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Abstract 

Thin-film Copper Indium Gallium Selenide (CIGS) solar cell is identified to be 
one of the promising structures to replace conventional silicon-based solar cell 
due to its lower cost and reduced thickness. Nevertheless, the impact of layer 
thickness and doping concentration of a window layer - Zinc oxide (ZnO), a 
buffer layer - Cadmium sulfide (Cds) and an absorber layer (CIGS) needs to be 
intelligently controlled for more balanced CIGS solar cell performances. Thus, 
this paper proposes a newly predictive analytics using a combination of Grey 
relational analysis (GRA), multiple linear regressions (MLR) and genetic 
algorithm (GA) to optimize the CIGS solar cell parameters for better device 
performances. The CIGS solar cell model is developed and simulated using solar 
cell capacitance simulator (SCAPS). The final results prove that the proposed 
combinational GRA-MLR-GA model has successfully optimized the CIGS solar 
cell parameters in which ZnO thickness (TZnO), Cds thickness (TCds), CIGS 
thickness (TCIGS) and CIGS doping concentration (NaCIGS) are predictively 
optimized to be 0.03 μm, 0.03μm, 2.86 μm and 9.937x1017 cm-3 respectively. The 
most optimum magnitudes for open circuit voltage (Voc), short circuit current 
density (Jsc), fill factor (FF), and power conversion efficiency (η) after the 
predictive analytics are measured at 0.8206 V, 32.419 mA/cm2, 83.23% and 
22.14% reciprocally. 

Keywords: Fill factor, Open circuit voltage, Power conversion efficiency, Short 
circuit current density. 
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1.  Introduction 
Multiple approaches to developing thin-film solar cells have tremendously received 
a lot of attention nowadays as they are believed to contribute significant 
improvements in solar cell efficiency. In addition, a thin-film of solar cell 
significantly eases the manufacturing process because the fabrication processes 
depend on multiple layer substances, hence not having to rely on the molten silicon 
that would probably take longer production time. One prominent advantage of thin-
film solar cell is its direct band-gap energy where the lattice momentum of electrons 
and holes is equivalent in both conduction and valence band, subsequently allowing 
an electron to directly diffuse a photon. 

Copper Indium Gallium Selenide (CIGS) solar cell is one of the popular types 
of thin-film photovoltaic devices that utilize GIGS layer to emulate as a p-type 
absorber material. At the moment, research and development on CIGS solar cell is 
still rapidly being conducted for better device performances and reduced cost. One 
of the effective methods to further improve CIGS solar cell performances is by 
controlling the random variation of material parameters. Numerous simulation 
attempts on improving the CIGS solar cell performances have been previously 
conducted [1-4] by optimizing the different material layer thickness and doping 
concentration. Thus, tuning both material thickness and doping concentration has 
been recognized as a practical approach to improve solar cell performances [5-8].  

A lot of predictive optimization methods have been introduced and employed to 
improve multiple types of  device and product properties [9-14]. The primary 
objective of these predictive optimization approaches (e.g., Taguchi method, 
response surface methodology, factorial design and etc.) is to identify the optimum 
magnitude of input parameters that would subsequently yield the best output 
performances [15-19]. Thus, this paper will introduce a newly predictive analytics 
using a combination of Grey relational analysis (GRA), multiple linear regression 
(MLR) and genetic algorithm (GA) to optimize the CIGS solar cell parameters for 
improved performances. The organization of this manuscript is defined as follows: 
Section 2 describes the numerical simulation of the CIGS solar cell using solar cell 
capacitance simulator (SCAPS).  Section 3 generally explains the proposed predictive 
analytics using a combinational GRA-MLR-GA model. Section 4 comprehensively 
discusses the results of the predictive analysis. Finally, the conclusions of this present 
work are presented in Section 5. 

2.  Numerical Simulation  
In the current work, numerical simulation and modeling of thin-film CIGS solar 
cell have been conducted using solar cell capacitance simulator (SCAPS). 
Originally, SCAPS is a freely available one-dimensional solar cell simulation 
software developed by the Department of Electronics and Information Systems 
(ELIS) of the University of Gent, Belgium [20]. SCAPS has been widely used in 
photovoltaic researches especially for investigating the impact of semiconductor 
layers with multiple defect levels upon the solar cell performance [21-23]. 
Furthermore, SCAPS allows multiple structures of the photovoltaic cell with 
different numbers and types of a layer to be simulated at multiple doping profiles 
(donor/acceptor) in accordance with a specific light spectrum.  
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The numerical simulation was initiated with three layers of CIGS model in 
which the baseline was configured with a Copper Indium Gallium Selenide (CIGS) 
layer as an absorber layer, stacked together with Cadmium Sulfide (Cds) as a buffer 
layer and Zinc Oxide (ZnO) as a window layer. The completed structure comprises 
window (ZnO) layer, buffer (Cds) layer, p-type absorber (CIGS) layer, back contact 
(Molybdenum) layer and glass substrate layer as illustrated in Fig. 1. 

 
Fig. 1. Cross-sectional structure of CIGS solar cell. 

Both window and buffer layers were initially set at 0.04 μm of thickness while 
the absorber layer was set at 2 μm of thickness. The thickness of the absorber layer 
is selected in a way that it must be greater than penetration depth of the longest 
wavelength absorbed. As for the window layer it must be capable enough to absorb 
the energetic photons and subsequently let them diffuse to the junction. The back 
contact (Molybdenum) and glass substrate were pre-defined in SCAPS software 
and their parameters would remain unchanged. The main function of the back 
contact was to reflect the unabsorbed sunlight back to the absorber for much better 
conversion efficiency. The bandgap energy (Eg) and the electron affinity, (Eea) were 
fixed at 1.20 eV and 4.25 eV in conjunction with the previous reports in [1, 24] as 
tabulated in Table 1. 

Table 1. Test model specifications and test conditions. 
Parameter p-CIGS n-Cds n-ZnO 
Band gap, Eg (eV) 1.2 2.40 3.30 
Electron affinity, Eea (eV) 4.25 4.20 4.45 

 

The simulations were carried out within the specified ranges of material 
parameters in each defined layer of the photovoltaic cell. The initial magnitude of the 
related parameters for ZnO, Cds and CIGS are within the reasonable ranges based on 
previous literatures [4, 6] as tabulated in Table 2. Device simulation was conducted 
under the illumination AM 1.5G in which the incident light power was set at 1000 
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W/m2. The initial results are expressed in the current density-voltage (J-V) transfer 
characteristic as depicted in Fig. 2.  

Table 2. Initial Magnitude of Material Parameters for CIGS Solar Cell. 
Material Parameters Units Magnitude 
ZnO (Window) Thickness, TZnO μm 0.04 
CdS (Buffer) Thickness, TCds μm 0.04 
CIGS (Absorber) Thickness, TCIGS μm 2 
CIGS (Absorber) Doping, NaCIGS cm-3 1x1016 

 

 
Fig. 2. Initial J-V transfer characteristic of CIGS solar cell. 

Based on Fig. 2, the initial magnitude for open-circuit voltage (Voc) and short 
circuit current density (Jsc) are measured at 0.7002 V and 34.771 mA/cm2. The Voc is 
the maximum voltage of the CIGS solar cell measured at zero current while the Jsc is 
the current density that flows through the CIGS solar cell when the voltage is set to 
zero (short-circuited). Based on the measured magnitude of both Voc and Jsc, the fill 
factor (FF) of the CIGS solar cell can be mathematically computed as: 

scoc

mpmp

JV
JV

FF =                                                                                                     (1) 

where Vmp and Jmp represents voltage and current density at maximum power point 
respectively. The FF is basically associated with the maximum power output in 
which a higher FF leads to a larger output power. Another significant output 
parameter of the CIGS solar cell is power conversion efficiency (η) which is 
commonly utilized for benchmarking one type of solar cell to another. Power 
conversion efficiency (η) of the CIGS solar cell can be defined as the ratio of the 
maximum output power to the incident light power as mathematically described as: 
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in

ocsc

P
VFFJ ××

=η                                                                                         (2) 

where Pin represents the incident light power. Throughout the initial simulation, the 
magnitude for Voc, Jsc, FF and η are recorded as listed in Table 3. 

Table 3. Initial Magnitude of output Parameters for CIGS Solar Cell. 
Output Parameter Units Magnitude 
Open circuit Voltage, Voc V 0.7002 
Short Circuit Current Density, Jsc A/cm2 34.771 
Fill Factor, FF % 79.95 
Power Conversion Efficiency, η % 19.47 

In the next section, the investigated material parameters (TZnO, TCds, TCIGS and 
NaCIGS) will be predictively optimized for more balanced CIGS solar cell 
performances using a combinational GRA-MLR-GA model. 

3.  Predictive Analytics using A GRA-MLR-GA model 
This section describes the detailed steps of the predictive analytics employed for 
simultaneous optimization of material parameters for more balanced in CIGS 
solar cell performances. The predictive analytics were initiated with the 18 sets 
of design of experiment (DoE) in which the material parameters as the 
independent variables were distributed into multiple levels (low, medium and 
high) as tabulated in Table 4.  

The DoE was purposely constructed to retrieve sufficient data for developing 
the regression model in the subsequent stage. Each of the material parameters is 
symbolized with x1, x2, x3 and x4 respectively. All the 18 simulation runs were 
conducted based on the equally distributed DoE (Table 5) in order to attain 
adequate experimental data for predictive analytics. The magnitudes of multiple 
dependent variables (output parameters) for each experimental row are also 
recorded in Table 5. 

Table 4. Independent inputs with multiple levels. 

Symbols Material Parameter Unit Level 
Low Medium High 

x1 ZnO (Window) 
Thickness, TZnO μm 0.03 0.04 0.05 

x2 CdS (Buffer) Thickness, 
TCds 

μm 0.03 0.04 0.05 

x3 CIGS (Absorber) 
Thickness, TCIGS 

μm 1 2 3 

x4 CIGS (Absorber) 
Doping, NaCIGS 

cm-3 1x1014 1x1016 1x1018 

The experimental data were then utilized and analysed using the predictive Grey 
Relational Analysis- Multiple Linear Regression (GRA-MLR-GA) model. Figure 3 
depicts the overall process-flow of the predictive analytics using a combinational 
GRA-MLR-GA model. 



2828       K. E. Kaharudin et al. 

 
 
Journal of Engineering Science and Technology           August 2020, Vol. 15(4) 

 

Table 5. 18 sets of experimental design. 
Exp. 
no. A B C D Voc 

(V) 
Isc 

(mA/cm2) 
FF 
(%) 

η 
(%) 

1 Low Low Low Low 0.6946 35.272 82.92 20.32 
2 Low Low Low Medium 0.6984 34.674 80.46 19.48 
3 Low Low Medium High 0.813 31.599 83.46 21.44 
4 Low Medium Medium Low 0.6952 36.331 82.16 20.75 
5 Low Medium High Medium 0.7009 34.894 79.87 19.53 
6 Low Medium High High 0.821 32.376 82.76 22 
7 Medium High Low Low 0.6938 34.202 83.11 19.72 
8 Medium High Low Medium 0.6974 33.731 80.38 18.91 
9 Medium High Medium High 0.8116 31.267 85.52 20.94 

10 Medium Low Medium Low 0.6956 36.828 82.11 21.03 
11 Medium Low High Medium 0.7012 35.203 80.11 19.78 
12 Medium Low High High 0.8215 32.411 83.2 22.15 
13 High Medium Low Low 0.6941 34.572 83.05 19.93 
14 High Medium Low Medium 0.6978 34.149 80.26 19.12 
15 High Medium Medium High 0.8122 31.32 83.06 21.13 
16 High High Medium Low 0.6948 35.826 82.16 20.45 
17 High High High Medium 0.7004 34.286 80.04 19.22 
18 High High High High 0.82 32.081 82.32 21.66 

 

 
Fig. 3. Overall process-flow of the predictive  

analytics using a combinational GRA-MLR-GA model. 
 

3.1. Grey relational analysis (GRA) 
Grey relational analysis (GRA) is an effective approach to analyse any type of 
incomplete or uncertain information. The GRA was a part of grey system theory 
introduced by Deng Ju Long in 1982 [25] which capable of providing and 

18 sets of Design of 
Experiment (DoE)

Grey Relational 
Analysis for computing 

the GRG for each 
experimental rows

Multiple Linear 
Regression  for 
determining the 

objective function

Genetic Algorithm for 
objective function 

evaluation

START

Convergence 
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END
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NO
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identifying robust solutions for real-world problems. This approach has been 
adopted in various field of engineering and solved multiple types of engineering 
problems. In this current study, the GRA is employed to convert multiple output 
parameters (Voc, Jsc, FF and η) with different objective problems into a single 
representative unit called grey relational grade (GRG). The GRA requires several 
mathematical algorithms such as data normalization, deviation sequences, grey 
relational coefficients (GRC) and grey relational grades (GRG) as shown in Fig. 4. 

 
Fig. 4. Flowchart of the Mathematical Algorithms in GRA. 

The GRA is basically adopted to convert the Voc, Jsc, FF and η of the CIGS solar 
cell into a GRG with respect to their corresponding objective problems. In this case, 
all the investigated output parameters (Voc, Jsc, FF and η) fall into a similar type of 
objective problem which is larger-the-better. Thus, the initial step in the GRA is to 
normalize all of the four output parameters by using Eqn. (2) [25] : 

)(min)(max
)(min)(

)(*

kxkx
kxkx

kx
ii

ii
i −

−
=                                                                            (3) 

where xi
*(k), xi(k), min xi(k) and max xi(k) are the sequence after data normalization, 

comparability sequence of the respective row, minimum sequence of the respective 
column and maximum sequence of the respective column accordingly. Based on the 
calculated xi

*(k), the deviation sequences, ∆oi (k) can be determined as Eqn. (4): 

( ) ( ) ( )kxkxk ioi
**

0 −=∆                                                                                       (4) 

where xo*(k) is the reference sequence which is normally set to 1. From the calculated 
∆oi (k) for each experimental rows, the Grey relational coefficient (GRC), ξ(k) for 18 
experimental rows can be calculated using Eq. (5): 

 ( ) ( ) max

maxmin

∆+∆
∆+∆

=
ξ

ξ
ξ

k
k

oi
                                                                                      (5) 
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where ξ, ∆max and ∆min are an identification coefficient, a maximum absolute 
difference and a minimum absolute difference reciprocally. The magnitude of ξ is set 
to be 0.5 because of it brings balanced distinguishing effect and stability. In fact, the 
alteration in ξ will only change the magnitude of GRC but it will not affect the rank 
of the Grey relational grade (GRG). The magnitude of ∆max and ∆min is set to 1 and 0 
respectively. Based on the calculated ξ(k), the GRG for 18 experimental rows can be 
determined using: 

[ ]43214
1 ξξξξγ +++=i                                                                                   (6) 

The GRG, γi for 18 experimental rows are basically computed by taking the 
average magnitude of the GRC, ξ(k) of each experimental rows. In the next section, 
the calculated GRG, γi for 18 experimental rows will be further analysed using 
multiple linear regression (MLR) for deriving the objective function. 

3.2. Multiple linear regression (MLR) 
Multiple Regression Analysis (MLR) is a statistical method that utilizes multiple 
independent variables to estimate the outcome of a dependent variable. The prime 
objective of the MLR is to develop a linear model between independent variables 
(material parameters) and a dependent variable (GRG). In this study, MLR is 
employed to derive the objective function which will be further analysed using 
genetic algorithm (GA). In essence, the linear regression model for this study is 
relationally expressed as: 

exbxbxbxbbY +++++= 443322110                                                           (7) 

where x1x2x3x4 are the material parameters, b0 is the intercept, b1b2b3b4 is the 
regression coefficients and e is the error term. Since the DoE consists of 18 
experimental rows, the MLR equation can also be expressed in matrix form as: 
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For the purpose of predicting the regression coefficients, the error terms are 
neglected in which the magnitude of b0, b1, b2, b3 and b4 can be calculated by solving 
the matrices. Hence, the objective function of the current problem can be simply 
expressed as Eqn. (9): 

443322110
' xbxbxbxbbY ++++=                (9) 

3.3. Genetic algorithm (GA) 
Genetic algorithm (GA) is invented based on the biological processes occurred in 
natural evolution. The prime objective of the GA is to fully utilize this systematic 
evolution to solve multiple objective problems. The fundamental principle of the 
GA is to simulate certain processes in natural systems required for evolution. In 
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this study, GA is predominantly employed to search a local optimum of the 
objective function which has been previously derived using MLR.  Figure 5 shows 
the flowchart of the GA comprising multiple steps such as initial population, 
objective function, fitness scaling, selection, crossover and mutation. 

 
Fig. 5. Flowchart of the genetic algorithm. 

Open source R-studio software has been utilized to aid in computing the GA 
optimization process. The initial population for this process is the initial magnitude 
of the TZnO, TCds, TCIGS and NaCIGS which have been listed in Table 4. Through MLR, 
the objective function of the problem has been identified and evaluated. Then, the 
objective function is fitly scaled within the specified upper and lower boundaries 
namely as the fitness function (fi). The Rastringin function is selected as a test 
function to evaluate the optimization algorithm particularly in solving single-
objective problem. It is commonly used for the problem that has multiple local 
minima formulated as:  

 [ ]∑
=

−+=
n

i
ii xxnxRas

1

2 )}2cos(1010)( π                                                (10) 

where n is a total number of independent variables (material parameters) and xi is 
the independent variable (GRG). The Rastringin function is evaluated based on the 
hypercube xi ∈ [-5.12, 5.12] for all I = 1, 2, 3 and 4. Since this function is originally 
employed for searching the local minima, it is then converted in order to search the 
local maxima. Thus, the fitness function (fi) for the maximization problem can be 
formulated as: 

Minimize – Ras(x1, x2, x3, x4) 
Subject to the constraints: 
0.03≤ x1 ≤0.05 
0.03≤ x2 ≤0.05 
1≤ x3 ≤3 
1x1014≤ x4 ≤1x1018 

Next, each of the individual solutions generated from the fitness function (fi) are 

Initial Population
(TZnO, TCds, TCIGS and NaCIGS)

Crossover Mutation

Objective Function 
Evaluation

Selection

New Population
(TZnO, TCds, TCIGS and NaCIGS)

Fitness Scaling
Terminate ?NO

YES
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selected based on their level of fitness. The crossover is then performed to form a new 
offspring by utilizing the genes from the parent chromosomes. The process of 
mutation needs to be executed in order to avoid overloading all the possible solutions 
in the population into local optima of the function. For a certain number of 
generations, the process of selection, crossover and mutation are iterated until no 
significant improvement in the fitness value. At this point, the best fitness value of 
the fitness function is identified in which the new populations (TZnO, TCds, TCIGS and 
NaCIGS) are optimally predicted. The GA options for this recent study are set as: 

Type = real-valued  
Population size = 50  
Number of generations = 1000  
Elitism = 2  
Crossover probability = 0.8  
Mutation probability = 0.1 

4.  Results and Discussion 
The results of the predictive analytics in predicting the most optimum material 
parameters for balanced CIGS solar cell performances will be critically discussed 
in this section. The experimental data from Table 5 are normalized using (3) and 
the deviation sequences of each row are subsequently computed using (4) as 
recorded in Table 6. Based on the computed deviation sequences, the GRCs for 
each row are calculated using (5) and then averaged to determine the GRGs for 
each rows as listed in Table 7.  

Table 6. Deviation Sequences. 
Exp. 
No. 

Deviation Sequence, ∆oi (k) 
∆oi (Voc) ∆oi (Jsc) ∆oi (FF) ∆oi (η) 

1 0.993735 0.279806 0.460177 0.564815 
2 0.963978 0.38734 0.895575 0.824074 
3 0.066562 0.940299 0.364602 0.219136 
4 0.989037 0.089372 0.59469 0.432099 
5 0.944401 0.347779 1 0.808642 
6 0.003915 0.800575 0.488496 0.046296 
7 1 0.472217 0.426549 0.75 
8 0.971809 0.556914 0.909735 1 
9 0.077525 1 0 0.373457 
10 0.985904 0 0.60354 0.345679 
11 0.942052 0.292214 0.957522 0.731481 
12 0 0.794282 0.410619 0 
13 0.997651 0.405682 0.437168 0.685185 
14 0.968677 0.481748 0.930973 0.935185 
15 0.072827 0.990469 0.435398 0.314815 
16 0.992169 0.180183 0.59469 0.524691 
17 0.948316 0.457112 0.969912 0.904321 
18 0.011746 0.853623 0.566372 0.151235 
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Table 7. GRCs and GRGs. 
Exp.  
No. 

GRC, ξi (k) GRG 
(γi) Rank ξi (Voc) ξi (Jsc) ξi (FF) ξi (η) 

1 0.3347 0.6411 0.5207 0.4695 0.4915 10 
2 0.3415 0.5634 0.3582 0.3776 0.4102 15 
3 0.8825 0.3471 0.5783 0.6952 0.6258 5 
4 0.3357 0.8483 0.4567 0.5364 0.5443 8 
5 0.3461 0.5897 0.3333 0.3820 0.4128 14 
6 0.9922 0.3844 0.5058 0.9152 0.6994 2 
7 0.3333 0.5142 0.5396 0.4 0.4468 12 
8 0.3397 0.4730 0.3546 0.3333 0.3752 18 
9 0.8657 0.3333 1 0.5724 0.6928 3 
10 0.3364 1 0.4530 0.5912 0.5952 6 
11 0.3467 0.6311 0.3430 0.4060 0.4317 13 
12 1 0.3863 0.5490 1 0.7338 1 
13 0.3338 0.5520 0.5335 0.4218 0.4603 11 
14 0.3404 0.5092 0.3494 0.3483 0.3868 17 
15 0.8728 0.3354 0.5345 0.6136 0.5891 7 
16 0.3350 0.7350 0.4567 0.4879 0.5037 9 
17 0.3452 0.5224 0.3401 0.3560 0.3909 16 
18 0.9770 0.3693 0.4689 0.7677 0.6457 4 

 
The correlation between the material parameters and the GRGs are then 

developed via MLR as graphically plotted in Fig. 6. The quantile-quantile (Q-Q) 
plot in Fig. 6 shows a set of data reasonably sourced from normal distribution. It is 
important to note that the reference line (straight line) is dependent on the scale 
GRGs and location of the theoretical distribution.  

 
Fig. 6. Q-Q plots for GRGs. 
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The scattered points on the plot are observed to form a curve rather than a 
straight line implying the skewness in the computed GRGs. In this case, most of 
GRG points are scattered near the reference line, implying that the GRGs are 
reasonably consistent with normality. The summary of MLR analysis is shown in 
Table 7. It is observed that the material parameters that contribute to the most 
significant impact on GRG variations are x1 (TZnO) and x4 (NaCIGS). 

The objective function of the current problem can be relationally described 
based on the estimated regression coefficients in Table 8 as: 

4321 19019.202150.1437.1001.101312.5 xexexxeY −+−+−−−=  

Since the problem of this study is to find the maximum possible GRG, the 
objective function is then inverted within specific upper and lower boundaries. 
Thus, the fitness function (fi) for this problem can be written as: 

4321 19019.202150.1437.1001.101312.5 xexexxeY −−−−++−−=  

The fi is then fed into GA for optimization purpose. After 945 iterations, the 
most optimum fitness value is successfully identified as depicted in Fig. 7. 

Table 8. ANOVA results of the multiple regression analysis. 

Term Regression 
Coefficients Std. Error t value Pr (>|t|) Significant 

code 
Intercept 5.312e-01 1.001e-01 5.309 0.00014 *** 

x1 -1.010 2.262 -0.447 0.66253  
x2 -1.437 2.262 -0.635 0.53619  
x3 1.150e-02 2.175e-02 0.529 0.60595  
x4 2.019e-19 3.787e-20 5.331 0.00014 *** 

Significant Code: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’ 0.1-1 ‘ ’ 
 

 
Fig. 7. Performance of GA during convergence. 

It is observed that the maximum fitness value (GRG) is measured at 0.6917469 
in which the corresponding value of material parameters; TZnO, TCds, TCIGS and NaCIGS 
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are predicted to be 0.03 nm, 0.03 nm, 2.96 nm and 9.96 x 1017 cm-3 respectively. The 
CIGS solar cell is then re-simulated using the predicted value of material parameters 
for verification. Figure 8 shows the comparison of J-V transfer characteristic of CIGS 
solar cell before and after the proposed predictive analytics. 

 

 
Fig. 8. J-V transfer characteristic of CIGS  

solar cell before and after predictive analytics. 

It is observed that the Voc of the CIGS solar cell has been improved by ~14.7% 
after being optimized using the proposed predictive analytics. The Voc of the CIGS 
solar cell is enhanced by employing much thicker absorber and buffer layers that 
boost the amount of voltage corresponding to the amount of forward bias caused 
by the light generated current when there is no current at the device junction. On 
the other hands, the Jsc of the device suffers a marginal decline for ~6.6% after 
being optimized using the proposed predictive analytics. This slight decline is 
mainly due to higher resistive loss caused by the random variations of the thickness 
of the absorber, window, CIGS layers and doping concentration. Nevertheless, both 
FF and η exhibits an improvement by ~3.9% and ~12.3% respectively as 
summarized in Table 9. 

Table 9. Summary of the predictive analytics via GRA-MLR-GA model. 

Output 
Parameters Units 

Before 
Predictive 
Analytics 

After 
Predictive 
Analytics 

% 
Differences 

Voc V 0.7002 0.8213 ~14.7% 
Jsc A/cm2 34.771 32.473 ~6.6% 
FF % 79.95 83.21 ~3.9% 
η % 19.47 22.19 ~12.3% 

As the FF is closer to 1 (100%), more power can be generated by the CIGS solar 
cells under normal operating environment. Furthermore, higher power conversion 
efficiency (η) of the device is a very crucial parameter depending on the spectrum 
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and intensity of the incident sunlight and the temperature of the CIGS solar cell. The 
η of the device after predictive analytics is also compared to previous CIGS solar cell 
structures [1], [2, 6, 8], [26-29] for benchmarking purpose as depicted in Fig. 9. 

 
Fig. 9. Benchmark of power conversion  

efficiency with previous CIGS solar cell structures. 

The η of the CIGS solar cell after the predictive analytics (this study) has 
demonstrated the highest percentage among the others. This is predominantly due 
to the application of the proposed predictive analytics aiding in searching the 
possible optimum material parameters that could yield the most balanced output 
properties. Based on the comparative results, it is concluded that the predictive 
analytics using a combinational GRA-MLR-GA model can be regarded as a 
practical approach to optimize the material parameters of the CIGS solar cell in 
attaining holistically better cell performances. In future works, more material 
parameters including temperature, doping concentration and material types can be 
included in the proposed model for better robust solutions 

5.  Conclusions 
In conclusion, a combinational model of Grey Relational Analysis (GRA), Multiple 
Linear Regression (MLR) and Genetic Algorithm (GA) are employed a predictive 
analytics to optimize the material parameters (TZnO, TCds, TCIGS and NaCIGS) in attaining 
holistically better CIGS solar cell performances. The initial step of this approach is 
to conduct the DoE with 18 experimental rows in order to retrieve the data for output 
parameters (Voc, Jsc, FF and η). Afterwards, the corresponding data for Voc, Jsc, FF 
and η in each row are converted into a single unit called GRG. The objective function 
that correlates between material parameters and GRG is then derived by using the 
MLR. The GA is subsequently used to fit the objective function within the upper and 
lower boundaries as a function of Rastringin called the fitness function (fi). After 
having 945 iterative process cycles of selection, crossover and mutation, the most 
optimum fitness value (fi) is identified at 0.6917469. As a result, the proposed 
combination model of GRA-MLR-GA has successfully predicted the best value of 
TZnO, TCds, TCIGS, NaCIGS, Voc, Jsc, FF and η of the CIGS solar cell which are 0.03 nm, 
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0.03 nm, 2.96 nm, 9.96 x 1017 cm-3, 0.8213 V, 32.473 A/cm2, 83.21% and 22.19% 
respectively. Hence, it is concluded that the proposed predictive analytics using a 
combinational GRA-MLR-GA model could be possibly one of the effective 
approaches to optimize multiple material parameters of the CIGS solar cell for 
holistically better device performances. 

  

Nomenclatures 
 
Eea Electron affinity 
Eg Bandgap energy 
e Error term 
fi Fitness function 
Jmp Current density at maximum power point 
Jsc Short circuit current density 
Pin Incident light power 
n Total number of independent variables 
Vmp Voltage at maximum power point 
Voc Open circuit voltage 
xi

*(k) Sequence after data normalization 
xi(k) Comparability sequence of the respective row 
xo*(k) Reference sequence 
 
Greek Symbols 

∆oi (k) Deviation sequences 
∆max Maximum absolute difference 
∆min   Minimum absolute difference 
ξ Identification coefficient 
ξ(k) Grey relational coefficient 
γi Grey relational grade 
η Efficiency 
 
Abbreviations 

Cds Cadmium Sulfide 
CIGS Copper Indium Gallium Selenide 
DoE Design of Experiment 
FF Fill Factor 
GA Genetic Algorithm 
GRA Grey Relational Analysis 
GRC Grey Relational Coefficient 
GRG Grey Relational Grade 
MLR Multiple Linear Regression 
NaCIGS CIGS Doping Concentration 
RSM Response Surface Methodology 
SCAPS Solar Cell Capacitance Simulator 
TCds Cds Thickness 
TCIGS CIGS Thickness 
TZnO ZnO Thickness 
ZnO Zinc Oxide 
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