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It is well known that for two univariate polynomials over complex number field the number of their
common roots is equal to the order of their resultant. In this paper, we show that this fundamental
relationship still holds for the tropical polynomials under suitable adaptation of the notion of order, if
the roots are simple and non-zero.
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1 Introduction

The resultant plays a crucial role in algebra and algebraic geometry [27, 23, 17, 5, 1, 9]. Let m,n be fixed.
Let

A = a0x
m + a1x

m−1 + · · ·+ am ∈ C [a,x]

B = b0x
n + b1x

n−1 + · · ·+ bn ∈ C [b,x]

Then the resultant R ∈ C[a,b] is defined as the smallest monic polynomial (w.r.t. a given order) such that,
for every a ∈ Cm+1 and b ∈ Cn+1, if the two polynomials A (a,x) ,B (b,x) ∈ C[x] have a common complex
root then R(a, b) = 0.1 We recall the following two well known fundamental properties of resultants. Let
a ∈ Cm+1 and b ∈ Cn+1 such that a0, b0 6= 0. Then we have

P1. The point (a, b) is a root of R if and only if the polynomials A (a,x) and B (b,x) have a common
complex root. (Of course, the ‘if’ part is immediate from the definition and thus the interesting part
is the ‘only if’).

P2. The order of the point (a, b) at R is equal to the number of common complex roots of the polynomials
A (a,x) and B (b,x) . (See the appendix)

1It is well-known that the resultant R can be defined in various other ways: for instance, in terms of Sylvester matrix,
Bezout matrix, Barnett matrix, Hankel matrix (see [7] for a nice summary). Those definitions are more useful for computational
purposes. However they are also more complicated when deducing theoretical or structural properties. Since the main interest
of this paper is not computational but structural, we chose the more structural definition.
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A natural question arises: whether/how these properties can be adapted to polynomials over the tropical
semifield. Recall that the tropical semifield is the set R∪{−∞} where the addition operation is defined
as the usual maximum, the multiplication operation is defined as the usual addition. As a result, it does
not allow subtraction (due to lack of additive inverse; hence the name semifield). It has been intensively
investigated due to numerous interesting applications [24, 22, 21, 12, 2, 10, 25, 13, 4, 26, 16, 3, 18, 11].

Note that, unlike polynomials over C, it is easy to compute the roots of polynomials over tropical semifield,
and thus, counting number of common roots is also easy. Hence the motivation for asking the above question
is not for finding an efficient algorithm, but for gaining structural understanding on the relation between
roots and the resultant.

There have been several adaptations of resultant over C to the tropical semifield [19, 8, 2, 28, 20, 15]. In
particular, Tabera [28] and Odagiri [20] showed that the above property P1 holds over the tropical semifield,
if one redefines the notions of roots and resultant as follows: (1) a root is redefined as a point where the
graph of the polynomial is not smooth (2) the resultant is redefined as the tropicalization of resultant over C
([28]) or as the permanent of the Sylvester matrix ([20]). In this paper, we will follow the definition of [28].

The main contribution of this paper is to show that the property P2 also holds over the tropical semifield,
if one puts a slight restriction on (a, b) and if one makes a suitable adaptation of the notion of order, as
follows: (1) we restrict (a, b) such that the polynomials A (a,x) and B (b,x) have only simple and non-zero
roots. (2) the notion of the order of a point p at a multivariate polynomial C is replaced by the new concept
of “order”, which is the log2 of the numbers of terms, say t, in C such that t (p) = C(p).

The paper is structured as follows. In Section 2, we state formally the main result of the paper. In Section
3, we provide a proof. In Section 4, we summarize the main result and discuss some potential generalizations
and associated difficulties. In Appendix, we include a simple proof of P2 over C, provided by Laurent Busé.

2 Main Result

In this section, we present the main result of this paper. For this, we need to recall some basic notions
on the tropical semi-field and the tropical resultant. The tropical semi-field is the tuple (T,+,×, /), where
T = R∪{−∞}, + is the usual maximum, × is the usual addition, and / is the usual subtraction. It is easy
to see that the additive identity (tropical zero) is −∞ and that the multiplicative identity (tropical one) is 0.

Let T [x] be the set of all polynomials in the indeterminate x. The polynomial C ∈ T [x] represents a
function: T→ T. We say that α ∈ T is a root of C if the graph of C has a corner over α. The multiplicity
of α is the change in the slopes of the graph across α. When the multiplicity of α is one, we say that α is
simple.

Finally, we recall the notion of tropical resultant (see [28] for further details). Let R ∈ C[a,b] be the
resultant w.r.t. the fixed degrees m,n. Then the tropical resultant R ∈ T[a,b] is defined as the tropicalization
of R, that is, the tropical sum of the supports of R.2

Now we adapt the notion of the order to the tropical semifield.

Definition 1 (Order). Let C ∈ T [z1, . . . , zl] be a tropical non-zero polynomial. Let C = t1 + · · · + tr
where ti’s are terms in z with tropical non-zero coefficients. Let p ∈ Tl. Let EC(p) := {ti : C (p) = ti (p)}.
The order3 of p in C, written as OC (p), is defined by

OC (p) := log2 #EC(p)

Remark 2. The definition of the order given above may look a bit strange, especially because it could be
non-integer when #EC(p) is not a power of 2. The motivation behind the definition is that it allows us to
state our main theorem in a similar way as in the field case. Compare P2 in the introduction and Theorem 4.
In particular, when the roots are simple and tropical non-zero, then #EC(p) is a power of 2.

Example 3. Let C(z) = z1z2 + 2z1 + 2 ∈ T[z]. The plots in Figure 1 describe the graph of C.

2A motivation behind this definition comes from the observation that if one carries out the logt-coordinate transform where
t → ∞, then R becomes the tropical sum of the support of R.

3Over T, the notions of multiplicity and order are not the same, unlike over C, already in the univariate case.
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3 Main Result

In this section, we will present the main result of this paper. For this, we need some notations and notions.

Definition 9 (Index and Order). Let C ∈ T [z1, . . . , zl] be a non-0 polynomial. Let C = t1+∙ ∙ ∙+tr where ti’s
are terms in z with real (non-0) coefficients. Let p ∈ Rl. Let EC(p) := {ti : C (p) = ti (p)}. The index of p
in C, written as IC (p), is defined by

IC (p) := #E(p)

The order of p in C, written as OC (p) , is defined by

OC (p) := log2 IC (p)

Example 10. Let C(z) = z1z2 + 2z1 + 2 ∈ T[z]. The left plot shows the function represented by C.

−3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

C(z) = t2(z)C(z) = t3(z)

C(z) = t1(z)

z1

z2

The red piecewise plane is the graph of C(z) and the three gray planes are the graphs of the terms in C. Let
t1 = z1z2, t2 = 2z1, and t3 = 2 be the terms in C. The right plot explicitly shows the partition of the z plane
into pieces and the corresponding term for each piece. The following table shows the values of the index and
the order on each piece.

(p1, p2) ∈ R2 color E(p) IC(p) OC(p)

t1 = t2 = t3 green {t1, t2, t3} 3 log2 3
t1 = t2 > t3 blue {t1, t2} 2 1
t1 = t3 > t2 blue {t1, t3} 2 1
t2 = t3 > t1 blue {t2, t3} 2 1
t1 > t2, t3 white {t1} 1 0
t2 > t1, t3 white {t2} 1 0
t3 > t1, t2 white {t3} 1 0

Definition 11 (Resultant). Let m,n ∈ N≥1. Let

M :=
















a0 a1 ∙ ∙ ∙ ∙ ∙ ∙ am

. . .
. . .

. . .
a0 a1 ∙ ∙ ∙ ∙ ∙ ∙ am

b0 b1 ∙ ∙ ∙ bn

. . .
. . .

. . .
. . .

. . .
. . .

b0 b1 ∙ ∙ ∙ bn
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(p1, p2) ∈ T2 color EC(p) #EC(p) OC(p)

t1 = t2 = t3 green {t1, t2, t3} 3 log2 3
t1 = t2 > t3 blue {t1, t2} 2 1
t1 = t3 > t2 blue {t1, t3} 2 1
t2 = t3 > t1 blue {t2, t3} 2 1
t1 > t2, t3 white {t1} 1 0
t2 > t1, t3 white {t2} 1 0
t3 > t1, t2 white {t3} 1 0

Figure 1: Polynomial C in Example 3

The left plot shows the function represented by C. The red piecewise plane is the graph of C(z) and the three
gray planes are the graphs of the terms in C. Let t1 = z1z2, t2 = 2z1, and t3 = 2 be the terms in C. The
right plot explicitly shows the partition of the z plane into pieces and the corresponding term for each piece.
The bottom table shows the values of the order on each piece.

Theorem 4 (Main Result). Let

A = a0x
m + a1x

m−1 + · · ·+ am ∈ T [x] , a0 6= −∞
B = b0x

n + b1x
n−1 + · · ·+ bn ∈ T [x] , b0 6= −∞

be with simple tropical non-zero roots. Then the following two are equivalent:

1. A and B have exactly k common roots.

2. OR (a, b) = k.

Example 5. We will illustrate the main result on a simple example. Let

A = a0x
3 + a1x

2 + a2x + a3 ∈ T[x]

be a monic polynomial with roots α1 > α2 > α3 6= −∞ and let

B = b0x
2 + b1x + b2 ∈ T[x]

be a monic polynomial with the roots β1 > β2 6= −∞. Assume that

α1

‖
β1

> α2 >
α3

‖
β2

6= −∞

Now we will verify the main result on this example. Note
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1. A and B have exactly 2 common roots, namely α1 = β1 and α3 = β2.

2. Table 1 shows the value of each term in R.

Term Value in roots Value simplified

a2
0b

3
2 (0)2(β1β2)3 α3

1α
3
3

a0a1b1b
2
2 (0)(α1)(β1)(β1β2)2 α4

1α
2
3

a0a2b0b
2
2 (0)(α1α2)(0)(β1β2)2 α3

1α2α
2
3

a0a2b
2
1b2 (0)(α1α2)(β1)2(β1β2) α4

1α2α3

a0a3b0b1b2 (0)(α1α2α3)(0)(β1)(β1β2) α3
1α2α

2
3

a0a3b
3
1 (0)(α1α2α3)(β1)3 α4

1α2α3

a2
1b0b

2
2 (α1)2(0)(β1β2)2 α4

1α
2
3

a1a2b0b1b2 (α1)(α1α2)(0)(β1)(β1β2) α4
1α2α3

a1a3b0b
2
1 (α1)(α1α2α3)(0)(β1)2 α4

1α2α3

a1a3b
2
0b2 (α1)(α1α2α3)(0)2(β1β2) α3

1α2α
2
3

a2
2b

2
0b2 (α1α2)2(0)2(β1β2) α3

1α
2
2α3

a2a3b
2
0b1 (α1α2)(α1α2α3)(0)2(β1) α3

1α
2
2α3

a2
3b

3
0 (α1α2α3)2(0)3 α2

1α
2
2α

2
3

Table 1: Value of each term of R, in Example 5, at the roots

In the second column, we used the obvious relation

a0 = 0 a1 = α1 a2 = α1α2 a3 = α1α2α3

b0 = 0 b1 = β1 b2 = β1β2

In the last column, we simplified the value using the fact that α1 = β1 and α3 = β2, for the sake of
easier comparison among the values. One can straightforwardly verify that α4

1α2α3 is the maximum
among the values. Thus R(a, b) = α4

1α2α3. Hence the corresponding terms are given by

ER(a, b) = {a0a2b
2
1b2, a0a3b3

1, a1a2b0b1b2, a1a3b0b
2
1}

Thus #ER (a, b) = 22 and OR (a, b) = 2.

We have verified the main result on this example.

3 Proof

In this section, we provide a proof of the main result (Theorem 4). One naturally wonders whether a proof
for the main result can be obtained by suitably ‘translating” a proof for the field case (such as the one given
in Appendix). We have tried the approach, without success. Thus we developed a completely different proof
strategy.

Before plunging into a technically detailed proof, we first provide an informal overview of the proof
strategy. Note that the tropical resultant R is defined as the tropicalization of (i.e., the tropical sum of all
the terms appearing in) the resultant over C. Recall that the resultant over C is same as the determinant of
the Sylvester matrix. Hence the tropical resultant R is the tropicalization of the determinant of the Sylvester
matrix. Recalling that terms in the determinant correspond to permutations of column indices, we observe
that each term in R comes from one or more permutations of (1, . . . , n + m). Thus we focus our attention
on the permutations. Let S be the set of all the permutations. Then, the main steps of the proof consist of
the followings:
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1. Lemma 14: We “prune” the set S, obtaining S∗, by removing all the permutations that never yields
R(a, b), no matter what a and b are.

2. Lemma 16: We show that each permutation in S∗ provides a different term in the tropical resultant
polynomial R(a,b).

3. Lemma 18: Using the above two lemmas, we show that the following three elements of T are the same:
R(a, b), P and P ∗ that are the value of the determinant of the Sylvester matrix by considering all the
permutations in S (the case of P ) or only the permutations in S∗ (for the case of P ∗).

4. Lemma 24: We “characterize” the permutations in S∗ that yield R(a, b), in terms of the ordering
among the roots of A and B.

5. Lemma 28: We show that the number of permutation in the previous step is exactly 2k, where k is the
number of common roots.

6. The main result is immediate from the above lemmas.

Now we plunge into the details of the proof. From now on, we fix a = (a0, . . . , am) ∈ Tm+1 and b =
(b0, . . . , bn) ∈ Tn+1 such that the polynomials

A = a0x
m + a1x

m−1 + · · ·+ am ∈ T [x] , a0 6= −∞
B = b0x

n + b1x
n−1 + · · ·+ bn ∈ T [x] , b0 6= −∞

are with simple tropical non-zero roots.
The next two lemmas will be used to reduced the proof to the monic polynomial case.

Lemma 6. Let C = c0x
d+ c1x

d−1 + · · ·+ cd ∈ T [x] where c0 6= −∞. The roots of C and 1
c0
C are the same.

Proof. Obvious.

Lemma 7. OR (a, b) = OR

(
1
a0
a, 1

b0
b
)
.

Proof. Let R be expressed as R = t1 + · · ·+ tρ where ti are terms in a,b with tropical non-zero coefficients.
We observe that R is bi-homogeneous of degrees n and m in the variables a and b, respectively. Thus for
each term ti we have

am0 b
n
0 ti

(
1

a0
a,

1

b0
b

)
= ti(a, b).

Now, the lemma follows immediately from the definition of order.

Therefore, taking into account of Lemma 6 and Lemma 7, we can restrict the proof of the main result
to the monic case, without losing generality. Thus, in the following, we assume that A,B are monic; that
is a0 = 0 = b0. In addition, let α1 > · · · > αm be the roots of A and β1 > · · · > βn be the roots of B. We
obviously have

ai = α1 · · ·αi
bi = β1 · · ·βi

Note that, since αi 6= −∞ and βj 6= −∞, we see that ai 6= −∞ and bj 6= −∞. We will set ai = −∞ if i > m
or i < 0 and set bi = −∞ if i > n or i < 0. Let

[aj−i] =

a0 a1 · · · · · · am
. . .

. . .
. . .

a0 a1 · · · · · · am

 ∈ T [a]
n×(n+m)
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[bj−i] =


b0 b1 · · · bn

. . .
. . .

. . .

. . .
. . .

. . .

b0 b1 · · · bn

 ∈ T [b]
m×(n+m)

M :=

[
[aj−i]
[bj−i]

]
∈ T [a,b]

(n+m)×(n+m)

M := M (a, b) ∈ T(n+m)×(n+m)

Notation 8. Let S stand for the set of all permutations of (1, . . . , n+m). Furthermore, for π ∈ S, let

Mπ := M1,π1
· · ·Mn+m,πn+m

Mπ := Mπ (a, b)

Moreover, let S∗ stand for the set of all (ν1, . . . , νn, µ1, . . . , µm) ∈ S such that ν1 < · · · < νn and µ1 < · · · <
µm.

Remark 9. From the structure of M it follows that, if π = (ν1, . . . , νn, µ1, . . . , µm) ∈ S, then

Mπ = aν1−1 · · ·aνn−n bµ1−1 · · ·bµm−m

In the next example we see that S∗ is much smaller that S. Later, we will see that the relevant information
for our problem lies in S∗

Example 10. Let m = 3 and n = 2. Then

S∗ = { (1, 2, 3, 4, 5), (1, 3, 2, 4, 5), (1, 4, 2, 3, 5), (1, 5, 2, 3, 4),

(2, 3, 1, 4, 5), (2, 4, 1, 3, 5), (2, 5, 1, 3, 4),

(3, 4, 1, 2, 5), (3, 5, 1, 2, 4),

(4, 5, 1, 2, 3) }

Note

#S∗ =
(n+m)!

n!m!
=

(2 + 3)!

2!3!
= 10, #S = 120.

Next, we introduce the following notations.

P =
∑
π∈S

Mπ, and P∗ =
∑
π∈S∗

Mπ.

P = P (a, b) , and P ∗ = P∗ (a, b) .

The next lemmas will be used to conclude that P = P ∗ = R(a, b) (see Lemma 18).

Lemma 11. R(a, b) ≤ P.

Proof. Note that the terms of R(a,b) come from some of the permutations in the definition of P. Thus
R(a, b) ≤ P .

Lemma 12 (Odagiri 2008, [20]). Let π = (ν1, . . . , νn, µ1, . . . , µm) ∈ S be such that Mπ 6= −∞. Then we
have the followings.

1. Suppose that νk > νk+1 for some k. Let π′ := (ν1, . . . , νk+1, νk, . . . , νn, µ1, . . . , µm) , that is, obtained
from π by swapping νk and νk+1. Then Mπ′ > Mπ.
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2. Suppose that µk > µk+1 for some k. Let π′ := (ν1, . . . , νn, µ1, . . . , µk+1, µk, . . . , µm) , that is, obtained
from π by swapping µk and µk+1. Then Mπ′ > Mπ.

Example 13. Let m = 3 and n = 3. Let

π = (1, 4, 3, 2, 5) and π′ = (1, 4, 2, 3, 5)

They represent the following choices of elements (“path”) encircled

π :



a0 a1 a2 a3

a0 a1 a2 a3

b0 b1 b2

b0 b1 b2

b0 b1 b2


and π′ :



a0 a1 a2 a3

a0 a1 a2 a3

b0 b1 b2

b0 b1 b2

b0 b1 b2


Note

Mπ′

Mπ
=
a0a2b1b1b2
a0a2b2b0b2

=
b1b1
b2b0

=
(β1) (β1)

(β1β2) (0)
=
β1

β2
> 0

Thus
Mπ′ > Mπ

verifying the lemma on π and π′. Observe that π has a “zigzag” in the bottom part, while π′ does not have
a zigzag. The lemma says that a zigzag makes the value of a path smaller.

Proof of Lemma 12. The proof was given in [20]. However for the sake of reader’s convenience and the
notational consistency, we provide a complete proof here. We will show the proof of the claim 1 only. The
proof for the claim 2 is essentially the same. Note

Mπ′

Mπ
=
aν1−1 · · · aνk+1−k aνk−(k+1) · · · aνn−n bµ1−1 · · · bµm−m

aν1−1 · · · aνk−k aνk+1−(k+1) · · · aνn−n bµ1−1 · · · bµm−m

=
aνk+1−k aνk−(k+1)

aνk−k aνk+1−(k+1)

=
aνk+1−(k+1) ανk+1−k aνk−(k+1)

aνk−(k+1) ανk−k aνk+1−(k+1)

=
ανk+1−k

ανk−k

> 0

Thus Mπ′ > Mπ.

Lemma 14. If π ∈ S \ S∗, then P > Mπ.

Proof. Let π ∈ S \ S∗. From [20, Main Theorem], we have P =
∏
ij (αi + βj) . Since α1, . . . , αm, β1, . . . , βn

are tropically non-zero, we have P 6= −∞ Suppose that Mπ = −∞. Then we obviously have P > Mπ. Thus
from now on, assume that Mπ 6= −∞. Note

P =
∑
ρ∈S

Mρ =
∑

ρ∈S\{π}

Mρ +Mπ

From Lemma 12, we have π′ ∈ S \ {π} such that Mπ′ > Mπ. Hence P > Mπ.

Lemma 15. P = P ∗.

7



Proof. Immediate from the definition of P , P ∗. and Lemma 14.

Lemma 16. Let π, π′ ∈ S∗. The following two are equivalent.

1. π = π′

2. Mπ = Mπ′

Proof. Let π = (ν, µ) , π′ = (ν′, µ′) ∈ S∗. It is obvious that 1 =⇒ 2. It remains to show 2 =⇒ 1. Assume
Mπ = Mπ′ . We will show that π = π′. Note

Mπ = aν̄1 · · ·aν̄nbµ̄1 · · ·bµ̄m

Mπ′ = aν̄′1 · · ·aν̄′nbµ̄′1 · · ·bµ̄′m

where µ̄i = µi − i, ν̄i = νi − i, µ̄′i = µ′i − i and ν̄′i = ν′i − i. Since π ∈ S∗ we have 0 ≤ ν̄1 ≤ · · · ≤ ν̄n ≤ m and
0 ≤ µ̄1 ≤ . . . ≤ µ̄m ≤ n. The same with (ν̄′, µ̄′) . Since Mπ = Mπ′ , we have ν̄ = ν̄′ and µ̄ = µ̄′, in turn,
ν = ν′ and µ = µ′. Thus π = π′.

Remark 17. The above lemma implies that the terms generated by the permutations in S∗, in the determi-
nant of the Sylvester matrix, do not cancel since they appear only once. Thus all the terms in P∗appear in
R(a,b).

Lemma 18. R(a, b) = P = P ∗.

Proof. From Lemmas 15, we have P = P ∗. From Lemma 16 and Remark 17, we have P ∗ ≤ R(a, b). Thus
P ≤ R(a, b). By Lemma 11 we know that R(a, b) ≤ P . So, the statement holds.

Remark 19. We emphasize that the above lemma states that R(a,b),P and P∗are the same as functions,
but not necessary as tropical polynomials.

Lemma 20. Let π = (ν1, . . . , νn, µ1, . . . , µm) ∈ S∗. Let pi = n − (µi − i) and qi = m − (νi − i) . Then we
have

Mπ = αpβq

Example 21. Let us m = 3 and n = 2. Let π = (1, 4, 2, 3, 5) ∈ S∗. Then

Mπ = a1−1 a4−2 b2−1 b3−2 b5−3

= a0a2b1b1b2

= (0)(α1α2)(β1)(β1)(β1β2)

= α1
1α

1
2α

0
3β

3
1β

1
2

αpβq = α
2−(2−1)
1 α

2−(3−2)
2 α

2−(5−3)
3 β

3−(1−1)
1 β

3−(4−2)
2

= α1
1α

1
2α

0
3β

3
1β

1
2

Hence Mπ = αpβq, verifying the lemma on the particular π.

Proof of Lemma 20. There are two cases: µ1 = 1 or ν1 = 1. We will show a proof of the lemma only for the
case µ1 = 1. The proof for the case ν1 = 1 is essentially the same. We will divide the proof into two steps.

1. Let s1, s2, . . . be the lengths of the consecutive blocks in µ. Likewise let t1, t2, . . . be the lengths of the
consecutive blocks in ν. Then

µ = (1, . . . , s1, s1 + t1 + 1, . . . , s1 + t1 + s2, s1 + t1 + s2 + t2 + 1, . . . , s1 + t1 + s2 + t2 + s3, . . .)

ν = (s1 + 1, . . . , s1 + t1, s1 + t1 + s2 + 1, . . . , s1 + t1 + s2 + t2, . . .)
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Let µj = µj − j and νi = νi − i. Then

µ̄ = (0, . . . , 0︸ ︷︷ ︸
s1

, t1, . . . , t1︸ ︷︷ ︸
s2

, t1 + t2, . . . , t1 + t2︸ ︷︷ ︸
s3

, . . .) (1)

ν̄ = (s1, . . . , s1︸ ︷︷ ︸
t1

, s1 + s2, . . . , s1 + s2︸ ︷︷ ︸
t2

, . . .)

2. Note

Mπ = aν1aν2 · · · bµ1
bµ2
· · ·

= at1s1a
t2
s1+s2 · · · b

s2
t1 b

s3
t1+t2 · · · from (1) and the fact that b0 = 1

=

s1∏
k=1

αt1k

s1+s2∏
k=1

αt2k · · ·
t1∏
k=1

βs2k

t1+t2∏
k=1

βs3k · · ·

=

s1∏
k=1

αt1+t2+···
k

s1+s2∏
k=s1+1

αt2+t3+···
k · · ·

t1∏
k=1

βs2+s3+···
k

t1+t2∏
k=t1+1

βs3+s4+···
k · · ·

=

s1∏
k=1

αn−0
k

s1+s2∏
k=s1+1

αn−t1k · · ·
t1∏
k=1

βm−s1k

t1+t2∏
k=t1+1

β
m−(s1+s2)
k · · ·

=

s1∏
k=1

αn−µ̄k

k

s1+s2∏
k=s1+1

αn−µ̄k

k · · ·
t1∏
k=1

βm−ν̄kk

t1+t2∏
k=t1+1

βm−ν̄kk · · ·

=

m∏
k=1

αn−µ̄k

k

n∏
k=1

βm−ν̄kk

=

m∏
k=1

αpkk

n∏
k=1

βqkk

= αpβq

Notation 22. Let π ∈ S and L be a list of length n+m. Then π (L) is the list obtained from L by permuting
the element according to π, that is, by moving the i-th element of L to the πi-th position.

Example 23. Let m = 3 and n = 2. Let π = (1, 4, 2, 3, 5) ∈ S∗. Then

π (β1, β2, α1, α2, α3) = (β1, α1, α2, β2, α3)

Lemma 24. Let π ∈ S. The followings are equivalent

1. The elements of π (β, α) are non-increasing

2. P = Mπ.

Example 25. We illustrate the lemma using Example 5, that is, m = 3 and n = 2 and

α1

‖
β1

> α2 >
α3

‖
β2

6= −∞

For π ∈ S\S∗, it is easy to check that both 1 and 2 are false and thus the lemma is verified. For π ∈ S∗,
Table 2 verifies the lemma. In the table, γ stands for π(β, α). In the 3rd and the 6th columns, we simplified
the previous columns using the fact that α1 = β1 and α3 = β2, for the sake of easier checks in the next
columns.
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π ∈ S∗ γ γ simplified γ1 ≥ · · · ≥ γ5 Mπ Mπsimplified P = Mπ

(1, 2, 3, 4, 5) (β1, β2, α1, α2, α3) (α1, α3, α1, α2, α3) false β3
1β

3
2 α3

1α
3
3 false

(1, 3, 2, 4, 5) (β1, α1, β2, α2, α3) (α1, α1, α3, α2, α3) false α1β
3
1β

2
2 α4

1α
2
3 false

(1, 4, 2, 3, 5) (β1, α1, α2, β2, α3) (α1, α1, α2, α3, α3) true α1α2β
3
1β2 α4

1α2α3 true
(1, 5, 2, 3, 4) (β1, α1, α2, α3, β2) (α1, α1, α2, α3, α3) true α1α2α3β

3
1 α4

1α2α3 true
(2, 3, 1, 4, 5) (α1, β1, β2.α2, α3) (α1, α1, α3.α2, α3) false α2

1β
2
1β

2
2 α4

1α
2
3 false

(2, 4, 1, 3, 5) (α1, β1, α2, β2, α3) (α1, α1, α2, α3, α3) true α2
1α2β

2
1β2 α4

1α2α3 true
(2, 5, 1, 3, 4) (α1, β1, α2, α3, β2) (α1, α1, α2, α3, α3) true α2

1α2β
2
1α3 α4

1α2α3 true
(3, 4, 1, 2, 5) (α1, α2, β1, β2, α3) (α1, α2, α1, α3, α3) false α2

1α
2
2β1β2 α3

1α
2
2α3 false

(3, 5, 1, 2, 4) (α1, α2, β1, α3.β2) (α1, α2, α1, α3.α3) false α2
1α

2
2β1α3 α3

1α
2
2α3 false

(4, 5, 1, 2, 3) (α1, α2, α3, β1, β2) (α1, α2, α3, α1, α3) false α2
1α

2
2α

2
3 α2

1α
2
2α

2
3 false

Table 2: Verification of Lemma 24 in Example 25, where γ = π(β, α)

Proof of Lemma 24. Let γ = π (β, α). We divide the proof into two cases: π ∈ S \ S∗ and π ∈ S∗.

Case 1: π ∈ S \ S∗. For some i < j, we have νi > νj or µi > µj . Recall that γνi = βi, γνj = βj ,
γµi

= αi and γµj
= αj . Since βi > βj and αi > αj , we have γνi > γνj or γµi

> γµj
. Thus the statement

γ1 ≥ γ2 ≥ · · · ≥ γn+m is false. From Lemma 14, the statement P = Mπ is also false. Thus the lemma is
vacuously true.

Case 2: π ∈ S∗. We prove each direction of implication one at a time:

1. If γ1 ≥ γ2 ≥ · · · ≥ γn+m then P = Mπ.

Assume that γ1 ≥ γ2 ≥ · · · ≥ γn+m. We need to show P = Mπ. By Lemma 15

P =
∑
π′∈S∗

Mπ′

Let π′ = (ν′1, . . . , ν
′
n, µ
′
1, . . . , µ

′
m) ∈ S∗ be such that π′ 6= π. It suffices to show that Mπ ≥ Mπ′ . If

Mπ′ = −∞ then it is obvious true. Thus from now on, assume that Mπ′ 6= −∞. Note, by Lemma 20,

Mπ

Mπ′
=

∏m
i=1 α

n−(µi−i)
i

∏n
i=1 β

m−(νi−i)
i∏m

i=1 α
n−(µ′i−i)
i

∏n
i=1 β

m−(ν′i−i)
i

=

∏m
i=1 α

µi′
i

∏n
i=1 β

ν′i
i∏m

i=1 α
µi

i

∏n
i=1 β

νi
i

=

∏m
i=1 γ

µ′i
µi

∏n
i=1 γ

ν′i
νi∏m

i=1 γ
µi
µi

∏n
i=1 γ

νi
νi

=

∏n+m
j=1 γ

λj

j∏n+m
j=1 γjj

where λ ∈ S such that λµi
:= µ′i and λνi := ν′i

≥ 0

Hence Mπ ≥Mπ′ .

2. If P = Mπ then γ1 ≥ γ2 ≥ · · · ≥ γn+m.

We will prove the contrapositive. Assume that it is false that γ1 ≥ γ2 ≥ · · · ≥ γn+m. We need to show
that P > Mπ. Let k be such that γk < γk+1. Let i and j such that k = πi and k+ 1 = πj . We consider
the following four potential cases.
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(a) i ≤ n and j ≤ n
Note that π has the following form

π = (ν, µ) = ( . . . , k, k + 1, . . .︸ ︷︷ ︸
n

. . . . . .︸ ︷︷ ︸
m

)

where k appears at the i-th position and k + 1 appears at the j-th position (in fact, j must be
i+ 1, since π ∈ S∗) in the ν block. Thus γk = βi and γk+1 = βj . Since γk < γk+1, we should have
βi < βj . However this is not possible due to the global assumption β1 > β2 > · · · > βn. Thus this
case cannot occur.

(b) i > n and j > n

This case cannot occur, due to the essentially same reason as above.

(c) i ≤ n and j > n

We divide the proof into several steps.

i. Note that π has the following form

π = (ν, µ) = ( . . . , k, . . .︸ ︷︷ ︸
n

. . . , k + 1, . . .︸ ︷︷ ︸
m

)

where k appears on the i -th position in the ν block and k + 1 appears on the (j − n)-th
position in the µ block.

ii. Note γk = βi and γk+1 = αj−n. Since γk < γk+1, we have βi < αj−n.

iii. Let π′ be obtained from π by swapping πi and πj . Then π′ has the following form

π′ = (ν′, µ′) = ( . . . , k + 1, . . .︸ ︷︷ ︸
n

. . . , k, . . .︸ ︷︷ ︸
m

)

where k + 1 appears on the i -th position in the ν′ block and k appears on the (j − n)-th
position in the µ′ block.

iv. We will show that π′ ∈ S∗. Since π ∈ S∗, we have that ν and µ are strictly increasing. By
inspecting the form of π shown above, we see that, in the ν block, everything to the left of k
is less then k and everything to the right of k is greater than k + 1 and that, in the µ block,
everything to the left of k+1 is less than k and everything to the right of k+1 is greater than
k+ 1. By inspecting the form of π′ shown above, we see that ν′ and µ′ are strictly increasing.
Thus π′ ∈ S∗.

v. From Lemma 20, we have

Mπ′

Mπ
=
· · ·αn−(k−(j−n))

j−n · · · · · ·βm−(k+1−i)
i · · ·

· · ·αn−(k+1−(j−n))
j−n · · · · · ·βm−(k−i)

i · · ·
=
αj−n
βi

> 0

Thus Mπ′ > Mπ. Thus P > Mπ.

(d) i > n and j ≤ n
We can show that P > Mπ, using the essentially same argument as above.

Notation 26. Let ∆ = {π ∈ S : P = Mπ} , and Θ = {π ∈ S∗ : P ∗ = Mπ} . Let δ = #∆, i.e. the number of
“maximum permutations”. Similarly, let θ = #Θ.

Lemma 27. #ER (a, b) = δ = θ.
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Proof. By Lemma 18 we have that P = P ∗. Thus, Θ ⊂ ∆. Moreover, by Lemma 14, we get that ∆ ⊂ Θ.
Therefore, ∆ = Θ and in turn δ = θ. On the other hand, we have that ER(a, b) ⊂ ∆, and by Lemma
16 we have Θ ⊂ ER(a, b). Thus Θ ⊂ ER(a, b) ⊂ ∆ in turn θ ≤ #ER(a, b) ≤ δ. Now, the lemma follows
directly.

Lemma 28. The following two are equivalent:

1. A and B have exactly k common roots.

2. δ = 2k.

Proof. Let us prove that 1 =⇒ 2. Let A and B be of degrees m and n with exactly k common roots, say
αi1 = βj1 , . . . , αik = βjk where the roots α’s and β’s are ordered as follows.

· · · >
αi1
‖
βj1

> · · · >
αi2
‖
βj2

> · · · · · · >
αik
‖
βjk

> · · · (2)

where · · · represent strict orderings among the other (non-common) roots. Note

δ = # {π ∈ S : P = Mπ}
= # {π ∈ S : the elements in π (β, α) are non-increasing} from Lemma 24

= #

{
π ∈ S : π (β, α) =

(
· · · , αi1 , βj1

βj1 , αi1
, · · · , αi2 , βj2

βj2 , αi2
, · · · · · · , αik , βjk

βjk , αik
, · · ·

)}
from (2)

(where
�
4 means “either � or 4”)

= 2k

Let us show that 2 =⇒ 1. Assume that δ = 2k. Let λ be the number of common roots of A and B. Then,
since 1 =⇒ 2, we have δ = 2λ. Thus 2λ = 2k, and hence λ = k. Thus A and B have exactly k common
roots.

Proof of Main Result (Theorem 4). It is a direct consequence of Lemmas 27 and 28.

4 Conclusion and Discussion

The goal of this paper was to adapt the following well known property of univariate resultant over C to
the tropical semifield: the number of common roots of the two polynomials is the same as the order of the
resultant at the tuple of the coefficients. We have shown that the same property holds if we adapt the notion
of order, and we restrict the roots of the polynomials to be tropical non-zeros and simple.

In the following, we will briefly and informally discuss a few questions naturally raised by the results
given in this paper.

1. Conditions on the root. Note that we treated only the case when all the roots are tropical non-zeros
and simple. We discuss what happens in the other cases.

(a) tropical zero root: Suppose that the two polynomials A and B have the tropical zero (−∞) as a
root. The main result does not hold. The reason is as follows: each term of the polynomial R
always contains, at least, one of the indeterminates am and bn. On the other hand, the fact that
−∞ is a common root of A,B implies that am = bn = −∞. Thus, for every term t in R, we have
R(a, b) = ti(a, b) = −∞. Therefore the order can be different from (in fact not related to) the
number of common roots. Hence, in order to cover tropical zero roots, one will need to come up
with a different notion of order. We leave it as an open challenge.
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(b) multiple root: Suppose that a polynomial has a multiple (not simple) root. The main result does
not hold. The reason is as follows: a function with a multiple root admits infinitely many poly-
nomial representations. Furthermore the order of the resultant depends on which representation
is chosen. Therefore the order can be different from the number of common roots. For example,
consider the following three polynomials:

A = 0x + 3

B1 = 0x2 + 2x + 6

B2 = 0x2 + 3x + 6

representing the following functions:

• It is obvious that A has a simple root, namely 3. It is also obvious that B1 and B2 represent
the same function, with one double root, namely 3.

• Thus the number of common roots of A and B1 is 1. Likewise the number of common roots
of A and B2 is also 1.

• Direct computation show that

R(a,b) = a2
1b0 + a0a1b1 + a2

0b2

Thus

R(((0, 3), (0, 2, 6))) = max{6, 5, 6}
R(((0, 3), (0, 3, 6))) = max{6, 6, 6}

• Hence
OR((0, 3), (0, 2, 6)) = log2 2 = 1

but
OR((0, 3), (0, 3, 6)) = log2 3 6= 1

Hence, in order to cover multiple roots, one will need to come up with a different notion of order.
One natural and potential approach might be to look at the variety (polyhedral fan complex) of
the resultant and investigate the co-dimension of the cone where the coefficients vector of two
polynomials A and B belongs to. We leave it as an open challenge.

2. Rank deficiency. Over C, it is well known that the number of the common roots is the same as the
rank deficiency of the Sylvester matrix. Thus, one wonders whether the relation can be adapted to the
tropical semifield. We divide the discussion into two cases.

(a) All roots are tropical non-zeros and simple: Through numerous experiments on computer, we
conjecture that the relation holds in this case if the rank is taken as the tropical rank [6, 14]. It
is relatively easy to prove that the number of the common roots is bounded below by the rank
deficiency (exploiting some of the proof techniques developed in this paper). However, it seems
challenging to prove/disprove that the number of the common roots is bounded above by the rank
deficiency. We leave it as open challenge.
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(b) The other cases: The relation does not hold in general, as illustrated by the example

A = x3 + 2x2 + 2x + 6, B = x2 − 2x + 4

It is easy to verify that the roots of A and B are respectively (2, 2, 2) and (2, 2). Thus, the number
of common roots is 2. However, a direct computation shows that the tropical rank deficiency of
the Sylvester matrix is 1. In [6], two other different notions of ranks are considered, namely
Kapranov and Barvinok. Hence one wonders whether any of those might make the relation hold.
However, according to Theorem 1.4 in the paper, the tropical rank is not greater than the other
two, and hence the tropical rank deficiency based on the other two can never be greater than 1.
Thus, the relation does not hold for Kapranov and Barvinok ranks either.

Hence, in order to cover the tropical zero roots or multiple roots, one will need to come up with
a different notion of rank. We leave it as an open challenge.
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[4] Peter Butkovič. Max-linear systems: theory and algorithms. Springer Monographs in Mathematics.
Springer-Verlag London, Ltd., London, 2010.

[5] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997. An introduction to computational
algebraic geometry and commutative algebra.

[6] Mike Develin, Francisco Santos, and Bernd Sturmfels. On the rank of a tropical matrix. In Combinatorial
and computational geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages 213–242. Cambridge Univ.
Press, Cambridge, 2005.

[7] G. M. Diaz-Toca and L. Gonzalez-Vega. Various new expressions for subresultants and and their
applications. Applicable Algebra in Engineering, Communication and Computing (AAECC), 15:233–
266, 2004.

[8] Alicia Dickenstein, Eva Maria Feichtner, and Bernd Sturmfels. Tropical discriminants. J. Amer. Math.
Soc., 20(4):1111–1133, 2007.

[9] Carlos DAndrea, Teresa Krick, and Agnes Szanto. Subresultants in multiple roots. Linear Algebra and
its Applications, 438(5):1969–1989, 2013.

[10] Michel Gondran and Michel Minoux. Graphs, dioids and semirings, volume 41 of Operations Re-
search/Computer Science Interfaces Series. Springer, New York, 2008. New models and algorithms.

14



[11] Alexander Guterman and Yaroslav Shitov. Rank functions of tropical matrices. Linear Algebra and its
Applications, 498:326–348, 2016.

[12] Bernd Heidergott, Geert Jan Oldser, and Jacob van der Woude. Max plus at work. Princeton Series
in Applied Mathematics. Princeton University Press, Princeton, NJ, 2006. Modeling and analysis of
synchronized systems: a course on max-plus algebra and its applications.

[13] Ilia Itenberg, Grigory Mikhalkin, and Eugenii Shustin. Tropical algebraic geometry, volume 35 of Ober-
wolfach Seminars. Birkhäuser Verlag, Basel, second edition, 2009.

[14] Z. Izhakian and L. Rowen. The tropical rank of a tropical matrix. Communications in Algebra, 37:3912–
3927, 2009.

[15] Anders Jensen and Josephine Yu. Computing tropical resultants. J. Algebra, 387:287–319, 2013.

[16] G. L. Litvinov and S. N. Sergeev, editors. Tropical and idempotent mathematics and applications,
volume 616 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 2014.
Papers from the International Workshop on Tropical and Idempotent Mathematics (Tropical-12) held
at the Independent University, Moscow, August 26–31, 2012.

[17] R. Loos. Generalized polynomial remainder sequences. In Computer algebra, pages 115–137. Springer,
Vienna, 1983.

[18] Diane MacLagan and Bernd Sturmfels. Introduction to Tropical Geometry, volume 161 of Graduate
Studies in Mathematics. American Mathematical Society, 2015.

[19] Grigory Mikhalkin. Tropical geometry and its applications. In International Congress of Mathemati-
cians. Vol. II, pages 827–852. Eur. Math. Soc., Zürich, 2006.
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5 Appendix: number of common roots and resultants over C (by
Laurent Busé)

Recall the following property mentioned in the introduction: the order of the point at the resultant is equal
to the number of common complex roots of the two polynomials over C. This property is definitely part of
the folklore but we were not able to find it in the existing literature. In the following, we communicate a
simple proof kindly provided by Laurent Busé (laurent.buse@inria.fr). The proof is presented in a bit more
general context of unique factorization domain. Furthermore, the number of common roots is seen as the
degree of gcd.

Let k be a unique factorization domain. Given two positive integers m,n, consider the homogeneous
polynomials

f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m

g(x, y) = b0x
n + b1x

n−1y + · · ·+ bny
n

in the variables x, y with coefficients in the ring A := k[a0, . . . , am, b0, . . . , bn]. The Sylvester resultant
R := Res(f, g) of f(x, y) and g(x, y) is a polynomial in A. Given a point

s := (p0, . . . , pm, q0, . . . , qn) ∈ km+n+2,

the question is to determine the order of the resultant at s.

Proposition 29. The order of the resultant polynomial R at the point s is equal to the degree of the gcd of
the polynomials

p(x, y) =

m∑
i=0

pix
m−iyi, q(x, y) =

n∑
i=0

qix
n−iyi,

unless s = (0, . . . , 0), i.e. (p, q) = (0, 0), in which case the order is equal to m+ n.

Proof. The order of the resultant R at s is nothing but the t-valuation of the polynomial

R(p0 + ta0, . . . , pm + tam, q0 + tb0 + . . . , qn + tbn) = Res(p(x, y) + tf(x, y), q(x, y) + tg(x, y)) ∈ A[t].

Denote by h(x, y) the gcd of p(x, y) and q(x, y) and by δ its degree; there exist two polynomials p̃ and q̃ such
that p = p̃h and q = q̃h.

If p = q = 0 then the claimed property is clear. If q = 0 and p 6= 0, then

Res(p+ tf, q + tg) = Res(p+ tf, tg) = tm Res(p+ tf, g).

Since Res(p+ tf, g)|t=0 = Res(p, g) 6= 0, for p 6= 0 and g is the generic homogeneous polynomial of degree n,
the claimed property is proved.

Now, assume that q 6= 0. By applying some classical properties of the resultant, we have that

Res(q̃, tg) Res(p̃h+ tf, q̃h+ tg) = Res(q̃, q̃h+ tg) Res(p̃h+ tf, q̃h+ tg)

= Res(q̃p̃h+ tq̃f, q̃h+ tg) = Res(t(q̃f − p̃g), q̃h+ tg).

It follows that
tn−δ Res(q̃, g) Res(p+ tf, q + tg) = tn Res(q̃f − p̃g, q + tg).

From here, the claimed property follows since Res(q̃, g) 6= 0 and Res(q̃f − p̃g, q) 6= 0, for p̃ and q̃ are coprime
polynomials.
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