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A B S T R A C T

This paper tackles the short-term hydro-power unit commitment problem in a multi-reservoir system — a
cascade-based operation scenario. For this, we propose a new mathematical modeling in which the goal is to
maximize the total energy production of the hydro-power plant in a sub-daily operation, and, simultaneously,
to maximize the total water content (volume) of reservoirs. For solving the problem, we discuss the Multi-
objective Evolutionary Swarm Hybridization (MESH) algorithm, a recently proposed multi-objective swarm
intelligence-based optimization method which has obtained very competitive results when compared to existing
evolutionary algorithms in specific applications. The MESH approach has been applied to find the optimal
water discharge and the power produced at the maximum reservoir volume for all possible combinations
of turbines in a hydro-power plant. The performance of MESH has been compared with that of well-known
evolutionary approaches such as NSGA-II, NSGA-III, SPEA2, and MOEA/D in a realistic problem considering
data from a hydro-power energy system with two cascaded hydro-power plants in Brazil. Results indicate that
MESH showed a superior performance than alternative multi-objective approaches in terms of efficiency and
accuracy, providing a profit of $412,500 per month in a projection analysis carried out.
1. Introduction

Hydro-power is one of the most important sustainable energy
sources in countries with a huge fluvial resource, such as Brazil. The
water resources management, combined with the growth in demand
for electricity and climate change are impacting factors in the flow
regime of rivers, directly interfering in the development of economic
activities for the production of hydro-electric energy. Compared to
other renewable resources, hydro-power has exceptional advantages,
such as the ability to generate electricity without producing any pol-
lution and to provide water flow control in the rivers (Sharma et al.,
2004). A big challenge in hydro-power is the modeling and operation of
systems that generates energy using two or more hydro-power plants
(HPPs) in a cascade process. This method of conducting the electric
dispatch production is known as the Operation of Multi-Reservoir
System (OMRS) (Roefs & Bodin, 1970). As in the case of single hydro-
power plants, in OMRS it is needed to define an optimal schedule
for the production units, usually on an hourly basis, to maximize the
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electrical power obtained from a given water volume. In the case
of multi-reservoirs, the optimization problem is usually very hard
with non-linear objective functions, an extremely large search space
dimension and, in many occasions, several objectives with different
constraints to be fulfilled (Barros et al., 2003).

There are different methods to solve OMRS problems described
in the literature, that can be roughly divided into two classes: con-
ventional methods and bio-inspired meta-heuristics. In general, con-
ventional methods are to some extent deterministic algorithms. Cai
et al. (2001) and Yoo (2009) used Linear Programming (LP) methods
to maximize hydro-power generation. The works by Catalao et al.
(2010) and Zheng et al. (2001) addressed the maximization of reser-
voir volume with use of Nonlinear Programming. Mixed-integer Linear
Programming (MILP) is another classic tool used to minimize the
maintenance costs and usage of water in hydro-power plants in Canto
(2006), Chen et al. (2016) and Ge et al. (2012). Methods based on
Lagrangian Relaxation to minimize the total costs of production were
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discussed by Guan and Zhang (1995) and Scuzziato et al. (2020).
Dynamic Programming techniques were also adopted to obtain the
optimal management operation as proposed in Marano et al. (2012).
Fuzzy models have also been applied to conduct the dispatch operation
in HPPs, as in Moeini et al. (2011) and Zhang et al. (2017).

Bio-inspired algorithms have also been successfully applied to dif-
ferent problems in hydro-power. For example, Naresh and Sharma
(2002) and Xie et al. (2018) used different types of neural networks
to solve hydro-scheduling, a subproblem of OMRS. Genetic Algorithms
(GAs) have been used to solve several types the electric dispatch in
OMRS: to provide optimal operation of these type of facilities (Leite
et al., 2002), to maximize the power production for a case scenario in
Turkey (Cinar et al., 2010) and to maximize the power production of
small communities in Honduras (Tapia et al., 2020). Solutions inspired
on swarm intelligence adopting the Particle Swarm Optimization (PSO)
have been applied to minimize the use of water in power generation as
described on Wang et al. (2012). PSO has been also used to minimize
environmental impacts of power generation (Xin-gang et al., 2020)
and to minimize the production costs (Mandal & Chakraborty, 2012).
Considering the ecological environment problem described in Zhang,
Zhou, Fang et al. (2013), the authors have applied a Differential Evo-
lution (DE) algorithm to solve the electrical dispatching problem. DE
algorithm versions were also applied to maximize the volume of water
in reservoirs (Guedes et al., 2015).

Related works have presented high degrees of success in these
practical engineering problems. However, there are still certain weak-
nesses when conventional or bio-inspired techniques are used to solve
OMRS related problems. In many cases, LP methods failed to address
the widespread nonlinearity in the basic feature information of HPP
reservoirs (Cai et al., 2001). Nonlinear programming often showed
inaccuracies due to linearization of nonlinear constraints when address-
ing the non-convex objective function in HPP system (Zheng et al.,
2001). Sometimes applying the dynamic programming approaches can
be mainly limited by dimensionality problem in which OMRS is in-
volved (Marano et al., 2012). The great challenge for neural net-
work methods is conducting the selection of computational parame-
ters (Naresh & Sharma, 2002), a time consuming task mostly incom-
patible with the real time nature of the dispatch problem. Population-
based and bio-inspired methods based on evolutionary algorithms can
be easily trapped in local optima due to the premature convergence
problem (Guedes et al., 2015; Zhang, Zhou, Ouyang et al., 2013).

In addition to these issues related to the algorithms focused on
the OMRS problem, note that the short-term HPP scheduling problem
in OMRS can have more than one objective: some plant operators
might need not only to maximize the efficiency of the energy pro-
duction process, but also to keep the turbine flow close to a target
value or to optimize the water balance between the reservoirs. Despite
the multi-objective nature of the problem, the majority of existing
methods perform a scalarization to transform the problem into a single-
objective one. Nevertheless, solving a multi-objective problem via a
scalarized mono-objective approach can lead to a crucial information
loss (Marcelino et al., 2020).

A wide variety of multi-objective Evolutionary Algorithms (MOEAs)
have been proposed and successfully applied to many real-world op-
timization problems (Zhou et al., 2011). Some MOEAs employ the
concept of Pareto Dominance to find a set of non-dominated solutions,
which represent a set of efficient solutions considering the objective
functions of the problem at hand. As an example, we can cite the Non-
dominated Sorting Genetic Algorithm (NSGA-II) (Deb, Pratap et al.,
2002), the Strength Pareto Evolutionary Algorithm (SPEA2) (Zitzler
et al., 2001) and the Multi-objective Particle Swarm Optimization
(MOPSO) (Padhye et al., 2009), to name a few. Despite the popu-
larity in academia, the use of MOEAs in industry is not so common.
Specifically for the OMRS scenario, very few works tackle the problem
in its multi-objective formulation. The NSGA-II has been applied to
2

maximize the river habitat quality and hydro-power generation (Cioffi
& Gallerano, 2012).

The SPEA2 has been used in Hidalgo et al. (2015) to minimize daily
release from the plant and the number of times that the status of the
unit generator is changed. An approach using the Improved Partheno
Genetic Algorithm (IPGA) has been conducted to optimize a system
with two HPPs in China (Wang et al., 2015). The use of PSO to solve
complex multi-dimensional problems has grown significantly due to its
simplicity and easy applicability. Currently, new algorithms inspired by
swarm intelligence have been widely adopted for solving highly non-
linear, multi-modal, NP-Hard and multi-objective problems, and have
proven successful in those cases (Almufti, 2017). Some works that fol-
low these approaches are: the Improved Multi-Objective Particle Swarm
optimization (IMOPSO) algorithm proposed by Zhang et al. (2018), a
Multi-objective Particle Swarm Optimization (MOPSO) version (Feng
et al., 2017) and a Parallel Multi-PSO (PMPSO) described in Niu-W-J.
et al. (2018). Specifically, swarm-based algorithms proved to be very
efficient and fast for solving problems in the energy field (Baumann
et al., 2017; Marcelino, Pedreira et al., 2018; Marcelino et al., 2019).
Thus, in this work we propose a hybrid swarm algorithm, aiming to use
the best mechanisms coming from evolutionary computation within the
well-founded framework inherent to swarm intelligence.

In the last years, other Pareto dominance-based MOEAs have been
proposed to deal with problems having three or more objectives. Re-
cently, a large number of specialized algorithms have been proposed
and applied to different topics such as big data optimization (Yi et al.,
2018), cyber–physical social systems (Wang et al., 2020), interval
multi-objective optimization problems (Sun et al., 2020), distributed
manufacturing problems (Jiang et al., 2020), vehicle routing (Li et al.,
2020), signal processing (Li et al., 2021), and correlated subjects (Li
et al., 2018). In this paper we will further discuss the performance
of two MOEAs that have proven to be powerful to deal with prob-
lems with any number of objectives: the MOEA based on decom-
position (MOEA/D, by Zhang and Li 2007) and the reference-point
based non-dominated sorting algorithm (NSGA-III, Deb & Jain, 2014a,
2014b. These are standard, baseline algorithms, on top of which further
approaches have been proposed.

MOEA/D (Zhang & Li, 2007) is a decomposition-based MOEA that
emphasizes convergence and diversity of population. The problem is
decomposed into a set of subproblems and then optimized simul-
taneously. A uniformly generated set of weight vectors associated
with a fitness assignment method is usually used to decompose the
original problem. Improved and blended versions of MOEA/D have
been proposed in the literature. An improvement proposed in Zhang
et al. (2020) using the Information Feedback Models (IFM) demon-
strated competitive results when compared to the standard version in
a set of large scale benchmark functions. A modified multi-objective
evolutionary algorithm with decomposition plus random local search
(MMOEA/D-RL) was proposed in Jiang et al. (2020) to solve a dis-
tributed manufacturing problem. The central idea of MMOEA/D-RL is
that the weight vectors are initialized randomly, and then the neigh-
bors of each solution are determined accordingly. Sophisticated proce-
dures are used to improve the algorithm performance and the results
have showed a competitive performance when applied to a real-world
problem.

Another decomposition-based algorithm using a localized control
variable analysis approach (called LSMOEA/D) was proposed by Ma
et al. (2021). In the LSMOEA/D method, the guidance of reference
vectors is incorporated into the control decision variable analysis,
leading to a competitive performance when solving benchmark prob-
lems. Qin et al. (2021) proposed an algorithm to improve the speed
of convergence in large-scale multi-objective problems. In benchmark
functions with 5000 decision variables, the large-scale evolutionary
multi-objective algorithm assisted by directed sampling (LMOEA-DS)
showed competitive results when solving problems with three conflict-

ing objectives. However the authors concluded that the LMOEA-DS
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suffers from a common weakness of decomposition-based algorithms:
their performance heavily depends on the degree of match between the
distribution of the reference solution and the offspring.

NSGA-III algorithm is a domination-based MOEAs in which the
domination principle plays a key role. In its famous counterpart, the
NSGA-II, the crowding distances of all individuals are calculated at each
generation and used to maintain the population diversity. Inheriting
the non-dominated sorting from NSGA-II, in the NSGA-III the reference
points are employed to keep the diversity. The NSGA-III has been used
to solve various type problems such as information feedback mod-
els (Gu & Wang, 2020) and large-scale optimization problems (Yi et al.,
2020). Improved and blended approaches have also been proposed
in the literature to solve different problems. An improvement using
the Information Feedback Models (IFM) scheme obtained competitive
results in solving large-scale many-objective problems (Gu & Wang,
2020). In the same way, refinements in the NSGA-III can be seen with
use of simulated binary, uniform, and single point type crossover (Yi
et al., 2020).

Development of algorithms deriving from MOEA/D and NSGA-III
has gain attention in the last years. From the best of our knowledge,
those algorithms have not yet been applied to solve the OMRS problem.
Motivated by this fact and by the successful real-world applications,
standard versions of MOEA/D and NSGA-III have been used to assess
the performance of our proposed approach. Moreover, since the OMRS
problem studied in this paper has a bi-objective nature, the well-known
and successful MOEAs, NSGA-II and SPEA-2, have also been included
in the performance assessment carried out.

Although the maximization of energy production in OMRS can be
modeled by a common objective function, the maximization of the
volume of simultaneous reservoirs is yet unexplored. In this work, we
deal with these two conflicting objectives, aiming to guarantee the
maximum efficiency of each turbine-generator set, while taking into
account the hydraulic losses of the system. Keeping this in mind, this
work proposes a new MOEA applied to the short-term dispatch of an
HPP in OMRS. Our analysis takes into account a cascading system com-
posed of two hydro-power reservoirs serving multiple interconnected
power plants in Brazil.

To solve the electric dispatch in OMRS operation process, the novel
Multi-objective Evolutionary Swarm Hybridization (MESH) is proposed
and discussed. MESH is based on C-DEEPSO (Marcelino, Almeida et al.,
2018; Marcelino et al., 2020), a mono-objective evolutionary algorithm
with recombination rules borrowed from PSO or, alternatively, a mono-
objective swarm optimization method with selection and self-adaptive
properties. The rationale here is due to the performance superiority of
C-DEEPSO when applied to mono-objective versions of diverse power
systems problems. Taking advantage of swarm intelligence methods
and coupled with operators from evolutionary computation techniques,
the proposed approach is compared with four algorithms, NSGA-II,
SPEA2, NSGA-III, and MOEA/D. The experimental results show that
MESH is extremely competitive in solving the short-term electric dis-
patch to HPPs in the multi-reservoir operation system. Therefore, MESH
acts as an electrical dispatch controller system capable of offering
optimized solutions for the daily planning horizon. Furthermore, MESH
guarantees the maximal production with a good use of water resources,
since the obtained solutions are able to maximize the water volume of
the reservoirs. This characteristic differentiates MESH from the other
techniques previously discussed. More specifically, this paper presents
the following contributions:

• a novel mathematical modeling for the hydro-power unit commit-
ment in a multi-reservoir system finding optimal water discharge
and power;

• a Multi-Objective Evolutionary Swarm Hybridization (MESH) al-
gorithm to solve the proposed unit commitment problem;

• the proposed approach, MESH, has been compared to a set of
benchmark problems and the results indicate a competitive per-
formance;
3

Fig. 1. Swarm with the respective positions and velocities of a given iteration, in a
two-dimensional search space.

• usage of a realistic data from a Brazilian hydro-power energy
system with two HPPs in a cascade scenario;

• an in-depth performance assessment of MESH comparing to four
different and well-known algorithms, NSGA-II, SPEA-2, MOEA/D,
and NSGA-III in the hydro-power unit commitment problem;

• obtained results indicate a competitive performance favoring
MESH in terms of efficiency and accuracy when applied to the
hydro-power unit commitment problem;

• a projection analysis has been carried out indicating a profit
of $412,500 per month solving the problem using the proposed
approach.

The rest of the paper has been organized as follows: Section 2
describes the mechanisms of the MESH as an hybrid method able
to solve continuous problems as the electric dispatch in the OMRS
operation process. Section 3 details the short-term electrical dispatch
mathematical modeling of hydro-power plants in cascade operation.
Section 4.1 comprises the experiment of MESH using continuous bench-
mark functions, and the comparative analysis of MESH with other
methods. Section 4.2 shows the experiments results of short-term multi-
objective electric dispatch in cascade operation. Finally, Section 5
illustrates the final remarks regarding the overall MESH performance.

2. Multi-objective Evolutionary Swarm Hybridization algorithm

Evolutionary algorithms (EAs), a popular class of meta-heuristics in
the area of optimization research, are techniques inspired by the pro-
cesses of biological evolutionary structures. In a multi-objective view,
EAs are able to provide feasible solutions for two or more objectives
at the same time. Currently, new approaches are being developed in
a merged way, which can also be considered as methodologies to
hybridize. These hybrid methods consider mixing better operators of
different algorithms to obtain a more efficient optimization tool. In this
context, the combination of Differential Evolution (DE), Particle Swarm
Optimization (PSO), and the sorting operator from the Non-dominated
Sorting Genetic Algorithm (NSGA-II) represents a promising way to
create superior optimizers in multi-objective optimization problems.

Motivated by the competitive performance of the previously pro-
posed C-DEEPSO algorithm (Marcelino, Almeida et al., 2018; Marcelino
et al., 2020) in different problems related to power systems solutions, in
this work we propose a novel hybrid algorithm for multi-objective prob-
lems, the Multi-objective Evolutionary Swarm Hybridization (MESH).
In swarm optimization, the exploration of the search space made by
a particle aims to follow the best solutions already found both in the
particle itself and in its neighborhood, allowing to scan the search space
and find new solutions for better evaluation. The exploration is carried
out by updating the positions and velocities of the particles at each
iteration (see Fig. 1). The process is repeated for a pre-defined number
of iterations or until a pre-defined convergence criterion is reached.
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Fig. 2. C-DEEPSO topology: Star communication (a) and Stochastic star topology (b). The binary matrix 𝐂 is obtained using the rule: randomly generate 𝑁 values within the [0, 1]
interval for each dimension inside of each solution. The randomly generated value is compared to communication rate 𝑃 . If this random value is greater than 𝑃 , the element 𝐶𝑖𝑗
of 𝐂 matrix receives 0, otherwise 1.
The success of the search for an optimal position of a particle
depends not only on the performance of the particle individually, but
also on the information shared with the swarm. This joint skill of the
swarm has been attributed to the concept of Swarm Intelligence. The
swarm optimization to solve complex multidimensional problems has
grown significantly due to its simplicity and easy applicability.

In this context, the MESH method proposed here has been initially
developed to represent problems in a continuous search space. In
MESH, the recombination is governed by the so called Movement Rule,
in the same way as in the C-DEEPSO algorithm. This rule is given by
Eqs. (1) and (2):

𝐕𝑛 = 𝐰∗
𝐼𝐕𝑛−1 + 𝐰∗

𝐴(𝐗𝑠𝑛 − 𝐗𝑛−1) + 𝐰∗
𝐶𝐂(𝐗

∗
𝑔𝑏 − 𝐗𝑛−1), (1)

𝐗𝑛 = 𝐗𝑛−1 + 𝐕𝑛, (2)

in which 𝐗𝑠𝑛 is a position obtained by using the recombination mech-
anisms of Differential Evolution (DE). The subscript 𝑛 denotes the
current generation. 𝐗𝑛 is the current particle or solution. The term 𝐗𝑔𝑏
addresses the best solution ever found by the population. 𝐕𝑛 is the
velocity of the individual. The term 𝐂 represents a 𝑁 × 𝑁 diagonal
matrix of random variables sampled in every iteration, according to
a Bernoulli distribution with success probability 𝑃 , as described in
Fig. 2 that exemplifies the ‘‘star topology’’ proposed. MESH has a
memory archive file (the MB) in which a subset of the best solutions
from the last population is stored. The superscript ∗ indicates the
corresponding parameter that undergoes evolution under a mutation
process. Typically, the mutation of a generic weight 𝑤 of an individual
follows a simple additive rule as described by Eq. (3),

𝐰∗ = 𝐰 + 𝜏 × (0, 1), (3)

in which 𝜏 is the mutation rate that must be set by the user.  (0, 1) is
a number sampled from the standard Gaussian Distribution. Mutation
of 𝐗𝑔𝑏, which is carried out for every particle, is performed according
to:

𝐗∗
𝑔𝑏 = 𝐗𝑔𝑏[1 + 𝜏 × (0, 1)]. (4)

MESH uses the Movement Rule from C-DEEPSO with a multi-
objective approach for handling two goals. Basically, in memory (MB)
the MESH algorithm employs the non-dominated sorting operator from
NSGA-II to identify and update the Pareto frontier throughout the
search process. The solutions in this memory are used in turn as the new
attractors 𝐗𝑠𝑛 from Eq. (2). The memory is updated on each iteration by
combining the Pareto front of the population with the non-dominated
solutions stored. The sorting operator of NSGA-II is applied to this
augmented set of solutions aiming to identify the non-dominated ones.
If the Pareto front is larger than the maximum memory size, then the
crowded-distance from the NSGA-II operator is applied to keep the
memory size.

Inspired by the guide particle concepts from Padhye et al. (2009),
the MESH has a process to obtain guides according to different solu-
tions: Individual Guide (𝐺 ), that is the set of the best solution found
4

𝑖

Fig. 3. Diagram for choosing a particle swarm guide in MESH. In the method shown
on the left, all particles of the population choose from memory. In the method shown
at right, the choice is made based on the next upper boundary in relation to that this
particle belongs. The first boundary particles in turn use memory.

by the particle (the choice of which particle from individual guide array
to use is randomly selected) and Swarm Guide (𝐺𝑠), that corresponds to
a solution found by the swarm that is greater than the current particle
solution. The swarm guide is applied in the memory archive or in the
current swarm. The 𝐺𝑠 is calculated by using Eq. (5):

𝝈 =

⎡

⎢

⎢

⎢

⎣

(𝑓 2
1 − 𝑓 2

2 )∕(𝑓
2
1 + 𝑓 2

2 + 𝑓 2
3 )

(𝑓 2
2 − 𝑓 2

3 )∕(𝑓
2
1 + 𝑓 2

2 + 𝑓 2
3 )

(𝑓 2
3 − 𝑓 2

1 )∕(𝑓
2
1 + 𝑓 2

2 + 𝑓 2
3 )

⎤

⎥

⎥

⎥

⎦

. (5)

Eq. (5) refers to the Sigma method, proposed in Padhye et al.
(2009). The 𝝈 assigns a value to each particle in the swarm to estimate
the distance in the objective functions space. All solutions belonging to
the search space that are in same line will receive the same sigma (𝝈)
value. The idea behind the 𝝈 method is to use the particle suitability
values in each objective function as the coordinates, thus the global best
for a particle is another particle with the nearest sigma coordinates.
Therefore, Eq. (5) exemplifies how the sigma coordinates are calculated
for a three dimensional objective space. Specifically, in MESH, another
alternative is to combine the sigma method with the best overall choice
procedure. In this process, the particle swarm guide is the one that is
closest to the next upper boundary of the current one. If the current
boundary of the particle is the first one, the choice will be made with
memory (MB). It is shown in Fig. 3.

The vectors used for differential mutation in MESH are sampled
from three different groups: a group containing only particles from the
front population equal to or greater than the particle, a group with
memory particles, or a combination of the previous two groups. In this
work, the DE/Rand/1/Bin strategy is implemented. The diagram of the
differential mutation operator is shown in Fig. 4. General functioning
of MESH is described in Algorithm 1. In this work, we adopted the non-
dominated sorting procedure and the crowd-distance operator proposed
in Deb, Pratap et al. (2002). Algorithm 2 shows the pseudo-code to
update individual guide array.
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Fig. 4. Diagram of operation of the MESH differential mutation operator. The sampling
can occur in three forms: from the swarm (current population), using solutions from
memory (MB) or in a mixed approach using solutions from the swarm and memory.

1 begin
2 Set values for parameters of MESH – Population size 𝑁𝑃 , Mutation rate 𝜏,

Communication rate 𝑃 , Memory size MB, Mutation Type, and Guide type,
Individual Guide size;

3 Evaluate the current population, 𝑁𝑃 ;
4 Update individual guide with current solution;
5 Apply dominance mechanism in the population;
6 Update the Memory (MB): merge memory with the first frontier of the

non-dominated set;
7 Apply dominance mechanism in the Memory (MB) and Apply crowd-distance

operator if the frontier is bigger than memory size;
99 while stopping criteria is not satisfied do
10 Apply mutation mechanism into swarm;
11 if the mechanism needs a swarm guide then
12 Update swarm guide using Eq. (5);
13 end
14 if any 𝐗𝑠𝑛 dominates its current individual update then
15 𝐗𝑠𝑛 replaces the current individual;
16 Apply dominance mechanism;
17 Update the memory MB;
18 end
19 Update swarm guide using Eq. (5);
20 Copy the current swarm;
21 Mutate the strategy parameters in swarm and copy 𝐰𝐼 , 𝐰𝐴, 𝐰𝐶 using

Eq. (3);
22 Mutate 𝐗∗

𝑔𝑏 using Eq. (4) in current swarm and copy;
23 Apply movement rule in current swarm and copy using Eq. (1);
24 Update individual guide using Algorithm 2;
25 Apply dominance mechanism in the swarm and copy;
26 Select the best particles based on frontiers and if necessary Apply

crowd-distance;
27 Update the Memory MB;
28 T=T+1;
29 end
30 end

Algorithm 1: Pseudo-code of MESH.

According to Krasnogor and Smith (2005), it is now well established
that pure population-based algorithms are not well suited to refinement
of complex spaces and that hybridization with other techniques can
significantly improve search efficiency. In this way, the MESH algo-
rithm joints different concepts of swarm intelligence and evolutionary
optimization to be a viable approach to solve real world problems.
The MESH algorithm allows an efficient combination of the PSO and
5

1 begin
2 if Current particle dominates the particles in individual guide array then
3 All particles in individual guide array are removed and the current

particle is added;
4 else
5 if Current particle is not dominated by the particles in individual guide array

and it also don’t dominate those particles then
6 Current particle is added to the individual guide array;
7 end
8 end
9 end

Algorithm 2: Pseudo-code to update individual guide array

DE algorithms, as it employs typical inspiration/recombination at the
swarm intelligence inherited from PSO and the mutation rules present
in DE. In addition, it incorporates the dominance ordering process
(dominance mechanism) and crowd-distance operation observed in the
NSGA-II (see Deb, Pratap et al., 2002), as well as the use of the swarm
guides process, to escape from non-promising regions in the search
space.

A computational MESH complexity analysis (see Algorithm 1) has
been carried out. Let the population size, number of objectives, number
of decision variables (dimension), and memory size be 𝑁𝑃 , 𝑀 , 𝐷 and
MB, respectively. The population is sorted by dominance (Steps (5),
(14)–(18) and (25)) with time complexity 𝑂(𝑀 × 𝑁 × log(𝑁)). In Step
(10), mutation mechanism is executed with time complexity 𝑂(𝐷×𝑁𝑃 ×
𝑀𝐵). Each individual guide update (Step (24)) has time complexity
𝑂(𝑁𝑃 × 𝐷). Mutations (Steps (21) and (22)) are executed with time
complexity 𝑂(𝐷2). Movement rule (Step (23)) is applied to each particle
with constant time, leading to a time complexity of 𝑂(𝑁𝑃 ). Finally, the
next generation is selected with time complexity 𝑂(𝑀×𝑁𝑃 2×log(𝑁𝑃 ))
and memory is updated with time complexity 𝑂(𝑀 × 𝑁𝑃 × log(𝑁𝑃 )).
From the above results, after omitting the low-order terms, total time
complexity of MESH algorithm is 𝑂(𝑇 ×𝑀 × 𝑁𝑃 2 × log(𝑁𝑃 )), which
is polynomial in 𝑁𝑃 . A complete MESH code version is available at
https://github.com/gabrielmatos26/MESH.

Therefore, addressing our proposing in a full view, MESH is a hybrid
algorithm that incorporates the movement rule from PSO, mutation
scheme from DE, and the non-dominated sorting mechanism from
NSGA-II. The central idea is to use swarm intelligence coupled with
operators from evolutionary computation. MESH includes a swarm
guide mechanism, with two options to choose from: (1) it uses the in-
formation from the best space positions saved in a memory population
(that keeps part of the best individuals at each generation) or (2) the
best solution found on the non-dominated Pareto front. Its mutation
operator contemplates sampling from both the current swarm and
vectors saved in memory, with the option of selecting vectors from both
populations in this process. To explore the space MESH makes use of
the evolutionary strategies inherent in DE. Therefore, the combination
of these mechanisms (swarm guide and mutation operation) makes it
capable of carrying out a more specialized search in the attraction
basin without keeping the population trapped. MESH is built to solve
continuous problems. In this work we present preliminary results in
benchmark functions and we adapt its operation to solve the electrical
dispatch problem in the hard OMRS process in hydroelectric plants.

3. Hydro-power dispatch problem: a OMRS in cascade mode

The operation planning purpose of an electric power system is to
meet the requirements of cost, reliability, and optimal consumption
of energy resources. In hydroelectric systems, such as the Brazilian
system, the correct use of energy, available in limited quantities in
the form of water in the reservoirs, is a problem with a very complex
characteristic. The compromise between immediate decisions and the
future consequences of these decisions makes the problem challenging
and highlights the importance of proper planning. In this work, the

time horizon adopted is the daily schedule, which is a problem of

https://github.com/gabrielmatos26/MESH
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Table 1
Modeling notation of cascade HPP.

Parameter Description

𝑢 is the amount of HPP in the system
𝑈 is acceleration of gravity
𝑗 is the HPP turbine-generator
𝐽𝑢 is the total turbine-generators in HPP
𝑡 is the time
𝑝ℎ𝑢𝑗,𝑡 is the power (MW) generated in turbine-generator (𝑗) of HPP (𝑢) in time (𝑡)
𝜓𝑢,𝑡 is the reservoir volume (hm3) of HPP (𝑢) in time (𝑡)
c is a constant to convert the water discharge (m3 × s−1) in water volume (hm3) in time (𝑡)
𝑄𝑎𝑢,𝑡−1 is the affluent flow (m3 × s−1) that comes to reservoir of HPP (𝑢) in time (𝑡 − 1)
𝑤 is the HPP index to means that the defluent flow comes in reservoir of HPP (𝑢)
𝑡𝑑 is the time of the water needs to move of HPP (𝑤) to (𝑢)
𝑄𝑡𝑤,𝑡𝑑 is the turbine flow (m3 × s−1) that comes to reservoir of HPP (𝑢) in time (𝑡𝑑) from HPP (𝑤)
𝑄𝑣𝑤,𝑡𝑑 is the flow rate (m3 × s−1) drained through the spillway from HPP (𝑤) to (𝑢) in time (𝑡𝑑)
𝑄𝑡𝑢𝑗,𝑡−1 is the turbine flow (m3 × s−1) used in turbine-generator (𝑗) of HPP (𝑢) in time (𝑡 − 1)
𝑄𝑣𝑢,𝑡−1 is the flow rate (m3 × s−1) discharged in HPP (𝑢) in time (𝑡 − 1)
𝐸𝑢,𝑡−1 is the liquid evaporation (mm) over time in a day;
𝐴𝑢,𝑡−1 is the water area (km2) occupied in reservoir of HPP (𝑢) in time (𝑡 − 1)
𝐷𝑚𝑢,𝑡 is the power demand required measured in MW for HPP (𝑢) in time (𝑡)
𝜀 is the error variation (+/−0.5%) tolerated in the power produced in HPPs
𝜓𝑚𝑖𝑛
𝑢 ; 𝜓𝑚𝑎𝑥

𝑢 are the volume boundaries of reservoir in HPP (𝑢)
𝑄𝑑𝑚𝑖𝑛𝑢 and 𝑄𝑑𝑚𝑎𝑥𝑢 are defluent flow boundaries of HPP (𝑢)
𝑄𝑡𝑚𝑖𝑛𝑢𝑗 and 𝑄𝑡𝑚𝑎𝑥𝑢𝑗 are turbine flow boundaries in turbine-generator (𝑗) of HPP (𝑢)
𝑄𝑣𝑚𝑎𝑥𝑢 is the maximum value for water flow rate of HPP (𝑢)
𝑍𝑢𝑗,𝑡 indicates the operating status of the generating unit (𝑗) at HPP (𝑢), 0 for disabled and 1 for active
g is the acceleration of gravity in 9.8 m × s−2

k is the constant to convert horsepower into megawatts 𝑘 (10−3 × 𝑚−1);
𝜌0𝑢𝑗 ,… , 𝜌5𝑢𝑗 are operatives coefficients of turbine-generator (𝑗) at HPP (𝑢)
ℎ𝑙𝑢𝑗,𝑙 is the is net water head of unit (𝑗) at time (𝑡) in HPP (𝑢)
𝛥𝐻𝑢𝑗𝑡

is hydraulic head of the reservoir
𝐻𝑏𝑢,𝑡 is the HPP turbine-generator
𝑓𝑐𝑚𝑢,𝑡 is the height upstream of HPP (𝑢) at time (𝑡)
𝑎0,𝑢 ,… , 𝑎4,𝑢 are the coefficients for the fourth order polynomial of HPP (𝑢) to obtain 𝑓𝑐𝑚𝑢,𝑡
𝑓𝑐𝑗𝑢,𝑡 is the height of the HPP downstream at time (𝑡)
𝑏0,𝑢 ,… , 𝑏4,𝑢 are the coefficients for the fourth order polynomial of HPP (𝑢) that define 𝑓𝑐𝑗𝑢,𝑡
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local operation with the operators of the plants and is considered a
short-term process.

The planning operation of cascade hydroelectric systems (using the
OMRS approach) is a particularly challenging problem, due to the
complexity of its modeling and its characteristic of spatial and temporal
coupling. Decisions to operate in a reservoir directly affect the levels of
the other reservoirs downstream, and decisions about the storage or use
of water affect the future level of the reservoirs, which may lead to a
risk of deficit or leakage. Therefore, the operation of a hydroelectric
systems must focus, in addition to the electrical operation, on the issue
of the operation of the reservoirs, which leads to a problem of space
and time coupling, i.e. a dynamic problem. The electrical dispatch
producing of hydro-power plants is a typical problem in the optimal
fields of OMRS. Attaining optimal operation rules are crucial for making
the most of the comprehensive benefits. Thus, this work proposes a
new mathematical modeling to provide electric production in cascade
mode based on the mathematical model described in Marcelino et al.
(2021, 2015). Here we have improved the previous modeling, taking
into account the reservoir parameters (see Table 1 for the modeling
notation). In the proposed electric dispatch model described in this
work, the power production, in MW/h, is obtained by Eq. (6):

𝑝ℎ𝑢𝑗,𝑡 = g × k × [𝜌0𝑢𝑗 + 𝜌1𝑢𝑗ℎ𝑙𝑢𝑗,𝑡 + 𝜌2𝑢𝑗𝑄𝑡𝑢𝑗,𝑡 + 𝜌3𝑢𝑗ℎ𝑙𝑢𝑗,𝑡𝑄𝑡𝑢𝑗,𝑡 (6)
+ 𝜌4𝑢𝑗ℎ𝑙2𝑢𝑗,𝑡 + 𝜌5𝑢𝑗𝑄𝑡

2
𝑢𝑗,𝑡] × [𝐻𝑏𝑢,𝑡 − 𝛥𝐻𝑢𝑗,𝑡] ×𝑄𝑡𝑢𝑗,𝑡,

ℎ𝑙𝑢𝑗,𝑡 = 𝐻𝑏𝑢𝑗,𝑡 − 𝛥𝐻𝑢𝑗,𝑡, (7)

𝐻𝑏𝑢𝑗,𝑡 = 𝑓𝑐𝑚𝑢,𝑡 − 𝑓𝑐𝑗𝑢,𝑡, (8)

𝑓𝑐𝑚𝑢,𝑡 = 𝑎0,𝑢 + 𝑎1,𝑢 × 𝜓𝑢,𝑡 + 𝑎2,𝑢 × 𝜓2
𝑢,𝑡 + 𝑎3,𝑢 × 𝜓

3
𝑢,𝑡 + 𝑎4,𝑢 × 𝜓

4
𝑢,𝑡, (9)

𝑓𝑐𝑗𝑢,𝑡 = 𝑏0,𝑢 + 𝑏1,𝑢 × (
𝐽𝑢
∑

𝑗=1
𝑄𝑡𝑢,𝑡 +𝑄𝑣𝑢,𝑡) + 𝑏2,𝑢 × (

𝐽𝑢
∑

𝑗=1
𝑄𝑡𝑢,𝑡 +𝑄𝑣𝑢,𝑡)2+ (10)

𝑏3,𝑢 × (
𝐽𝑢
∑

𝑄𝑡𝑢,𝑡 +𝑄𝑣𝑢,𝑡)3 + 𝑏4,𝑢 × (
𝐽𝑢
∑

𝑄𝑡𝑢,𝑡 +𝑄𝑣𝑢,𝑡)4,
6

𝑗=1 𝑗=1
in which g is the acceleration of gravity, 9.8 m ⋅ s−2. To convert
horsepower into megawatts we used the constant k = (10−3 ×𝑚−1). The
terms 𝜌0𝑢𝑗 ,… , 𝜌5𝑢𝑗 are operative coefficients of turbine-generator (𝑗) at

PP (𝑢). ℎ𝑙𝑢𝑗,𝑙 is the is net water head of unit (𝑗) at time (𝑡) in HPP
. 𝛥𝐻𝑢𝑗𝑡

is the sum of pen-stock losses. 𝐻𝑏𝑢,𝑡 is hydraulic head of the
eservoir and 𝑄𝑡𝑢𝑗,𝑡 is the water discharge of unit (𝑗) at time (𝑡). 𝑓𝑐𝑚𝑢,𝑡
s the height upstream of HPP 𝑢 at time 𝑡. Terms 𝑎0,𝑢,… , 𝑎4,𝑢 are the
oefficients for the fourth order polynomial of HPP (𝑢) to obtain 𝑓𝑐𝑚𝑢,𝑡.
𝑓𝑐𝑗𝑢,𝑡 is the height of the HPP downstream at time (𝑡), and 𝑏0,𝑢,… , 𝑏4,𝑢
re the coefficients for the fourth order polynomial of HPP (𝑢) that
efines 𝑓𝑐𝑗𝑢,𝑡.

.1. Optimization modeling

The economic dispatch of HPPs in a cascade mode is a typical opti-
ization problem in hydro-power energy systems. In this context, most

f the mathematical dispatch models in hydroelectric plants are static
odels, since the water balance is disregarded as the hydraulic head

f the reservoir, which is an input parameter. Moreover, the volume of
he reservoir is not considered in modeling. When the water balance is
ncorporated in the model, naturally the problem starts to be considered
s a model of a dynamic system, since the level of the reservoir changes
ver time. For a scenario of cascading HPPs, the water balance is
ssential, as there is an interference in the reservoir level of one power
lant due to the influence of the flow rates of another HPP. In our
roposed modeling here for cascade mode operation, the volume of the
eservoir at time 𝑡 can be described by Eq. (11),

𝜓𝑢,𝑡 = 𝜓𝑢,𝑡−1 +𝑄𝑎𝑢,𝑡 +𝑄𝑡𝑤,𝑡𝑑 +𝑄𝑣𝑤,𝑡𝑑 −𝑄𝑡𝑢,𝑡−1+ (11)
𝑄𝑣𝑢,𝑡−1 − (𝐸𝑢,𝑡−1 × 𝐴𝑢,𝑡−1),

in which 𝜓 is the volume of a reservoir; (𝑢) and (𝑤) are HPP indexes,
(𝑢 ≠ 𝑤); (𝑡𝑑) is the time needed to cause water displacement between

(𝑢) and (𝑤); 𝜐 is the reservoir volume; 𝑄𝑎 is the affluent flow; 𝑄𝑡 is
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the turbine flow; 𝑄𝑣 is the flow rate, 𝐸 is liquid evaporation and; 𝐴 is
the area occupied by water in the reservoir. Once the evolution of the
reservoir level is considered in the model, the value of the gross drop is
no longer an input parameter and becomes a variable depending on the
downstream and upstream quotas. Thus, the cascade dispatch model
proposed in this paper is formulated as follows:
Objective Functions

Maximize the power production (F1)

max𝐹1(𝑄𝑡𝑢𝑗,𝑡…𝑄𝑡𝑈𝐽𝑢,𝑡) =
1
𝑈

𝑈
∑

𝑢=1

⎛

⎜

⎜

⎝

∑𝐽𝑢
𝑗=1 𝑝ℎ𝑢𝑗,𝑡

∑𝐽𝑢
𝑗=1𝑄𝑡𝑢𝑗,𝑡

⎞

⎟

⎟

⎠

, (12)

in which the rate of the sum of 𝑝ℎ𝑢𝑗,𝑡 and the sum of 𝑄𝑡𝑢𝑗,𝑡, from
Eq. (12), determines the amount of energy that plant 𝑢 is capable of
producing given a volume of water. Maximizing this function implies
generating energy with a lower water flow.

Maximize the water levels in the system’s reservoirs (F2)

max𝐹2(𝑄𝑡𝑢𝑗,𝑡,… , 𝑄𝑡𝑈𝐽𝑢,𝑡) =
1
𝑈

𝑈
∑

𝑢=1

𝜓𝑢,𝑡
𝜓𝑚𝑎𝑥𝑢

. (13)

Maintaining a high level in the reservoirs of the system increases the
robustness of the system to future drought periods. At the same time,
the higher the reservoir level, the higher the upstream quota will be,
leading to greater energy efficiency in power generation.
Constraints

The electric dispatch problem in OMRS scenario of HPPs is subjected
to the following equality and inequality constraints:
(1) The first constraint refers to the water balance of the reservoir of a
HPP in the system. Thus, Eq. (14) models the coupling of the operation
of the HPP reservoirs in the system,

𝜓𝑢,𝑡 = 𝜓𝑢,𝑡−1+c
(

𝑄𝑎𝑢,𝑡𝑑 +𝑄𝑡𝑤,𝑡𝑑 −
𝐽𝑢
∑

𝑗=1
𝑄𝑡𝑢𝑗,𝑡−1 −𝑄𝑣𝑢,𝑡−1

)

−𝐸𝑢,𝑡−1 ×𝐴𝑢,𝑡−1,

(14)

n which the term (𝑢) is the identifier index of HPP. 𝑈 is the amount of
PP in the system and (𝑗) is the HPP turbine-generator. Term 𝐽𝑢 is the

otal turbine-generators in HPP and (𝑡) is the interval time; 𝑝ℎ𝑢𝑗,𝑡 is the
ower (MW) generated in turbine-generator (𝑗) of HPP (𝑢) in time (𝑡).
erm 𝜓𝑢,𝑡 is the reservoir volume (hm3) of HPP (𝑢) in time (𝑡). Constant c

s used to convert the water discharge (m3×s−1) in water volume (hm3)
n time (𝑡). Term 𝑄𝑎𝑢,𝑡−1 is the affluent flow (m3 × s−1) that comes to
eservoir of HPP (𝑢) in time 𝑡−1 and (𝑤) is the HPP index to means that
he defluent flow comes in reservoir of HPP (𝑢). Term 𝑡𝑑 is the time of
he water needs to move of HPP (𝑤) to (𝑢). 𝑄𝑡𝑤,𝑡𝑑 is the turbine flow

(m3 ×s−1) that comes to reservoir of HPP (𝑢) in time (𝑡𝑑) from HPP (𝑤).
Term 𝑄𝑣𝑤,𝑡𝑑 is the flow rate (m3 × s−1) drained through the spillway
from HPP (𝑤) to (𝑢) in time (𝑡𝑑). 𝑄𝑡𝑢𝑗,𝑡−1 is the turbine flow (m3 × s−1)
used in turbine-generator (𝑗) of HPP (𝑢) in time (𝑡 − 1). Term 𝑄𝑣𝑢,𝑡−1 is
the flow rate (m3 × s−1) discharged in HPP (𝑢) in time (𝑡 − 1). 𝐸𝑢,𝑡−1 is
the liquid evaporation (mm) over time in a day and 𝐴𝑢,𝑡−1 is the water
area (km2) occupied in reservoir of HPP (𝑢) in time (𝑡 − 1).
(2) The second constraint, provided in Eq. (15), indicates that each
plant in the system must deliver a power approximately equal to the
requested demand,

𝐷𝑚𝑢,𝑡(1 − 𝜀) ≤
𝐽𝑢
∑

𝑗=1
𝑝ℎ𝑢𝑗,𝑡 ≤ 𝐷𝑚𝑢,𝑡(1 + 𝜀), (15)

in which the power demand required 𝐷𝑚𝑢,𝑡 is measured in MW for HPP
𝑢 in time 𝑡. Term 𝜀 is the error variation (+/−0.5%) tolerated in the
power produced by Brazilian HPPs.
(3) Eq. (16) shows that the third constraint limits the volume of the
reservoir to an interval relative to the limits of the minimum and
maximum operating quotas,

𝜓𝑚𝑖𝑛 ≤ 𝜓 ≤ 𝜓𝑚𝑎𝑥, (16)
7

𝑢 𝑢,𝑡 𝑢
in which 𝜓𝑚𝑖𝑛𝑢 and 𝜓𝑚𝑎𝑥𝑢 are the volume boundaries of reservoir in HPP
(𝑢).
(4) Fourth constraint, seen in Eq. (17), indicates that a plant’s outflow
must respect a limited range. These limits work as controls to prevent
floods in regions on the river downstream from the HPP, and also for
the use of water for navigation and the ecosystem in the river and in
its surroundings,

𝑄𝑑𝑚𝑖𝑛𝑢 ≤ 𝑄𝑣𝑢,𝑡 +
𝐽𝑢
∑

𝑗=1
𝑄𝑡𝑢𝑗,𝑡 ≤ 𝑄𝑑𝑚𝑎𝑥𝑢 , (17)

in which 𝑄𝑑𝑚𝑖𝑛𝑢 and 𝑄𝑑𝑚𝑎𝑥𝑢 are defluent flow boundaries of HPP (𝑢).
𝑄𝑑𝑚𝑖𝑛𝑢 and 𝑄𝑑𝑚𝑎𝑥𝑢 are defluent flow boundaries of HPP (𝑢).
(5) Fifth constraint, Eq. (18) states that the turbine flows must respect
the capacity limits of their respective generating units,

𝑄𝑡𝑚𝑖𝑛𝑢𝑗 ≤ 𝑄𝑡𝑢𝑗,𝑡 ≤ 𝑄𝑡𝑚𝑎𝑥𝑢𝑗 , (18)

in which 𝑄𝑡𝑚𝑖𝑛𝑢𝑗 and 𝑄𝑡𝑚𝑎𝑥𝑢𝑗 are turbine flow boundaries in turbine-
generator (𝑗) of HPP (𝑢). 𝑄𝑣𝑚𝑎𝑥𝑢 is the maximum value for water flow
rate of HPP (𝑢).
(6) Sixth constraint imposes a maximum limit for the flow according
to Eq. (19),

𝑄𝑣𝑢,𝑡 ≥ 𝑄𝑣𝑚𝑎𝑥𝑢 , (19)

in which 𝑄𝑣𝑢,𝑡 is the flow rate (m3 × s−1) discharged in HPP (𝑢) in time
(𝑡). 𝑄𝑣𝑚𝑎𝑥𝑢 is the maximum value for water flow rate of HPP (𝑢).
(7) Seventh constraint, seen in Eq. (20), states that if the volume of the
reservoir exceeds its maximum operating limit, the excess water must
be eliminated by the spillway. This constraint imposes a maximum limit
for the flow rate,

𝜓𝑢,𝑡 > 𝜓
𝑚𝑎𝑥
𝑢 ⇒ 𝑄𝑣𝑢,𝑡 ≥

1
c (𝜓𝑢,𝑡 − 𝜓

𝑚𝑎𝑥
𝑢 ), (20)

n which 𝜓𝑢,𝑡 is the reservoir volume (hm3) of HPP (𝑢) in time (𝑡). Term
𝑚𝑎𝑥
𝑢 is the maximum volume bounder of reservoir in HPP (𝑢). 𝑄𝑣𝑢,𝑡−1

s the flow rate (m3 × s−1) discharged in HPP (𝑢) in time (𝑡− 1). Term c
s a constant to convert the water discharge (m3 ×s−1) in water volume
hm3) in time (𝑡).
8) Eighth constraint indicates that the power generated must also
espect the limits of the capacity of its generating unit,

ℎ𝑚𝑖𝑛𝑢𝑗 ×𝑍𝑢𝑗,𝑡 ≤ 𝑝ℎ𝑢𝑗,𝑡 ≤ 𝑝ℎ𝑚𝑎𝑥𝑢𝑗 ×𝑍𝑢𝑗,𝑡, (21)

in which 𝑝ℎ𝑢𝑗,𝑡 is the power (MW) generated in turbine-generator (𝑗) of
HPP (𝑢) in time (𝑡). Terms 𝑝ℎ𝑚𝑖𝑛𝑢𝑗 and 𝑝ℎ𝑚𝑎𝑥𝑢𝑗 are the boundaries of power
generation. 𝑍𝑢𝑗,𝑡 indicates the operating status of the generating unit 𝑗
at HPP 𝑢, 0 for disabled and 1 for active.
(9) Ninth constraint indicates that generating units have only one
operating zone,

𝑍𝑢𝑗,𝑡 ∈ {0, 1}. (22)

in which 𝑍𝑢𝑗,𝑡 indicates the operating status of the generating unit (𝑗)
at HPP (𝑢), 0 for disabled and 1 for active.

To satisfy these nine constrains, we apply a penalty factor (𝑝) to the
objective functions 𝐹1 and 𝐹2. Thus, the fitness functions applied of
he OMRS problem are defined by Eqs. (23) and (24), according to:
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, 𝑤ℎ𝑒𝑟𝑒 𝑝 = 0.5. (24)
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Fig. 5. Boxplot of MESH versions in the ZDT1 function.
4. Experiments and results

This section presents the experimental results of the paper. We have
structured the experiments carried out in two different parts: first, a
set of experiments on continuous benchmark functions analyzes the
performance of the proposed MESH algorithm in well-known problems,
and we have used these results to set the best configuration of the
algorithm. Then, we have tested the MESH approach in a real problem
of electric dispatch problem in a cascade operation with multiple
reservoirs, comparing the results obtained with other state-of-the-art
MOEAs.

4.1. Evaluation of the MESH performance in continuous benchmark func-
tions

In this section, the experimental performance of the MESH algo-
rithm in some well-known continuous benchmark problems is analyzed.
The goal is twofold: (i) to determine the best algorithm configuration
considering the problem sets, and (ii) to compare the best version of
MESH with four algorithms (NSGA-II, SPEA-2, MOEA/D, and NSGA-III)
for solving the problems. Thus, the experimental setup is divided into
the following case studies:

1. to determine the best algorithm configuration for MESH, we use
a well-known set of benchmark functions. Several algorithm con-
figurations are employed to solve the problems and a statistical
inference is applied to determine the best configuration.

2. to verify the MESH performance a preliminary experiment is
conducted. We use the same set of benchmark functions to
compare our algorithm with the standard algorithms (NSGA-II,
SPEA-2, MOEA/D, and NSGA-III). For that, statistical inference
techniques have been adopted, such as: analysis of variance
(ANOVA) and, multiple comparison test (Tukey) as described
in Montgomery (2012).

In all experiments, the best non-dominated set of last generation and
the hypervolume are used as an indicator for assessing the algorithm’s
performance. We performed the computational simulation using an
8

AMD Ryzen 7 3700X with CPUs@3.60 GHz and 32 GB RAM, with Arch
Linux operating system. The MESH code was implemented in Python
3.9 language programming.

4.1.1. Algorithm configuration
In this experiment, we aim to identify a good algorithm configu-

ration for MESH such as to choose the particle guide, the sampling
vector and the mutation strategy. The particle guide can be chosen
according to the following: A particle from memory (E1) and a particle
close to the upper bound to the actual Pareto front (E2). The three
sampling vectors can be: swarm (V1); memory (V2) and a combination
between V1 and V2 generating the (V3). We have tested the fol-
lowing mutation strategies’ options (taken from Differential Evolution
algorithm): DE/Rand/1/bin (D1); DE/Rand/2/bin (D2); DE/Best/1/Bin
(D3); DE/Current-to-best/1/bin (D4); DE/Current-to-rand/1/bin (D5).
In this way, 30 (2 × 3 × 5) different MESH configurations have been
analyzed.

As an example, one possible setting of MESH could be E2/V1/D1,
meaning the swarm guide is chosen by the Pareto Front solution, the
vector selected for mutation will be from the memory and differential
mutation is done with sampled vectors of the swarm population and
memory under the DE/rand/1/bin strategy. Each algorithm’s configura-
tion is run 30 times using the well-known Zitzler’s benchmark functions
(ZTD1, ZDT2, ZDT3, ZDT4 and ZDT6) (Zitzler et al., 2001) and, using
the hypervolume as the performance indicator. The statistical protocol
as described in Marcelino, Almeida et al. (2018) is applied. The ANOVA
and the Tukey-test (Montgomery, 2012) are performed.

As an example, the boxplot for all algorithms’ run using ZDT1 can
bee seen in Fig. 5. Visually, since there are boxes that do not overlap,
statistical differences can be identified. An ANOVA test has been per-
formed, in which the 𝑝-value obtained is lower than the significance
level adopted (<0.05), indicating that there is a difference among the
means of the hyper-volume. Tukey’s test has been conducted to identify
the differences among the samples. Fig. 6 shows the result obtained.

From the results we see that five versions of MESH stand out from
the others. Since the higher the hypervolume values, the best is the
algorithm performance, E1/V1/D1 and E2/V2/D1 configurations are
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Fig. 6. Tukey test of MESH versions in the ZDT1 function.
the best ones. A similar behavior has been observed in the other ZDT
functions. So, for the remaining tests, only E1/V1/D1 and E2/V2/D1
versions of MESH have been applied.

4.1.2. Performance assessment
To validate the proposed MESH algorithm, we have performed a

set of tests using the ZDT and DTLZ benchmark functions. The func-
tions ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ4, and
DTLZ7 (Deb, Thiele et al., 2002; Zitzler et al., 2001) are employed
here. The two MESH configurations, E1/V1/D1 and E2/V2/D1, are
compared to the standard NSGA-II, SPEA-2, NSGA-III, and MOEA/D. It
is worthwhile to notice that the parameters of all six algorithms, such
as mutation and crossover rates, have not been fine-tuned. Since the
main goal of this experiment is to validate the proposed approaches,
no fine-tunning of the parameters has been done. In absence of a
more informed choices, we have used the usual values found in the
literature.

For all problems, the algorithm population is set to 50 solutions.
This value is also valid for the main and secondary populations such
as memory, copy, file, or offspring. The parameter’s values used in the
algorithms are indicated in Table 2. Each algorithm is run 30 times.
Figs. 7 and 8 show the combined Pareto fronts for both MESH versions
(E1/V1/D1 and E2/V2/D1), NSGA-II, SPEA-2, NSGA-III, and MOEA/D,
for the ZDTs and DTLZs functions, respectively. The analytical Pareto
front of each problem is also showed.

Observing Fig. 7, note that both MESH versions show to be compet-
itive when compared with the other algorithms in all functions. MESH
(in both versions) finds Pareto solutions very close to the true Pareto
front in functions ZDT1 and ZDT2, with better visual results than the
other three algorithms (SPEA-2, NSGA-II and NSGA-III). Moreover, in
ZDT3 and ZDT4, both versions of MESH visually obtain better results
when compared to SPEA2 and NSGA-III (in ZDT3), and SPEA2 and
NSGA-II (in ZDT4). In ZDT6, a visual analysis is not trivial to perform.
9

Table 2
Parameter initialization used in the algorithms considered.

MESH NSGA-II SPEA2 NSGA-III MOEA/D

Mutation rate 0.9 0.02 0.02 0.02 0.02
Crossover rate 0.7 0.8 0.7 0.8 0.7
Guide size 3 – – – –
Memory size 5 – – – –
Direction function – – – Das–Dennis Das–Dennis

Fitness evaluation 15000

On the other hand, in Fig. 8, we can see that the tested algorithms
are close to the analytical Pareto front. In DTLZ1 only the E2V2D1
version finds a competitive set of solutions. In the DTLZ4 function,
only E1V1D1 provides solutions and, visually, SPEA2 presents the set
furthest away from the analytical result.

Graphical analysis can be a good indicator of the results obtained by
the algorithms. However, a statistical test needs to be done to compare
the algorithms’ performance. Using the hypervolume as a performance
index, an ANOVA is applied to compare the algorithms throughout
the 30 runs of the algorithms. If ANOVA states there is a statistical
difference between the hypervolume means of the algorithms, the
Tukey test is applied to simultaneously assess all pairwise comparisons
and to identify any difference between two means that are greater
than the expected standard error Montgomery (2012). Table 3 shows
the hypervolume results (mean and standard deviation). The algorithm
with the superior performance is indicated in bold for each problem.

The mean and standard deviation values are preliminary measures,
but in many cases, they are not sufficient for a more effective analysis
of the results. Thus, an ANOVA test is once again performed, aiming to
find possible differences between the means. Using a significance value
of 5%, a 𝑝-value below 0.05 is found indicating that there is a difference
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Fig. 7. Combined Pareto front for MESH versions, SPEA-2, NSGA-II, NSGA-III, and MOEA/D for the problem tests described in ETHZ (2020). In all graphs, the horizontal axis
represents the objective function ‘‘F1’’ while the vertical axis is the objective function ‘‘F2’’. The analytical Pareto front is labeled as ‘‘Baseline’’. The number of decision variables
has been set to 5 for all functions.
among the means. Thus, a Tukey-test is carried out, to identify where
the differences between the samples are.

The ranking provided by the Tukey-test is also shown in Table 4.
The results indicate that both MESH versions obtain competitive results
since they are classified together with the MOEA/D algorithm, in the
first place, in ZDT1, ZDT2, and ZDT3. MESH is the best algorithm in
ZDT4, and ties with NSGA-II, NSGA-III, and SPEA2 in ZDT6.

Regarding the DTLZ functions we can note that the E2V2D1 version
of MESH is as efficient as NSGA-II, NSGA-III, and MOEA/D in DTLZ1.
In DTLZ2, the MOEA/D has the better result when compared to others.
MESH, with E1V1D1, shows a significant difference in relation to
the others in DTLZ4. And finally, in DTLZ7, SPEA2 is more efficient
10
covering a better set of solutions for this problem. Therefore, MESH is
able to get significant results in six of nine known benchmark functions
tested in this work. In a general analysis, it is possible to say that MESH
is a competitive algorithm when applied to solve continuous problems
like the ZDT and DTLZ benchmark functions.

4.2. Electric dispatch simulation in cascade HPPs — an OMRS scenario

In this section we analyze the performance of the proposed MESH al-
gorithm in a real problem of electric dispatch problem in a cascade op-
eration, with multiple reservoirs. The same experimental
methodology described in Section 4.1 is employed in this case. The
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Fig. 8. Combined Pareto front for MESH versions, SPEA-2, NSGA-II, NSGA-III, and MOEA/D for the problem tests described in Deb, Thiele et al. (2002). In all graphs, the horizontal
axis represents the objective function ‘‘F1’’ while the vertical axis is the objective function ‘‘F2’’. The analytical Pareto front is labeled as ‘‘Baseline’’. The number of decision
variables has been set to 10 for all functions.
Table 3
Hypervolume analysis using ZDT and DTLZ functions (labeled as F). The analytical values (AN) are extracted from ETHZ
(2020) with reference point equal to (11, 11).

F AN E1V1D1 E2V2D1 NSGA-II NSGA-III SPEA2 MOEA/D

m/(std) m/(std) m/(std) m/(std) m/(std) m/(std)
1 120.657 120.652 120.652 98.033 117.177 53.805 120.541

(0.001) (0.002) (1.929) (1.053) (2.012) (0.037)
2 120.324 119.632 118.599 80.217 114.810 15.281 120.124

(2.565) (3.846) (1.979) (1.203) (1.143) (0.077)
ZDT’s 3 128.773 128.549 128.661 101.855 119.808 55.112 128.372

(0.311) (0.110) (2.701) (0.768) (2.679) (0.169)
4 120.657 120.652 119.524 111.980 116.448 72.090 114.177

(0.003) (2.742) (1.919) (1.943) (3.625) (3.956)
6 117.511 117.503 117.504 111.341 116.538 120.287 102.447

(0.002) (0.001) (0.768) (0.305) (0.127) (2.035)

m (std) m (std) m (std) m (std) m (std) m (std)
1 120.872 65.048 106.361 120.155 119.941 60.149 105.345

(39.277) (2.014) (1.215) (1.231) (40.545) (2.501)
2 120.207 120.200 120.200 120.204 120.204 120.189 120.206

DTLZ’s (0.001) (0.001) (0.001) (0.002) (0.004) (0.000)
4 120.207 119.777 – 115.442 114.418 116.463 115.443

(0.316) – (5.091) (5.082) (4.918) (5.091)
7 116.089 88.816 88.449 92.481 92.477 94.006 88.144

(6.348) (7.222) (4.846) (4.856) (0.541) (6.499)

Mean (m); standard deviation (std).
MESH configurations, E1/V1/D1 and E2/V2/D1, are compared to

standard NSGA-II, SPEA2, MOEA/D, and NSGA-III versions. Thus, the

experimental setup is divided into the following parts:
11
1. to assess the MESH performance to solve the electric dispatch
problem in a cascade operation with multiple reservoirs, we
performed the simulation model. The proposed meta-heuristic is
compared with the other algorithms. The algorithms have been
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Table 4
Tukey-test results using hypervolume analysis of ZDT Benchmark functions (labeled as F).

Tukey-test/classification

F 1o 2o 3o 4o

1 E1/V1/D1, E2/V2/D1 NSGA-III NSGA-II SPEA2
MOEA/D

2 E1/V1/D1, E2/V2/D1 NSGA-III NSGA-II SPEA2
MOEA/D

3 E1/V1/D1, E2/V2/D1 NSGA-III NSGA-II SPEA2
ZDT’s MOEA/D

4 E1/V1/D1, E2/V2/D1 MOEA/D NSGA-III NSGA-II, SPEA2
6 MOEA/D E1/V1/D1, E2/V2/D1 NSGA-III NSGA-II, SPEA2

1 E2/V2/D1, MOEA/D E1/V1/D1, SPEA2
NSGA-III, NSGA-II

2 MOEA/D NSGA-II, NSGA-III E1/V1/D1,
E2/V2/D1 SPEA2

DTLZ’s 4 E1/V1/D1 MOEA/D, NSGA-III
NSGA-II, SPEA2

7 SPEA2 E1/V1/D1, E2/V2/D1
MOEA/D, NSGA-II
NSGA-III

Mean (m); standard deviation (std).
Fig. 9. Flowchart for simulating an iteration of the model.
constructed taking into account the structures and characteris-
tics of the real application problem studied in this work. The
obtained results are analyzed using a statistical inference com-
parison of the results obtained by MESH versus the others using
the same methodology proposed in preliminary experiment, and

2. to analyze the results found by MESH solving the electrical dis-
patch problem, highlighting the positive impact of using MESH
as a power production control system.

4.2.1. Simulation modeling in OMRS scenario
For guiding an optimal operation of cascade reservoirs and giv-

ing full play to capacity benefits of HPP stations, the mathematical
model is established based on the principles of (1) maximizing the
power production and (2) maximizing the reservoir volume of cascaded
HPPs. In our approach, the spatial coupling of an HPP energy system
with two cascade reservoirs is made. The cascade system used for
simulation is composed of an HPP ‘‘U1’’ with a maximum capacity of
528 MW/h consisting 8 turbine-generator units and another HPP ‘‘U2’’
that is downstream from U1 with a maximum capacity of 396 MW/h
composed of 6 turbine-generator units installed.

The reservoirs of the two HPPs are identical and have a maximum
volume of 19528 hm3 and a minimum volume of 4250 hm3. The initial
volume for both reservoirs is 80%, which represents a robust scenario
in which there is a good availability of water in the reservoir and the
height of the hydraulic head guarantees a good yield for the generating
units. In this work, a restarting strategy is used to address the dynamic
optimization inherent in the proposed model. Thus, whenever the
model is changed over time, a new optimization is performed. The
experiments carried out to validate the model have a time interval of
12

one hour, over 24 h as shown by Fig. 9.
Fig. 10. Diagram of the Cascade HPP system used in the simulation.

In the simulation, each iteration receives two types of input vari-
ables. The set of static variables is defined before the start of the
simulation and their values are independent between iterations. Dy-
namic variables are transmitted from one iteration to the next. From
the Combined Pareto front from 30 runs, the solution more central to
the set is used in the next iteration. From this solution, the states of the
reservoirs and the defluent flows are transmitted to the next iteration
as dynamic input variables. The dynamic power generation system
adopted is shown in Fig. 10. As there is no other HPP downstream of
U1, the terms of defluent flow (𝑄𝑡𝑤,𝑡𝑑 and 𝑄𝑣𝑤,𝑡𝑑) are null for the U1
water balance. In the water balance of U2, on the other hand, the time
taken to move water between U1 and U2 is 𝑡𝑑 = 2 h.

In this simulation system, the coefficients adopted for the upstream
and downstream and efficiency production polynomials are, respec-
tively:

+02 +02 −01
• 𝑎0 = 5.30𝐸 , 𝑏0 = 5.15𝐸 and 𝜌0 = 1.46𝐸 ;



Expert Systems With Applications 185 (2021) 115638C.G. Marcelino et al.
Table 5
Affluent flow and power demand energy data for simulation. Historical data of a critical period with low rain precipitation.

U1 U2 U1 U2

ℎ 𝑄𝑎 𝐷𝑚 𝑄𝑎 𝐷𝑚 ℎ 𝑄𝑎 𝐷𝑚 𝑄𝑎 𝐷𝑚

0 102 330 208 264 12 341 305 228 235
1 102 330 289 264 13 341 305 114 240
2 103 330 297 264 14 340 305 114 235
3 105 322 192 258 15 340 305 114 240
4 221 322 201 258 16 339 305 114 235
5 223 330 204 264 17 227 305 114 235
6 110 330 218 264 18 236 420 230 336
7 227 330 227 264 19 245 437 229 343
8 114 305 343 240 20 253 437 225 343
9 228 305 343 235 21 376 437 115 343

10 227 305 228 235 22 376 437 109 343
11 227 305 235 235 23 385 445 223 349
Fig. 11. Combined Pareto front of the cascade model in hours: 0, 1, 2, 4, 5, 6, 17, 18 and 23 for the MESH versions (E1V1D1 and E2V2D1), NSGA-II, SPEA-2, NSGA-III, MOEA/D.
The usual usual control dispatch mode (UCDm) and the region it dominates are also indicated.
• 𝑎1 = 6.30𝐸−03, 𝑏1 = 1.61𝐸−03 and 𝜌1 = 1.80𝐸−02;
• 𝑎2 = −4.84𝐸−07, 𝑏2 = −2.55𝐸−07 and 𝜌2 = 5.05𝐸−03;
• 𝑎3 = 2.20𝐸−11, 𝑏3 = 2.89𝐸−11 and 𝜌3 = −3.5205;
• 𝑎4 = −3.84𝐸−16, 𝑏4 = −1.18𝐸−15, 𝜌4 = −1.12𝐸−03 and 𝜌5 =
−1.45𝐸−05.

The limits of the defluent flow rates are defined in the interval of
[400, 2500] m3×s−1. Table 5 shows the affluent flow rate, 𝑄𝑎 (m3×s−1)
and the requested power energy demand, 𝐷𝑚 (MW) for both HPPs in
a cascade mode operation within 24 h.

4.2.2. Result analysis and discussion
In our experimental design, the first iteration of hourly demand for

each algorithm uses dynamic variables, as well as the other iterations.
Each algorithm is executed 30 times. The algorithm parameters have
been set as in the preliminary experiment described in Section 4.1.2.
13
The Pareto Fronts are combined and the dominance operation is per-
formed to generate a final Pareto front. The most central solution of
the set is used as inputs for the next hour energy generation. Fig. 11
shows the Combined Pareto front of some simulation hours, including
the area that delimits the region dominated by the solution used for
the usual control dispatch mode (UCDm, when the demand is divided
equally for each turbine-generator) in HPPs.

In the first hour of the simulation, ℎ = 0, the MESH with the
E2V2D1 configuration is the furthest from the origin, suggesting that
this configuration generates better solutions. In addition, E2V2D1 is the
only algorithm that does not have any points dominated by UCDm. It is
noted that NSGA-II shows a Pareto set containing a number of diverse
solutions. MOEA/D presents a set of solutions that is not capable of
efficiently contemplating the objective of maximizing the volume of
reservoirs (F2). E1V1D1 presents a diversified Pareto set in which it
visually dominates SPEA2 and NSGA-III solutions. It is clearly noted
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Fig. 12. Boxplot of hypervolume values of the first hour generation for all algorithms.

that like MOEA/D, the NSGA-III is able to find a set of solutions
that meet the conflicting goals simultaneously, the maximization of
productivity (F1) and volume of reservoirs (F2). From hour 0 to 17,
the Pareto Front of the algorithms follows a pattern: solutions produced
by E2V2D1 configuration are the most distant to origin, MOEA/D and
NSGA-III maintain dispersed sets until 5th hour (MOEA/D) and 8th
hour (NSGA-III), followed by NSGA-II, then SPEA2 and finally the
E1V1D1 configuration, as exemplified in Fig. 11. It is possible to notice
that, after 5th hour, MOEA/D is no able anymore to provide solutions.
After the 18th hour, due to the increase in the demand for energy
in the HPPs, the feasible search space is reduced, thus the algorithms
have a greater difficulty in generating a complete Pareto set. This fact
is justified by the change in production increased by approximately
100 MW/h between 17th and 18th hours (see Table 5). However,
we emphasize that only E2V2D1, SPEA2, NSGA-II and E1V1D1 find
solutions that can be used by the system dispatch control.

Excepting E2V2D1, all algorithms generate solutions dominated by
UCDm, in the daily control of system operation. The points found by
E2V2D1 are more advantageous in terms of relation to the points of the
other algorithms for keeping a high level of the reservoir. As we are
proposing a new cascade dispatch model, the optimal Pareto set of this
real problem is unknown. Once again, we have used the hypervolume
metric (Zitzler et al., 2001) to assess the algorithm performance. Note
that the first hour of the simulation is the only iteration in which all the
algorithms have the same initial states and, therefore, are optimizing
the model under identical conditions. Fig. 12 shows the hypervolume
boxplot of the first hour generation for all algorithms.

Boxplots are not only useful to analyze the range and distribution
of the data, but sometimes it can provide information about the true
difference among the means. If the notches in the boxplots do not
overlap, it can be concluded, with 95% confidence, that the true means
do differ. Keeping that in mind and observing Fig. 12, it is possible to
conclude that:

• there are differences among the true means of algorithms;
• it is not possible to conclude if there is a statistically significant

difference between the true means of E1V1D1, NSGA-II, and
NSGA-III algorithms.

To statically assess the difference in performance of the tested
algorithm, an ANOVA with 5% of significance level is applied. With
a p-value < 0.05, it is possible to state there is a statistically significant
difference between the algorithms’ means. In sequence, Tukey test is
applied indicating which specific group’s means (compared with each
other) are different. Fig. 13 shows the result of the Tukey test con-
firming that MESH in version E2V2D1 configuration generates solutions
14

with larger hypervolume values, indicating a superior performance.
Fig. 13. Cascade Tukey results.

The same assessment has been made for the all hours on a daily
schedule. The MESH version, E2V2D1, achieves the highest hypervol-
ume results, differing statistically from the MOEA/D, SPEA2, E1V1D1,
NSGA-II, and NSGA-III. The experimental results have showed that
the proposed MESH is able to control the operation of a large multi-
reservoir system producing power successfully. MESH demonstrates the
effectiveness comparable or better than those presented by standard
algorithms from literature. MESH has complied with all constraints
imposed by the electric dispatch problem and it shows a safe approach
to the operation.

Next, we aim to verify the electrical significance of MESH solutions.
For that, the central Pareto Front solution for each hour is established,
since this represents a compromising solution between the both objec-
tives: (1) maximizing the power production and (2) maximizing the
reservoir volume. Fig. 14 shows the MESH ability to produce power
respecting the constraints and saving water in the daily operation of
HPP with eight turbine-generators. Is it important to note that this
plant is operating in low demand. Even though, MESH is able to
obtain optimized flows capable of saving water resources in the power
production.

Fig. 15 exemplifies the power generated using the eight power
units (turbine-generators) and the efficiency obtained for each unit in
daily electric dispatch. We can see in Fig. 15 that the MESH, as an
electric dispatch control, is able to produce power energy respecting
the boundaries since we can verify that the power generated is between
35 and 60 MW/h for each turbine-generator unit.

It is also possible to note that the plant works in a good efficiency in
which each unit reached between a 91% and 93% yield. We see that the
closer to nominal demand, the greater the efficiency thus generating
greater water savings. The central solution from Pareto Front also
represents the results of the HPP that is downstream of U1. Fig. 16
shows the total power generated and the total water discharge used by
MESH in HPP — U2.

Fig. 17 exemplifies the power generated using the six turbine-
generators and the efficiency obtained for each unit in daily electric
dispatch. As we can see in Fig. 17, the production behavior of the HPP
that is downstream of U1 is a slightly distorted graphic.

At HPP U2, the power demanded is even lower, which for a long
period the plant produced energy at 50% of its nominal capacity.
However, MESH is able to find optimized dispatches that guarantees the
important constraints of the problem. We can see that all six generating
units operate between 91% and 93% of production capacity. These
optimistic results show that MESH is capable of operating plants in a
Multi-Reservoir System scenario.

MESH respects all the constraints imposed on the problem, guar-
antees the optimal dispatch for the cascade system, carries out the
water balance maximizing the volume of water in the reservoirs, and
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Fig. 14. Electric dispatch results in HPP — U1. The left side shows the total power generation. The right side shows the total water discharged. The line represents the small
error in power production and the water savings, respectively. Legend: Usual WD (water discharge) means the operation used in usual electric dispatch control; and Optimized
WD (water discharge) is the water provided by the MESH control operator.
Fig. 15. Power and efficiency in HPP — U1. Left: Power production Right: Efficiency.
Fig. 16. Electric dispatch results in HPP — U2. The left side shows the total power generation. The right side shows the total water discharged. The line represents the small
error in power production and the water savings, respectively. Legend: Usual WD (water discharge) means the operation used in usual electric dispatch control; and Optimized
WD (water discharge) is the water provided by the MESH control operator.
operates the generating units at a high level of efficiency. In order to
demonstrate the MESH efficiency as a control system for the electrical
dispatch operation, the data report is available in Table 6.

From the solution obtained using MESH, the water flow savings
when compared with the HPP usual control dispatch mode – UCDm
– is around 73.57 m3∕s for the U1 and 19.24 m3∕s in daily dispatch.
Expanding these results, this is equivalent to saving approximately
264.8 million liters in U1 and 69.3 million liters in U2 of water using
the optimization obtained by the MESH approach. The achieved result
15
of energy production by MESH, in which all the turbine-generator sets
work in good capacity (between 91% and 93%) on U1 and U2 power
plants, means a percentage gain in electrical production of 0.15%
according to water savings. In practice, according to the plant’s pro-
duction manager, a percentage of 0.1% generates a monthly monetary
profit of $275,000 a month. Thus, MESH can achieve a monetary profit
of around $412,500 for the cascade system providing the amount of
14.91 GW at operation. The choice of the solution for this analysis is
totally empirical, however such a solution exemplifies that the set of
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Fig. 17. Power and efficiency in HPP — U2. Left: Power production Right: Efficiency.
Table 6
Electric dispatch report in OMRS operated by MESH.
ℎ DR DP E UWD OWD SW DR DP E UWD OWD SW

0 330.00 330.03 0.03 705.81 703.40 2,41 264.00 263.95 0.05 573.59 572.69 0.90
1 330.00 330.03 0.03 705.81 703.40 2,41 264.00 263.90 0.10 573.59 572.51 1.09
2 330.00 330.03 0.03 705.81 703.40 2,41 264.00 264.09 0.09 573.59 572.86 0.73
3 322.00 322.03 0.03 686.02 684.54 1.49 258.00 258.07 0.07 560.56 560.38 0.18
4 322.00 322.03 0.03 686.02 684.54 1.49 258.00 258.05 0.05 560.56 560.33 0.23
5 330.00 330.02 0.02 705.81 703.40 2.41 264.00 264.09 0.09 573.59 572.86 0.73
6 330.00 330.02 0.02 705.81 703.40 2.41 264.00 264.01 0.01 573.59 572.68 0.92
7 330.00 330.02 0.02 705.81 703.40 2.41 264.00 264.01 0.01 573.59 572.68 0.92
8 305.00 305.02 0.02 662.67 660.02 2.66 240.00 239.98 0.02 521.45 521.09 0.36
9 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64

10 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
11 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
12 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
13 305.00 305.02 0.02 662.67 660.02 2.66 240.00 239.98 0.02 521.45 521.09 0.36
14 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
15 305.00 305.02 0.02 662.67 660.02 2.66 240.00 239.98 0.02 521.45 521.09 0.36
16 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
17 305.00 305.02 0.02 662.67 660.02 2.66 235.00 235.08 0.02 508.41 507.77 0.64
18 420.00 420.01 0.01 898.30 892.91 5.39 336.00 335.94 0.06 730.03 727.85 2.18
19 437.00 436.95 0.05 934.66 929.69 4.97 343.00 343.01 0.01 745.24 744.07 1.16
20 437.00 436.97 0.03 943.66 929.76 4.91 343.00 343.02 0.02 745.24 744.04 1.20
21 437.00 436.97 0.03 934.66 929.76 4.91 343.00 342.97 0.40 745.24 743.92 1.31
22 437.00 436.97 0.03 934.66 929.74 4.92 343.00 343.05 0.05 745.24 744.05 1.19
23 445.00 444.96 0.04 951.77 947.30 4.48 349.00 348.78 0.22 758.27 757.31 0.96

SW (m3∕s) 73.57 19.24
SW (l/day) 264.8 mi 69.3 mi

Hour (h) Demand Required (DR); Demand Produced (DP); Demand error (E); Usual water discharge (UWD); Optimized Water discharge (OWD);
Saved water (SW); Litters (l); Million (mi).
Pareto optimal solutions found by MESH is efficient in practical terms
of electricity production in the Brazilian scenario.

5. Conclusions and final remarks

In this paper we have proposed a novel hybrid algorithm for multi-
objective optimization, the Multi-objective Evolutionary Swarm Hy-
bridization — MESH. This new optimizer can be used to address
problems with conflicting or competing objectives. The guide, non-
dominance and crowd distance operators are the main features in-
troduced in MESH to make it a multi-objective algorithm, together
with some novel characteristics inherit from Differential Evolution,
which improves the search capabilities of the algorithm. Several tests
on different benchmark problems have been conducted for choosing
the best algorithm configuration for MESH. The MESH approach, in
two different versions, has shown competitive results in ZDT and
DTLZ benchmark problems when compared to state-of-the-art algo-
rithms SPEA-2, NSGA-II, MOEA/D and NSGA-III. Furthermore, results
obtained after applying MESH to OMRS, a real world electrical dispatch
16
problem, are statistically robust and indicate a superiority of MESH
against other well-established MOEA’s.

Regarding the electrical dispatch in cascade mode operation, it is
possible to evaluate that the proposed mathematical modeling is ca-
pable of making the generation system more efficient, with a projected
water savings of around millions of liters per hour. The simulation done
has showed that the MESH configurations are sensitive to the problem
to be optimized. The best MESH version to solve the electric dispatch
in cascade operation is the E2V2D1. Thus, when the swarm guide is
obtained from a particle to the upper bound of the actual Pareto front
and the sampling vector is extracted from the memory, MESH works
effectively as a electric dispatch controller of cascading plants. The
MESH solution is able to generate a profit of approximately $412,500.
We believe that, as a future work, a technique for choosing solutions to
be used in this dynamic model can be adopted. Such an approach allows
real-time decision making, so that, every hour, a Pareto solution is
chosen as an input for the next generation, so that it can generate better
solutions. In the end, the amount of water saved in the generation can
be even larger.
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