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Abstrak. Dalam penelitian ini, studi perbandingan antara Adomain 

decomposition method (ADM) dan Modified decomposition method 

(MDM) untuk sistem persamaan integral volterra. Dari contoh 

ilustrasi terlihat bahwa solusi eksak lebih kecil di kedua metode, 

metode dekomposisi yang dimodifikasi lebih bagus daripada cara 

tradisional, metode ini tidak terlalu rumit, membutuhkan lebih 

sedikit waktu untuk mendapatkan solusi dan yang terpenting solusi 

eksak dicapai dalam dua iterasi. 
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Abstract. In this paper, a comparative study between Adomain 

decomposition method (ADM) and Modified decomposition 

method (MDM) for a system of volterra integral equation. From the 

illustrate examples it is observed that the exact solution is smaller in 

both method, the modified decomposition method is more proficient 

than its traditional ones it is less complicated, needs less time to get 

to the solution and most importantly the exact solution is achieved 

in two iterations. 
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1. Introduction 

The subject of integral equations is one of the most useful mathematical tools in both 

pure and Applied Mathematics, and also they have enormous applications in many physical 

problems, in engineering, chemistry and biological problems. Many initial and boundary 

value problems associated with the ordinary and partial differential equations can be 

transformed in to the integral equations. An integral equation is the equation in which the 

unknown function 𝑢(𝑥)  appears inside an integral sign. In this paper we make a 

comparative study between two methods.  

The most standard type of integral equation in 𝑢(𝑥) is of the form: 

                               𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,
ℎ(𝑥)

𝑔(𝑥)
                

where 𝑔(𝑥) and ℎ(𝑥) are the limits of integration, 𝜆 is a constant parameter, and 𝑘(𝑥, 𝑡) 

is a known function of two variables 𝑥 and 𝑡, called the kernel. The unknown function 𝑢(𝑥) 

that will be determined appears inside the integral sign. In many other cases, the unknown 

function 𝑢(𝑥) appears inside and outside the integral sign [3].   It is to be noted that the 

limits of integrations 𝑔(𝑥) and ℎ(𝑥) may be both variables, constants or mixed. 

In the past decades, many researchers have studied some numerical and analytical 

methods for solving different types of integral equations, for example, for example, the 

author in [1] investigated a numerical solution for Volterra-Fredholm integral equations via 

least squares method. In [2] the authors obtained the approximate solutions for the linear 

part of Volterra Integral Equations of Second kind by using two accurate quadrature rules 

and also In general Wazwaz in [3] explained  different types of integral equations. 

The systems of linear and nonlinear integral equations have been solved using the 

Adomian decomposition method in [4]. The authors in [5] are developed a Runge-Kutta 

method theory for integrated Volterra equations of the second kind. In [6] the author 

concerning the singular Cauchy kernel were used to find integral equation formulations for 

the Laplace equation. In [7] the authors  extended smooth methods through the use of 

partitioned quadrature based on the collocation methods, to allow the efficient numerical 

solution of linear, scalar Volterra integral equations of the second kind with. 

The numerical solution of the Volterra integral equations with delay was obtained 

using Block Methods in [8]. In [9] the author introduced a new approach which is the 

Galerkin method with Hermite polynomials for estimating the numerical solutions of 

Volterra's integral equations. In [10] the authors applied the Galerkin Residual Weighted 

Method to solve Volterra integral equations of the first and second type with normal and 

single kernel. The author in [11] obtained the numerical solution by aggregation method 

that was formulated and justified for Fredholm equations of the second type. In reference 

[12], the authors apply both the aggregation method and Chebyshev polynomials to obtain 

numerical solutions to the Volterra integral equations. The authors In [13] used a modified 

trapezoid quadrature method to solve linear integral equations of the second kind. 

Tahmasbi in [14]  is introduced a new approach, namely the power series method for 

solving Volterra integral equation of the second kind. 

The Galerkin weighted residual approximation method was applied to obtain a 

numerical approach to Volterra's integral equations in [15] and in [16] Wazwaz focused on 

recent developments in approximate methods for solving linear and nonlinear integral 

equations with applications. The aim of this study is to solve a system of Volterra integral 

equation of the second kind by two accurate methods, which are  the Adomian 

decomposition method and the modified decomposition method. 

 

2. Adomain Decomposition Method 

The Adomain decomposition method (ADM) was introduced and developed by 

George Adomain [17-18]. It consists of decomposing the unknown function 𝑢(𝑥) of any 
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equation in to a sum of an infinite number of components defined by the decomposition 

series 

                            𝑢(𝑥) = ∑ 𝑢𝑛(𝑥) ,

∞

𝑛=0

                                                                                (1) 

Or equivalently 

               𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯,                                                  (2) 

The decomposition method is concerned with finding the components 𝑢0, 𝑢1, 𝑢2, …. 
individually. To establish the recurrence relation, we substitute (1) into equation [3] to get  

 ∑ 𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)(

𝑥

0

∑ 𝑢𝑛(𝑥))𝑑𝑡

∞

𝑛=0

∞

𝑛=0

                                                             (3) 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯

= 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)

𝑥

0

[𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ ]𝑑𝑡.     (4) 

The components 𝑢𝑗(𝑥), 𝑗 ≥ 1 of the unknown function 𝑢(𝑥) are completely determined 

by setting the recurrence relation: 

     𝑢0(𝑥) = 𝑓(𝑥),  𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡,   𝑛 ≥ 0,
𝑥

0
                            (5) 

or equivalently 

𝑢0(𝑥) = 𝑓(𝑥), 

 𝑢1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢0

𝑥

0

(𝑡)𝑑𝑡, 

 𝑢2(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡,

𝑥

0

                                                                                         (6)    

𝑢3(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡,

𝑥

0

 

and so on for other components. As a result the components 𝑢1(𝑥),  𝑢2(𝑥),  𝑢3(𝑥), … are 

completely determined, and then the solution 𝑢(𝑥) of the Volterra integral equation (6) is 

readily obtained in a series from by using the series assumption in (1). 

The decomposition method converts the integral equation into an elegant determination of 

components. If an exact solution exists for the problem, then the obtained series converges 

very rapidly to that exact solution. However, for concrete problems, where a closed from 

solution is not obtainable. The more components we use the higher accuracy we obtain 

[16]. 

Example 1. Consider the Volterra integral equation of the second kind 

                𝑢(𝑥) = 6𝑥 − 3𝑥2 + ∫ 𝑢(𝑡)𝑑𝑡,

𝑥

0

                                                              (7) 

Using the Adomain decomposition method, we notice that 𝑓(𝑥) = 6𝑥 − 3𝑥2, 𝜆 =
1, 𝑘(𝑥, 𝑡) = 1. Recall that the solution 𝑢(𝑥) is assumed to have series from given in (1). 

Substituting the decomposition series (1) into both sides of (7) gives 

∑ 𝑢𝑛(𝑥) = 6𝑥 − 3𝑥2 + ∫ ∑ 𝑢𝑛(𝑡)𝑑𝑡,

∞

𝑛=0

𝑥

0

∞

𝑛=0

 

or equivalently 
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 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 6𝑥 − 3𝑥2 + ∫[𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ ]𝑑𝑡.

𝑥

0

 

We identify the zeroth component by all terms that are not included under the integral sign. 

Therefore, we obtain the following recurrence relation: 

𝑢0(𝑥) = 6𝑥 − 3𝑥2, 

 𝑢𝑛+1(𝑥) = ∫ 𝑢𝑛(𝑡)𝑑𝑡,

𝑥

0

 𝑛 ≥ 0. 

So that 

 𝑢0(𝑥) = 6𝑥 − 3𝑥2, 

𝑢1(𝑥) = ∫ 𝑢0(𝑡)𝑑𝑡 = ∫ 6𝑡 − 3𝑡2𝑑𝑡 = 3𝑥2

𝑥

0

𝑥

0

− 𝑥3, 

𝑢2(𝑥) = ∫ 𝑢1(𝑡)𝑑𝑡 = ∫(

𝑥

0

𝑥

0

3𝑡2 − 𝑡3)𝑑𝑡 = 𝑥3 −
𝑥4

4
, 

𝑢3(𝑥) = ∫ 𝑢2(𝑡)𝑑𝑡 = ∫(𝑡3

𝑥

0

𝑥

0

−
𝑡4

4
)𝑑𝑡 =

𝑥4

4
−

𝑥5

20
, 

𝑢4(𝑥) = ∫ 𝑢3(𝑡)𝑑𝑡 = ∫(

𝑥

0

𝑥

0

𝑡4

4
−

𝑡5

20
)𝑑𝑡 =

𝑡5

20
−

𝑡6

120
, 

the solution in a series from is given by 

𝑢(𝑥) = 6𝑥 − 3𝑥2 + 3𝑥2 − 𝑥3 + 𝑥3 −
𝑥4

4
+

𝑥4

4
−

𝑥5

20
+

𝑥5

20
−

𝑥6

120
+ ⋯  . 

We can easily notice the appearance of identical of terms with opposite signs this 

phenomenon of such terms is called noise term phenomenon canceling the identical terms 

with opposite terms gives the exact solution:  

𝑢(𝑥) = 6𝑥. 

3. Modified Decomposition Method 

As shown before, the Adomain decomposition method provides the solution in an 

infinite series of components. The components 𝑢𝑗, 𝑗 ≥ 0  are easily computed if the 

inhomogeneous term  𝑓(𝑥) in the Volterra integral equation: 

                   𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,

𝑥

0

                                                    (8) 

consists of a polynomial.  However, if the function 𝑓(𝑥) consists of a combination of two 

or more of polynomials, trigonometric functions, hyperbolic functions, and others, the 

evaluation of the components 𝑢𝑗, 𝑗 ≥ 0 require more work. A reliable modification of the 

Adomain decomposition method was developed by Wazwaz [4]. The modified 

decomposition method will facilitate the computational process and further accelerate the 

convergence of the series solution. This will be applied whenever it is appropriate to all 

integral equations and differential equations of any order. It is important to note that the 

modified decomposition method relies mainly on splitting the function 𝑓(𝑥) into two parts; 

therefore it can not be used if the function 𝑓(𝑥) consists of only one term. To explain this 

technique, we recall that the standard Adomain decomposition method admits the use of 

the recurrence relation: 

𝑢0(𝑥) = 𝑓(𝑥), 
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                   𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢𝑛

𝑥

0

(𝑡)𝑑𝑡,   𝑛 ≥ 0,                                           (9) 

where the solution 𝑢(𝑥) is expressed by an infinite sum of components defined by 

                             𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

(𝑥).                                                                     (10) 

In virtue of (9), the components 𝑢𝑛, 𝑛 ≥ 0  can easily be evaluated. The modified 

decomposition method introduces slight variation to the recurrence relation (9). 

That will lead to be determination of the components of 𝑢(𝑥) in an easier and faster 

manner. For many cases, the function 𝑓(𝑥) can be set as the sum of two partial functions, 

namely   𝑓2(𝑥). In other words, we can set 

                 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥)                                                                  (11) 

In virtue of (11), we introduce a qualitative change in the formation of the recurrence 

relation (9). To reduce the calculations, we will introduce of the modified decomposition 

method into recurrence relation: 

𝑢0(𝑥) = 𝑓1(𝑥) 

                                 𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)

𝑥

0

𝑢0(𝑡)𝑑𝑡,                              (12) 

 𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡,   𝑛 ≥ 1

𝑥

0

. 

This shows that the formation of the first two components 𝑢0(𝑥)𝑎𝑛𝑑 𝑢1(𝑥) is only the 

difference between the standard recurrence relation (9) and the modified recurrence 

relation (12). The others components 𝑢𝑗 , 𝑗 ≥ 2 remain 

The same in the two recurrence relations. This variation in the formation of 

𝑢0(𝑥)𝑎𝑛𝑑 𝑢1(𝑥)  is important to accelerate the convergence of the solution and in 

minimizing the size of computational work [3]. 

Example 2. Consider the Volterra integral equations of the second kind 

𝑢(𝑥) = 6𝑥 − 3𝑥2 − ∫ 𝑢(𝑡)𝑑𝑡.

𝑥

0

 

Using the modified decomposition method, we first split 𝑓(𝑥) 

𝑓(𝑥) = 6𝑥 − 3𝑥2, 
into two parts, namely 

𝑓1(𝑥) = 6𝑥, 

𝑓2(𝑥) = −3𝑥2. 

Next, use the modified recurrence formula (2.12) to obtain 

       𝑢0(𝑥) = 𝑓1(𝑥) = 6𝑥, 

𝑢1(𝑥) = 6𝑥 − 3𝑥2 − ∫ 𝑢0

𝑥

0

(𝑡)𝑑𝑡 = 0, 

𝑢𝑛+1(𝑥) = − ∫ 𝑘(𝑥, 𝑡)𝑢𝑛

𝑥

0

(𝑡)𝑑𝑡 = 0,      𝑛 ≥ 1. 

It is obvious that each component of 𝑢𝑗 , 𝑗 ≥ 1 is zero. This in turn gives the exact solution 

by 

𝑢(𝑥) = 6𝑥. 
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4. Conclusion 

It is clearly seen that the decomposition method converted the integral equation into 

an elegant determination of computable components. It was formally shown that if an exact 

solution exists for such problems, then the obtained series converges very rapidly to that 

exact solution. We here emphasize on the two important remarks, first, by proper selection 

of the functions 𝑓1(𝑥)  and  𝑓2(𝑥), the exact solution solution 𝑢(𝑥) may be obtained by 

using very few iterations, and sometimes by evaluating only two components. The success 

of this modification depends only on the proper choice of 𝑓1(𝑥)  and 𝑓2(𝑥),  and this can 

be made through trials only. Second, if 𝑓(𝑥)  consist of one term only, the modified 

decomposition method cannot be used in this case. 

This confirms our belief that the Adomian decomposition method and the modified 

decomposition method introduce the solution of volterra integral equation in the form of a 

rapidly convergent power series with elegantly computable term. However, if 𝑓(𝑥) consist 

of more than one term, the modified decomposition method minimizes the volume of the 

computational work. 

The obtained result showed that the modified decomposition method is more accurate 

and effective than Adomian decomposition method, needs less time to get to the solution 

and most importantly the exact solution is achieved in two iterations. The essential 

condition for that to succeed is that the zeroth component should include the exact solution. 
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