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Abstract  6 

 7 
When faced with the problem of multicollinearity most tourism researchers recommend mean-8 
centering the variables. This procedure however does not work. It is actually one of the biggest 9 
misconceptions we have in the field. We propose instead using Bayesian ridge regression and treat 10 
the biasing constant as a parameter about which inferences are to be made. It is well known that 11 
many estimates of the biasing constant have been proposed in the literature. When the coefficients 12 
in ridge regression have a conjugate prior distribution, formal selection can be based on the marginal 13 
likelihood. In the non-conjugate case we propose a conditionally conjugate prior for the biasing 14 
constant, and show that Gibbs sampling can be employed to make inferences about the ridge 15 
regression parameters as well as the biasing constant itself. We examine posterior sensitivity and 16 
apply the techniques to a tourism data set.  17 
                  18 

 19 
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 22 

Introduction 23 

 24 
The problem of multicollinearity is highly common in tourism research. One particular example is 25 
the regression model with moderators. Such model is usually highly prone to having collinearity 26 
problems because the interaction term is created by multiplying two exogenous variables to create 27 
another exogenous variable. To “alleviate” the potential problems of collinearity, tourism 28 
researchers routinely mean center the variables by subtracting the item value from the mean value of 29 
the item. This simply does not fix the problem. Mean centering does not really help or harm 30 
(Echambadi and Hess, 2007; and Dalal and Zickar, 2011). While the mean-centered coefficients 31 
have different interpretations than the original coefficients, we rarely see them being compared 32 
against each other in the tourism literature. In fact, anytime an interaction is included in the model, 33 
the original coefficients should not be used directly to assess the impact of X on Y.  Instead, one 34 
needs to use the marginal effect which is actually what we obtain when we mean center the variables.  35 
 36 

Assuming  that the data for the dependent variable are arranged in the 1n  vector y  and the data 37 

for the explanatory variables are in the n p  matrix X , so that we have n  observations and p  38 

regressors, it is well established that the least squares (LS) estimator  ( )
1−

=b X'X X'y , under the 39 

stated assumptions about the error term is the best linear unbiased estimator (BLUE). However, 40 

multicollinearity can result in ill conditioning of the matrix X'X  rendering the LS estimator 41 
undesirable. For example when this matrix is nearly non-invertible, the covariance matrix  will have 42 
large elements in the diagonal, implying that standard errors of LS estimators will be quite large. 43 
Effectively, in specific samples, it is quite likely that we may end up with LS coefficients having the 44 
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wrong sign, being non-significant etc.  45 
 46 
A regularization method that has been proposed is the use of the ridge regression estimator (Hoerl 47 
and Kennard, 1970), with a biasing constant k, usually small. Effectively, “the procedure can be used 48 
to portray the sensitivity of the estimates to the particular set of data being used, and it can be used 49 
to obtain a point estimate with a smaller mean square error” (Hoerl and Kennard, 1970, p.55). As a 50 
matter of fact, Hoerl and Kennard (1970) discussed the Bayesian foundation of their approach 51 
(p.64) and also proposed a more general ridge regression. 52 
 53 
A main challenge in the literature has been finding the appropriate value of k , as different 54 
procedures (Dorugade and Kashid, 2010; Uslu, Egrioglu and Bas, 2014) have been used for that 55 
purpose. Hoerl and Kennard (1970) suggested using the ridge trace to find the appropriate value of 56 

k  for which the regression coefficients have been stabilized.  Hoerl and Kennard (1976) proposed 57 
an iterative approach for selecting k . However, their procedure does not necessarily converge.  As 58 
there is no consensus on what is a reasonable procedure to select the value of k , we propose here a 59 
Bayesian approach to address this issue. Our aim is to provide tourism researchers with more 60 
flexibility in estimating ridge regressions. The Bayesian approach is appealing because it treats k  as a 61 
parameter which is to be selected in light of the data. In fact, we do not select a single value of k , 62 
but we produce the whole marginal posterior of this parameter given the data. This, in turn, is one 63 
attractive way to address the uncertainty about k . 64 
 65 
 66 
The push for Bayesian estimation is taking place across several disciplines such as management 67 

(Zyphur & Oswald, 2015; Cabantous and Gond, 2015; McKee and Miller, 2015), marketing (Rossi 68 

and Allenby, 2003; Rossi et al. 2012), psychology (Van De Schoot, et al., 2017) and tourism (Assaf 69 

and Tsionas, 2018 a, b).  Over the last decade, we have seen a strong increase in the use of the 70 

Bayesian methodology in tourism and other related fields (Wong et al. 2006; Wang et al. 2011; Assaf, 71 

2012; Barros, 2014; Assaf et al. 2017; Assaf et al., 2018). A recent special issue in the Journal of 72 

Management is a clear indication on the growing popularity of this method (Zyphur & Oswald, 73 

2015).  74 

 75 

Recent papers has provided comprehensive introductions on the advantages of the Bayesian 76 

approach (Muthen, 2010, Zyphur and Oswald, 2015). The Bayesian approach is not simply about 77 

fitting more advanced models with MCMC (Markov chain Monte Carlo) but is a completely 78 

different paradigm and philosophy in statistics. It offers several advantages in the estimation of 79 

regression models including “ rich diagnostic  information about parameters and models; controlling 80 

for multiple comparisons as a function  of the data; handling low-frequency, unbalanced, missing 81 

data; and exploration of prior  assumptions about model parameters” (Zyphur and Oswald, 2013, 82 

p.7).  Probably, on the most known advantages of the method is its ability to incorporate prior 83 

information about a parameter and form a prior distribution. For instance, the Bayes’ theorem can 84 

be expressed as: ( | ) (y | ) ( )p y p p   , where   is the proportionality symbol. Here, ( | )p y  is 85 

the posterior distribution which is used to carry out all inferences, and is proportional to the product 86 
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of the prior ( )p  and the likelihood function (y | )p  1.  Difference choices of priors can be used 87 

such as conjugate vs. non-conjugate priors. The prior is said to be conjugate if it belongs to the 88 

family of distribution as the posterior distribution (i.e. the posterior has posterior has the same 89 

distributional form as the prior distribution). For example, in the context when the likelihood 90 

function is binomial ( )y Bin n,  , a conjugate prior in the form of a beta distribution on   will 91 

also lead to a posterior distribution that follows a beta distribution. A prior distribution which is not 92 

conjugate is called a non-conjugate prior. 93 

We illustrate below the flexibility of the Bayesian approach and prior information within the context 94 

of ridge regression. In particular, we introduce a Bayesian ridge estimator for both conjugate and 95 

non-conjugate priors though we rely more on the non-conjugate prior as the conjugate priors are 96 

restrictive and have certain problems, for example they have the same tails with the likelihood and 97 

they are rarely used in practice. A singular advantage of the Bayesian approach is that ridge 98 

regression can be interpreted as Bayes posterior mean when the prior on the regression parameters 99 

is multivariate normal with zero mean and covariance matrix a diagonal matrix whose diagonal 100 

elements have the same variance / precision. Moreover, the significance of the Bayesian approach to 101 

regression is that the celebrated James-Stein estimator has a direct empirical Bayes estimator. The 102 

James-Stein estimator is well-known to improve on maximum likelihood / OLS estimator in terms 103 

of risk and MSE across all values of the parameter space. 104 

 105 
 106 
In this paper we proceed as follows: In section 2 we provide an introduction to ridge regression. 107 
Sections 3 and 4 present the Bayesian ridge regression approach with conjugate and non-conjugate 108 
setting in comparison with the diffuse prior assumptions. We conduct a Monte Carlo study in 109 
section 5 to illustrate the issue diagnosing and correcting the effect multicollinearity. We then 110 
present illustration on the Bayesian ridge regression using a tourism application. 111 
 112 

 113 

2. How to Proceed? 114 

So, if mean centering does not work, how to proceed from here? One of the most common 115 

approaches is to use ridge regression to analyze regression data that is subject to multicollinearity. As 116 

mentioned, with OLS the regression parameters can be estimated using the following formula: 117 
 118 

( )
1−

=b X'X X'y  119 

 120 
The ridge regression differentiates by adding a biased constant 0k   to the diagonal elements of the 121 
correlations matrix: 122 
 123 

( )
1

,k pk
−

 = +b X X I X y  124 

 125 

 
1 The likelihood function summarizes the information from the data. 
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This is where the term “ridge regression” comes from as the diagonal of one in the correlation 126 
matrix are thought of as a ridge). What we know from Hoerl and Kennard (1970) is that there is 127 

always a ( )0,k k  for which ridge regression dominates OLS in terms of mean squared error 128 

(MSE), and 
2

2
max

k 


= , where ' '=X X P P , and  = Pβ . Here, P  is the orthonormal matrix of 129 

eigenvectors of  'X X , and ( )1,..,. pdiag   = , where 
1,.., p   represent the distinct eigenvalues 130 

of 'X X . Another result of Hoerl and Kennard (1970) was that the total MSE of the ridge estimator 131 
is2: 132 
 133 

( )
( )

( )
2

2 2

2

1

p

i
k p

i i

MSE k k
k






−
 

=

= + +
+

b X X I   134 

 135 
 136 
 137 
Minimizing the MSE, unfortunately, depends on the ratio of /  . Depending on this result 138 

several settings for the parameter k  have been proposed. See for example Khalaf and Shukur 139 
(2005), Lawless and Wang (1976), Nomura (1988) and Maruyama and Strawderman (2005). A similar 140 
idea is the Bayesian lasso regression (Park and Casella, 2008, Hans, 2009). 141 
 142 

The goal of this paper is to propose a more flexible way to estimate k  using the Bayesian approach. 143 

As mentioned, one of the advantages is that with Bayesian approach we do not (necessarily) select a 144 

single value of k  but we produce the whole marginal posterior of this parameter given the data. We 145 

aim here to diagnose and correct the effects of multicollineatity through a full non-conjugate 146 

Bayesian approach to Ridge Regression. In particular we take up Bayesian inference in conjugate and 147 

non-conjugate ridge regression models by using the fact that a prior can be placed on the ridge 148 

parameter(s) k  and proceed with posterior analysis on all parameters using MCMC techniques. We 149 

run different simulations to illustrate the performance of the method. We also provided evidence 150 

based on a real dataset from the hotel industry. Our goal is to show that collinearity can be 151 

simultaneously diagnosed and corrected using priors on all parameters. Our techniques detect and 152 

correct the adverse effects of collinearity in a transparent way.         153 

 154 
Specifically, given the general regression model, we consider first ridge regression from the Bayesian 155 

point of view treating the biasing constant ( )k  as a parameter about which inferences are to be 156 

made to avoid selecting a particular value of k . For the conjugate case we have derived the marginal 157 
likelihoods and showed how selection of the k  parameter can be performed to choose the 158 
appropriate value. It is important to notice that the original ridge regression estimators depend 159 

crucially on a conjugacy assumption, namely that the regression coefficients, ( )
2

| , 0,p pk
k N   I . 160 

Conjugate priors have certain problems, for example they have the same tails with the likelihood and 161 
they are rarely used in practice.  162 
 163 

 
2 The notation 2A−  for a matrix A , means 

2 1 1.A A A− − −=  
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 164 
The reader can refer to Leamer (1969) and Judge et al (1985) regarding this point. As they mention, 165 
despite the fact that the natural conjugate setting is a convenient approach (since it provides an 166 
analytical solution to the integrations involved), it has been criticized because it employs the prior 167 
information as a previous imaginary sample from the same process: When we set the degrees of 168 
freedom and the precision matrix equal to zero to obtain the limiting distribution of the normal-169 
(inverse) gamma prior, the resulting ignorant prior is different to the usual diffuse prior and the 170 
posterior distribution has different degrees of freedom. Therefore, a non - conjugate prior can be 171 
adopted instead, and numerical posterior inference can rely on the Gibbs sampler. In the Gibbs 172 

sampler k  is treated as a parameter and, therefore, formal statistical inferences can be made about 173 
this parameter thus solving a long-standing problem in the literature. Moreover, a formal test for 174 

collinearity can be developed if we compare the marginal posterior of k  with its value at 0k =  175 
(corresponding to OLS or Bayes with diffuse prior). An equivalent test is to compare the marginal 176 

likelihood at the optimal k with its value when 0k = . 177 
 178 
We discuss below a Bayesian ridge estimator for both conjugate and non-conjugate priors though we 179 
rely more on the non-conjugate prior ad the conjugate priors are restrictive and have certain 180 
problems, for example they have the same tails with the likelihood and they are rarely used in 181 
practice.  182 
 183 
3. Bayesian ridge regression 184 
 185 
For the Bayesian interpretation of the ridge regression estimator, the model is given by:  186 
 187 

( )2,  ,n nN = + y X u u 0 I  188 

The prior on the unknown parameters is  189 

( )
2

1| , ,p pN p
k


   − 
  

 
0 I , 190 

where 0k    is prior precision relative to the error variance, 2 . It is not difficult to show that, 191 

under these conditions, the posterior mean is given by: ( )| , kE =y X b , that is the ridge regression 192 

estimator. As mentioned, since the choice of parameter k  has been an active area of research for 193 
many years, and many choices have been proposed, it is natural to investigate the implications of a 194 
fully Bayesian approach to the problem. To this effect, we consider both a conjugate and non-195 

conjugate prior on the regression parameters, . 196 

 197 

The conjugate prior provides explicitly in analytical form the ridge regression estimator so there is 198 

much in favor of it. However, the non-conjugate case is also interesting and can be considered as an 199 

alternative. 200 

 201 
3.1 Optimal biasing parameter through conjugacy 202 
 203 

Suppose ( )
2

| 0,p pk
N   I , and ( )

2

2

2s


  , where 

2
, s  are prior hyperparameters. This prior 204 

is conjugate because it depends on σ and matches exactly the likelihood to provide as posterior mean 205 

kb  below. 206 
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 207 
The marginal likelihood (or “evidence”), for a given value of  k  , can be derived analytically in this 208 
case3: 209 
 210 

( ) ( )

( )

( )( )
( )

1/2

/2
2

1
1

122

1

, where

' , ,

'

 and .

k

p p

p p

p s

k k

s s k

n





 

 

−

−
−

−
 

− 

 
   
 

= + =

= + − +

= = +

V
y

V

V X X I V I

y I X X X I X y

b X'X X y

 211 

Moreover,
( )

1

p

p

ii

k

k 
=

+
=


V

V
, where 

1,..., p   are the eigenvalues of 'X X , and  212 

( )( )
22

ks s RSS   = + + −b X X b b , ( ) ( )RSS


= − −y Xb y Xb . By (2.3) in Hoerl and Kennard 213 

(1970), we have  ( )
1

1

p kk
−

−
 + =

  
I X X b b , where  ( )

1

' 'k pk
−

= +b X X I X y   is the ridge estimate. 214 

So the log marginal likelihood simplifies to the expression: 215 
 216 

( ) ( ) ( )( )( )2

1

log 0.5 log 0.5 log 0.5 log  
=

 = − + − + + −
p

k i k

i

p p k k s RSSy b X X b b     (1) 217 

 218 

This expression involves only the eigenvalues of  
X X , standard LS quantities and the ridge 219 

estimates.  220 
 221 

 222 

3.2. Bayesian ridge regression in the non-conjugate case 223 
 224 

In the Bayesian context it is reasonable to treat k  as unknown parameter whose prior is ( )p k  225 

independently of   and  . Therefore, it is useful to depart from the conjugate case which involves the 226 

unpleasant feature that the tails of the posterior and the prior are the same. Then we have:  227 
 228 

( ) ( ) 11| , , ,  | ,p pk
k N p k   − 0 I  229 

and the prior of k   is proportional to  ( )p k  . It is not necessary for this prior to be proper. The 230 

joint posterior is as follows:  231 
 232 

( ) ( ) ( )
( ) ( ) 2

1 /2

2
, , | , exp

2

n p
k

p k k p k


 





− +
 − − +
  −
 
 

y X y X
y X

  
                  (2) 233 

 
3See Zellner (1971), p.309. 
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Completing the square ( ) ( ) 2Q k


= − − +y X y X   , we obtain the expression:  234 

( ) ( )( )2

k p k kQ k


 = − + − +b X X I b y M y  , 235 

 236 

where  
k p k= −M I XV X'  and  ( )

1
2

k pk
−

= +V X X I . Therefore, the posterior distribution is: 237 

 238 

( ) ( ) ( )
( ) ( )( )2

1 /2

2
, , | , exp

2

k p k kn p
k M

p k k p k


 



 

− +

 − + − +
  −
 
 

b X X I b y y
y X

 
   (3) 239 

In this expression, ( )
1

2 'k pk
−

= +b X X I X y is the ridge regression estimate. From the expression 240 

in (3), we can extract the following posterior conditional distributions:  241 
 242 

( )( )1
2 2| , , , , ,p k pk N k  

−
 +y X b X X I  243 

( ) ( )
( )2

2
, , , ,k n





− −


y X y X
y X

 
  244 

where ( )2 n  denotes the chi-square distribution with n  degrees of freedom. Finally, the posterior 245 

conditional distribution of the biasing parameter can be derived from (2) as:  246 

( ) ( )/2| , , , exp
2

p k
p k k p k

 
 − 

 
y X


                                (4) 247 

The conditionally conjugate prior for the biasing parameter, k , is clearly a  ( )/ 2, / 2Gamma A B 4 248 

distribution whose density is of the following form: ( )
( )
( ) ( )

/2
/2 /2 1

2/2
exp

A
B A B

A
p k k k−


= − , where 0A   249 

and 0B   are hyperparameters. Then we obtain:  250 

( ) ( )/2 1
| , , , exp

2

p A B
p k k k


+ −  +

 − 
 

y X


  251 

Therefore, the posterior conditional distribution of the biasing parameter is: 252 
 253 

| , , , ,
2 2

n A B
k Gamma

 + +
  

 
y X


    (5) 254 

 255 

Prior elicitation of the hyperparameters A  and  B   is facilitated by the fact that, in the prior, 256 

( ) A

B
E k =  and ( ) 22 A

B
Var k = . If we believe that ( ) 0.1E k =    and the standard deviation of the 257 

biasing parameter is k  , then 2

0.2

k

B


= . If 2

k  is 0.1, 0.5, 1 or 5 then we obtain respectively that B  is 258 

2.0, 0.40, 0.20 or 0.04. Therefore A  must be, respectively, 0.2, 0.004, 0.02 or 0.004. In what follows 259 

 

4Notice that ( )/ 2, / 2Gamma A B   reduce to an exponential prior for k, by setting  2A =    .   
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we adopt the reference prior ( ) 1p   − . 260 

 261 

 262 
 263 
4. Sampling properties of diagnosing and correcting multicollinearity 264 
 265 
 266 
4.1. Diagnosing Collinearity 267 
 268 
Two reasonable questions: how we diagnose for collinearity using the Bayesian approach, and how 269 
the Bayesian ridge model in section 3.25 behaves compared to ordinary least square (OLS)6.  270 
 271 
Specifically, the question is whether the Bayesian approach can be useful in both diagnosing and 272 
correcting the possibly harmful effects of multicollinearity in circumstances that are encountered in 273 
practice. To illustrate this, we choose a design with 500n =  observations and 10p =  regressors. 274 

The first regressor, say 1tX , is generated from a standard normal distribution. The remaining 275 

regressors are 
, 1tj t j tjX X Z −= + , ( )0,1tjZ iidN , 2,...,j p= , and   is set to 1/500 with 1 =  276 

for collinear data, and 0 = , 1 =  for independent data. The data generating process is 277 

1
p
jt j tj ty x u== + , where all regression coefficients are 1j = ( )1,...,j p= , and ( )20,iu iidN  , 278 

with 1 = 7. Setting all coefficients equal to one is done only for simplicity and the results in no way 279 
depend on the exact true values of the coefficients. 280 
 281 

As our prior on the biasing constant, k , we choose an exponential with parameter 310B =  implying 282 

a prior average value of k  equal to ( ) 310E k −=  which seems reasonable in view of experience with 283 

collinear data. Holding the matrix of regressors, X , fixed we generate  D =10,000 different data 284 
sets. For each data set, the Gibbs sampling technique presented in section 4.2  is applied using 285 
11,000 draws, omitting the first 1,000 and taking only every other tenth draw (for a total for 1,000 286 
draws). From the 1,000 available, approximately independent, draws we compute the posterior 287 

means, 
( ) ( )|
d

E= y  , 1,...,d D= . Our objective is to compare the sampling distribution resulting 288 

from ( )d
 s (as an approximation to the actual sampling distribution) with the sampling distribution 289 

of posterior means resulting from a diffuse prior, which is based on OLS quantities that are readily 290 
available for each different data set. 291 
 292 
With a diffuse prior (i.e. OLS), the sampling distribution of posterior means should be more 293 

dispersed compared to the sampling distribution of ( )|E y  under the stated prior on the biasing 294 

constant, k . The sampling results are presented in the three panels of Figure 1. For orthogonal data 295 

 
5 As mentioned, we recommend relying on the non-conjugate prior for the reasons mentioned in Section 4.2.  
6 This is similar to Bayesian analysis using diffuse priors of the form  ( ) 1,p   − , from the sampling-

theory point of view 
7 All computations were performed using the WinGauss software. The codes can be provided by the authors 
upon request.  



9 

 

(i.e. no collinearity) ridge and diffuse posteriors are extremely close (Figure 1a), but this is not the 296 
case when we have collinear data (Figures 1b and 1c). In other words, for collinear data, one would 297 
observe significant difference between the diffuse posterior (i.e. OLS) and the ridge regression 298 
results. 299 
 300 
This, in turn, would provide a useful way to detect whether there is harmful multicollinearity and, at 301 
the same time, correct it based on the Bayesian ridge estimator. The test can be made more formal 302 
by using a Kolmogorov-Smirnov test for testing the equality of the two distributions. We believe, 303 
however, that visual presentation is much more informative. We can also use a formal test for 304 
collinearity in Bayesian analysis. In OLS settings such tests are not possible. For example, variance 305 
inflation factors (VIF) commonly used are diagnostics of collinearity, not statistical tests.  306 
 307 
In our case, one can formally test for collinearity using the Bayes factor. Given the marginal 308 

posterior ( | )p k y  the Bayes factor in favor of ridge regression and against OLS can be 309 

approximated using 310 

 
ˆ( | )

( 0 | )

p k
BF

p k =

y

y
  (6)  311 

where k̂  is the modal value of the marginal posterior. In our case the denominator is practically 312 

zero, so the BF diverges to a very large value, indicating that the ridge regression model fits the data 313 

best. For this approach see Berger (1980, p. 156). 314 

 315 
 316 

4.2. Correcting for Collinearity 317 
 318 

To correct for collinearity we propose the Bayesian ridge estimator proposed in Section 4.2. While 319 

we saw in Figure 1.c how the Bayesian diffuse prior (i.e. OLS) can seriously affect the regression 320 

results in the presence of collinear data, the important issue that remains is how reliable our Bayesian 321 

estimator is in the presence of collinearity.   322 

We run a similar experiment to the above where we compared the performance of the Bayesian 323 

diffuse prior against the Bayesian ridge regression. We also included in the comparison a traditional 324 

ridge regression model (non-Bayesian) with a pre-specified value for k  =0.0018.  For the diffuse 325 

prior context, we followed a common practice in the literature and tried to drop the collinear 326 

variables from the model.   327 

We use 10,000 Monte Carlo replications to compare the above models. We tried three versions of 328 

the diffuse prior model by dropping one, two and three variables at a time. The true model for the 329 

simulation is  330 

1 2 3 4 5 0.1i i i i i i iy x x x x x u= + + + + +  where ~ (0,1)iu N  and the regressors are generated as follows. 331 

 
8 This is a standard value for k used in the literature. Of course, our proposed approach focuses on 
optimizing the value of k and not on pre-specifying the value of k, as discussed previously.  
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1 ~ (0,1)ix N   332 

1 0.1 , ~ (0,1), 2,...,5ij i ij ijx x v v N j= + = . 333 

For testing purposes we set all 
j ( )1,...,j p=  as equal to 1. Again, the results do not depend on 334 

the exact values of these coefficients. 335 

The results are presented in Figure 2. We can see that the Bayesian ridge regression based on the 336 

optimal prior seems to performs best and is the one most centered around the true value of  . 337 

Contrary to common belief, the practice of dropping variables from the models, on the other hand, 338 

does not seem to be a good choice for correcting the results of the regression model. The closest to 339 

our model is the traditional ridge regression, but this has the problem of pre-specifying the value of 340 

k  in advance.  Further illustration with real data is presented next. 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

Figure 1. Sampling distributions of different estimators of β2. 358 

 359 

Figure 1a. Sampling Distributions of Posterior Mean from Bayesian diffuse analysis and 360 

Bayesian ridge analysis ( 1B = ). Orthogonal data. 361 
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 384 
Figure 1b. Sampling Distributions of Posterior Mean from Bayesian diffuse analysis and 385 

Bayesian ridge analysis (
310B = ). Collinear data. 386 



12 

 

 387 
 388 

 389 
 390 

 391 

 392 

 393 

 394 

 395 

  396 

 397 

 398 

 399 

 400 

 401 

Figure 1c. Sampling Distributions of Posterior Mean from Bayesian diffuse analysis and 402 

Bayesian ridge analysis ( 1B = ). Collinear data. 403 
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 417 

 418 

Figure 2. Performance of the Bayesian ridge regression against other alternatives  419 
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 420 
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 422 

 423 

5. Illustration using Real Data 424 

We also test our Bayesian ridge regression using a real application the hotel industry. The model 425 

focuses on the relationship between room revenue and the following covariates: room expenses, 426 

food and beverage (F&B) expenses, utility expenses, marketing expenses, property and maintenance 427 

(POM) expenses and number of rooms. All these variables are expected to be positively correlated 428 

with room revenue as higher revenue usually results in higher expenses in these categories.   429 

The dataset for this study was obtained from Smith Travel Research, an independent company that 430 

tracks lodging supply and demand data for most major hotels in the US and internationally. The 431 

STR’s data are highly comprehensive, reliable and mostly commonly by hotels to track their 432 

performance9. 433 

We use here a unique panel sample of 78 US hotels (for the years 2012-2016). So, in total we have 434 

390 observations. The correlation matrix for all variables included in the model (Table 4) clearly 435 

illustrates the high collinearity problem. Further evidence on the collinearity problem in this dataset 436 

is illustrated in Table 5 where we can see that the variance inflation factors (VIFs) for five of the six 437 

 
9 At least in the United States. 
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covariates are >10. Our Bayes factor (equation 6) also diverges to a very large value, indicating that 438 

the ridge regression model fits the data best. 439 

We report in Table 6 the results from Bayesian ridge regression and linear regression (i.e. OLS). For 440 

the Bayesian estimation, we used the non-conjugate prior described in Section 4.2. As mentioned, 441 

one of the advantages is that with the Bayesian approach, we do not pre-set or select a single value 442 

of k  but we produce the whole marginal posterior of this parameter given the data. For example, we 443 

report in Figure 3 the overall posterior density of k .   444 

The posterior mean of k  is also included in Table 6. We can clearly the differences between the 445 

results obtained from the Bayesian ridge regression vs OLS. For instance, despite the high positive 446 

correlation between the various covariates and the dependent variable several coefficients from OLS 447 

have a negative sign and only three of them are significant. The Bayesian ridge regression however 448 

indicates that all coefficients are positive and significant. This confirms our earlier results from the 449 

simulation that when collinearity exits, ridge and least square results can be very different.  450 

 451 

Of course, we are not implying that collinearity is of less concern than is often implied in the 452 

literature. While our method seems to be more tolerant to collinearity, the results should not 453 

encourage tourism researchers to throw any variable into the model and expect the results to come 454 

out perfectly. The selection of variables should still be based on an educated theoretical approach.  455 

In contexts when collinearity cannot be avoided, the practices of mean centering, or dropping 456 

variables do not seem to be good choices for correcting the results of the regression model. Rather, 457 

the regression estimation should be conducted using more robust approaches such as the one we 458 

propose in this study. 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

Table 4. Correlation Matrix 468 

 1 2 3 4 5 6 7 

Room revenue (1) 1       
Room Expenses (2) 0.9867 1      
F&B expenses (3) 0.9640 0.9744 1     

Utility Expenses (4) 0.9815 0.9741 0.9543 1    
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Marketing Expenses(5)  0.9463 0.9279 0.9379 0.9523 1   
POM Expenses (6) 0.9615 0.9717 0.9741 0.9602 0.9514 1  

Number of Rooms (7) 0.8773 0.8839 0.8685 0.9075 0.9242 0.8967 1 

 469 

 470 

Table 5. Multicollinearity Diagnostic Criteria 471 

 Eigen Values VIF 1/VIF 

Room Expenses  5.7033 34.3711 0.0291 

F&B expenses  0.157 25.0432 0.0399 

Utility Expenses  0.0566 28.6689 0.0349 

Marketing Expenses  0.0423 19.6543 0.0509 

POM Expenses  0.0242 33.7577 0.0296 

Number of Rooms 0.0165 8.3613 0.1196 
 472 

 473 

Table 6. Bayesian Ridge Regression vs. OLS 474 

 Bayesian Ridge  OLS 
Variable Posterior 

Mean 
Posterior t-

stat 
Estimate t-stat 

Room Expenses  5.871 11.068 10.442 16.202 

F&B expenses  0.803 3.902 -0.504 -1.127 

Utility Expenses  1.414 11.542 0.957 1.844 

Marketing Expenses  3.913 38.391 4.628 12.172 

POM Expenses  0.960 3.357 -1.378 -2.018 

Number of Rooms 1.101 4.871 -0.911 -1.953 

sigma 0.211 0.010   

k  0.129 0.075   

 475 

 476 

 477 

 478 

 479 

Figure 3.  Posterior Distribution of the Bayesian ridge parameter ( k ) 480 
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 481 

 482 

 483 

 484 

 485 

6. Concluding Remarks 486 
 487 
In this paper we have taken up Bayesian inference in conjugate and non-conjugate ridge regression 488 
models by using the fact that a prior can be placed on the ridge parameter(s) k  proceed with 489 
posterior analysis on all parameters using standard MCMC techniques. For the conjugate case we 490 
have derived the marginal likelihoods and showed how selection of the k  or g  parameter can be 491 

based in an empirical Bayes context to choose the appropriate value. It is important to notice that 492 
the original ridge regression estimators depend crucially on a conjugacy assumption, namely that the 493 

regression coefficients, ( )
2

| , 0,p pk
k N   I . In the absence of   the prior of   is no longer in 494 

the normal-gamma prior form which is necessary for ordinary ridge regression to emerge. A non-495 

conjugate prior of the form ( )1| 0,p pk
k N I  can be adopted instead, and numerical posterior 496 

inference can rely on the Gibbs sampler. Conjugate priors have certain problems, for example they 497 
have the same tails with the likelihood and they are rarely used in practice. 498 
 499 
We have applied these ideas to show that collinearity can be simultaneously diagnosed and corrected 500 
using priors on all parameters. We also illustrated that the Bayesian ridge regression performs better 501 
than a Bayesian regression with diffuse prior (i.e. OLS). Contrary to common belief, the practice of 502 
dropping variables from the models, does not also seem to be a good choice for correcting the 503 
results of the regression model. 504 
 505 
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One limitation of the paper is that we focus on a single k . Different k s can be used for each 506 

regressor easily, although at the cost of computing several values of the marginal likelihood 507 

depending on the value of such k coefficients. Our methods illustrate, in the context of tourism 508 

studies, that biased estimators yielding lower mean squared error (MSE) are clearly desirable and, 509 

thus, future research could focus more on generalizations of our procedure. Another limitation is, of 510 

course, the assumption of normality of errors which, however, can be relaxed to consider more 511 

general models including other elliptical distributions, distributions with fat tails and / or asymmetry, 512 

etc. 513 

 514 

 515 

 516 
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