

Faculty of Information and Communication Technology

ENHANCEMENT OF STATIC CODE ANALYSIS MALWARE

DETECTION FRAMEWORK FOR ANDROID CATEGORY-BASED

APPLICATION

Azmi Bin Aminordin

Doctor of Philosophy

2021

ENHANCEMENT OF STATIC CODE ANALYSIS MALWARE DETECTION
FRAMEWORK FOR ANDROID CATEGORY-BASED APPLICATION

AZMI BIN AMINORDIN

A thesis submitted
in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare this thesis entitled “Enhancement of Static Code Analysis Malware Detection

Framework for Android Category-Based Application” is the result of my own research

except as cited in the references. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

 Signature : …………………………..

 Name : …………………………..

 Date : …………………………..

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms

of scope and quality for the award of Doctor of Philosophy.

 Signature : ………………………………………….…

 Supervisor Name : …………………………………………….

 Date : …………………………………………….

DEDICATION

This thesis is dedicated to Almarhumah Zainaf Bte Maidin, family, supervisors and all my

friends which without whom none of my success would be possible.

i

ABSTRACT

Android has become the number one mobile operating system in term of worldwide market
share since May 2012. The highest demand and the open source factors had brought Android
operating system into main target of malware creator. Two approaches introduced to detect
malware in Android mobile environment namely static analysis and dynamic analysis. Static
analysis is where the static features are examined. Too many features used, features
extraction time consuming and the reliability of accuracy result by various machine learning
algorithm are the main issues spotted in static analysis approach. As such, this thesis
investigates the whole Android static analysis framework in detecting and classifying mobile
malware. The early study found that two static features that are often used (permission and
API calls) with the right mapping are sufficient to analyse the Android malware. The new
permission(s) toward API call(s) mapping for Android level 16 to 24 is constructed based
on Android official developer guideline references where previously these two features are
mapped without using the standard guideline. On experimenting and analysing the
framework, there are 4767 benign applications from 10 different categories was collected
from Android official market place and 3443 malware applications was collected from
AndroZoo dataset. All benign files are then scanned through VirusTotal to ensure that all
collected files are free from virus. On extracting the desired features, a new automation of
feature extraction using Depth First Search (DFS) with sequential search are introduced and
succeed to extract the targeted features with consideration of no limitation on application
file size also no limitation on file number. In order to enables machine learning to train faster
and reduces the complexity of a machine learning model, the information gain features
selection is applied towards the extracted features. Four types of machine learning algorithm
were tested with four different kind of splitting dataset techniques separately. The result
shows that the detection of malware within application category achieves higher accuracy
compared to application with non-category based. In increasing the reliability, the results
obtained are then validated by using statistical analysis procedure which each machine
learning classification algorithm are iterate 50 times. The validation results show that
Random Forest with 10-folds cross validation spitting dataset achieved 8 highest
performance compared to benchmark study and two other classifiers. This study suggests
the work to combine the optimization of feature selection and algorithm parameters to
achieve higher accuracy and acquire more reliable comparison.

ii

PENINGKATAN RANGKA KERJA PENGESANAN PERISIAN ANALISA KOD
STATIK BAGI APLIKASI ANDROID BERASASKAN KATEGORI

ABSTRAK

Semenjak Mei 2012, Android telah menjadi sistem pengoperasian mudah alih nombor satu
dari sudut pasaran di serata dunia. Faktor permintaan yang tinggi dan konsep keterbukaan
sumber telah mendorong sistem pengoperasian Android menjadi sasaran utama oleh
pembangun perisian hasad. Terdapat dua pendekatan yang diperkenalkan untuk mengesan
perisian hasad dalam persekitaran mudah alih Android iaitu secara analisa statik dan
analisa dinamik. Analisis statik adalah di mana ciri statik dikaji. Terlalu banyak ciri yang
digunakan, pengekstrakan fitur memakan masa dan kebolehpercayaan ketepatan yang
dihasilkan oleh pelbagai algoritma pembelajaran mesin adalah masalah utama yang dilihat
dalam pendekatan analisis statik. Tesis ini menyiasat rangka kerja bagi mengesan perisian
hasad di dalam perisian mudah alih Android menerusi kaedah analisa kod statik dan
mencadangkan penambahbaikkan terhadap rangka kerja analisa statik bagi perisian
Android. Kebenaran yang memetakan panggilan API untuk Android tahap 16 hingga 24
telah dibangunkan berdasarkan piawai daripada pembangun rasmi Android di mana
sebelum ini kedua-dua fitur tersebut dipetakan tanpa menggunakan garis panduan piawai.
Selanjutnya, proses dan algoritma baru bagi mengekstrak kebenaran dan panggilan API
untuk mempercepat proses pengekstrakan dibangunkan. Di dalam perlaksanaan ekperimen
dan penganalisian rangka kerja, sebanyak 4767 aplikasi bersih dari 10 kategori yang
berbeza dikumpulkan dari pasaran rasmi Google dan 3443 aplikasi perisian hasad
dikumpulkan dari dataset AndroZoo. Semua fail bersih kemudian diimbas melalui
VirusTotal untuk memastikan semua fail yang dikumpulkan bebas dari virus. Automasi
pengekstrakan fitur yang diperkenalkan berjaya mengekstrak fitur-fitur yang disasarkan
dengan tidak mempunyai had pada saiz fail aplikasi juga tidak mempunyai had pada
bilangan fail. Empat jenis algoritma pembelajaran mesin telah diuji dengan empat jenis
teknik dataset secara berasingan. Hasil kajian mendapati, pengesanan perisian hasad
berasaskan kategori mencapai ketepatan yang lebih tinggi berbanding aplikasi yang tidak
berasaskan kategori. Hasil yang diperolehi kemudiannya disahkan melalui prosedur
analisis statistik di mana setiap algoritma pengelasan pembelajaran mesin akan berulang
sebanyak 50 kali. Hasil pengesahan menunjukkan bahawa pembelajaran mesin secara
Random Forest dengan 10 kali liputan pengesahan silang mengumpul sebanyak 8 prestasi
tertinggi dibandingkan dengan kajian tanda aras dan tiga pengelas lain. Tesis ini
menyarankan kerja lanjutan terhadap kombinasi pengoptimuman pemilihan fitur dan
parameter algoritma dilaksanakan bagi mencapai ketepatan yagn lebih tinggi serta
memperoleh perbandingan yang lebih baik.

iii

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful, for without Him, I would
never be where I am today. Not to forget, greetings and eulogy to our beloved, The Great
Prophet Muhammad SAW, for without him, we’ll still be living the age of darkness.

I am deeply indebted to lecturers of UTeM, especially those in FTMK, and to my
supervisors: Associate Professor Dr. Hj. Mohd Faizal Abdollah and Associate Professor Dr.
Hjh. Robiah Yusof for their helps, supports, interests, valuable hints, guides and patience.

I am truly and forever obliged to Syarimasni Shamsuddin, for without her endearing support
and loving company, I wouldn’t make this far, and with my kids that I have the greatest
blessing from Him and the joy of my life. Especially, I would like to forever give my deepest
and most special thanks to my parents, my parents-in-law, my siblings, whose life-long
teaching enabled me to complete this work and have pushed me to go this far. Special thanks
to all my colleagues at UiTM Melaka and my friends who’s always supported in many ways
for completing this work.

iv

TABLE OF CONTENTS

 PAGE
DECLARATION
APPROVAL
DEDICATION
ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES ix
LIST OF APPENDICES xiii
LIST OF ABBREVIATIONS xiv
LIST OF PUBLICATIONS xvii

CHAPTER
1. INTRODUCTION 1
 1.1 Background 1
 1.2 Problem statement 6
 1.3 Research questions 7
 1.4 Objectives 8
 1.5 Scope of study 8
 1.6 Research significance 9
 1.7 Thesis organization 10
 1.8 Summary 11

2. LITERATURE REVIEW 12
 2.1 Introduction 12
 2.2 Android operating system 12

 2.2.1 Android history 13
 2.2.2 Android architecture 13
 2.2.3 Android application 16
 2.2.4 Android security 19
 2.2.5 Android permission model 21
 2.2.6 Android API 25
 2.2.7 Sensitive API 26

 2.3 Mobile malware 26
 2.3.1 Malware definition 27
 2.3.2 Mobile malware taxonomy 28
 2.3.3 Mobile malware on the rise 34
 2.4 Android Malware Detection (AMD) system 37
 2.4.1 Android malware detection phase 38
 2.4.2 Android malware analysis techniques 41
 2.4.3 Android malware identification techniques 43
 2.4.3.1 Signature based detection 43
 2.4.3.2 Anomaly-based 44
 2.4.3.3 Specification-based 45

v

 2.4.3.4 Hybrid-based 45
 2.4.4 AMD platform 45
 2.5 Previous studies of mobile malware analysis techniques 46
 2.5.1 Static analysis 46
 2.5.2 Dynamic analysis 53
 2.6 Feature extraction and selection 56
 2.6.1 Feature extraction for Android malware detection 56
 2.6.2 Feature selection methods 57
 2.7 Static analysis framework issues and key focus area 62
 2.7.1 Dataset issues 63
 2.7.2 Pre-processing 65

 2.7.2.1 Mapping of API calls with permission 66
 2.7.2.2 Feature extraction tools and techniques 67
 2.7.2.3 Binary feature vector 69
 2.7.3 Application category 70
 2.7.4 Validation phase 72
 2.7.5 Machine learning classifier 72

 2.8 Performance validation 82
 2.8.1 Majority criterion on selecting dataset splitting 83
 2.8.2 Classification accuracy on machine learning algorithm 84
 2.8.3 Statistical validation on classification accuracy 84
 2.9 Implication and gaps 91
 2.10 Summary 94

3. RESEARCH METHODOLOGY 95
 3.1 Introduction 95
 3.2 Research design 96
 3.2.1 Exploration phase 97
 3.2.2 Implementation phase 98
 3.2.2.1 Research development process 98
 3.2.2.2 Performance measurement process 99
 3.2.3 Validation process 100
 3.3 Detailed research development process 101
 3.3.1 Dataset preparation 102
 3.3.2 Features used 105
 3.3.3 Feature mapping 106
 3.3.4 Feature extraction 107
 3.3.5 Feature selection 107
 3.3.6 Binary feature vector 108
 3.3.7 Classification 108
 3.4 Development tools and environment setup 110
 3.5 Summary 111

4. PREPROCESSING RESULTS 113
 4.1 Introduction 113
 4.2 Mapping of API calls toward permissions 113
 4.3 Automation of feature extraction 119
 4.3.1 MAPE flowchart 127
 4.4 Generation of binary feature vector 130

vi

 4.5 Information gain filter method 134
 4.6 Summary 136

5. RESULT AND DISCUSSION 137
 5.1 Introduction 137
 5.2 Implementation of machine learning classifiers with different

splitting dataset
 137

 5.3 Results and discussions: comparative of machine learning
accuracy

 139

 5.4 Results and discussions: comparative of splitting dataset
technique

 144

 5.5 Results and discussions: comparison with the benchmark study 151
 5.6 Issues of machine learning classification result 153
 5.7 Performance validation on splitting dataset technique 156
 5.8 Data preparation for performance validation 157
 5.9 Statistical validation of proposed framework 158
 5.10 Normality test 159
 5.11 Performance comparison 165
 5.12 Summary 173

6. CONCLUSION 174
 6.1 Introduction 174
 6.2 Research findings 174
 6.3 Research contributions 176
 6.4 Limitation of the study 177
 6.5 Recommendation of future works 178
 6.6 Summary 179

REFERENCES 181
APPENDICES 221

vii

LIST OF TABLES

TABLE TITLE PAGE

2.1 Files and folders inside APK file (Developer, 2010) 17

2.2 Limitation of Android application-market ecosystems 20

2.3 Types of protection level (Developer, 2009) 24

2.4 Mobile malware attacking sources 36

2.5 Comparison of static features used by previous studies 49

2.6 Android malware dataset 64

2.7 Previous existing techniques for API extraction 68

2.8 Approach to generate binary feature vector 69

2.9 Previous study on Android category-based malware detection 72

2.10 Classifier used in previous experiments 73

3.1 A summary of the investigation phase 97

3.2 List of evaluation 100

3.3 List of sub-category name 105

3.4 Summary of classifier parameters 109

4.1 Number of API calls toward permission found by API level 119

4.2 Processing time results by MAPE 129

4.3 Top 20 features frequency in books and references and

communication category

 133

5.1 Accuracy results 140

viii

5.2 Average percentage score by each machine learning algorithm 143

5.3 Score of splitting dataset using decision tree J48 algorithm 145

5.4 Score of splitting dataset using Naïve Bayes algorithm 147

5.5 Score of splitting dataset using random forest algorithm 146

5.6 Score of splitting dataset using SVM algorithm 147

5.7 Split technique scores by machine learning algorithm 147

5.8 Summation of total split scores percentage 150

5.9 Performance comparison with benchmark study 152

5.10 Top 3 higher accuracies obtained by machine learning algorithm 154

5.11 Mean value of 4 splitting dataset techniques 157

5.12 Test of normality for decision tree J48 classification accuracy of

no-category (NoCate) based and category-based apps

 160

5.13 Test of normality for Naïve Bayes classification accuracy of no-

category (NoCate) based and category-based apps

 161

5.14 Test of normality for random forest classification accuracy of no-

category (NoCate) based and category-based apps

 161

5.15 Test of normality for SVM classification accuracy of no-category

based and category-based apps

 162

5.16 Ranks for classification accuracy of category-based detection 163

5.17 Statistic test results using Mann-Whitney U test for classification

accuracy of category-based against no-category based features

 164

5.18 Average of accuracy obtained by category on different classifier 166

5.19 Score comparison of average accuracy on category-based against

no-category-based

 172

ix

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 A general framework of Android malware static analysis (Rana

and Sung, 2018)

 2

1.2 Thesis organization 11

2.1 Android software stack (Source: Developer, 2011) 14

2.2 Percentage of infected customer’s smartphone (McAfee Lab

2018)

 27

2.3 General mobile malware taxonomy 29

2.4 Taxonomy of Android malware detection technique 37

2.5 Distribution of static feature used in Android malware detection 52

2.6 General framework of static analysis malware detection (M. Rana

& A. Sung, 2018)

 62

2.7 Example of separating multiple lines 74

2.8 Optimal SVM hyperplane 75

2.9 Decision tree 77

2.10 Random forest 78

2.11 A summary of performance measurement processes 91

2.12 New processes for enhancement framework 93

3.1 Research design 96

x

3.2 Performance measurement and validation 101

3.3 Research development process 102

3.4 Summary of dataset preparation phase 104

3.5 Summary of feature type 106

3.6 MS Excel snapshot of binary feature vector 108

4.1 Architecture of API call toward permission mapping 114

4.2 Web page snapshot of API level 16 package names 115

4.3 Web page snapshot of class names in "android.account” package

on API level 16

 116

4.4 Web page snapshot of “AccountManager” class information 117

4.5 Web page snapshot of permission keyword highlighted 118

4.6 Depth first search 121

4.7 New algorithm Multiple Android Package Extractor (MAPE)

using DFS with sequential search

 121

4.8 Code snippet of MAPE program 122

4.9 Existing architecture of extracting API calls 123

4.10 Propose architecture (MAPE) 124

4.11 MAPE interface (Step 1) 124

4.12 MAPE interface (Upload Successfully) 125

4.13 MAPE interface (Step 2: Dissemble) 125

4.14 Snapshot of results by MAPE 126

4.15 MAPE flowchart 128

4.16 Sequential search pseudo code 130

4.17 Architecture of the automation binary feature vector 130

xi

4.18 Binary feature genaration flowchart 131

4.19 Result produces by binary feature vector generator 132

4.20 Example of education.csv file 133

4.21 General framework of supervised feature selection 135

5.1 Percentage score by 4 classifiers on 10-folds cross validation 141

5.2 Percentage score by 4 classifiers on 70% training-30% testing 141

5.3 Percentage score by 4 classifiers on 80% training – 20% testing 142

5.4 Percentage score by 4 classifiers on 90% training – 10% testing 142

5.5 Overall percentage of score by all classifiers on 4 types of splitting

technique

 144

5.6 Splitting technique percentage scores on decision tree J48

algorithm

 148

5.7 Splitting technique percentage scores on Naïve Bayes algorithm 148

5.8 Splitting technique percentage scores on random forest algorithm 149

5.9 Splitting technique percentage scores on SVM algorithm 149

5.10 Overall percentage scores for all splitting technique 150

5.11 Proposed statistical validation process for Android application

category-based malware detection

 159

5.12 Average of classification accuracies percentage of no-category

(NoCate) and book and references (BookRef) category using 10

folds cross validation

 167

5.13 Average of classification accuracies percentage of no-category

(NoCate) and communication (Comm) category using 10 folds

cross validation

 167

xii

5.14 Average of classification accuracies percentage of no-category

(NoCate) and education (Edu) category using 10 folds cross

validation

 168

5.15 Average of classification accuracies percentage of no-category

(NoCate) and entertainment (Enter) category using 10 folds cross

validation

 168

5.16 Average of classification accuracies percentage of no-category

(NoCate) and health category using 10 folds cross validation

 169

5.17 Average of classification accuracies percentage of no-category

(NoCate) and lifestyle (LStyle) category using 10 folds cross

validation

 169

5.18 Average of classification accuracies percentage of no-category

(NoCate) and music and audio (MscAud) category using 10 folds

cross validation

 170

5.19 Average of classification accuracies percentage of no-category

(NoCate) and personalization (Person) category using 10 folds

cross validation

 170

5.20 Average of classification accuracies percentage of no-category

(NoCate) and photography (Photo) category using 10 folds cross

validation

 171

5.21 Average of classification accuracies percentage of no-category

(NoCate) and tools category using 10 folds cross validation

 171

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Apart of API calls toward permission list on API level 24 221

 B Features code and feature name 224

 C Top 20 feature frequencies by category 236

xiv

LIST OF ABBREVIATIONS

AAPT - Android Assets Packing Tool

AMD - Android malware detection

APK - Android Package

arff - Attribute-relation file format

ART - Android Runtime

AOSP - Android Open Source Project

AOT - Ahead of Time

API - Application Programming Interface

CEO - Chief Executive Officer

CFS - Correlation Feature Selection

CSV - Comma Separated Values

DDoS - Distributed Denial of Service

DEX - Dalvik Executable

DFS - Depth first search

DT - Decision Tree

DVM - Dalvik Virtual Machine

FPR - False Positive Rate

GA - Genetic Algorithm

GeFS - Genetic Features Selection

ID - Identification

xv

IDS - Intrusion Detection System

IG - Information Gain

IMEI - International Mobile Equipment Identity

IMSI - International Mobile Subscriber Identity

IRC - Internet Relay Chat

JNI - Java Native Interface

JVM - Java virtual machine

KPCA - Kernel Principal Component Analysis

KNN - K-Nearest Neighbour

MAPE - Multiple Android Package Extractor

MIB - Management Information Base

MLP - Multi-Layer Perceptron

MMS - Multimedia Messaging Service

OHA - Open Handset Alliance

OS - Operating system

PC - Personal Computer

PIN - Personal Identification Number

RPC - Remote Procedure Call

SDK - Software Development Kit

SMS - Short Message Service

SMO - Sequential Minimal Optimization

SPSS - Statistical Product and Service Solutions

SVM - Support vector machine

TF-IDF - Term Frequency Inverse Document Frequency

TPR - True Positive Rate

xvi

VBA - Visual Basic for Application

VM - Virtual machine

WEKA - Waikato Environment for Knowledge Analysis

xvii

LIST OF PUBLICATIONS

Aminordin, A., M.A., F. And Yusof, R., 2018. Android malware classification base on

application category using static code analysis. Journal of Theoretical and Applied

Information Technology, vol. 96, no. 20, pp.6853-6863.

Aminordin, A., Faizal, M.A., Robiah, Y., Mukhlis, A. and Arif, F., 2018. Multiple android

package files extractor in mining request permissions and API calls. Journal of Advanced

Manufacturing Technology (JAMT), vol. 12 (2), pp.11-24.

Aminordin, A., Abdollah, M.F., Yusof, R. and Ahmad, R., 2017. Preliminary findings:

revising developer guideline using word frequency for identifying apps miscategorization.

Proceedings of the Second International Conference on the Future of ASEAN (ICoFA),

Perlis Malaysia, vol. 2, pp.123-131.

1

CHAPTER 1

INTRODUCTION

Background

In year 2019, Kaspersky lab detected about 3.4 million malicious installation

packages (Chebyshev, 2020) which was nearly 1.5 times fewer than the previous year.

Despite a decrease in the number of detected malicious installation packages, the number of

attacks on personal data grew from 40,386 in 2016 to 67,500 in 2019.

 Furthermore, in second quarter of 2019 a steady rise in the number of mobile threat

detected (Chebyshev et al., 2020). Even though Android Open Source Project (AOSP) is

committed to secure Android smartphone OS, it is also susceptible to the social-engineering

attacks (Faruki et al., 2015). Every year, Android malware threat report is published by

several anti-virus companies for public access, yet, the smartphone users awareness on its

potential risk is still at the lower rate (Qiao et al., 2016). Numerous attack vectors occur

which compromise smartphone security (Samani and Beek, 2018). At present, Android is

holding a global market share of 74.44%, hence, Android OS devices attack phenomena

cannot be overstated. Information stealing and monetisation are two serious threats toward

Android based smartphones which lead to financial charges for Android users.

Most mobile phone users think that their phones are safe and assume they can proceed

to do the tasks that they prefer without putting them in any risk. A study by mobile

application security firm (Reed, 2019) found that 70% out of 250 applications collected from

Android official market place suffer from vulnerabilities that could lead to privacy leakage.

Even though Google introduces permission-based guard, in which the mechanism is to

2

restrict access of the third-party Android applications to critical resources on Android

devices through their Bouncer security in 2012, the mobile security firm still asserts that

millions of Android users are facing high-risk vulnerabilities. This is because, not only

sensitive information can be spread illegally, but it also could give negative impact to the

economy. Hence, the existing technique of malware detection is continuously being explored

and revised.

A detection of malicious activities in Android mobile phone is a crucial analysis

process where it can be divided into two main approaches namely static analysis, and

dynamic analysis. Static analysis detection refers to examining potential security problem

program without performing or running the program. In other words, the inspection is done

through each programming line and text used in various files. Figure 1.1 shows a general

framework in detecting Android malware which consists of four main phases namely data

collection, features extraction phase, features selection phase and classification phase.

Figure 1.1: General framework of static analysis malware detection (Rana and Sung, 2018)

Static analysis is the most preferred method by many researchers (Bakour et al., 2018)

because of its low computational time, ease of implementation and effectiveness in detecting

malicious application. In the first phase, the dataset is prepared and processed to be in a

suitable format to extract the desired features that will be used to structure the pattern that

Feature Selection Classification

Data Collection

Feature Extraction

	00. NEW TITLE PAGE
	01. TITLE PAGE_SECOND PAGE
	1. DECLARATION
	2. APPROVAL
	3. DEDICATION
	4. ABSTRACT BI
	5. ABSTRAK BM
	6. ACKNOWLEDGEMENTS
	7. TABLE OF CONTENTS
	8. LIST OF TABLES
	9. LIST OF FIGURES
	10. LIST OF APPENDICES
	11. LIST OF ABBREVIATIONS
	12. LIST OF PUBLICATIONS
	COMBINED
	APPENDIX A
	APPENDIX B
	APPENDIX C

