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Abstract—This paper addresses the problem of opportunistic
spectrum access in support of mission-critical ultra-reliable and
low latency communications (URLLC). Considering the ability
of supporting short packet transmissions in URLLC scenarios,
a new capacity metric in finite blocklength regime is introduced
as the traditional performance metrics such as ergodic capacity
and outage capacity are no longer applicable. We focus on an
opportunistic spectrum access system in which the secondary
user (SU) opportunistically occupies the frequency resources of
the primary user (PU) and transmits reliable short packets to
its destination. An achievable rate maximization problem is then
formulated for the SU in supporting URLLC services, subject to
a probabilistic received-power constraint at the PU receiver and
imperfect channel knowledge of the SU-PU link. To tackle this
problem, an optimal power allocation policy is proposed. Closed-
form expressions are then derived for the maximum achievable
rate in finite blocklength regime, the approximate transmission
rate at high signal-to-noise ratios (SNRs) and the optimal average
power. Numerical results validate the accuracy of the proposed
closed-form expressions and further reveal the impact of channel
estimation error, block error probability, finite blocklength and
received-power constraint.

Index Terms—URLLC, spectrum sharing, finite blocklength,
achievable coding rate, imperfect channel information.

I. INTRODUCTION

It is noted that 5G wireless communications will sup-

port three generic services, i.e., enhanced mobile broadband

(eMBB), massive machine-type communications (mMTC),

and ultra-reliable and low-latency communications (URLLC)

[1]. Specifically, URLLC refers to the scenarios where data

packets are transmitted at moderately low throughput but with

very high reliability (e.g., 99.999%) and stringent latency

requirements (e.g., 1 ms) [2]. Apparently, the provision of

URLLC has greatly emphasized the stringent requirements

of reliability and end-to-end latency. Hence, it is vital and

challenging for us to design suitable protocols and adaptive

techniques, in support of the explosive growth of URLLC

services in 5G networks, such as vehicular communications,

tactile Internet and virtual reality [3]–[5].

In the context of URLLC, the main challenge is the support

of intermittent short packets, which are the typical form

of the traffic generated and exchanged in mission-critical

communications [4]. Traditional information-theoretic metrics,

such as ergodic capacity and outage capacity, are all defined

for sufficiently large packet lengths. However, for short packet

length communications, the aforementioned traditional capac-

ity metrics become inaccurate and a new metric definition

of the maximum achievable rate is required that takes into

account the finite packet length and finite error probability [6],

[7]. In [6], the authors derived an approximate expression for

the maximum achievable rate in finite blocklength regime for

a given error probability, which can be considered as a suitable

capacity metric for URLLC. Hence, throughout this paper, we

expand on the achievable rate expressions from [6] to evaluate

the effective throughput for transmitting short packets.

On the other hand, due to the spectrum scarcity issue in

future communication networks, it is important to investigate

the performance of opportunistic spectrum access protocols

in supporting URLLC services. With sufficient studies in

classical cognitive radio networks, the applications of oppor-

tunistic spectrum access and corresponding access protocols

in supporting URLLC scenarios remain inadequate [8]–[10].

For example, resource allocation strategies were analyzed and

investigated in [11]–[13], aiming to improve system perfor-

mance metrics in URLLC scenarios, such as energy efficiency

and total transmission rate. However, the above mentioned pa-

pers mainly focused on providing efficient resource allocation

algorithms, rather than proposing the analytical closed-form

expressions and investigating the impact of different system

parameters.

In this paper, we focus on an opportunistic spectrum sharing

system, in which the secondary user (SU) opportunistically

re-uses the spectrum resources of the primary user (PU),

without bringing disruption at the PU receiver. Specifically,

we assume that the SU supports URLLC services and trans-

mits reliable short packets to its destination. With a new

capacity metric introduced, the mathematical properties of

the maximum achievable rate in finite blocklength regime are

investigated first. Then, the optimal power control policy is

proposed, followed by the analytical closed-form expressions.

We summarize the primary contributions as follows:

• For an opportunistic spectrum access system, an optimal

power control policy is studied for the SU in supporting

short packet transmissions for URLLC scenarios. Specif-

ically, the monotonicity of the achievable average rate in

finite blocklength regime is theoretically proved.

• Closed-form expressions/approximations are derived for

the maximum achievable rate in finite blocklength regime,

the approximate rate at high signal-to-noise ratios (SNRs)

and the optimal average power. The accuracy of the

proposed closed-form expressions is validated through
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Fig. 1: System model.

Monte Carlo results.

• Numerical results further reveal that ergodic capacity

achieved by adopting optimal power control serves as an

upper bound for the achievable rate in finite blocklength

regime. The gap between them can be reduced by care-

fully manipulating the blocklength, the error probability

and the channel estimation error.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1, in which the SU

opportunistically occupies the PU’s spectrum resources and

supports reliable short packet transmissions in URLLC scenar-

ios. The complex channel gain between the SU transmitter and

the SU receiver is represented by hs[i], while hp[i] denotes the

channel gain between the SU transmitter and the PU receiver.

Block-fading channel models are considered [14], i.e., hs[i]
and hp[i] stay fixed for the ith coherence interval and then

independently change for the following interval. Further, it is

assumed that hp[i] and hs[i] are independent and identically

distributed (i.i.d.) zero mean circularly symmetric complex

Gaussian (ZMCSCG) random variables, i.e., CN (0, 1). Specif-

ically, the SU transmitter and receiver are assumed to have

perfect channel state information (CSI) of hs[i], but only have

imperfect channel knowledge of hp[i] for the SU-PU link,

which can be obtained through blind estimation techniques

[15]. Let the minimum mean square error (MMSE) estimation

for the fading coefficient hp[i] be ĥp[i]. The estimation error

is denoted by

h̆p[i] = hp[i]− ĥp[i], (1)

which follows ZMCSCG distribution independent of hp[i], i.e.,

CN (0, σ2
e). The channel estimation ĥp[i] is thus ZMCSCG

distributed with variance 1 − σ2
e . When σ2

e = 0, it indicates

that perfect channel knowledge is available.

Channel coding is assumed to be performed in each co-

herence interval of m symbols [14]. For a given block error

probability ǫ, 0 < ǫ < 1, a finite blocklength m, and signal-

to-noise ratio (SNR) ρ, the achievable instantaneous rate (bits

per channel use (bpcu) [16]) for the SU in the ith interval can

be approximated as [6]

ri ≈ log2
(

1 + ρ|hs[i]|2
)

−

√

√

√

√

1

m

(

1− 1

(ρ|hs[i]|2 + 1)2

)

Q−1(ǫ) log2(e), (2)

where the approximation is accurate for m ≥ 100 [6]. Q−1(x)
is the inverse of the Gaussian Q-function with Q(x) =
∫

∞

x

1√
2π

e−t2/2dt.

Note that for short packet transmissions, finite error prob-

ability is inevitable. By assuming a block error probability

ǫ, the instantaneous rate ri in (2) is achieved with an error-

free probability 1− ǫ and it becomes zero when an erroneous

reception occurs. When a decoding error occurs, the SU

receiver employing a simple automatic repeat request (ARQ)

mechanisam will send a negative acknowledgement (NACK)

requesting the retransmission. Hence, the effective service rate

(in bits per m channel uses) can be given as follows:

Ri =

{

0, with prob. ǫ

mri, with prob. 1− ǫ.
(3)

Then, the achievable normalized average rate for the SU with

finite blocklength codes, in bpcu, can be expressed as

R̄ = E[Ri] = (1− ǫ)E [ri] . (4)

III. THROUGHPUT WITH FINITE BLOCKLENGTH CODES

Since the SU only has imperfect CSI of the SU-PU link,

hence it cannot guarantee that the interference caused at the

PU will remain below the peak limit [10]. Therefore, in this

paper, we assume that the interference caused by the SU due

to spectrum sharing may exceed the peak limit, but only for a

very small percentage of time. By adopting optimal power

control over time such that the received-power at the PU

receiver is probabilistically constrained [17], the maximum

average rate for the SU with finite blocklength codes can be

represented as1

R̄ = max
Pgs,ĝp

(1− ǫ)E

[

log2

(

1 +
Pgs,ĝpgs

N0B

)

−

√

√

√

√

√

√

√

√

1

m











1− 1
(

1 +
Pgs,ĝpgs

N0B

)2























Q−1(ǫ) log2(e), (5a)

subject to: Pr{Pgs,ĝpgp ≥ Ppeak} ≤ Pout, (5b)

where Pgs,ĝp is the adaptive transmit power depending on

the channel condition of the SU-SU link and the channel

estimation of the SU-PU link, with gs = |hs|2 and ĝp = |ĥp|2.

Further, E[·] indicates the expectation over the joint probability

density function (PDF) of gs and ĝp, Ppeak is the peak

received-power limit, Pout is the outage probability limit of

the received-power, N0B is the additive white Gaussian noise

(AWGN) power with B denoting the channel bandwidth and

N0 indicating the single-sided noise spectral density. Hence,

(5b) guarantees that the probability of the received-power at

1Hereafter, the time index i is omitted for simplicity.



the PU exceeding the peak value will be constrained by a given

outage parameter Pout. For example, when Pout = 0.001, it

means that the received-power constraint Pgs,ĝpgp ≤ Ppeak

can be guaranteed for at least 99.9% of time.

Before solving the above optimization problem, we first

analyze the received-power constraint (5b).

Pr{Pgs,ĝp (gp) ≥ Ppeak} (6a)

= Pr{Pgs,ĝp (ĝp + ğp) ≥ Ppeak} (6b)

= Pr{ğp ≥ Ppeak

Pgs,ĝp

− ĝp} (6c)

=

∫

∞

0

f(gs)dgs

∫

∞

0

f(ĝp)dĝp

∫

∞

Ppeak

Pgs,ĝp

−ĝp

f(ğp)dğp, (6d)

where f(gs), f(ĝp), f(ğp) are the PDFs of gs, ĝp, and

ğp, respectively. By inserting f(gs) = e−gs , f(ĝp) =

1

1− σ2
e

e
−

ĝp
1− σ2

e , and f(ğp) =
1

σ2
e

e
−

ğp
σ2
e into (6d), the

received-power outage constraint (5b) can be expressed as

∫

∞

0

e−gs

∫

∞

0

e
−

Ppeak

σ2
ePgs,ĝp

+
ĝp
σ2
e
e
−

ĝp
1− σ2

e

1− σ2
e

dĝpdgs ≤ Pout.

(7a)

Note that obtaining the optimal power allocation policy

which maximizes the achievable average rate, subject to the

received-power constraint (7a) is difficult [10]. However, one

sufficient instantaneous power constraint can be found whose

satisfaction guarantees that the received-power constraint (7a)

will be met at all times, which is [10]

Pgs,ĝp ≤ Ppeak

ĝp − σ2
e lnPout

. (8)

After applying the sufficient instantaneous power constraint

(8), the original rate maximization problem for the SU trans-

mitting short packets in URLLC, i.e., (5a)-(5b), becomes

R̄ = max
Pgs,ĝp

(1 − ǫ)E

[

log2

(

1 +
Pgs,ĝpgs

N0B

)

−

√

√

√

√

√

√

√

√

1

m











1− 1
(

1 +
Pgs,ĝpgs

N0B

)2























Q−1(ǫ) log2(e), (9a)

subject to: Pgs,ĝp ≤ Ppeak

ĝp − σ2
e lnPout

. (9b)

We note that the main difficulty of solving the above opti-

mization problem (9a)-(9b) is that the objective function is

non-convex and more complicated, compared to the traditional

ergodic capacity. Hence, in order to optimally solve it, we start

by analyzing the property of the objective function.

Theorem 1: For sufficiently large values of transmit power,

the achievable average rate R̄ monotonically increases with

Pgs,ĝp . Specifically, under some practical assumptions relevant

to URLLC scenarios, i.e., m ≥ 100, ǫ > 10−6, the instanta-

neous rate ri for an AWGN channel monotonically increases

with the transmit SNR ρ0, for ρ0 ≥ −10 dB2.

Proof: See Appendix A.

Theorem 1 first proves that for the fading SU-SU channel,

the achievable average rate R̄ is a monotonically increasing

function for sufficiently large power values. In order to obtain

a more general conclusion, we further take an AWGN channel

as an example, which indicates that under some reasonable

assumptions on m and ǫ [2], [18], the instantaneous rate ri
can be proved to be monotonically increasing with the transmit

SNR ρ0, as long as ρ0 is not extremely low [19]. In this

context, we can note that for non-extremely low SNR values,

the optimal power control policy which solves the maximiza-

tion problem (9a)-(9b) is simply transmitting at the maximum

instantaneous power limit, i.e., Pgs,ĝp =
Ppeak

ĝp − σ2
e lnPout

.

By inserting the optimal power value into the objective

function, we can get that the achievable rate R̄ equals to

(1− ǫ)E

[

log2

(

1 +
Ppeakgs

N0B (ĝp − σ2
e lnPout)

)

− βm,ǫ

√
V

]

,

where V = 1 − 1
(

1 +
Ppeakgs

N0B (ĝp − σ2
e lnPout)

)2 and βm,ǫ =

√

1

m
Q−1(ǫ) log2 e. Furthermore, the optimal average power

can be expressed as

P̄ = E
[

Pgs,ĝp

]

= E

[

Ppeak

ĝp − σ2
e lnPout

]

. (10)

Theorem 2: Considering imperfect CSI of the SU-PU link

and the received-power constraint at the PU receiver, a closed-

form approximation for R̄ is given in (11) (shown on next

page), where η1 =
N0B

Ppeak
, η2 =

N0Bσ2
e lnPout

Ppeak
, em(x) =

m
∑

k=0

xk

k!
, and E1(·) is the exponential integral function [20].

Further, the optimal average transmit power P̄ for the SU is

expressed in closed-form, given in (12) (shown on next page).

Proof: The proof for deriving the closed-form for R̄ is

provided in Appendix B, while the proof for deriving the

closed-form for P̄ is omitted here due to page limit, but it

can be obtained by following similar steps as in [10].

At high SNRs, it is known that lim
ρ→∞

V = 1 [6], [7]. In this

case, the achievable rate for the SU in URLLC, denoted by

R̂, can be expressed as

R̂ = (1− ǫ)

(

E

[

log2

(

1 +
Ppeakgs

N0B (ĝp − σ2
e lnPout)

)]

− βm,ǫ

)

.

Lemma 1: At high SNRs, the closed-form expression for

the achievable rate R̂ is given in (13) (shown on next page)

for the SU with imperfect CSI of the SU-PU link, under an

received-power outage constraint at the PU receiver.

2Here, ρ0 is the transmit SNR for an AWGN channel.
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Fig. 2: The maximum achievable rates with finite

blocklength codes, R̄ and R̂ at high SNRs, versus peak

received-power limit Ppeak.

Proof: Closed-form expression for R̂ at high SNRs can

be derived by following similar steps as in Appendix B.

IV. NUMERICAL RESULTS

In this section, all the theorems and lemmas proposed

in Section III will be numerically validated. The impact of

blocklength m, error probability ǫ, channel estimation error,

outage parameter Pout and peak received-power limit Ppeak

will also be discussed and analyzed.

Firstly, in order to confirm the accuracy of the proposed

closed-form expressions for the maximum achievable rates for

the SU transmitting short packets, i.e., R̄ and R̂, we include

Fig. 2 which shows the plots of R̄ and R̂ versus Ppeak. Closed-

form expressions are plotted in solid lines, while the Monte

Carlo simulations are plotted in dash lines. To plot this figure,

it is assumed that the channel estimation error variance σ2
e =

0.001, the outage parameter Pout = 0.001, the block error

probability ǫ = 10−3, and the blocklength m = 500 symbols.

From Fig. 2, we can notice that the closed-form expression for

R̂ at high SNRs exactly matches with the Monte Carlo results.

The closed-form approximation for R̄ matches with numerical

results when Ppeak is sufficiently large, e.g., Ppeak ≥ 0 dBW,

and has a negligible difference with Monte Carlo results when

Ppeak is small, e.g., Ppeak ≤ −2 dBW. This is because that

we use an approximation step of
√
1− x ≈ 1 − 1/2x to

derive the closed-form approximation for R̄, which results

in slight imprecision due to the omitted remainder terms of

Binomial series. Furthermore, Fig. 2 also shows that at high

Ppeak values, the maximum achievable rate at high SNRs, i.e.,

R̂, matches with R̄, which confirms Lemma 1.

To investigate the impact of the outage parameter Pout

and the received-power limit Ppeak on the achievable rate

performance for the SU in URLLC, we include Fig. 3 which

plots the curves of R̄ and C versus the peak received-power

limit Ppeak, for various values of Pout. To plot this figure, it is

-5 0 5 10
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Fig. 3: The maximum achievable rate with finite blocklength

codes R̄ and ergodic capacity C versus peak received-power

limit Ppeak, for various values of Pout.

assumed that the channel estimation error variance σ2
e = 0.01,

the error probability ǫ = 10−4, and the blocklength m = 500
symbols. Firstly, one can notice from Fig. 3 that the ergodic

capacity C always serves as an upper bound for the achievable

rate R̄ in finite blocklength regime. This is because that the

instantaneous rate using finite blocklength codes, i.e., ri, can

be seen as an expression derived by incurring a penalty on the

traditional throughput, in which the penalty depends on the

desired error probability and a given blocklength. Secondly,

for a fixed value of Ppeak, Fig. 3 indicates that when Pout

becomes larger, the values of R̄ and C becomes larger. This

is because with a larger value of Pout, the received power at

the PU has a higher probability of exceeding the peak limit

Ppeak, which leads to higher instantaneous transmit power and

consequently, the maximum transmission rate becomes larger.

However, in order to guarantee that PU is not disturbed, the SU

prefers to keep the outage parameter Pout as small as possible.

From Fig. 3, we can notice that for a fixed Ppeak value, when

Pout is reduced from 0.01 to 0.001, it only results in very

negligible compromise on the maximum achievable rate R̄.

To investigate the impact of the block error probability

and the channel estimation error on the achievable rate per-

formance for the SU in URLLC, Fig. 4 is included which

plots the curves of R̄ and ergodic capacity C versus the

blocklength m, for various values of channel estimation error

variance σ2
e and block error probability ǫ. Note that this figure

is plotted using Monte Carlo simulations, by assuming that

Ppeak = 0 dBW and the outage parameter Pout = 0.01. From

this figure, one can first note that for a fixed parameter setting,

e.g., σ2
e = 0.01 and ǫ = 10−2, the maximum achievable

rate R̄ for the SU in finite blocklength regime monotonically

increases with the blocklength m, while the ergodic capacity

is independent of the blocklength. This is due to the reason

that the penalty added on the instantaneous achievable rate

with finite blocklength codes is proportional to 1/
√
m [7].



R̄ ≈ (1 − ǫ)







Ppeak

ln 2 (Ppeak−(1− σ2
e)N0B)






−e

−

σ2
e lnPout

1− σ2
e E1

(

−σ2
e lnPout

1− σ2
e
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+ e−η2E1 (−η2)
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


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(
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−

η2
(1− σ2

e) η1

(

1

η1 (1−σ2
e)

− 1

)3

(

E1

(

− η2
η1 (1− σ2
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(
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1

m
em−1

(

− η2
η1 (1− σ2

e)

)








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1

1
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






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


















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, (11)

P̄ =
Ppeak

1− σ2
e

e
−

σ2
e lnPout

1− σ2
e E1

(

−σ2
e lnPout

1− σ2
e

)

, (12)

R̂ = (1 − ǫ)







Ppeak

ln 2 (Ppeak−(1− σ2
e)N0B)






−e

−

σ2
e lnPout

1− σ2
e E1

(

−σ2
e lnPout

1− σ2
e
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+ e−η2E1 (−η2)
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


− βm,ǫ






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Fig. 4: The maximum achievable rate with finite blocklength

codes R̄ and ergodic capacity C versus blocklength m, for

various values of σ2
e and ǫ.

Secondly, for a fixed setting of m and ǫ, when σ2
e becomes

larger, i.e., changing from 0.01 to 0.05, the achievable rate R̄
for the SU becomes smaller. This indicates that the channel

estimation error will degrade the achievable rate performance

in finite blocklength regime. Thirdly, when the values of m
and σ2

e are fixed, Fig. 4 shows that the R̄ value obtained with

a smaller ǫ, i.e., ǫ = 10−2, is larger than the one obtained with

ǫ = 10−1.

Finally, from the optimal average transmit power expression,

given in (10), we can note that the value of P̄ for the SU is

independent of ǫ and m, and only depends on the values of σ2
e ,

Pout and Ppeak. Hence, Fig. 5 is plotted, in order to show the

accuracy of the proposed closed-form expression for P̄ and
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Fig. 5: The optimal average power versus outage parameter

Pout, for various values of σ2
e and Ppeak.

also to investigate the impact of σ2
e , Pout and Ppeak on the

optimal average power value. To plot this figure, it is assumed

that ǫ = 10−4 and m = 1000 symbols. Firstly, from this figure,

we can note that the proposed closed-form expression for P̄
(in dash lines) confirms with the Monte Carlo simulations

(in solid lines), which guarantees the accuracy. Secondly, we

can note that P̄ monotonically increases with Pout, for each

fixed setting of σ2
e and Ppeak. Intuitively, a larger Pout value

means that the instantaneous received-power at the PU receiver

can exceed the peak limit Ppeak with a higher probability,

which results in a higher average transmit power for the SU.

Furthermore, Fig. 5 shows that P̄ is larger for a smaller σ2
e

value and a larger Ppeak value. This phenomenon can be easily



justified by analyzing the initial expression of (10), which is

omitted here.

V. CONCLUSIONS

This paper investigated the opportunistic spectrum access

design in supporting URLLC services, in which the SU op-

portunistically re-uses the frequency resources of the PU and

send reliable short packets to its destination, without bringing

disruption at the PU receiver. A new achievable rate metric was

adopted in this paper, which is more suitable for representing

URLLC services. In order to maximize the achievable data

rate for the SU, an optimal power control policy was pro-

posed, subject to a probabilistic received-power constraint and

imperfect channel information of the SU-PU link. Numerical

results confirmed the accuracy of the proposed closed-form

expressions and further indicated that, the ergodic capacity

always serves as an upper bound for the achievable rate in

finite blocklength regime, and the gap between them can be

reduced by carefully manipulating the values of blocklength,

error probability and also the channel estimation error.

VI. APPENDIX A: PROOF OF THEOREM 1

Recall that the achievable average rate R̄ for the SU using

finite blocklength codes is R̄ = (1 − ǫ)E[ri]. For simplicity,

in the following E[ri] is denoted by r̄, which equals to

E



log2 (1 + ρgs)−

√

√

√

√

1

m

(

1− 1

(ρgs+1)
2

)

Q−1(ǫ) log2 e



.

Here, ρ is the transmit SNR for the SU-SU fading channel,

i.e., ρ =
Pgs,ĝp

N0B
. When ρ becomes sufficiently large, one can

notice that

lim
ρ→∞

E





√

√

√

√

1

m

(

1− 1

(ρgs + 1)
2

)

Q−1(ǫ) log2 e





=

√

1

m
Q−1(ǫ) log2 e. (14)

Then, the achievable average rate R̄ is dominated by the

logarithm term, i.e., E [log2 (1 + ρgs)], which is known to be a

monotonically increasing function with ρ. Since the transmit

power Pgs,ĝp is basically the transmit SNR ρ multiplied by

the constant noise power, hence we can conclude that for

sufficiently large transmit power values, the achievable average

rate R̄ monotonically increases with Pgs,ĝp .

Then, we note that for an AWGN channel, ri is given as

log2 (1 + ρ0)−

√

√

√

√

1

m

(

1− 1

(1 + ρ0)
2

)

Q−1 (ǫ) log2 e,

where ρ0 is the transmit SNR for an AWGN channel. By

taking the first derivative, we can get that
∂ri
∂ρ0

equals to

log2 e

1 + ρ0









1−
√

1

m
Q−1(ǫ)

(

1− 1

(1+ρ0)
2

)

−

1

2
(1 + ρ0)

−2









.

For URLLC scenarios, it is reasonable to assume m ≥
100 and ǫ ≥ 10−6 [2]. Hence, we can get that
√

1

m
≤

√

1

100
and Q−1(ǫ) ≤ Q−1(10−6)3. Fur-

ther, since

(

1− 1

(1 + ρ0)
2

)

−
1

2

(1 + ρ0)
−2

monotonically

decreases with ρ0, therefore we can finally prove that under

the reasonable assumptions of m ≥ 100 and ǫ ≥ 10−6,
√

1

m
Q−1(ǫ)

(

1− 1

(1 + ρ0)
2

)

−
1

2

(1 + ρ0)
−2

< 1, as long as

ρ0 is not extremely low, i.e., ρ0 ≥ −10 dB.

VII. APPENDIX B: PROOF OF THEOREM 2

Recall that R̄ = (1 − ǫ)r̄, where r̄ = C − βm,ǫE

[√
V
]

.

Here, C is ergodic capacity obtained at the instantaneous

power limit, whose closed-form expression can be obtained

by following similar steps in [10]. Here, we only provide the

proof for deriving the closed-form for E
[√

V
]

, yielding

∫

∞

0

e
−

ĝp
1−σ2

e

1−σ2
e

∫

∞

0

√

√

√

√

√

1− 1
(

1+
Ppeakgs

N0B (ĝp−σ2
e lnPout)

)2

× e−gsdgsdĝp. (15)

Note that
√
1− x ≈ 1 − 1

2
x, for |x| < 1. Then, by

applying this approximation and one substitution step of

gs =
N0B

(

ĝp − σ2
e lnPout

)

x

Ppeak
, (15) can be approximated as

E

[√
V
]

≈
∫

∞

0

e
−

ĝp
1− σ2

e

1−σ2
e

(

1− 1

2

N0B
(

ĝp − σ2
e lnPout

)

Ppeak

×
∫

∞

0

(1 + x)
−2

e
−

N0B
(

ĝp − σ2
e lnPout

)

x

Ppeak dx









dĝp. (16)

According to (3.353.3) in [21], we note that
∫

∞

0

e−px

(a+ x)
2 dx = peapEi (−ap) +

1

a
, p > 0, a > 0. (17)

By applying (17), (16) can be expressed as

E

[√
V
]

≈ 1

1− σ2
e

(

1− σ2
e − N0B

2Ppeak

(

1− σ2
e

)2

3This is because Q−1(x) is a monotonically decreasing function with x.



+
N0Bσ2

e lnPout

2Ppeak

(

1− σ2
e

)

−A1

)

, (18)

where A1 is given as

A1 =− 1

2η1
e
−

η2
(1− σ2

e) η1
∫

∞

−η2

y2e

(

1−
1

η1 (1−σ2
e)

)

y

E1(y)dy,

where η1 =
N0B

Ppeak
, η2 =

N0Bσ2
e lnPout

Ppeak
. To find the closed-

form expression for A1, we note that (4.2.16) in [22] provides
∫

xne−axE1(bx)dx =
n!

an+1
E1((a+ b)x)− n!

an+1
en(ax)

× e−axE1(bx) +
n!

an+1
e−(a+b)x

n
∑

m=1

em−1((a+ b)x)

m

(

1 +
b

a

)m , (19)

where em(x) =
m
∑

k=0

xk

k!
. By applying (19), A1 can be ex-

pressed in closed-form and the closed-form approximation for

E

[√
V
]

can then be obtained by inserting A1 back into (18).

Finally, the closed-form approximation for R̄ can be derived

by using R̄ = (1 − ǫ)
(

C − βm,ǫE

[√
V
])

and is given in

(11).
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