

Faculty of Information and Communication Technology

FCM-RBFN INTEGRATION TECHNIQUE FOR IMPROVING ISOTONIC MUSCULAR ENDURANCE LOAD PREDICTION

Nur Shidah binti Ahmad Sharawardi

Master of Science in Information and Communication Technology

2020

FCM-RBFN INTEGRATION TECHNIQUE FOR IMPROVING ISOTONIC MUSCULAR ENDURANCE LOAD PREDICTION

NUR SHIDAH BINTI AHMAD SHARAWARDI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Information and Communication Technology

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "FCM-RBFN Integration Technique for Improving Isotonic Muscular Endurance Load Prediction" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:
Name	: Nur Shidah Binti Ahmad Sharawardi
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Information and Communication Technology.

Signature	:
Supervisor Name	: Associate Professor Dr. Choo Yun Huoy
Date	:

DEDICATION

Dedicated to: Mama, & Ayah. Mil & Fil Husband, Khairul Anuar. Aten & family, Along & family. Dr Choo & Siaw Hong Asmah Thank you for all you love. May Allah bless us.

ABSTRACT

In sports training, muscle endurance training using surface electromyography (sEMG) analysis is manually monitored by human coach. Decisions rely very much on experience. Hence, the endurance training plan for an athlete needs to be individually designed by an experienced coach. The pre-designed training plan suits the athlete fitness state in general, but not in real time. Real-time muscle fatigue monitoring and feedback helps in understanding every fitness states throughout the training to optimise muscle performance. This can be realized with muscle fatigue prediction using computational modelling. This research proposed an integrated Fuzzy C-Means and Radial Basis Function Network (FCM-RBFN) technique to model the relationship between muscle loads versus the muscle fatigue using the sEMG signals. The Fuzzy C-Means techniques aims to cluster similar sEMG signal patterns into three separate groups based on muscle strength level, to facilitate the Radial basis function network in future muscle load prediction. The scope of the research limits the non-invasive EMG acquisition to only the isotonic arm lifting task, involving four electrodes on biceps brachii and flexor carpi radialis muscles group. Three sessions of training data, each with a gap of at least three days' rest, were acquired from a group of volunteer undergraduate athletes. The research follows the experimental research methodology, including problem investigation, experimental paradigm design, signal pre-processing analysis, feature extraction, model construction, and performance validation. Due to the higher amount of motion artefact, research in isotonic muscle fatigue prediction is very much lesser than the isometric prediction. Hence, the Butterworth high-pass noise filter on isotonic muscle fatigue data were studied using three cut-off thresholds, 5 Hz, 10 Hz, and 20 Hz. The best prediction performance was achieved by the 10 Hz filter with 0.028 average mean square errors. A total of seven popular feature extraction methods, namely, the mean absolute value, the root mean square, the variance of EMG, the standard deviation, the zero crossing, the median frequency, and the mean were explored to construct the predictive feature vectors. The mean square error was used to benchmark the experimental results with the Artificial Neural Network. The experimental result shows that the proposed FCM-RBFN technique is able to predict different load intensity efficiently according to real time muscle condition against fatigue. The experimental findings suggest that a long isotonic training task induces fatigue, hence it contributes to data noise that will affect muscle load prediction in overall. Therefore, training load should be reduced on the first detection of muscle fatigue sEMG signal, in order to prolong the muscle resistance against fatigue. Future research should study on dynamic cluster number instead of the fixed cluster initialization in FCM technique. Also, the proposed model should be validated using multiple sessions in different periods of time length to further support the hypothesis of muscle endurance.

ABSTRAK

Dalam latihan sukan, latihan daya tahan otot menggunakan surface Electromyography (sEMG) analisis yang dipantau secara manual oleh jurulatih manusia yang berpengalaman. Oleh itu, pelan latihan daya tahan untuk atlet perlu direka secara individu oleh jurulatih. Pelan latihan dirancang terlebih dahulu sesuai dengan keadaan kecergasan atlet secara umum, tetapi tidak dalam masa nyata untuk membantu dalam memahami setiap tahap kecergasan sepanjang latihan untuk mengoptimumkan prestasi otot. Ini dapat direalisasikan dengan ramalan keletihan otot menggunakan pemodelan komputasi. Kajian ini mencadangkan satu teknik Fuzzy C-Means dan Radial Basis Function Network (FCM-RBFN) untuk model hubungan antara beban otot berbanding keletihan otot menggunakan isyarat sEMG. Teknik Fuzzy C-Means bertujuan untuk mengelompokkan pola isyarat sEMG yang sama ke dalam tiga kumpulan berasingan berdasarkan tahap kekuatan otot, untuk memudahkan Radial Basis Function Network meramal beban otot. Skop penyelidikan mengehadkan kepada EMG yang tidak invasif dan untuk tugas mengangkat lengan isotonik, yang melibatkan empat elektroda pada kumpulan otot biceps brachii dan flexor carpi radialis. Tiga sesi data latihan, masing-masing dengan jurang rehat sekurang-kurangnya tiga hari, diperoleh daripada sekumpulan atlet siswazah sukarela. Penyelidikan ini mengikuti metodologi penyelidikan eksperimen, termasuk penyiasatan masalah, reka bentuk paradigma eksperimen, isyarat analisis prapemprosesan, pengekstrakan ciri, pembinaan model, dan pengesahan prestasi. Oleh kerana jumlah artefak gerakan yang lebih tinggi, penyelidikan dalam ramalan isotonic fatigue adalah jauh lebih rendah daripada ramalan isometrik. Oleh itu, Butterworth highpass noise filter pada data keletihan otot isotonik telah dikaji menggunakan tiga cut-off thresholds, iaitu 5 Hz, 10 Hz, dan 20 Hz. Prestasi ramalan terbaik dicapai oleh filter 10 Hz dengan average mean square errors, 0.028. Sejumlah tujuh kaedah pengekstrakan ciri popular, iaitu, mean absolute value, root mean square, variance of EMG, standard deviation, zero crossing, the median frequency, dan mean diteliti untuk membina vektor ciri ramalan. Mean square error telah digunakan untuk penanda aras keputusan eksperimen dengan Artificial Neural Network. Hasil eksperimen menunjukkan bahawa teknik FCM-RBFN yang dicadangkan dapat meramalkan intensiti beban yang berbeza dengan cekap berdasarkan keadaan otot masa nyata terhadap keletihan. Penemuan eksperimen menunjukkan bahawa tugas latihan isotonik yang panjang mendorong keletihan, oleh itu ia menyumbang kepada data noise dan menjejaskan ramalan beban otot secara keseluruhan. Oleh itu, beban latihan perlu dikurangkan pada pengesanan pertama isyarat sEMG keletihan otot, untuk memanjangkan rintangan otot terhadap keletihan. Penyelidikan masa depan perlu mengkaji nombor cluster dinamik dan bukannya permulaan cluster tetap dalam teknik FCM. Juga, model yang dicadangkan perlu disahkan menggunakan pelbagai sesi dalam tempoh masa yang berlainan untuk menyokong hipotesis ketahanan otot.

ACKNOWLEDGEMENTS

First of all, a lot of thanks and love to my dear supportive and motivation supervisor Associate Professor Dr. Choo Yun Huoy, who has always been available and patient especially in those times that I need help. Much thanks to you for having confidence in me especially when I had questions about this entire research. Also thank to Associate Professor Dr. Chong Shin Horng and Associate Professor Dr. Nur Ikhwan Mohamad for all he and her helps, support, and valuable hints. Not to forget the appreciation to the generous helps on study and research from lecturers and staffs in Faculty of Information and Communication Technology for providing me a great environment to study and permission to run a field work at UPSI. Especially, in provided me the facility of hardware during the period of research. I want to express my exceptionally extraordinary gratefulness to every one of my companions for their consideration, support and consolation to me. We shared our essential minutes together in the previous three years. Especially to Mas, Asmah, Shikin, Siaw Hong and all CIT lab members. Finally, special thanks go to my parent, husband and my entire family for providing me unconditional help and consolation all through my time in UTeM.

TABLE OF CONTENTS

			PAGE
		RATION	
	PROV		
	EDICA		
	BSTRA		i
	BSTRA		ii
		WLEDGEMENTS	iii
		OF CONTENTS TABLES	iv
		FIGURES	vii ix
		APPENDICES	
		ABBREVIATIONS	xiii
		PUBLICATIONS	XIII XV
CH	IAPTI	CR	
1.		RODUCTION	1
	1.1	Overview	1
	1.2	Project background	1
	1.3	Problem statement	3
	1.4	Research question	5
	1.5	Research objective	5
	1.6	Hypothesis	6
	1.7	Research scope	6
	1.8	Research significance	7
	1.9	Expected output	9
	1.10 1.11	Thesis organization	9 12
	1.11	Summary	12
2.		ERATURE REVIEW	13
	2.1	Introduction	13
	2.2	Bio-signals	14
	2.3	Endurance training and fatigue in sport science	17
	2.4	sEMG characteristic during isometric and isotonic muscle	22
	2.5	contraction Surface electromyography signal (sEMG) on muscle analysis	24
	2.5	Surface electromyography signal (sEMG) on muscle analysis Surface electromyography signal (sEMG) placements	24
	2.0	Surface electromyography (sEMG) experimental paradigm	29
	2.8	Inherent noise in raw sEMG signal and signal pre-processing for	31
	2.0	isotonic muscle task	01
		2.8.1 Inherent noise in the electrode	32
		2.8.2 Movement artefact	33
		2.8.3 Electromagnetic noise	33
		2.8.4 Cross talk	34
		2.8.5 Internal noise	34
		2.8.6 Inherent instability of the signal	35
		2.8.7 Electrocardiography (ECG) artifacts	35
	2.9	sEMG signal processing and features extraction	36
		2.9.1 Time domain features	40

2.9.1 Time domain features

		2.9.2 Frequency domain features	40	
	2.10	Predicting techniques in muscle fatigue load	42	
	2.11	Original Fuzzy C-Mean (FCM)	50	
	2.12	Radial Basis Function Network (RBFN)		
	2.13			
		RBF Neural Network)		
	2.14	Benchmark techniques	53	
	2.15	Performance measurement	56	
	2.16	Problem situation and solution concept	57	
	2.17	Summary	60	
3.	RES	EARCH METHODOLOGY	61	
	3.1	Introduction	61	
	3.2	Overview of research methodology	61	
		3.2.1 Overall research design	62	
		3.2.2 Investigation component	63	
		3.2.3 Implementation component	64	
	3.3	Operational procedure	66	
		3.3.1 Phase 1 and 2: Data acquisition and data processing	68	
		3.3.2 Phase 3 and 4: Data clustering and predicting (FCM-RBFN technique)	71	
		3.3.3 Phase 5: Performance measurement and validation test	72	
	3.4	Summary	75	
4.	SUR	FACE EMG EXPERIMENT DESIGN AND DATA	76	
		UISITION		
	4.1	Introduction	76	
	4.2	Participants	76	
	4.3	Hardware and software	78	
	4.4	Electrode types and placement	80	
	4.5	Experiment location	82	
	4.6	Experiment setup	83	
	4.7	Signal processing procedure	87	
	4.8	Summary	88	
5.		EGRATION FUZZY C-MEAN BASED RADIAL BASIS	89	
		CTION NETWORK (FCM-RBFN) TECHNIQUE		
	5.1	Introduction	89	
	5.2	Operational research design	89	
	5.3	Proposed integration Fuzzy C-Mean based Radial Basis Function	92	
		Network	0.4	
		5.3.1 Proposed Fuzzy C-Mean	94	
		5.3.2 Proposed Radial Basis Function Network	96	
	5 4	5.3.3 Selection of Radial Basis Function Network Model	99 101	
	5.4	Summary	101	
6.		ERIMENTAL RESULTS AND ANALYSIS	102	
	6.1	Introduction	102	
	6.2	Butterworth high pass filter cut-off threshold analysis using integration FCM-RBFN	103	

	6.3	Predicted load analysis	107
	6.4	Comparison between integration FCM-RBFN and ANN technique	112
	6.5	Comparison between 2 group datasets using integration FCM-RBFN and ANN technique	116
	6.6	Comparison between predicted load and actual load using integration FCM-RBFN and ANN technique	120
	6.7	Discussion	125
	6.8	Summary	127
7.	CON	CLUSION AND FUTURE WORK RECOMMENDATION	129
	7.1	Introduction	129
	7.2	Summary and discussion	129
	7.3	Threats of validity	130
	7.4	Contribution	131
	7.5	Future work and recommendation	132
	7.6	Summary	133
RE	FERE	NCES	134
AP	PEND	ICES	154

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	sEMG signal noise type	
2.2	Mathematical representation of widely used sEMG feature extraction	41
	methods	
2.3	Summary of literature review of predicting technique in muscle fatigue	49
	load	
3.1	Summary of investigation component	64
3.2	Summary of implementation component	65
3.3	Simple square integral (SSI) and waveform length (WL) equation	69
3.4	The criteria for selection of the subject	70
3.5	Different outcomes of Trial/Class 2 and 3 for Artificial Neural Network	73
	(ANN) and integration FCM-RBFN	
4.1	The subject details	77
4.2	The tasks for the experiment	85
5.1	sEMG data for a subject with even presentative predicted class	99
5.2	sEMG data for a subject with odd presentative predicted class	100
6.1	Prediction performance of Butterworth high pass filter with cut-off	104
	threshold at different frequency ranges	
6.2	Normality test result for prediction performance of Butterworth high	104
	pass filter with cut-off threshold at different frequency ranges	

6.3	Validation test of prediction performance for 5, 10, and 20 Hz cut-off	105
	threshold filtering	
6.4	Prediction performance of integration FCM-RBFN and ANN technique	114
	for Class 1	
6.5	Normality test result for prediction performance at Trials/Class 1	115
6.6	Validation test on MSE between integration FCM-RBFN and ANN	115
	technique for Class 1	
6.7	Summary of prediction performance of integration FCM-RBFN and	117
	ANN technique for Class 2 and Class 3	
6.8	Normality test result for prediction performance at Trials/Class 2	118
6.9	Validation test on average MSE value between integration FCM-RBFN	119
	and ANN techniques for Class 2 and Class 3	

viii

LIST OF FIGURES

FIGURE	TITLE	
2.1	Literature review on purpose, technique, type and feature extraction	15
	under bio-signal in human	
2.2	Literature review on sport conditioning using surface EMG in isotonic	16
	muscle contraction	
2.3	Types of muscle contraction (Boundless.com, 2018)	23
2.4	The action potential of EMG signal (Ashcroft, 2014)	25
2.5	The biceps brachii and flexor carpi radialis muscles position	29
	(Sharawardi et al., 2014)	
2.6	The present of noise inside the raw EMG signal	32
2.7	Summarised of past studies of statistical based feature extraction	39
	method for sEMG signal	
2.8	Pseudo code for Fuzzy C-Means (Amin et al., 2005)	45
2.9	FCM-RBFN flowchart (Woo et al., 2008)	53
2.10	Artificial Neurons model	54
3.1	Overall research design	62
3.2	Research methodology	67
4.1	Trigno TM wireless 4-channel sensor (A), size of Trigno TM wireless 4-	78
	channel sensor (B) and Trigno [™] Base Station (C) (TrignoTM	
	Wireless EMG, 2018)	

4.2	Block diagram of the myoelectric interface system	79
4.3	The correct position to lift the dumbbell	81
4.4	Muscles type on human hand	82
4.5	The sEMG data collection setup for isotonic muscle contractions	83
4.6	The experiment design process	84
4.7	The endurance training schedule	84
5.1	Operational research design of integration of FCM-RBFN technique	90
5.2	Integration FCM-RBFN flowchart	93
5.3	Network RBFN net stimulate in testing phase algorithm	95
5.4	Architecture of RBFN	98
5.5	RBFN modelling algorithm	99
5.6	Selection of RBFN model	100
6.1	Average prediction MSE performance of Butterworth high pass filter	106
	with cut-off threshold at different frequency ranges	
6.2	Normal raw sEMG signal of right biceps decreasing muscle activation	108
6.3	Decreasing predicted load of the sEMG signal	108
6.4	Raw sEMG signal of right biceps with increasing muscle activation	109
6.5	Increasing predicted load of the sEMG signal	110
6.6	Raw sEMG signal of right biceps with difference muscle activation	111
6.7	Predicted load of the sEMG signal, (a) and (b)	112
6.8	Prediction performance of integration FCM-RBFN and ANN	113
	techniques	
6.9	Hypothesis of finding total 'true' and total 'might true'	116
6.10	The standard deviation and mean of predicted and actual/original load	121
	and fatigue level by FCM-RBFN vs ANN across 3 classes	

6.11	Comparison of Class 1 between predicted load and original load for	122
	integration FCM-RBFN technique	
6.12	Comparison of Class 2 between predicted load and original load for	122
	integration FCM-RBFN technique	
6.13	Comparison of Class 3 between predicted load and original load for	123
	integration FCM-RBFN technique	
6.14	Comparison of Class 1 between predicted load and original load for	123
	ANN	
6.15	Comparison of Class 2 between predicted load and original load for	124
	ANN	
6.16	Comparison of Class 3 between predicted load and original load for	125
	ANN	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Source code	154
В	Sample of dataset and result of FCM-RBFN	160
С	Sample of dataset and result of ANN	162
D	Lab attachment request for data collection	164
E	Consent form (participant information sheets)	167
F	Consent form (participant consent form)	171

LIST OF ABBREVIATIONS

1RM	-	One repetition max
AI	-	Artificial Intelligence
ANFIS	-	Adaptive Neuro Fuzzy Inference System
ANN	-	Artificial Neural Network
AUC	-	Area under the curve
BMI	-	Body Mass Index
с	-	Cluster centre
cm	-	Centimeter
ECG	-	Electrocardiogram
EEG	-	Electroencephalogram
EMG	-	Electromyography
EOG	-	Electroretinogram
FCM	-	Fuzzy C-Mean
FCM-RBFN	-	Fuzzy C-Mean based Radial Basis Function Neural Network
FFT	-	Fourier transformation
Hz	-	Hertz
kg	-	Kilogram
LB	-	Left Biceps Brachii muscle
LF	-	Left Flexor Carpi Radialus muscle
MAV	-	Mean Absolute Value

xiii

MDF	-	Median Frequency
MF	-	Mean Frequency
MLP	-	Multilayer Perceptron
MMG	-	Mechanomyogram
MSE	-	Mean square error
PSO	-	Particle Swarm Optimization
PURELIN	-	Linear Transfer Function
RB	-	Right Biceps Brachii muscle
RBF	-	Radial Basis Function
RF	-	Right Flexor Carpi Radialus muscle
RMS	-	Root Mean Square
ROC	-	Receiver operating characteristic
sEMG	-	Surface Electromyography
STD	-	Standard deviation
SVM	-	Support Vector Machine
TANSIG	-	Hyperbolic Tangent Sigmoid Transfer
TRAINLM	-	Levenberg-Marquardt algorithm
VAR	-	Variance of EMG
ZC	-	Zero Crossing

LIST OF PUBLICATIONS

Sharawardi, N.S.A., and Choo, Y., 2018. Isotonic Muscle Fatigue Prediction for Sport Training. *Hybrid Intelligent Systems*, 3 (SoCPaR 2016), pp.232–241.

Sharawardi, N.S.A., Choo, Y., Chong, S., and Mohamad, N.I., 2018a. Integration FCM-RBFN with Butterworth Noise Filteration Frequency for Isotonic Muscle Fatigue Analysis. *International Journal of Computer Information Systems and Industrial Management Applications*, 10, pp.47–56.

Sharawardi, N.S.A., Choo, Y., Chong, S., and Mohamad, N.I., 2018b. A Comparison of Butterworth Noise Filteration Frequency for Isotonic Muscle Fatigue Analysis. In: *International Conference on Health Information Science*. Springer International Publishing, pp.423–450.

Sharawardi, N.S.A., Choo, Y., Chong, S., Muda, A.K., and Goh, O.S., 2014. In: *4th World Congress on Information and Communication Technologies (WICT 2014)*, pp.320–325.

CHAPTER 1

INTRODUCTION

1.1 Overview

Chapter 1 briefly describe the overall focus of the study, including the background of study, problem statement, research questions, research objectives, research scope, research significance and the contribution of the research. At the end of this chapter, a summary is provided to describe the organization of the chapters in this thesis.

1.2 Project background

Muscle endurance training serves the purpose of building up human muscles strength to the optimum level. This physical exercise is used in physiotherapy and rehabilitation for restoring the condition of injured muscle to regain its' strength. It is also commonly used in sport science during muscle building workout. Muscle endurance training involves stimulating the contraction and relaxation in targeted muscles to build strength against resistance. Muscle contraction against resistance in which the length of the muscle remains the same is called isometric contraction. In opposite, isotonic contraction is the length of the muscle changes. Various loads are used as resistance in both isometric and isotonic endurance training to stimulate the body muscles for a predetermined time length to make sure the targeted muscles are properly trained up. Muscle endurance training will only achieve the best results when the targeted muscles are stimulated optimally. Light training will definite not achieving the training objective. However, overstressing the muscles will also cause muscle fatigue and injury. To achieve the best outcome, a trainer usually needs to study and prepare a training programme according to individual body fitness state.

The success stories in biomedical technologies have driven the effort of health status monitoring using various biomedical sensors. The electromyography (EMG) signals analysis is one of the basic methods in checking the muscle activities in the sport training programs. Continuous monitoring on muscle training performance has proven promising results in assisting the trainer to design and adjust the training program to suit individual trainee's needs. This promising approach relies heavily on the computational intelligent algorithms to make smart suggestion based on trainee's muscle states. However, most of the current muscle endurance training applications are partially intelligent. They are able to recognise different muscle states based on EMG signals, but very few are able to give good recommendation to alter the training programme at real time. Thus, human intervention is still needed in regulating the training programme by observing the EMG signals changes. Hence, a fulltime coach is required for each trainee to achieve real personalised sport training.

On the other hand, various efforts have been researched to increase the automation of personalised sport training towards the paradigm of personalised self-monitoring. This includes the invention of more accurate data acquisition procedures (Gini et al., 2012; Samarawickrama et al., 2018) lightweight wearable sensors (Sharma et al., 2016; Majumder et al., 2018) intelligent monitoring models (Xi et al., 2018) robust interfacing (Kim et al., 2018; Phinyomark et al., 2018) higher level of analytics on monitoring results (Christopher et al., 2018) and many more. Many of the research work are to model the dynamic muscle states and to provide the simple yet meaningful solutions. Some higher level analytical applications aim to prescribe suitable EMG biofeedback to the trainee through machine learning experiment (Merletti and Parker, 2004). Computational modelling is broadly utilized in different human related issues understanding, for example, in physiotherapy, rehabilitation programme or even in sport training. In muscle endurance training, variable-load intensity model is usually suggested either to improve the muscle strength or for rehabilitation purposes (Nazmi et al., 2016). Variable-load solution requires close monitoring by trainer onto its trainee. Limitation in expert availability hinders the realisation of personalised sport training. Fuzzy C-Means (FCM) technique has been long proven good in surface electromyography (sEMG) muscle fatigue prediction due to its simple network structure and processing speed. FCM offers good adaptive strength but the cluster number remains predefined by expert either through thresholds or fixed cluster number methods. Initialized cluster number is important in variable-load intensity modelling by aligning muscle force, endurance and load intensity to individual physical status. Thus, a prediction technique based on short-term historical data is crucial in predicting the nonlinear intensity needs for different types of sport training program.

1.3 Problem statement

To date, computational models are focusing on the isometric muscle contraction instead of isotonic muscle contraction (James et al., 2018). Movement noise in isotonic contraction increases the challenges of computation modelling significantly. Since many sport training sessions involve isotonic muscle strength drill, modelling the isotonic muscle endurance is essential in encouraging personalised sport training. Monitoring muscle contraction using sEMG is common but vulnerable to data noise influence. Extracting good features are proven beneficial in various biomedical classification tasks (Phinyomark et al., 2018). Likewise, similar effort can be done to identify features which are immune to movement and environmental noises for isotonic sEMG muscle signals modelling. The initiative of variable load intensity prediction was leverage on modelling human expert knowledge (Reaz et al., 2006; Leu, 2016). The advancement of biomedical applications enables computational modelling through historical data to overcome the major shortcomings of expert system. However, there is only limited report from literature on designing the dynamic biofeedback approach for isotonic muscle prediction. Almost all of them are focusing on predicting muscle fatigue instead of muscle endurance (Rostami et al., 2018; Wang et al., 2018).

The frequency and time domains are the features that be used by past studies to predict the muscle fatigue. However, before extracted the raw data, the best noise filtering will be determined. A noise filter is designed to attenuate the specific ranges of frequencies while allowing other informative and meaningful data to pass. There are several types of the frequency spectrum of a signal filters such as low pass filter, high-pass filter, band pass filter and band stop filter and all of them need a specific cut-off frequency threshold during implementation. The movement artifact is the most critical noise in dynamic task and fundamentally important issue since noise filtration will directly affect the quality of data feeding into the learning model. A recommended filter method and its cut off threshold is needed especially for modelling isotonic muscle task.

The most common method used by many sport science coaches is still the 1RM prediction formula, which lacks of approximation strength to produce continuous prediction. To the knowledge of this study, it is yet to be found any solid conclusion on trustworthy computational modelling approach for muscle endurance modelling. Therefore, proposition on reliable and consistent modelling approach and techniques are essential to boost the computational personalised isotonic muscle endurance initiative.