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ABSTRACT 

 

 

In sports training, muscle endurance training using surface electromyography (sEMG) 

analysis is manually monitored by human coach. Decisions rely very much on 

experience. Hence, the endurance training plan for an athlete needs to be individually 

designed by an experienced coach. The pre-designed training plan suits the athlete 

fitness state in general, but not in real time. Real-time muscle fatigue monitoring and 

feedback helps in understanding every fitness states throughout the training to optimise 

muscle performance. This can be realized with muscle fatigue prediction using 

computational modelling. This research proposed an integrated Fuzzy C-Means and 

Radial Basis Function Network (FCM-RBFN) technique to model the relationship 

between muscle loads versus the muscle fatigue using the sEMG signals. The Fuzzy C-

Means techniques aims to cluster similar sEMG signal patterns into three separate 

groups based on muscle strength level, to facilitate the Radial basis function network in 

future muscle load prediction. The scope of the research limits the non-invasive EMG 

acquisition to only the isotonic arm lifting task, involving four electrodes on biceps 

brachii and flexor carpi radialis muscles group. Three sessions of training data, each 

with a gap of at least three days‟ rest, were acquired from a group of volunteer 

undergraduate athletes. The research follows the experimental research methodology, 

including problem investigation, experimental paradigm design, signal pre-processing 

analysis, feature extraction, model construction, and performance validation. Due to the 

higher amount of motion artefact, research in isotonic muscle fatigue prediction is very 

much lesser than the isometric prediction. Hence, the Butterworth high-pass noise filter 

on isotonic muscle fatigue data were studied using three cut-off thresholds, 5 Hz, 10 Hz, 

and 20 Hz. The best prediction performance was achieved by the 10 Hz filter with 0.028 

average mean square errors. A total of seven popular feature extraction methods, 

namely, the mean absolute value, the root mean square, the variance of EMG, the 

standard deviation, the zero crossing, the median frequency, and the mean were explored 

to construct the predictive feature vectors. The mean square error was used to 

benchmark the experimental results with the Artificial Neural Network. The 

experimental result shows that the proposed FCM-RBFN technique is able to predict 

different load intensity efficiently according to real time muscle condition against 

fatigue. The experimental findings suggest that a long isotonic training task induces 

fatigue, hence it contributes to data noise that will affect muscle load prediction in 

overall. Therefore, training load should be reduced on the first detection of muscle 

fatigue sEMG signal, in order to prolong the muscle resistance against fatigue. Future 

research should study on dynamic cluster number instead of the fixed cluster 

initialization in FCM technique. Also, the proposed model should be validated using 

multiple sessions in different periods of time length to further support the hypothesis of 

muscle endurance.  
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ABSTRAK 

 

 

Dalam latihan sukan, latihan daya tahan otot menggunakan surface Electromyography 

(sEMG) analisis yang dipantau secara manual oleh jurulatih manusia yang 

berpengalaman. Oleh itu, pelan latihan daya tahan untuk atlet perlu direka secara 

individu oleh jurulatih. Pelan latihan dirancang terlebih dahulu sesuai dengan keadaan 

kecergasan atlet secara umum, tetapi tidak dalam masa nyata untuk membantu dalam 

memahami setiap tahap kecergasan sepanjang latihan untuk mengoptimumkan prestasi 

otot. Ini dapat direalisasikan dengan ramalan keletihan otot menggunakan pemodelan 

komputasi. Kajian ini mencadangkan satu teknik Fuzzy C-Means dan Radial Basis 

Function Network (FCM-RBFN) untuk model hubungan antara beban otot berbanding 

keletihan otot menggunakan isyarat sEMG. Teknik Fuzzy C-Means bertujuan untuk 

mengelompokkan pola isyarat sEMG yang sama ke dalam tiga kumpulan berasingan 

berdasarkan tahap kekuatan otot, untuk memudahkan Radial Basis Function Network 

meramal beban otot. Skop penyelidikan mengehadkan kepada EMG yang tidak invasif dan 

untuk tugas mengangkat lengan isotonik, yang melibatkan empat elektroda pada kumpulan 

otot biceps brachii dan flexor carpi radialis. Tiga sesi data latihan, masing-masing dengan 

jurang rehat sekurang-kurangnya tiga hari, diperoleh daripada sekumpulan atlet siswazah 

sukarela. Penyelidikan ini mengikuti metodologi penyelidikan eksperimen, termasuk 

penyiasatan masalah, reka bentuk paradigma eksperimen, isyarat analisis pra-

pemprosesan, pengekstrakan ciri, pembinaan model, dan pengesahan prestasi. Oleh 

kerana jumlah artefak gerakan yang lebih tinggi, penyelidikan dalam ramalan isotonic 

fatigue adalah jauh lebih rendah daripada ramalan isometrik. Oleh itu, Butterworth high-

pass noise filter pada data keletihan otot isotonik telah dikaji menggunakan tiga cut-off 

thresholds, iaitu 5 Hz, 10 Hz, dan 20 Hz. Prestasi ramalan terbaik dicapai oleh filter 10 Hz 

dengan average mean square errors, 0.028. Sejumlah tujuh kaedah pengekstrakan ciri 

popular, iaitu, mean absolute value, root mean square, variance of EMG, standard 

deviation, zero crossing, the median frequency, dan mean diteliti untuk membina vektor 

ciri ramalan. Mean square error telah digunakan untuk penanda aras keputusan 

eksperimen dengan Artificial Neural Network. Hasil eksperimen menunjukkan bahawa 

teknik FCM-RBFN yang dicadangkan dapat meramalkan intensiti beban yang berbeza 

dengan cekap berdasarkan keadaan otot masa nyata terhadap keletihan. Penemuan 

eksperimen menunjukkan bahawa tugas latihan isotonik yang panjang mendorong 

keletihan, oleh itu ia menyumbang kepada data noise dan menjejaskan ramalan beban otot 

secara keseluruhan. Oleh itu, beban latihan perlu dikurangkan pada pengesanan pertama 

isyarat sEMG keletihan otot, untuk memanjangkan rintangan otot terhadap keletihan. 

Penyelidikan masa depan perlu mengkaji nombor cluster dinamik dan bukannya 

permulaan cluster tetap dalam teknik FCM. Juga, model yang dicadangkan perlu disahkan 

menggunakan pelbagai sesi dalam tempoh masa yang berlainan untuk menyokong 

hipotesis ketahanan otot.  
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  CHAPTER 1

 

INTRODUCTION 

 

1.1 Overview 

Chapter 1 briefly describe the overall focus of the study, including the background 

of study, problem statement, research questions, research objectives, research scope, 

research significance and the contribution of the research. At the end of this chapter, a 

summary is provided to describe the organization of the chapters in this thesis. 

 

1.2 Project background 

Muscle endurance training serves the purpose of building up human muscles 

strength to the optimum level. This physical exercise is used in physiotherapy and 

rehabilitation for restoring the condition of injured muscle to regain its‟ strength. It is also 

commonly used in sport science during muscle building workout. Muscle endurance 

training involves stimulating the contraction and relaxation in targeted muscles to build 

strength against resistance. Muscle contraction against resistance in which the length of the 

muscle remains the same is called isometric contraction. In opposite, isotonic contraction is 

the length of the muscle changes. Various loads are used as resistance in both isometric 

and isotonic endurance training to stimulate the body muscles for a predetermined time 

length to make sure the targeted muscles are properly trained up. Muscle endurance 

training will only achieve the best results when the targeted muscles are stimulated 

optimally. Light training will definite not achieving the training objective. However, 

overstressing the muscles will also cause muscle fatigue and injury. To achieve the best 



2 

outcome, a trainer usually needs to study and prepare a training programme according to 

individual body fitness state. 

The success stories in biomedical technologies have driven the effort of health 

status monitoring using various biomedical sensors. The electromyography (EMG) signals 

analysis is one of the basic methods in checking the muscle activities in the sport training 

programs. Continuous monitoring on muscle training performance has proven promising 

results in assisting the trainer to design and adjust the training program to suit individual 

trainee‟s needs. This promising approach relies heavily on the computational intelligent 

algorithms to make smart suggestion based on trainee‟s muscle states. However, most of 

the current muscle endurance training applications are partially intelligent. They are able to 

recognise different muscle states based on EMG signals, but very few are able to give good 

recommendation to alter the training programme at real time. Thus, human intervention is 

still needed in regulating the training programme by observing the EMG signals changes. 

Hence, a fulltime coach is required for each trainee to achieve real personalised sport 

training. 

On the other hand, various efforts have been researched to increase the automation 

of personalised sport training towards the paradigm of personalised self-monitoring. This 

includes the invention of more accurate data acquisition procedures (Gini et al., 2012; 

Samarawickrama et al., 2018) lightweight wearable sensors (Sharma et al., 2016; 

Majumder et al., 2018) intelligent monitoring models (Xi et al., 2018) robust interfacing 

(Kim et al., 2018; Phinyomark et al., 2018) higher level of analytics on monitoring results 

(Christopher et al., 2018) and many more. Many of the research work are to model the 

dynamic muscle states and to provide the simple yet meaningful solutions. Some higher 

level analytical applications aim to prescribe suitable EMG biofeedback to the trainee 

through machine learning experiment (Merletti and Parker, 2004). 
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Computational modelling is broadly utilized in different human related issues 

understanding, for example, in physiotherapy, rehabilitation programme or even in sport 

training. In muscle endurance training, variable-load intensity model is usually suggested 

either to improve the muscle strength or for rehabilitation purposes (Nazmi et al., 2016). 

Variable-load solution requires close monitoring by trainer onto its trainee. Limitation in 

expert availability hinders the realisation of personalised sport training. Fuzzy C-Means 

(FCM) technique has been long proven good in surface electromyography (sEMG) muscle 

fatigue prediction due to its simple network structure and processing speed. FCM offers 

good adaptive strength but the cluster number remains predefined by expert either through 

thresholds or fixed cluster number methods. Initialized cluster number is important in 

variable-load intensity modelling by aligning muscle force, endurance and load intensity to 

individual physical status. Thus, a prediction technique based on short-term historical data 

is crucial in predicting the nonlinear intensity needs for different types of sport training 

program. 

 

1.3 Problem statement 

To date, computational models are focusing on the isometric muscle contraction 

instead of isotonic muscle contraction (James et al., 2018). Movement noise in isotonic 

contraction increases the challenges of computation modelling significantly. Since many 

sport training sessions involve isotonic muscle strength drill, modelling the isotonic muscle 

endurance is essential in encouraging personalised sport training. Monitoring muscle 

contraction using sEMG is common but vulnerable to data noise influence. Extracting good 

features are proven beneficial in various biomedical classification tasks (Phinyomark et al., 

2018). Likewise, similar effort can be done to identify features which are immune to 

movement and environmental noises for isotonic sEMG muscle signals modelling. The 
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initiative of variable load intensity prediction was leverage on modelling human expert 

knowledge (Reaz et al., 2006; Leu, 2016). The advancement of biomedical applications 

enables computational modelling through historical data to overcome the major 

shortcomings of expert system. However, there is only limited report from literature on 

designing the dynamic biofeedback approach for isotonic muscle prediction. Almost all of 

them are focusing on predicting muscle fatigue instead of muscle endurance (Rostami et 

al., 2018; Wang et al., 2018).  

The frequency and time domains are the features that be used by past studies to 

predict the muscle fatigue. However, before extracted the raw data, the best noise filtering 

will be determined. A noise filter is designed to attenuate the specific ranges of frequencies 

while allowing other informative and meaningful data to pass. There are several types of 

the frequency spectrum of a signal filters such as low pass filter, high-pass filter, band pass 

filter and band stop filter and all of them need a specific cut-off frequency threshold during 

implementation. The movement artifact is the most critical noise in dynamic task and 

fundamentally important issue since noise filtration will directly affect the quality of data 

feeding into the learning model. A recommended filter method and its cut off threshold is 

needed especially for modelling isotonic muscle task. 

The most common method used by many sport science coaches is still the 1RM 

prediction formula, which lacks of approximation strength to produce continuous 

prediction. To the knowledge of this study, it is yet to be found any solid conclusion on 

trustworthy computational modelling approach for muscle endurance modelling. 

Therefore, proposition on reliable and consistent modelling approach and techniques are 

essential to boost the computational personalised isotonic muscle endurance initiative. 




