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A B S T R A C T

This study investigates the Hiemenz flow of hybrid nanofluid over a shrinking sheet. The similarity equations are
obtained using similarity variables and then solved using the bvp4c solver. The outcomes showed that dual
solutions occur for the shrinking case, in the range of <1.24657 1.1 with = 1.24657c is the point of
bifurcation between the solutions. Meanwhile, the solution is unique for > 1.1. Besides, the heat transfer rate
is intensified with the rise of hybrid nanoparticles. Moreover, as hybrid nanoparticles increases, the friction on
the surface is increased for < 1, while it is decreased for > 1, and no friction occurs when = 1. Finally, these
solutions are tested using the stability analysis where the outcomes found that the first solution is stable and
acceptable.

Introduction

Historically, there are several types of boundary layer flow pro-
blems that have been developed in a fluid dynamic field, for example,
the stagnation point flow. The stagnation point of the fixed surface in
the boundary layer flow problem was initially explored by Hiemenz [1],
and extended by Homann [2] to the case of the axisymmetric flow. Ariel
[3] considered the hydromagnetic effects on the flow field where an
analytical solution is obtained for the problem. Moreover, Wang [4]
reported the flow on a shrinking sheet, and then this work was extended
by Ishak et al. [5] to the case of the micropolar fluid. Further, the
Hiemenz flow problems with several effects are also considered by
numerous researchers [6–10].

Previously, most industrial processes use regular fluid in their
cooling systems. However, an advanced fluid termed as ‘nanofluid’
given by Choi and Eastman [11], could enhance the fluid's heat transfer
rate. Nanofluid consists of a single nanoparticle that suspended in the
base fluid. The utilizing of nanofluid in heat transfer enhancement is
considered by several researchers [12–17]. Furthermore, studies have
shown that a significant increment in the heat transfer rate of nanofluid
is attained when the hybrid nanoparticle is employed. The experimental
works by Turcu et al. [18] and Jana et al. [19] were the earlier studies
that utilizing the hybrid nanoparticles. Besides, Suresh et al. [20]
conducted the experimental work using Al2O3–Cu hybrid nanoparticle
to study the enhancement of the fluid thermal conductivity.

Apart from that, Devi and Devi [21] studied the flow over a

stretching surface containing Al2O3–Cu/water with MHD effects. The
new mathematical correlations of hybrid nanofluid are introduced in
their studies and found that the results from the modeling data and
experimental data of Suresh et al. [20] are in good agreement. Then,
Ghalambaz et al. [22] consider the stagnation point flow of Al2O3–Cu/
water hybrid nanofluid towards a vertical plate. The flow over a wedge
considered by Hassan et al. [23] and Mahanthesh et al. [24] with Cu-Ag
and MoS2-Ag hybrid nanoparticles, respectively. Besides, Waini et al.
[25–29] inspected the dual solutions of the hybrid nanofluid flow. Also,
the problem is continuously studied by various researchers [30–36]
with various physical conditions. Additionally, the review papers of
nanofluid [37–40] and hybrid nanofluid [41–47] can be found in the
literature for further reading. Apart from that, some studies in the field
of fluid mechanics can be found in Refs. [48–50].

Thus, we consider the Hiemenz flow over a shrinking sheet with the
effect of hybrid nanoparticles (Al2O3-Cu). Besides, the dual solutions
are attained and their stabilities are determined by the stability ana-
lysis. The numerical results are displayed in tables and figures, and then
will be discussed theoretically.

Mathematical formulation

The Hiemenz flow of a hybrid nanofluid on a stretching/shrinking
surface is considered. The flow configuration of the problem is illu-
strated in Fig. 1. Here, the free stream velocity is taken as =u x U x( )e e ,
while the surface velocity is =u x U x( )w w withUe andUw are constants.
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The ambient T and the surface Tw temperatures are also constants.
Therefore, the governing equations are (see Ariel [3], Tiwari and Das
[13], Devi and Devi [21]):
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where the velocity components along the x - and y-axes are represented
by u and v, and the temperature is given byT . Further, Table 1 presents
the thermophysical correlations of nanofluid [14] and hybrid nanofluid
[21]. Meanwhile, Table 2 displays the properties of nanoparticles and
water [14]. Note that Al2O3 (subscripts p1) and Cu (subscripts p2) are
the nanoparticles and their volume fractions are symbolised by 1 and

2, respectively. Moreover, the subscripts f , nf , and hnf are represent
the fluid, nanofluid, and hybrid nanofluid, respectively.

Considering the following dimensionless variables (see White [51]):
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where f is the fluid kinematic viscosity and the stream function is
defined as =u y/ and =v x/ . Then, Eq. (1) is identically sa-
tisfied and one gets:
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Thus, Eqs. (2) and (3) become:
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where the Prandtl number Pr and the stretching/shrinking parameter
are defined as [52]
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with > 0 and < 0 indicate the stretching and shrinking cases,
respectively, while = 0 indicates the rigid surface. Note that for

= = 01 2 (regular fluid) and = 0 (rigid surface), Eq. (7) reduces to
those of the classical Hiemenz problem, see White [51].

The physical quantities of interest are the skin friction coefficients
Cf and the local Nusselt number Nux which are defined as
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where the surface shear stress w and the surface heat flux qw are re-
spectively given by
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Using (5), (11) and (12), we get
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where the local Reynolds number is =Re u x/x e f .

Temporal stability analysis

Results show that Eqs. (7)–(9) admit the dual solutions for several
physical parameters: one corresponding to the first solution and the
other is the second solution. Consequently, the temporal stability ana-
lysis is required to determine the stable solution in the long run (see
Merkin [53]; Weidman et al. [54]). To do this, we consider the unsteady
case of Eqs. (2) and (3), where Eq. (1) remains unchanged.
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Based on Eq. (5), the new variables are given as follows:
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Substituting (16) into (14) and (15), after linearization, one gets

Fig. 1. The flow configuration.
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The boundary conditions are
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Then, the steady solution =f f ( )0 and = ( )0 of Eqs. (7)–(9) are
perturbed by the perturbation functions as follows (see Weidman et al.
[54]):
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where F ( ) and G ( ) are comparatively small compared to f ( )0 and
( )0 . By employing Eq. (20), Eqs. (17) and (18) become:
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Following Harris et al. [55], without loss of generality, we set the
value =F (0) 1'' to obtain the eigen values .

Results and discussion

Now, the numerical computations are conducted using the bvp4c
solver (see Shampine et al. [56]). The convergence of the solution
strictly depends on the boundary layer thickness ( ) and the initial
guess. This convergence issue is also influenced by the value of the
selected parameters. The numerical procedures are explained as fol-
lows: First, Eqs. (7) and (8) are reduced to a system of ordinary dif-
ferential equations of the first order. Now, Eq. (7) can be written as:
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and the boundary condition (9) becomes:
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where the subscript a denotes the condition at the surface and the
subscript b denotes the condition at the free stream. Then, Eqs. (24) to
(26) are coded in Matlab software and their solutions are obtained by
the bvp4c solver. The solver will then run and the outcomes are printed
out as numerical values and graphs.

Note that the classical Hiemenz problem can be obtained by taking
= = 01 2 (regular fluid) and = 0 (rigid surface). For this special

case, we obtain the value of =f (0) 1.232588'' . This result is comparable
to those reported by Wang [4] and Bachok et al. [6]. Besides, the
comparison values of f (0)'' for several when = = 01 2 are also
provided in Table 3. The present results are satisfactory with the
mentioned literature. Moreover, the values of Re Cx f

1/2 and Re Nux x
1/2

under various parameters when =Pr 6.2 are calculated and presented
in Table 4. For the case of rigid surface =( 0), it shows that the values
of Re Cx f

1/2 and Re Nux x
1/2 are accelerated with the rise of 2. These

physical quantities are higher for Al2O3-Cu/water =( 0.05)1 rather
than that Cu/water =( 0)1 . Besides, the reduction of Re Cx f

1/2 and the
increment of Re Nux x

1/2 are observed for larger , in the range of
0.5 0.5. Additionally, the values of Re Cx f

1/2 and Re Nux x
1/2 for

Cu/water = =( 0, 0.05)1 2 when = 0.5, 0, 0.5 are comparable to
those obtained by Waini et al. [26].

Figs. 2 and 3 illustrate the variations of Re Cx f
1/2 and Re Nux x

1/2

against for = 0, 0.03, 0.052 when = 0.051 and =Pr 6.2. Results
show that as 2 increases, the friction on the surface is increased for

< 1, while it is decreased for > 1, and no friction occurs when = 1.

Table 1
Thermophysical properties of nanofluid and hybrid nanofluid.

Properties Nanofluid Hybrid nanofluid

Dynamic viscosity =µnf
µf

(1 1)2.5 =µhnf
µf

(1 1)2.5(1 2)2.5

Density = +(1 )nf f p1 1 1 = + +(1 )[(1 ) ]hnf f p p2 1 1 1 2 2
Heat capacity = +C C C( ) (1 )( ) ( )p nf p f p p1 1 1 = + +C C C C( ) (1 )[(1 )( ) ( ) ] ( )p hnf p f p p p p2 1 1 1 2 2
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+
+ +
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1 2 2 1( 1)
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1 2 2 1( 1)

1 2 1( 1)

Table 2
Thermophysical properties of nanoparticles and water.

Properties Al2O3 Cu water

C J kgK( / )p 765 385 4179

kg m( / )3 3970 8933 997.1
k W mK( / ) 40 400 0.613
Prandtl number, Pr 6.2

Table 3
Values of f ''(0) with different for regular fluid. = =( 0)1 2 .

Wang [4] Bachok et al. [6] Present results

2 −1.88731 −1.887307 −1.887307
1 0 0 0
0.5 0.71330 0.713295 0.713295
0 1.232588 1.232588 1.232588
−0.5 1.49567 1.495670 1.495670
−1 1.32882 1.328817 1.328817
−1.15 1.08223 1.082231 1.082231

[0.116702] [0.116702] [0.116702]
−1.2 0.932473 0.932473

[0.233650] [0.233650]
−1.2465 0.55430 0.584281 0.584281

[0.554297] [0.554296]

Note: [ ] Second solution.
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Besides, the heat transfer rate is intensified with the rising of 2. From
the numerical computations, the non-uniqueness of the solutions are
found for the shrinking case, in the range of <1.24657 1.1 with

= 1.24657c is the point of bifurcation between the solutions.
Meanwhile, the solution is unique for > 1.1.

On the other hand, Figs. 4 and 5 provides the velocity f ' ( ) and the
temperature ( ) profiles for = 0, 0.03, 0.052 when

= =0.05, 1.24,1 and =Pr 6.2. Results show that the increase in 2
inclines the velocity profiles f ' ( ) for both solution branches, however,
it reduces the temperature profiles ( ). Besides, Figs. 6 and 7 show the
effect of on f ' ( ) and ( ) when = = 0.051 2 and =Pr 6.2. It is seen
that the first and second solutions of f ' ( ) and ( ) are getting closer to
each other for smaller . These solutions are merged at a critical value
of , i.e = 1.24657c where they are terminated.

The variations of against when = = 0.051 2 is portrayed in
Fig. 8. The solution's stability is subjected to the sign of as described
by the perturbation function, given in Eq. (17). For the positive value of
, e 0 when . Meanwhile, the negative value of gives

Table 4
Values of Re Cx f

1/2 and Re Nux x
1/2 for various values of ,1 2 and .

2 = 01 (Cu/water) = 0.051 (Al2O3-Cu/water)

Re Cx f
1/2 Re Nux x

1/2 Re Cx f
1/2 Re Nux x

1/2

0 0 1.232588 1.127964 1.408763 1.229275
0.03 1.425110 1.213918 1.605715 1.317395
0.05 1.553850 1.269379 1.738637 1.374810
0.05 −0.5 1.885501

[1.885501]
0.706314
[0.706314]

2.109729 0.791231

0 1.553850
[1.553850]

1.269379
[1.269379]

1.738637 1.374810

0.5 0.899208
[0.899208]

1.733859
[1.733859]

1.006144 1.856885

Note: [ ] Results by Waini et al. [26].

Fig. 2. The variation of Re Cx f
1/2 against for various values of 2.

Fig. 3. The variation of Re Nux x
1/2 against for various values of 2.

Fig. 4. Effect of 2 on f '( ).

Fig. 5. Effect of 2 on ( ).
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e when . These behaviours show that the solution con-
verges and in a stable mode for the first solution. However, the solution
diverges and in an unstable mode for the second solution.

Conclusions

The Hiemenz flow on a shrinking surface containing hybrid nano-
particle (Al2O3-Cu) was accomplished. The impact of several physical
parameters on the behaviour of the flow was examined. It was revealed
that the solutions are not unique for a certain range of the shrinking
strength, i.e. <1.24657 1.1, whereas the solution is unique for

> 1.1. The bifurcation between the first and the second solutions
occurred at = 1.24657c for all values of 2 considered. Meanwhile,
the heat transfer rate intensified with 2. Moreover, as 2 increased, the
increment of the friction on the surface was observed for < 1, while it
decreased for > 1, and no friction at the fluid–solid interface when

= 1. The first and second solutions of f ' ( ) and ( ) merged and
terminated at = 1.24657c . Lastly, the temporal stability of the dual
solutions was tested where the results showed that the first solution is

stable in the long run.
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