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Abstract

Background: An increasing number of mobile health (mHealth) apps are becoming available for download and use on mobile
devices. Even with the increase in availability and use of mHealth apps, there has still not been a lot of research into understanding
the intention to use this kind of apps.

Objective: The purpose of this study was to investigate a technology acceptance model (TAM) that has been specially designed
for primary health care applications.

Methods: The proposed model is an extension of the TAM, and was empirically tested using data obtained from a survey of
mHealth app users (n=310). The research analyzed 2 additional external factors: promotion of health and health benefits. Data
were analyzed with a PLS–SEM software and confirmed that gender moderates the adoption of mHealth apps in Spain. The

explanatory capacity (R2 for behavioral intention to use) of the proposed model was 76.4%. Likewise, the relationships of the
external constructs of the extended TAM were found to be significant.

Results: The results show the importance of healthy habits developed by using mHealth apps. In addition, communication
campaigns for these apps should be aimed at transferring the usefulness of eHealth as an agent for transforming attitudes;
additionally, as more health benefits are obtained, ease of use becomes greater. Perceived usefulness (PU; β=.415, t0.001;4999=3.442,
P=.001), attitude toward using (β=.301, t0.01;499=2.299, P=.02), and promotion of health (β=.210, t0.05;499=2.108, P=.03) were

found to have a statistically significant impact on behavior intention to use eHealth apps (R2=76.4%). Perceived ease of use
(PEOU; β=.179, t0.01;499=2.623, P=.009) and PU (β=.755, t0.001;499=12.888, P<.001) were found to have a statistically significant

impact on attitude toward using (R2>=78.2%). Furthermore, PEOU (β=.203, t0.01;499=2.810, P=.005), health benefits (β=.448,

t0.001;499=4.010, P<.001), and promotion of health (β=.281, t0.01;499=2.393, P=.01) exerted a significant impact on PU (R2=72.7%).

Finally, health benefits (β=.640, t0.001;499=14.948, P<.001) had a statistically significant impact on PEOU (R2=40.9%), while

promotion of health (β=.865, t0.001;499=29.943, P<.001) significantly influenced health benefits (R2=74.7%).

Conclusions: mHealth apps could be used to predict the behavior of patients in the face of recommendations to prevent pandemics,
such as COVID-19 or SARS, and to track users’ symptoms while they stay at home. Gender is a determining factor that influences
the intention to use mHealth apps, so perhaps different interfaces and utilities could be designed according to gender.

(JMIR Mhealth Uhealth 2021;9(9):e27021) doi: 10.2196/27021
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Introduction

Overview
The use of mobile health (mHealth) apps increased during the
first decade of the 21st century [1] and this has led to an increase
in the amount of time that users devote to improve their health
using mHealth app(s). New ways of monitoring and controlling
health indicators and daily activities using new technologies
and improvements on the internet have now become available
[2].

The increasing use of technology and the internet has forced
companies to adapt their marketing strategies to this digital
ecosystem. This growth has led to an increase in the use of
smartphones around the world [3,4].

For this reason, user behavior and consumption habits with
mobile apps have become important fields of research [3,5].

Alharbi et al [6] reported that one type of app which has been
increasingly used in recent years is mHealth apps. Support for
patients has become more widespread due to the use of these
apps. However, users sometimes stop using these apps because
they perceive that their usefulness may not cover health quality
standards or because the service is not of the same quality as,
for example, a visit to the doctor offline [2].

Telemedicine and eHealth have duly become important factors
for the analysis, study, improvement, and development of
patients’ medical and health care. Electronic health or eHealth
was defined by Eysenbach [7] as “health services and
information provided by the Internet and related technologies.”

Many mHealth apps provide direct communication links
between patients and health care professionals, health education,
health portals, wellness management for measuring calories and
following a diet, management of diseases such as diabetes and
asthma, self-diagnosis to identify symptoms and early diagnosis,
medication reminders, and rehabilitation processes and therapies.
Therefore, this kind of app could be used to predict what the
behavior of patients would be in the face of recommendations
to prevent pandemics, such as COVID-19 or SARS, and to track
users’ symptoms while they stay at home and follow doctors’
recommendations [8].

The term “application” or “app” refers to a self-contained
program or piece of software that is designed to fulfill a
particular purpose, and is usually optimized to run on mobile
devices, such as smartphones, tablet computers, and wearable
devices such as smart watches [3].

Therefore, mHealth apps can improve users’ health by
monitoring risks, symptoms, and health care programs.
Consumer interest in mHealth apps has increased at the same
rate as new technology use in the health care sector. Taking the
characteristics shown by mHealth apps into consideration, the
technology acceptance model (TAM) was chosen for this study
[9].

TAM is a computational system, presented by Davis [10], which
analyses users’ decision-making processes when adopting a
new technology. The TAM was used in this research paper to
investigate the adoption of mHealth apps. External factors that
help describe the user adoption of mHealth apps were
incorporated into the TAM.

This research therefore fills a gap in the information currently
available because it incorporates innovative factors for the
adoption of mHealth apps that creators and developers should
take into account for successful acceptance and adoption of new
mHealth apps. This information duly adds to the existing
literature that can be consulted by professionals and researchers.

Therefore, this study addresses the following research question:
What factors, including the innovative TAM variables such as
promotion of health and health benefits, determine the
acceptance of mHealth apps?

This paper is divided into 5 sections. First, the theoretical
framework for adoption of mHealth apps is explained. TAM is
analyzed and the hypotheses to be studied are formulated. The
next section explains the methodology used in the study. The
characteristics of the chosen research technique, a survey, are
given. This section covers all aspects of questionnaire design
and data collection.

Finally, the results of PLS–SEM analysis of the hypotheses and
relationships are presented. This section also includes the
interpretation, discussion, and implications of the results
obtained. The conclusions of the study and the main theoretical
and practical implications of the results are also presented.

Theoretical Background
As stated above, in recent years, researchers have become
interested in the adoption of mHealth apps. Research by
Housman [11] investigated health information on social media
by studying how mHealth apps share results on social media
platforms. The increase in use of social networks and the factors
that affect the relationship and use of mHealth app were also
studied by investigating the social acceptance of mHealth apps
by internet user communities [3].

Likewise, Li et al [12] studied emotional bonding of patients
with mHealth apps. They showed that users accept this type of
apps from an emotional perspective, keeping the disease more
in mind and, therefore, applying better monitoring protocols.

Handel [13] studied the use of mobile apps for health and
wellness and identified the uses of mHealth apps for health,
weight loss, consumption of healthy diet and food, monitoring
glucose levels and diabetes, calculating calories consumed,
disease diagnosis, meditation, yoga, monitoring sleep quality,
and tracking sports activities [14,15]. Therefore, these categories
of health care have already been accepted as interesting topics
for scientific research in the area of mHealth apps.

Atienza and Patrick [16] studied the acceptance of mHealth
apps for the care industry. Furthermore, Grundy et al [17]
studied the use of high-quality mHealth apps with
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innovation-based systems and systematically described the
characteristics of recent apps.

Following this line of research, Mueller [18] studied the types
of mHealth apps recommended by doctors to their patients,
concluding that this type of app is a valid technological support
for disease monitoring and treatment.

Likewise, Bloomfield et al [19] studied the influence of SMART
goals on the behavior of mHealth app users. Cho [20]
investigated the impact of postadoption sentiments on mHealth
app use with the postacceptance model and the TAM to find
the users’ continued intention to use health apps.

Bort-Roig et al [21] investigated how mHealth apps could
improve employees’ sedentary lifestyles while at work and
studied the users’ acceptance and continued use of mHealth
app. In a similar way, Ashurst and Jones [22] studied the
acceptance of mHealth apps among people with diabetes who
used one to check and control their condition. It can be seen
that the diagnosis and control of medical conditions with
technology is an accepted area of scientific research.

Accordingly, Gorkem et al [23] investigated what factors may
influence users’behavioral intentions to adopt and use mHealth
apps. To this end, the authors extended the TAM with external

factors such as price value, trust factors, and perceived risk and
evaluated users’ technology acceptance. The results of this study
showed that the first 2 presented a statistical significance with
intention to use.

Deng et al [24] studied which determinants influence the
adoption of mHealth services among Chinese patients using the
TAM extended with trust, perceived risks, and patients’ age
and chronic diseases. All external variables were found to be
positively correlated with mHealth service adoption.

The study carried out by Mao et al [25] highlighted the
importance of studying the recommendations made by patients
who have used this type of app to predict what the behavior of
patients would be in the face of a change in medical treatment.

In this context, aiming to understand the main advances of
mHealth apps, this study takes as a reference the apps regulated
by the Food and Drug Administration (FDA). As noted by
Humphries et al [2], the FDA is a leading international
institution in the regulation of new health products and services
and serves as a guide and institutional leader for all other
regulatory institutions in the health field around the world,
including Spain. Table 1 shows the main mHealth app categories
related to this study’s objectives.

Table 1. mHealth App categories regulated by the Food and Drug Administration.

FunctionsDescriptionMobile health app (catego-
ry)

Measures patients’ resistance, tracks distance traveled, and
allows patients to monitor calories.

Allows users to measure physical exercise intensity by
connecting an intelligent device.

Slendertone Connect (health
and wellness)

Tracks patients’heartbeat, measures the glucose and oxygen
level in blood, and shares the patient’s data with the doctor.

Allows patients to measure blood glucose levels to detect
possible risks and evaluate the patient’s condition.

Kardia (medicine)

Shares data in real time with other users of the app, allows
patients to track exercise and calories, and connects pa-
tients’ data with other health and medicine apps.

Measures the patient’s diabetes constants.Diasend (health and fitness)

Can add notes about food, insulin, and exercise; gives blood
glucose readings; and shares information with family,
friends, and doctors in real time.

Checks blood glucose without extracting blood from the
finger using a small external device that connects to the
app.

LibreLink (medicine)

Measurement of blood pressure and patient’s weight,
monitoring of heart rate and prediction of heart attacks,
and helps share patient information in real time with family
and friends.

Allows patients to control blood pressure, heart rate, and
weight. A small external device is used to send the data.

Qardio heart health (health
and fitness)

Conceptual Framework and Hypothesis Elaboration
The TAM was used to explain the relationship between the
acceptance and adoption of technology and the users’ intention
to use it [26]. Au and Zafar [27] and Chen and Tan [28] used
TAM to demonstrate that perceived usefulness (PU) and
perceived ease of use (PEOU) are the most critical factors in
the process of adoption and use of new technology. In the TAM,
PU and PEOU are considered beliefs and evaluations,
respectively, given by users, which influence their attitude
toward and intention to use the product (in this case, an app)
[29], and finally result in behavior change [30,31].

In the study by Davis [10], TAM was used to explain and predict
the use of information systems; in other words, TAM was used
to understand the influence of the variables PU and PEOU on

the use of technology. The PU is the belief that a certain
technology can improve users’ performance while using it. The
PEOU is defined as the degree to which a person believes that
using any particular technological system is simple and stress
free.

The TAM consistently explains a large part of the variance,
40% according to many authors such as Venkatesh and Davis
[32], in the intention to use different information and
communication technologies by users in different environments
and countries [27,33,34]. Since its appearance, the TAM has
been widely analyzed and expanded in different ways [35].

The most important evolutions of TAM have been the TAM2
model by Venkatesh and Davis [32], the Unified Theory of the
Acceptance and the Use of Technology by Venkatesh et al [36],
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the model for the acceptance of technology and user satisfaction
by Wixom and Todd [37], and the TAM3 model.

The reasons for choosing the TAM are its tremendous popularity
and besides many studies have used the model. The TAM is
often considered a common and robust model to address
consumer acceptance of an innovative technology [38]. Scherer
et al [39] confirmed that the TAM successfully predicts user
behavior and can thus be of interest to all potential users of a
new technology [29,40,41]. TAM is widely used, with its
application extending to a multitude of technologies, especially
websites and apps [38].

The TAM has found relevant support in the literature: there are
more than 14,870 citations regarding this model within the core
collection of the Web of Science database, and more than 51,495
citations have been retrieved from Google Scholar for the article
by Davis [10] as of June 2020, 30 years after his first theory.

Therefore, TAM has established itself well as a robust, powerful,
and parsimonious model for predicting user acceptance.
However, it has been modified through different extensions.

The first of the TAM extensions, the so-called TAM2 [42], is
based on the expansion of the PU background. Subsequently,
with the same intention as in TAM2, but to complete the model
by incorporating the background of the original TAM,
Venkatesh and Bala [35] developed the TAM3. More
specifically, while TAM2 added the history of PU, TAM3 was
expanded into the constructions that precede the PEOU and that
were already established in [43,44].

Legris et al [45] made an important critical review of the model
and concluded that TAM is useful, but it has to be integrated
into a broader one that includes variables related to social and
human processes of change.

Similarly, Tang and Chen [46] concluded that current studies
on TAM and its extended models have made great progress and
recommended paying more attention for future research on new
variables that come from other theories or topics that must be
introduced in the new model to make it easier to interpret.

Thus, in many health care studies where TAM was applied, the
authors have added variables to extend the original TAM to
better adapt it to the context of health care [47].

We can find research studies that have used the TAM, such as
[48], in which the authors evaluated the acceptance of home
telemedicine services by elderly patients. Within the health care
domain, the TAM has been used to examine the determinants
of adoption or the intention to adopt health technologies [49,50]
and to know the effects of cognitive and contingent factors on
the health adoption of smartphone apps [51].

The use of computing in the health care field is increasing, but
adoption remains a challenge. To understand and introduce the
health information technology, a series of behavioral models
and innovation acceptance models have been studied and
specifically applied the TAM to understand the acceptance of
technology [52].

In addition, as in our work, TAM was developed with a focus
on technology that can be used voluntarily without the assistance
of professional health staff [47].

Furthermore, a recent study in the field of mHealth, in which
extended TAM was used [53], indicated that the findings in the
literature are contradictory regarding the adoption of mHealth
self-monitoring tools, thereby suggesting a gap in the literature
that must be covered.

Besides, Thies et al [54] justified that the lack of adoption of a
mobile app to support patients in self-management of chronic
diseases was mainly due to problems related to the usability of
the app and that patients are not comfortable with the
technology.

Likewise, Paré et al [55] indicated that people who declare
themselves ill are less likely to use digital or traditional tools
to monitor their well-being/health than people in good health.
Therefore, it is especially important to investigate the adoption
of these instruments by consumers considering the
characteristics of both the technology and the individuals (users),
especially those related to their health [53], as well as the
reliability of the model. Extended TAM is decisive in using
unused constructs to cover this gap identified in the literature.

The hypotheses below were chosen after reviewing research
studies on mHealth apps by Cho [20], Kim and Park [56], and
Jeon and Park [57].

Cho [20] and Jeon and Park [57] demonstrated the influence of
PEOU on the use of mHealth apps and its effect on PU. Veer
et al [58] explained how the intention to use mHealth app
influences PU in communities of older people. The following
hypothesis was therefore proposed:

H1: Perceived ease of use has a positive influence on
perceived usefulness

Veer et al [58], Hu and Bentler [59], and Deng [60] explored
the influence and effect of PEOU on attitude toward using.
Thompson et al [61] studied the effect of attitude toward using
a technology on the intention to use it. Based on their study, the
following hypothesis was proposed:

H2: Perceived ease of use has a positive influence on
attitude toward use

With the emergence of mHealth, some studies [49,62] confirm
the influence of the PU of patients’ intention to adopt a mHealth
management service in other cultural contexts [53].

Chauhan and Jaiswal [63] showed that PU influences attitude
toward using an mHealth app. The influence of different
variables for using different types of mHealth app was also
reported. PU demonstrates how a user feels that a particular
technology can have a positive effect on his/her life. This
influences the user’s attitude toward using the technology [64].
Consequently, the following hypothesis was proposed:

H3: Perceived usefulness has a positive influence on
attitude toward use

To investigate PU, Chang et al [65] analyzed the acceptance of
a hospital-based eHealth service. The influence of PU on the
behavioral intention to use this service by hospital users was

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 9 | e27021 | p. 4https://mhealth.jmir.org/2021/9/e27021
(page number not for citation purposes)

Palos-Sanchez et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


also found. Likewise, Klein [66] concluded that PU has a
positive effect on behavioral intention to use in his research on
patient psychology and the use of eHealth services. Therefore,
the following hypothesis was proposed:

H4: Perceived usefulness has a positive influence on
behavioral intention to use

Moores [67] concluded that the attitude toward use variable
influences the adoption of technological health care services.
In addition, Mun et al [68] concluded that behavioral intention
to use has a positive effect on the PU of technology by eHealth
professionals. From these investigations, the following
hypothesis was proposed:

H5: Attitude toward use has a positive influence on
behavioral intention to use

Lin and Yang [69] and Buntin et al [70] examined the health
benefits of mHealth apps and reported on the main positive
health benefits of mHealth apps by applying the TAM for the
PEOU construct. Beldad and Hegner [51] studied health benefits
with the “health valuation” construct after users tried a fitness
app. The confidence that users have in the app was found by
extending the TAM with trust, social influence, and health
valuation variables. Consequently, the following hypothesis
was proposed:

H6: Health benefits have a positive influence on
perceived ease of use

Jeon and Park [57] investigated the factors that affect the
acceptance of mHealth apps for obesity and found the influence
and effect of health benefits on PU. They suggested that more
studies should be carried out with the TAM to find out how
mHealth apps can help manage and reduce problems with health
and chronic diseases [67]. Based on this, the following
hypothesis was proposed:

H7: Health benefits have a positive influence on
perceived usefulness

Kim and Park [56] improved the TAM with the promotion of
health external variable to apply it for evaluating health
information technology. Melzner et al [71] studied the influence
of mHealth apps on the promotion of health at the workplace
and also the attitude of employees toward using an mHealth

app. The effects on productivity and health benefits at work
upon using an mHealth app were studied by Kelly et al [72].
Ramtohul [73] performed a comprehensive analysis of the
decision to adopt eHealth services from the user’s perspective.
Therefore, the following hypothesis was proposed:

H8: Promotion of health has a positive effect on the
health benefits of mHealth apps

Bert et al [74] studied the influence of mobile phones on
promotion of health and concluded that some mHealth apps can
help prevent diseases and also influence changes in the users’
health behavior. Ramtohul [73] investigated promotion of health
with a construct called “Health Needs,” which expresses the
benefits for mHealth app users. Consequently, the following
hypothesis was proposed:

H9: Promotion of health has a positive effect on
behavioral intention to use an mHealth app

Ramtohul [73] also analyzed the influence of promotion of
health on PU in a study on psychological variables. Cho et al
[51] analyzed the influence of PU on health benefits for workers
who use smartwatch apps [75]. Moores [67] linked the PU of
an mHealth app with the promotion of health of app users [8].
Therefore, the following hypothesis was proposed:

H10: Promotion of health has a positive effect on
perceived usefulness of an mHealth app

Venkatesh et al [36] pointed out that men and women have
different perceptions of usefulness when deciding on technology
acceptance. Shabani [76] studied the importance of gender as
a moderating variable for adolescents’emotional health. Bidmon
et al [77] indicated that although both men and women use
mHealth app, men tend to use it more on mobile devices. Dyck
et al [78] studied the moderating effects of age, gender, and
education variables and the influence of these on patients’
physical activity. Based on the studies by Venkatesh et al [36]
and Shabani [76], the following hypothesis was proposed:

H11: Gender and age moderate all the relationships
of constructs in the research model

The research model in Figure 1 was formulated to explore the
influence of health benefits and promotion of health on the
mHealth app adoption model.

JMIR Mhealth Uhealth 2021 | vol. 9 | iss. 9 | e27021 | p. 5https://mhealth.jmir.org/2021/9/e27021
(page number not for citation purposes)

Palos-Sanchez et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Research model to explore the influence of health benefits and promotion of health on the mHealth app adoption model. TAM: technology
acceptance model.

Methods

Measurement
A questionnaire was created with 24 questions on attitudes and
behavior and 5 questions for group classification. The
classification questions were for gender, age, job, residence,
and education level. The questionnaire was divided into 3
sections. The first section dealt with questions on the users’
behavior, beliefs, and attitudes toward an mHealth app.

Before answering this section and the next one, users could
watch a video on different mHealth apps and try them out. A
total of 12 different FDA-approved mHealth apps were
suggested for trial purposes.

The apps can be found in Google Play or Apple Store by
searching their names: my mhealth, Mhealth Medical App,
MHealth, Babylon, HealthForYou, Medipal mHealth app,
Walking: Pedometer, Medical ID: ICE, Symptom Tracker,
ContinuousCare, Medical Record, and ManageMyHealth. All
sample members were selected because they indicated that they
had previously used mHealth apps and were aware of their
functionality and traceability. They were informed about the
other apps so that they could take into account additional
features of the apps.

The first section of the questionnaire contained 15 questions on
PU (n=5), PEOU (n=3), attitude toward using (n=3), and
behavioral intention to use (n=4).

The second section consisted of a block of questions on health
and disease prevention. These were grouped into health benefits
(n=4) and promotion of health (n=4). The last section consisted
of 5 questions on the demographic profile of the sample.

Adapted items were used to measure the variables in the TAM
[10]. The behavioral items for health were adapted from the
studies by Lin and Yang [69] and Jeon and Park [57]. Lin and
Yang [69] studied the influence of mHealth app on patients with
asthma problems and Jeon and Park [57] studied the influence

of mHealth apps on patients with obesity problems. Altogether,
there were 24 items in the questionnaire.

All the items, except the demographic profile, were measured
using a 5-point Likert scale that ranged from total disagreement
(1) to total agreement (5).

A pilot survey was conducted to find the pilot sample’s opinions
about the content and structure of the questionnaire, so that the
questions could be refined if needed. The pilot survey was
conducted on a subsample of 31 individuals whose answers
were not added to the final sample.

The subsample followed all the instructions and answered all
the questions. Participants were asked to provide comments and
suggestions to improve both the instructions and the questions
in the questionnaire.

The most important comments were made regarding the items
with unclear wording, which were not easily understood, which
could cause confusion about the question, or with possible
ambiguity in the answers. The wording of these erroneous items
was later modified or changed.

The psychometric properties of the proposed scale were then
evaluated, along with its ability to identify theoretical concepts
and constructs from the data extracted from the questionnaire.
The criteria, procedures, and validation techniques for scales
proposed by Mackenzie et al [79] were used to create the
validation process for the scale used. The measurement model
gave satisfactory results.

Recruitment
The questionnaires were distributed in Spain, both in Madrid
and in towns and cities in nearby regions. The prerequisite for
the sample was that the user had 4G or Wi-Fi connectivity to
the internet. In total, 442 valid questionnaires were collected
from the interviewees between January and February 2020.

The sampling was nonprobabilistic and convenient. Google
Forms (Google LLC/Alphabet Inc.) was used to prepare the
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questionnaire, which was then distributed on different social
networks, especially LinkedIn (Microsoft).

The SPSS 24 statistical software (IBM) was used to calculate
the frequency tables and statistics generated by the sample.

Demographic Information
The results from the questionnaires showed that 242/442
members (54.8%) were men, 195/442 (44.1%) were women,
and 5/442 were others (1.1%).

Of these, 186 participants live in small populations of less than
5000 inhabitants (42.1%), which makes the sample interesting,
as getting to hospitals and health centers may be difficult for
them. Furthermore, 336 participants were aged between 18 and
30 years (76.0%) and 291 had studied at a university (65.9%);
64.9% (n=287) of the sample were students.

Statistical Analysis
Data analysis and hypothesis testing were carried out using
structural equation modeling (SEM) with variance, which
allowed for a statistical examination of the interrelated
dependency relationships between the latent variables and the
indicator variables of the research model by directly measuring
observable variables [80].

SEM was used together with partial least squares (PLS). PLS
trajectory modeling can be understood as a complete SEM
method to study composite factor models by measuring
constructs, estimating structural models, and performing model
fitting tests [81].

The PLS–SEM statistical analysis technique, based on the
structural equation model, was used, as it is especially
recommended for exploratory research. It allows the modeling
of latent constructs with both formative and reflective indicators
to analyze the collected data [82]. In addition, PLS is appropriate
for the prediction and analysis of relatively new phenomena
[83]. The SmartPLS 3 software (SmartPLS GmbH) was used
in this study [84].

Reinartz et al [85] investigated the conditions under which
PLS–SEM should be used in research analysis, and concluded
that the technique can be applied for a relatively new object of
research with a model that is not fully consolidated. As these
were the conditions in this research, we chose to use PLS–SEM.
Besides, ours is an exploratory approach [86] for which this
type of data analysis is highly recommended [87].

The PLS–SEM technique was also used because one of the aims
of this research was to check whether the model was predictive.
Chin and Newsted [83], Fornell and Larcker [88], and Hair et
al [89] had already shown that PLS–SEM can be used for this
purpose.

Fornell and Bookstein [90] state that PLS explicitly defines the
latent variables, constructs, or combinations, which can easily
be measured. The use of these factors is another point that

justifies the use of SEM, as shown in similar studies by Sarstedt
et al [80], Henseler [91], and Rigdon et al [92].

Based on the research studies by Sarstedt et al [80], Hair et al
[89], and Cepeda-Carrion et al [93], the choice of the best SEM
approach depends on the type of latent variables being measured,
with the aforesaid studies recommending PLS for reflective or
common factor constructs. The information required to analyze
these factors was found from other related variables, which is
another condition for which PLS–SEM is recommended [80].
Investigation and adoption of mHealth apps is a recent area of
research. Because this study is exploratory, PLS–SEM is
recommended.

The Harman single-factor test was used as an indicator in the
subsequent common method bias test [94,95]. Using this test,
no single factor was detected that could explain most of the
total variance, which suggests that it is very unlikely that any
selection bias exists.

Results

Measurement Model
The measurement model was tested for internal reliability,
convergent validity, and discriminant validity. The internal
reliability was evaluated using Cronbach α which needs a value
of at least .70 for acceptable internal consistency [96]. Causality
was analyzed using indicator loadings. Composite reliability
was also used to investigate causality [97]. All the constructs
had internal consistency, as their Cronbach α values were higher
than .7 [86,88,98]. To assess convergent validity, Fornell and
Larcker [88] used the average variance extracted (AVE) method
and stated that an acceptable value for this factor is 0.50 or
more.

The structural model was then analyzed using a bootstrapping
technique configured to readjust 5000 subsamples to estimate
the statistical significance of the path coefficients [99].

Table 2 shows the element loads, Cronbach α, and AVE which
were found for the constructs. Cronbach α values ranged from
.899 to .789, which is higher than the recommended level of
.70, and therefore indicates strong internal reliability for the
constructs. The composite reliability ranged between 0.930 and
0.877 and the AVE between 0.651 and 0.783, which are higher
than the recommended levels. The conditions for convergent
validity were therefore met. The discriminant validity was
calculated with the square root of the AVE and the cross-loading
matrix. For satisfactory discriminant validity, the square root
of the AVE of a construct should be greater than the correlation
with other constructs [88].

These researchers carried out simulation studies to demonstrate
that a lack of discriminant validity is better detected by means
of another technique, the heterotrait-monotrait ratio, which they
had discovered earlier. All the heterotrait-monotrait ratios for
each pair of factors was less than 0.90.
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Table 2. Reliability, validity of the constructs, Fornell–Larcker criterion, and HTMT.

HTMTcFornell-Larcker CriterionAVEbCRaCronbach α
alpha

Construct

POHPEOUBIUHBATUPUiPOHhPEOUgBIUfHBeATUd

0.8980.7830.915.861ATU

0.8280.8670.7030.7680.930.899HB

0.7880.7770.8870.7110.7430.7420.920.883BIU

0.6410.6630.6820.8540.5560.5550.5960.7030.877.789PEOU

0.6320.8650.7760.7880.8510.5440.7190.8140.7220.7620.906.844POH

0.7950.6680.8220.8440.8720.8110.7280.5760.7710.7400.7710.6510.903.866PU

aCR: composite reliability.
bAVE: average variance extracted.
cHTMT: heterotrait-monotrait.
dATU: attitude toward using.
eHB: health benefits.
fBIU: behavioral intention to use.
gPEOU: perceived ease of use.
hPOH: promotion of health.
iPU: perceived usefulness.

Structural Model
In this next stage, the proposed model was analyzed in detail.
The structural model was built up from the different
relationships between the constructs. The hypotheses for the
study were tested by analyzing the relationships between the
different constructs in the model to see if they were supported
[83,85,100].

The assessment of the significance of structural model is usually
preceded by performing an analysis of the indicator reliability
and the internal consistency reliability to prove the lack of
multicollinearity. The variance inflation factor values obtained
were less than 5 and ranged from 1.603 (PEOU3) to 3.496
(behavioral intention to use 3).

The variance is found from the values for the reflective
indicators given by the constructs [101,102]. This was found

numerically by calculating the R2 values, which are a measure
of the amount of variance for the construct in the model. The
bootstrap method was used to test the hypotheses. The detailed
results (path coefficient, β, and t statistic) are summarized in
Table 3 and Figure 2.

PEOU is positively associated with PU (β=.203, t0.01;499=2.810,
P=.005) and attitude toward using (β=.179, t0.01;499=2.623,
P=.009), and therefore, H1 and H2 were compatible with the
proposed model with a 99% level of confidence.

Likewise, PU, another relationship established in the TAM,
positively influenced the variable attitude toward using. This
relationship was therefore confirmed and was compatible with
the proposed model (β=.755, t0.001;499=12.888, P<.001) with a
high level of confidence (99.9%).

The TAM constructs that influence behavioral intention to use,
such as PU (β=.415, t0.001;4999=3.442, P=.001), have a significant

influence on the intention to use an mHealth app. Therefore,
H4 was supported for the proposed model with a confidence
level of 99.9%.

The results also indicated that the research model explains
76.4% of the variance of the intention to use an mHealth app

(R2 for behavioral intention to use=76.4%, R2 values for attitude
toward using, health benefits, PEOU, and PU are 78.2%, 74.7%,
40.9%, and 72.7%, respectively). The result of a single linear
regression from attitude toward using mHealth apps and
behavioral intention to use confirmed that attitude toward using
is positively associated with behavioral intention to use an
mHealth app (β=.301, t0.01;499=2.299, P=.02). This means that
H5 was supported (99%).

The hypotheses for the external variable health benefits of the
original TAM were all supported with the same level of
confidence (99.9%). Therefore, the health benefits variable was
shown to have a significant influence on PU (β=.448,
t0.001;499=4.010, P<.001) and therefore H6 was supported.

Likewise, health benefits also positively influenced PEOU
(β=.640, t0.001;499=14.948, P<.001), which shows that H7 was
supported. The other external variable (ie, promotion of health)
was found to significantly influence health benefits (β=.865,
t0.001;499=29.943, P<.001), which means that H8 is supported
with the highest values in this research model (99.9%). H7 and
H8 had the highest t statistic value of all the studied hypotheses
(Table 3).

H9 and H10 studied the association of promotion of health with
behavioral intention to use (β=.210, t0.05;499=2.108, P=.03) and
PU (β=.281, t0.01;499=2.393, P=.01) with a 99% level of
confidence. H9 had the lower t statistic value of all the studied
hypotheses (95%).
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Table 3. Results of hypothesis: path coefficients and statistical significance (n=5000 subsamples).a

SupportedP valuet statisticβ (coefficient path)Hypothesis

Yesb.0052.810.203H1: Perceived ease of use → Perceived usefulness

Yesb.0092.623.179H2: Perceived ease of use → Attitude toward using

Yesc<.00112.888.755H3: Perceived usefulness → Attitude toward using

Yesc.0013.442.415H4: Perceived usefulness → Behavioral intention to use

Yesb.022.299.301H5: Attitude toward using → Behavioral intention to use

Yesc<.0014.010.448H6: Health benefits → Perceived usefulness

Yesc<.00114.948.640H7: Health benefits → Perceived ease of use

Yesc<.00129.943.865H8: Promotion of health → Health benefits

Yesd.032.108.210H9: Promotion of health → Behavioral intention to use

Yesb.012.393.281H10: Promotion Of Health → Perceived usefulness

aFor 5000 subsamples, we used a t distribution (4999) of students in single queue.
bP<.01 (t0.01;499=2.333843952).
cP<.001 (t0.001;499=3.106644601).
dP<.05 (t0.05;499=1.64791345).

Figure 2. Analysis results (path coefficient, β, and t statistic are presented). TAM: technology acceptance model.

The measurements for approximate adjustments of the model
[81,91] are given by the standardized root mean square residual
(SRMR) value [103], which measures the difference between
the observed correlation matrix and the implied correlation
matrix of the model. SRMR shows the average magnitude of
these differences.

A low value of SRMR means that the fit is better. In our case
SRMR=0.023, which was within the recommendations for a
model with a good fit. A good fit is considered to be shown
with an SRMR value of less than 0.08 [103].

Regarding the evaluation of the overall fit of the model, Benitez
et al [104] recommend evaluating a saturated structural model

by investigating discrepancy between empirical and
model-implied indicator variance–covariance matrix.
Bootstrapping results show that the SRMR sample mean for
the saturated model (0.023) is below the 95% mark of its
corresponding reference distribution (0.027).

The blindfolding procedure omits part of the data for a given
construct during the estimation of parameters. Estimated
parameters are then used to try to recreate the omitted data [101].
It is possible to study the predictive relevance of the model in

this way using the Stone–Geisser (Q2) test [105,106]. This test
revealed that the model has predictive capability. As can be

seen in Table 4, all endogenous constructs fulfill Q2 > 0. Values
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of 0.02, 0.15, and 0.35 for Q2 in the Stone–Geisser test indicate
small, medium, and great predictive relevance [107].

As per the R2 (see Table 4 and Figure 2) values reported by

Chin [101], we conclude the following: If R2=0.67, the result
is considered substantial; 0.33, the result is considered moderate,

and 0.19, the result is considered weak. The R2 obtained for the
main dependent variable of the model, behavioral intention to
use, was 76.4%

This value shows that this model is “substantially” applicable
for the adoption of an mHealth app. The variables that are not

endogenous do not have a value for R2.

The blindfolding technique consists in omitting part of the data
for a given construct during the estimation of parameters, and
then trying to estimate what was omitted from the estimated
parameters [83].

In this way the predictive relevance of the model was studied

and using the Stone–Geisser (Q2) test the model was shown to
have predictive capacity [105].

Therefore, all constructs, except PEOU, in the studied model

have great predictive relevance, as the values of Q2 are greater
than 0.35 (Table 4). The proposed research model thus has good
predictive power when explaining behavioral intention to use
an mHealth app.

Effect size shows the strength of the relationship between 2
variables in the research model on a numeric scale. The effect

size (f2) shows how much an exogenous latent variable

contributes to the R2 value of an endogenous latent variable.

The f2 values 0.02, 0.15, and 0.35 indicate small, medium, and
large effect size [100]. Cohen’s tables [107] showed that for

95.2% statistical power and an average effect size of f2=0.15,
a minimum of 107 questionnaires would be needed. In our case
the number of samples was 442, showing that this research has
adequate statistical power.

Table 4. R2 and Q2 results.

R2 (%)Q2Construct

78.20.478Attitude toward using

74.70.465Health benefits

76.40.491Behavioral intention to use

40.90.229Perceived ease to use

N/AN/AaPromotion of health

72.70.381Perceived usefulness

aN/A: not applicable.

PLS–SEM Results With Moderator (Gender and Age)
In order to check H11 and measure the potential moderating
influence of gender and age, we performed a multigroup analysis
[108].

First, the sample was divided by gender into men and women.
The following process was then repeated, dividing members of
the sample into old and young people.

However, before doing this test it is necessary to analyze the
measurement invariance of the composite models (MICOM)
technique [80]. This test will ensure that the effect of gender is
restricted to the trajectory coefficients of the structural model
and not to the parameters of the measurement model [109]. As
described in Tables 5 and 6, we find the invariance of the
measurement in the case of gender, but not in the case of age
(Table 6) for the variables attitude toward using, health benefits,
behavioral intention to use, perceived ease to use (PEOU),
promotion of health, and PU.
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Table 5. Results of the measurement invariance of composite models (MICOM) procedure (gender).

Step 3bStep 3aStep 2Step 1Con-
struct

Equal meansMean
original
difference
(men–wom-
en)

Equal variancesCompositional invarianceConfig-
ural in-
vari-
ance

Equal97.5%2.5%Equal97.5%2.5%Variance origi-
nal difference
(men–women)

Partial measure-
ment invariance
established

5%Original
correla-
tion

Yes0.303–0.308–0.070No0.182–0.1820.209Yes1.0001.000YesATUa

Yes0.265–0.2780.234Yes0.176–0.211–0.011Yes1.0001.000YesBIUb

Yes0.282–0.2770.146Yes0.185–0.1970.061Yes1.0001.000YesHBc

Yes0.270–0.2670.095Yes0.187–0.202–0.054Yes0.9981.000YesPEOUd

Yes0.279–0.2880.242Yes0.167–0.1890.092Yes1.0001.000YesPOHe

Yes0.265–0.287–0.123Yes0.174–0.1980.152No0.999.999YesPUf

aATU: attitude toward using.
bBIU: behavioral intention to use.
cHB: health benefits.
dPEOU: perceived ease of use.
ePOH: promotion of health.
fPU: perceived usefulness.

Table 6. Results of the measurement invariance of composite models (MICOM) procedure (age).

Step 3bStep 3aStep 2Step 1Con-
struct

Equal meansMean origi-
nal differ-
ence
(young
people–old
people)

Equal variancesCompositional invarianceConfigural
invariance

Equal97.5%2.5%Equal97.5%2.5%Variance origi-
nal difference
(young peo-
ple–old peo-
ple)

Partial mea-
surement in-
variance es-
tablished

5%Original
correla-
tion

No0.537–0.398–0.665No0.307–0.298–0.399Yes0.9991.000YesATUa

No0.538–0.423–0.590No0.298–0.298–0.520Yes0.9991.000YesBIUb

No0.538–0.410–0.624No0.304–0.300–0.461Yes0.9981.000YesHBc

Yes0.512–0.400–0.432No0.298–0.315–0.324Yes0.9930.999YesPEOUd

Yes0.539–0.419–0.239No0.298–0.299–0.470Yes0.9981.000YesPOHe

Yes0.500–0.401–0.360No0.293–0.312–0.606Yes0.9971.000YesPUf

aATU: attitude toward using.
bBIU: behavioral intention to use.
cHB: health benefits.
dPEOU: perceived ease of use.
ePOH: promotion of health.
fPU: perceived usefulness.
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Discussion

Principal Findings
The results of this study confirmed that the variable that has the
strongest impact on the behavioral intention to use of mHealth
apps in Spain is PU. This variable also has a very high predictive
capacity as its determination coefficient is high [81,108]. The
next most important variable in the model is health benefits.

The results of this research could be applicable to other EU
countries with similar levels of internet access. However, it
must be taken into account that most of the participants lived
in areas with less than 5000 inhabitants (186/442 participants,
42.1%), where acceptance of mHealth apps is also determined
by the close social environment. In this type of environment,
users of mHealth apps can offer an effective short-term
consultation for families and acquaintances before they make
a decision to visit hospitals or health clinics.

Comparison With Prior Work
These findings are consistent with previous studies on PU for
the acceptance of medical information systems [57,69,101].
These studies also found that PU significantly influences the
adoption of medical information systems.

Promotion of health was also found to have a significant effect
on health benefits of using mHealth apps in this study, as
mHealth apps positively promote and improve the health of
mHealth app users in Spain. This relationship was the strongest
among all the relationships studied in this research and shows
the usefulness of mHealth apps for improving health.

This is important when promoting the idea of preventing
diseases and other ailments with mHealth apps, such as
controlling continued physical exercise, consumption of certain
foods, monitoring the evolution of potential and current patients,
and using smartphones or tablet PCs to help prevent health
problems. These results are consistent with the findings from a
previous study [110].

H8 has been revealed as the relationship with the greatest burden
and confirms the extraordinary influence it has on health benefits
(β=.865, t0.001;499=29.943, P<.001). This means that eHealth
apps that take care of nutrition, improve sports activity, or make
mealtimes more respectful are perceived by respondents as
favoring aspects related to blood pressure, weight loss, blood
sugar levels, or mood. In other words, users consider that apps
related to healthy habits should be developed. This means that
H8 is the most reliable and significant relationship among all.

The second hypothesis with the greatest burden and influence
was H7. The relationship between health habits and PEOU of
apps indicates that the more beneficial the eHealth app is, the
easier it should be to use. Furthermore, the third hypothesis with
the greatest intensity is H3, which shows that the perception of
usefulness of an eHealth app has an extraordinary influence on
the attitude of use. This means that the selling strategy of these
apps must be aimed at transferring 2 very important aspects to
the user: on the one hand, the usefulness of eHealth as an attitude
transforming agent, and on the other, the more health benefits

are obtained, the easier it is to use. In addition, these 3
relationships (ie, H3, H7, and H8) were very significant (99.9%).

The TAM is applicable to the use of eHealth apps as was the
case with other studies, but with the influence of the “health
promotion” and “health benefits” constructs. In addition, health
promotion is directly related to the main dependent variable in
the behavioral intention to use model. Therefore, health
promotion is a construct that should be considered in future
research, as it is also directly related to the final construct of
the behavioral intention to use as well as indirectly to the PU.

In this study it was demonstrated that mHealth apps were easy
to use and that users were familiar with the basic functions and
applications of the internet. This is justified by the fact that
health benefits had a very significant influence on the perceived
usability (PEOU). This is an important point to highlight when
explaining mHealth apps, as this can help ensure that mHealth
apps are used as often as necessary to achieve effective results.
However, the influence of PEOU on PU is the relationship with
the lowest load among all (β=.179, t0.01;499=2.623, P=.009) and
a 99% confidence level. Likewise, the PEOU has a moderate

variance (R2=40.9%), which is why a moderately atypical result
was obtained in this research. PEOU has a positive relationship
with PU, which suggests that users will not need to learn new
skills to use mHealth apps. The sample in this study, however,
did not consider it an important factor in this model. In all
probability, the advancement of usability of smartphone
interfaces reduces the influence of PEOU, so people might need
to use smartphones to be able to use these types of apps [111].
These results could be explained by the fact that the Spanish
population is already familiar with health promotion and also
that current mHealth apps are easy to use and accessible.

The remaining endogenous variables had a very high
explanatory capacity (>70%). This gives the model a great
capacity to explain the reality of the users’behavior before using
eHealth apps, as in the case of behavioral intention to use it was
76.4%.

The results obtained for the relationship between the PEOU and
the attitude toward use predict a smooth learning curve. This
suggests that the adoption of mHealth app will be permanent
and stable in the future. The use of mHealth apps will not present
any significant difficulties that may cause users to abandon it.

Our study also confirmed that health promotion has a positive
influence on behavioral intention to use and perception of
usefulness (PU). In both cases, the level of trust is high, which
shows that health promotion is an important factor in this model.
Health promotion was also found to have an indirect influence
on health benefits. This result supports the previously reported
finding that app titles influence behavioral intention to use [112].
Specifically, we found that apps with titles related to symptoms
have a significantly lower number of installs as compared with
those whose titles are not related to symptoms.

Finally, a moderating capacity was found with a 95% confidence
level regarding gender. We found that the 2 relationships with
the lowest level of confidence in the model (Table 7), H1 or the
relationship of the perception of ease of use with PU (β=–.422,
P=.015) and H9 or the relationship of health promotion with
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behavioral intention of use (β=–.239, P=.04), show significant
differences between men and women. Furthermore,
gender-moderated behaviors were found in H10, indicating that

health promotion also influences the perception of usefulness
differently according to gender (β=.178, P=.01).

Table 7. PLSa–SEMb results with moderator (gender).

SupportP valueβ (Coefficient path)Hypothesis

Yesc.01–.422H1: Perceived ease of use → Perceived usefulness

No.24–.100H2: Perceived ease of use → Attitude toward using

No.18.318H3: Perceived usefulness → Attitude toward using

No.21.166H4: Perceived usefulness → Behavioral intention to use

No.49–.107H5: Attitude toward using → Behavioral intention to use

No.11.266H6: Health benefits → Perceived usefulness

No.94.003H7: Health benefits → Perceived ease of use

No.22–.318H8: Promotion of health → Health benefits

Yesc.04–.239H9: Promotion of health → Behavioral intention to use

Yesc.01.178H10: Promotion of health → Perceived usefulness

aPLS: partial least squares.
bSEM: structural equation modeling.
cFor 500 subsamples, we used a t distribution (4999) of students in a single queue: P<.05 (t0.05;4999=1.64791345).

The other moderating variable (ie, age) was not supported,
coinciding with the results of similar studies [113].

Therefore, mHealth app is an effective way to promote good
health and habits in the population. Participants in the study
believed that mHealth apps could help them improve their
health, maintain a meal schedule, take part in more sporting
activities, or improve the hours slept at night. Thus, mHealth
apps can promote healthy habits and improve the users’ quality
of life.

Conclusions

Theoretical Implications
As has often been addressed in previous mHealth studies
[114,115], health apps on smartphones can serve as very realistic
health care alternatives, helping people save on medical
expenses and being more effective in managing their personal
health. Therefore, we agree with a previous work [20] that the
potential advantages of using health apps (mHealth) in terms
of improving overall health can be harmed without the use of
apps.

The extended TAM adoption model was found to be fully valid
for the study of mHealth app use and acceptance in Spain. This
result could be extrapolated to other EU countries with similar
levels of internet accessibility and sociodemographic
characteristics.

This study identified the variables that influence people’s
intention to use mHealth apps. Using an extended TAM, PU
was found to be the most significant variable influencing
adoption of mHealth apps in Spain. This means that the most
important factor for users are the ways in which mHealth apps
can help them. This result is important because users of this
type of apps must first understand the utility of the use of these

apps, so that they can become cognizant about how they can
improve treatment of their diseases and their control.

Practical Implications
Other external variables, such as promotion of health, have a
significant effect on the health benefits of mHealth app use.
This result showed that users consider maintenance or
improvement of health as an additional health benefit provided
by these apps.

The predictive capacity of the model and the predictive capacity
can be very useful in preventing diseases that need controlled
habits. Examples are indulging in regular physical exercise;
consumption of certain foods; monitoring the evolution of
current and potential patients; and using smartphones, tablets,
and other medical devices to prevent health problems. Besides,
care centers should have Wi-Fi access so that patients can carry
out real-time diagnostic tests.

The results of this research show that gender is neither
completely decisive nor moderating in the behavioral intention
to use mHealth apps. This means that adoption of mHealth apps
for promotion of health was moderated only by gender. Another
important factor influencing mHealth app use is PEOU.

Therefore, user-friendliness and health promotion should be
gender sensitive when applying utilities to apps. Accordingly,
app developers should take into account users’ gender and
introduce some changes in usage and health promotion levels.

The results obtained using the extended TAM show that
promotion of health and health benefits are important variables
for mHealth apps users because they indirectly influence the
adoption of the technology. This means that mHealth apps could
be an alternative way to promote and improve health and could
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become a service that minimizes primary care consultations for
simple cases.

This is because PU and PEOU are not the only mediators for
the final intention to use. Promotion of health is directly related
to behavioral intention to use. This was a highly significant
relationship and means that users prefer mHealth apps that
promote health. This recommendation is important for designers,
developers, and start-ups creating new mHealth apps. Therefore,
we could start thinking that barriers such as standards, security,
and interoperability [116] could be overcome by the activities
derived from promotion of health.

The significance of the association between PU and behavioral
intention to use explains the importance of mHealth apps for
the users. This could explain the evolution of mHealth apps that
offer an increasing number of benefits to the user.

An example is that the users’ health information can now be
transmitted online. This could help health centers have real-time
information and minimize visits to health centers for primary
care. To increase the adoption and use of mHealth apps, there
should be an approved catalog of health service providers and
an adoption strategy for citizens.

Based on our study results, the authorities could take the
following as indicators for the use of mHealth apps: connectivity
of the mHealth app, interaction between the patient and the
health professional via the app, the need to prescribe additional
quality hardware that allows measurements and analyses, and
the personalized and nonautomated accessibility of these apps
to the use and analysis of patient data remotely. These tools
could be key indicators to measure the quality of this type of
apps by health authorities.

In conclusion, gender is a determining factor that influences the
intention to use eHealth apps, and therefore, different interfaces
and utilities could be designed according to gender.

The findings of this study are beneficial for organizations,
governments, and policymakers to provide strategies and
policies to improve mHealth app in different hospitals and
Spanish primary health care centers.

Limitations
The limitations of the research are those related to the analysis
technique used, the country under study, and the size of the
sample.
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