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ABSTRACT 

 

 

Android has become the number one mobile operating system in term of worldwide market 
share since May 2012. The highest demand and the open source factors had brought Android 
operating system into main target of malware creator. Two approaches introduced to detect 
malware in Android mobile environment namely static analysis and dynamic analysis. Static 
analysis is where the static features are examined. Too many features used, features 
extraction time consuming and the reliability of accuracy result by various machine learning 
algorithm are the main issues spotted in static analysis approach. As such, this thesis 
investigates the whole Android static analysis framework in detecting and classifying mobile 
malware. The early study found that two static features that are often used (permission and 
API calls) with the right mapping are sufficient to analyse the Android malware. The new 
permission(s) toward API call(s) mapping for Android level 16 to 24 is constructed based 
on Android official developer guideline references where previously these two features are 
mapped without using the standard guideline. On experimenting and analysing the 
framework, there are 4767 benign applications from 10 different categories was collected 
from Android official market place and 3443 malware applications was collected from 
AndroZoo dataset. All benign files are then scanned through VirusTotal to ensure that all 
collected files are free from virus. On extracting the desired features, a new automation of 
feature extraction using Depth First Search (DFS) with sequential search are introduced and 
succeed to extract the targeted features with consideration of no limitation on application 
file size also no limitation on file number. In order to enables machine learning to train faster 
and reduces the complexity of a machine learning model, the information gain features 
selection is applied towards the extracted features. Four types of machine learning algorithm 
were tested with four different kind of splitting dataset techniques separately. The result 
shows that the detection of malware within application category achieves higher accuracy 
compared to application with non-category based. In increasing the reliability, the results 
obtained are then validated by using statistical analysis procedure which each machine 
learning classification algorithm are iterate 50 times. The validation results show that 
Random Forest with 10-folds cross validation spitting dataset achieved 8 highest 
performance compared to benchmark study and two other classifiers. This study suggests 
the work to combine the optimization of feature selection and algorithm parameters to 
achieve higher accuracy and acquire more reliable comparison. 
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PENINGKATAN RANGKA KERJA PENGESANAN PERISIAN ANALISA KOD 
STATIK BAGI APLIKASI ANDROID BERASASKAN KATEGORI 

 

 

ABSTRAK 

 

 

Semenjak Mei 2012, Android telah menjadi sistem pengoperasian mudah alih nombor satu 
dari sudut pasaran di serata dunia. Faktor permintaan yang tinggi dan konsep keterbukaan 
sumber telah mendorong sistem pengoperasian Android menjadi sasaran utama oleh 
pembangun perisian hasad. Terdapat dua pendekatan yang diperkenalkan untuk mengesan 
perisian hasad dalam persekitaran mudah alih Android iaitu secara analisa statik dan 
analisa dinamik. Analisis statik adalah di mana ciri statik dikaji. Terlalu banyak ciri yang 
digunakan, pengekstrakan fitur memakan masa dan kebolehpercayaan ketepatan yang 
dihasilkan oleh pelbagai algoritma pembelajaran mesin adalah masalah utama yang dilihat 
dalam pendekatan analisis statik. Tesis ini menyiasat rangka kerja bagi mengesan perisian 
hasad di dalam perisian mudah alih Android menerusi kaedah analisa kod statik dan 
mencadangkan penambahbaikkan terhadap rangka kerja analisa statik bagi perisian 
Android. Kebenaran yang memetakan panggilan API untuk Android tahap 16 hingga 24 
telah dibangunkan berdasarkan piawai daripada pembangun rasmi Android di mana 
sebelum ini kedua-dua fitur tersebut dipetakan tanpa menggunakan garis panduan piawai. 
Selanjutnya, proses dan algoritma baru bagi mengekstrak kebenaran dan panggilan API 
untuk mempercepat proses pengekstrakan dibangunkan. Di dalam perlaksanaan ekperimen 
dan penganalisian rangka kerja, sebanyak 4767 aplikasi bersih dari 10 kategori yang 
berbeza dikumpulkan dari pasaran rasmi Google dan 3443 aplikasi perisian hasad 
dikumpulkan dari dataset AndroZoo. Semua fail bersih kemudian diimbas melalui 
VirusTotal untuk memastikan semua fail yang dikumpulkan bebas dari virus. Automasi 
pengekstrakan fitur yang diperkenalkan berjaya mengekstrak fitur-fitur yang disasarkan 
dengan tidak mempunyai had pada saiz fail aplikasi juga tidak mempunyai had pada 
bilangan fail. Empat jenis algoritma pembelajaran mesin telah diuji dengan empat jenis 
teknik dataset secara berasingan. Hasil kajian mendapati, pengesanan perisian hasad 
berasaskan kategori mencapai ketepatan yang lebih tinggi berbanding aplikasi yang tidak 
berasaskan kategori. Hasil yang diperolehi kemudiannya disahkan melalui prosedur 
analisis statistik di mana setiap algoritma pengelasan pembelajaran mesin akan berulang 
sebanyak 50 kali. Hasil pengesahan menunjukkan bahawa pembelajaran mesin secara 
Random Forest dengan 10 kali liputan pengesahan silang mengumpul sebanyak 8 prestasi 
tertinggi dibandingkan dengan kajian tanda aras dan tiga pengelas lain. Tesis ini 
menyarankan kerja lanjutan terhadap kombinasi pengoptimuman pemilihan fitur dan 
parameter algoritma dilaksanakan bagi mencapai ketepatan yagn lebih tinggi serta 
memperoleh perbandingan yang lebih baik. 
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CHAPTER 1 

 

INTRODUCTION 

 

Background 

In year 2019, Kaspersky lab detected about 3.4 million malicious installation 

packages (Chebyshev, 2020) which was nearly 1.5 times fewer than the previous year. 

Despite a decrease in the number of detected malicious installation packages, the number of 

attacks on personal data grew from 40,386 in 2016 to 67,500 in 2019. 

 Furthermore, in second quarter of 2019 a steady rise in the number of mobile threat 

detected (Chebyshev et al., 2020). Even though Android Open Source Project (AOSP) is 

committed to secure Android smartphone OS, it is also susceptible to the social-engineering 

attacks (Faruki et al., 2015). Every year, Android malware threat report is published by 

several anti-virus companies for public access, yet, the smartphone users awareness on its 

potential risk is still at the lower rate (Qiao et al., 2016). Numerous attack vectors occur 

which compromise smartphone security (Samani and Beek, 2018). At present, Android is 

holding a global market share of 74.44%, hence, Android OS devices attack phenomena 

cannot be overstated. Information stealing and monetisation are two serious threats toward 

Android based smartphones which lead to financial charges for Android users. 

Most mobile phone users think that their phones are safe and assume they can proceed 

to do the tasks that they prefer without putting them in any risk. A study by mobile 

application security firm (Reed, 2019) found that 70% out of 250 applications collected from 

Android official market place suffer from vulnerabilities that could lead to privacy leakage. 

Even though Google introduces permission-based guard, in which the mechanism is to 
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restrict access of the third-party Android applications to critical resources on Android 

devices through their Bouncer security in 2012, the mobile security firm still asserts that 

millions of Android users are facing high-risk vulnerabilities. This is because, not only 

sensitive information can be spread illegally, but it also could give negative impact to the 

economy. Hence, the existing technique of malware detection is continuously being explored 

and revised.  

A detection of malicious activities in Android mobile phone is a crucial analysis 

process where it can be divided into two main approaches namely static analysis, and 

dynamic analysis. Static analysis detection refers to examining potential security problem 

program without performing or running the program. In other words, the inspection is done 

through each programming line and text used in various files. Figure 1.1 shows a general 

framework in detecting Android malware which consists of four main phases namely data 

collection, features extraction phase, features selection phase and classification phase. 

 

 

Figure 1.1: General framework of static analysis malware detection (Rana and Sung, 2018) 

 

Static analysis is the most preferred method by many researchers (Bakour et al., 2018) 

because of its low computational time, ease of implementation and effectiveness in detecting 

malicious application. In the first phase, the dataset is prepared and processed to be in a 

suitable format to extract the desired features that will be used to structure the pattern that 

Feature Selection  Classification 

Data Collection 

Feature Extraction  


	00. NEW TITLE PAGE
	01. TITLE PAGE_SECOND PAGE
	1. DECLARATION
	2. APPROVAL
	3. DEDICATION
	4. ABSTRACT BI
	5. ABSTRAK BM
	6. ACKNOWLEDGEMENTS
	7. TABLE OF CONTENTS
	8. LIST OF TABLES
	9. LIST OF FIGURES
	10. LIST OF APPENDICES
	11. LIST OF ABBREVIATIONS
	12. LIST OF PUBLICATIONS
	COMBINED
	APPENDIX A
	APPENDIX B
	APPENDIX C



