua Myvi 1.5 second-hand cars for 2018	
	make year with skewness $= 0.002$	99
4.37	Price distribution of Perodua Myvi 1.5 second-hand cars for 2019	
	make year with skewness = -0.016	99
4.38	The S-curve efficient frontier model for Perodua Myvi 1.5 second-	
	hand car prices with $\alpha = 2$, $\beta = 2$ and $R^2 = 0.91$	102
4.39	Price distribution of Toyota Camry 2.5 second-hand cars for 1998	
	make year with skewness $= 0.243$	104
4.40	Price distribution of Toyota Camry 2.5 second-hand cars for 1999	
	make year with skewness $= 1.279$	104
4.41	Price distribution of Toyota Camry 2.5 second-hand car for 2000 make	
	year with skewness $= 0.492$	105
4.42	Price distribution of Toyota Camry 2.5 second-hand car for 2001 make	
	year with skewness = -0.736	105
4.43	Price distribution of Toyota Camry 2.5 second-hand car for 2002 make	
	year with skewness = -0.237	106
4.44	Price distribution of Toyota Camry 2.5 second-hand car for 2003 make	
	year with skewness $= 0.954$	106

xii

4.45	Price distribution of Toyota Camry 2.5 second-hand car for 2004 make	
	year with skewness $= 0.332$	107
4.46	Price distribution of Toyota Camry 2.5 second-hand car for 2005 make	
	year with skewness $= 0.512$	107
4.47	Price distribution of Toyota Camry 2.5 second-hand car for 2006 make	
	year with skewness $= 0.395$	108
4.48	Price distribution of Toyota Camry 2.5 second-hand car for 2007 make	
	year with skewness $= 0.050$	108
4.49	Price distribution of Toyota Camry 2.5 second-hand car for 2008 make	
	year with skewness = -0.124	109
4.50	Price distribution of Toyota Camry 2.5 second-hand car for 2009 make	
	year with skewness $= 0.065$	109
4.51	Price distribution of Toyota Camry 2.5 second-hand car for 2010 make	
	year with skewness $= 0.031$	110
4.52	Price distribution of Toyota Camry 2.5 second-hand car for 2011 make	
	year with skewness $= 0.285$	110
4.53	Price distribution of Toyota Camry 2.5 second-hand car for 2012 make	
	year with skewness $= 0.598$	111
4.54	Price distribution of Toyota Camry 2.5 second-hand car for 2013 make	
	year with skewness = -0.029	111
4.55	Price distribution of Toyota Camry 2.5 second-hand car for 2014 make	
	year with skewness = -0.669	112
4.56	Price distribution of Toyota Camry 2.5 second-hand car for 2015 make	
	year with skewness $= 0.127$	112

xiii

4.57	Price distribution of Toyota Camry 2.5 second-hand car for 2016 make	
	year with skewness $= 0.712$	113
4.58	Price distribution of Toyota Camry 2.5 second-hand car for 2017 make	
	year with skewness = -0.572	113
4.59	Price distribution of Toyota Camry 2.5 second-hand car for 2018 make	
	year with skewness = -1.028	114
4.60	The S-curve efficient frontier model for Toyota Camry 2.5 second-	
	hand car prices with $\alpha = 2.3$, $\beta = 1.9$ and $R^2 = 0.95$	117
4.61	The S-curve efficient frontier model	118
4.62	A newly proposed S-curve efficient frontier model on second-hand car	
	prices	120
4.63	A histogram and a normal distribution of BMW 330e second-hand car	
	price distribution in 2004. The distribution is skewed to the right,	
	which means the car dealer loses the bargain.	123
4.64	A histogram and a normal distribution of BMW 330e second-hand car	
	price distribution in 2019. The distribution is skewed to the left, which	
	means that the car dealer wins the bargain by hiking the price up.	124
4.65	A linear regression and predicted values following normal	
	distributions	124
4.66	An S-curve model and the skewness of distributions	125
5.1	Market return versus market risk with risk-free asset,	129
5.2	An efficient frontier of a risky asset	130
5.3	A print screen of page 2 of KLSE equity prices which was taken on	
	30th January 2019	131

xiv

5.4	A print screen of page 20 of KLSE equity prices which was taken	
	18th February 2019	132
5.5	A print screen of page 30 of KLSE equity prices which was taken on	
	26th March 2019	133
5.6	A linear average return	135
5.7	Equity market (Malaysia) from http://www.market-risk-	
	premia.com/my.html	136
5.8	The S-curve efficient frontier maximum return of a capital asset	
	pricing model with $\alpha = 2$ and $\beta = 3$	138
5.9	An efficient frontier that is naturally higher than the market line	140
5.10	An efficient frontier being pushed below the linear CAPM	141
5.11	A continuously differentiable S-curve at market risk and return point	142
5.12	The newly proposed S-curve efficient frontier CAPM	143
6.1	A simple constant income projection	151
6.2	An increasing income projection moving toward saturation	151
6.3	A smooth increasing income projection moving toward saturation	151
6.4	An S-curve efficient frontier model	153
6.5	The four phases of an S-shaped curve model	154
6.6	The newly proposed S-curve efficient frontier model for income	
	projection model	156

XV

LIST OF APPENDICES

APPEN	DIX TITLE	PAGE
А	A Description of nKabot for Verification by Programme Owner	186
В	Examples of Programme Application Running during nKabot	
	Crawling Activities for carlist.my Website	187
С	Sample Data for Second-Hand Car Prices of BMW 330e Car Model	188
D	Maximum Sample Data for BMW 330e Second-Hand Car Prices	196
Е	Maximum Sample Data for Perodua Myvi 1.5 Second-Hand Car	
	Prices	197
F	Maximum Sample Data for Toyota Camry 2.5 Second-Hand Car	
	Prices	198
G	A Sample Output Data Collected by nKabot Crawler from KLSE	
	Equity Prices Website on 30th January 2019 Page 2	199
Н	A Sample Output Data Collected by nKabot Crawler from KLSE	
	Equity Prices Website on 18th February 2019 Page 20	201
Ι	A Sample Output Data Collected by nKabot Crawler from KLSE	
	Equity Prices Website on 26th March 2019 Page 30	203

xvi

LIST OF ABBREVIATIONS

ANN	-	Artificial Neural Network
BLR	-	Base Lending Rate
CAPM	-	Capital Asset Pricing Model
CSR	-	Cross-sectional Regression
DEA	-	Data Envelopment Analysis
ERP	-	Electronic Road Pricing
FD	-	Fixed Deposit
GMM	-	Generalised Method of Moments
HCV	-	Hepatitis C Virus
ICAPM	-	Intertemporal Capital Asset Pricing Model
LAD	-	Least Absolute Deviation
LACP	-	Last Adjusted Closing Price
KLSE	-	Kuala Lumpur Stock Exchange
NOCMP	-	No Output Constraint Maximum Profit
NPV	-	Net Present Value
PSS	-	Product Service System
RCAPM	-	Robust Capital Asset Pricing Model
SMF	-	S-shaped Membership Function
SVM	-	Support Vector Machines
SVR	-	Sustained Viral Response

xvii

- SVSI-J Stochastic Volatility Stochastic Interest rate random Jump
- YTD Year-To-Date
- ZIP Zero-Inflated Poisson

xviii

LIST OF PUBLICATIONS

Salim, F. and Abu, N.A., 2021. An S-curve efficient frontier on second-hand auto price. *International Journal of Computational Economics and Econometrics*. (Accepted for publication, Ref. #: IJCEE 261605)

Salim, F. and Abu, N.A., 2021. Used car price estimation: Moving from linear regression towards a new S-curve model. *International Journal of Business and Society*, Vol 22, No. 3, 2021(upcoming issue)

Salim, F. and Abu, N.A., 2020. An S-curve model on the maximum predictive pricing of used cars. *European Journal of Molecular and Clinical Medicine*, 7(3), pp.907-921.

Salim, F. and Abu, N.A., 2018. A novel S-curve on capital asset pricing model. *Science International Journal (Lahore)*, 30(3), pp.471-475.

Salim, F. and Abu, N.A., 2018. A novel S-regression model on an auto price. *International Journal of Engineering & Technology*, 7 (2.29), pp.912-916.

Abu, N.A., Salim, F., Kamel Ariffin, M.R., 2017. Introducing S-index into factoring RSA modulus via Lucas sequences an overview on S-index function. *Malaysian Journal of Mathematical Sciences*, 17(11), (Special Issu,e), pp.72–89.