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Linear response in the uniformly heated granular gas
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We analyze the linear response properties of the uniformly heated granular gas. The intensity of the stochastic
driving fixes the value of the granular temperature in the nonequilibrium steady state reached by the system.
Here, we investigate two specific situations. First, we look into the “direct” relaxation of the system after a
single (small) jump of the driving intensity. This study is carried out by two different methods. Not only do
we linearize the evolution equations around the steady state, but we also derive generalized out-of-equilibrium
fluctuation-dissipation relations for the relevant response functions. Second, we investigate the behavior of the
system in a more complex experiment, specifically a Kovacs-like protocol with two jumps in the driving. The
emergence of an anomalous Kovacs response is explained in terms of the properties of the direct relaxation
function: it is the second mode changing sign at the critical value of the inelasticity that demarcates anomalous
from normal behavior. The analytical results are compared with numerical simulations of the kinetic equation,
and a good agreement is found.
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I. INTRODUCTION

Linear response is at the root of many important results
in physics. In this respect, the fluctuation-dissipation theo-
rem is a milestone in the development of (nonequilibrium)
statistical physics [1–3]. In its original form, it relates the
linear relaxation of a system to equilibrium, from an initial
nonequilibrium state, with certain equilibrium time correla-
tion functions. Very recently, this result has been extended
to more general situations, which include the relaxation to
nonequilibrium steady states (NESSs) [4].

The above general picture makes it relevant to investigate
the linear relaxation of intrinsically out-of-equilibrium sys-
tems, such as granular gases [5–8], to their NESS. Due to
the energy dissipation in collisions, an external energy input
mechanism is needed to drive the system to a NESS. One of
the simplest physical situations is that of the uniformly heated
granular gas, in which all the particles of the gas are submit-
ted to independent white noise forces of a given amplitude
[9,10]. Therein, the granular gas remains homogeneous for all
times, if it was initially so, and the main physical property
of the granular gas is the granular temperature—basically,
the average kinetic energy per degree of freedom. It is the
amplitude of the white noise force, i.e., the intensity of this
stochastic thermostat, that determines the stationary value of
the granular temperature.

The main purpose of this work is to analyze the lin-
ear relaxation of the granular temperature in the uniformly
heated granular gas, in several different physical situations.
Due to the non-Gaussian character of the velocity distribution
function, the velocity moments obey an infinite hierarchy of

coupled ordinary differential equations (ODEs), which must
be supplemented with a closure assumption. Here, we work in
the first Sonine approximation [11], in which the state of the
granular system is characterized by the granular temperature
T , and the second Sonine coefficient a2—the excess kurtosis.
The dynamics of the gas is described by a set of two ODEs for
the temperature and the excess kurtosis [12], first derived in
Ref. [13] for the free cooling case. These evolution equations
are nonlinear and have been shown to describe accurately the
granular gas in many different physical situations; see, for
example, [9,10,12,14–17].

First, we would like to investigate the response of the
gas to an instantaneous perturbation of the driving intensity.
This is a relevant problem: different memory effects have
been recently reported in the uniformly heated granular gas
[16–18]. In principle, the existence of these memory effects
suggests that the linear relaxation of the granular temperature
is nonexponential. Indeed, nonexponential relaxation [19–25]
is a key ingredient for the emergence of aging and memory
effects [26–37] in many different physical contexts.

In light of the above, it is worth elucidating the relax-
ation behavior of the granular temperature in this single-jump
experiment. More specifically, we would like to clarify its
exponential or nonexponential character, and also its mono-
tonicity properties. In this respect, it is important to clarify
the role played by the inelasticity. For example, a monotonic
decay of the direct relaxation function ensures that the Kovacs
effect is “normal,” i.e., the hump has the same sign as in
molecular systems [38].

For small enough perturbations, the evolution equations for
T and a2 are linearized and analytically solved. Moreover, the
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relaxation of both quantities to their steady values is shown
to be directly related to some time correlation functions (cal-
culated in the NESS), by extending the ideas in Ref. [4] for
an out-of-equilibrium fluctuation-dissipation relation (FDR).
The correlation functions involve the derivative of the N-
particle velocity distribution function, and thus we introduce
a factorization assumption—sometimes called propagation of
chaos [39]—to get an explicit expression for the relevant time
correlations.

Our analytical predictions are compared with direct sim-
ulation Monte Carlo (DSMC) results—i.e., the numerical
integration of the kinetic equation. This is done for the two
procedures described above. In the “direct” route, the sys-
tem is initially put in the NESS corresponding to a certain
value ξ0 of the driving, the driving is instantaneously changed
to ξ at t = 0+, and subsequently the time evolution of the
granular temperature is recorded. In the FDR route, the sys-
tem is initially put in the NESS corresponding to ξ , and the
corresponding time correlation function is evaluated in this
NESS—there is no need to change the driving.

More detailed insight into the dynamics of the system
can be acquired with more complicated driving protocols.
A particularly relevant one is the so-called Kovacs experi-
ment, which has been extensively analyzed in the realm of
glassy systems [40–52]. The Kovacs protocol involves two
jumps of the parameter ξ—temperature, driving intensity,
etc.—controlling the relaxation of the system. First, it is
changed from ξ0 to ξ1 < ξ0 at t = 0+ and the system relaxes
towards the steady—either equilibrium or NESS—state for
ξ1. This relaxation lasts for a waiting time tw: it is inter-
rupted when the value of the “thermodynamic” property of
interest equals the steady-state value for some intermediate
value of ξ , at t = t+

w the value of the control is changed
to ξ (ξ1 < ξ < ξ0). If the subsequent behavior is nonmono-
tonic, with the thermodynamic property departing from its
steady value before returning thereto, additional variables are
needed to completely characterize the steady state of the
system.

On the one hand, the vast majority of the studies of the
Kovacs effect have been done in the nonlinear regime, i.e.,
for large jumps of the driving, and thus the results are mainly
numerical. On the other hand, a general theory of the Kovacs
effect is only available within the limits of applicability of
linear response theory. For molecular systems—such that the
steady distribution is the canonical one—with Markovian dy-
namics, it has been shown that the Kovacs hump has some
general characteristic features that stem from the standard
version of the FDR [47]. Specifically, the Kovacs hump has
only one extremum and cannot change sign, i.e., it is always
normal.

In athermal systems, there appear Kovacs responses that
deviate from the normal behavior just described. The Kovacs
effect is said to be anomalous when only one extremum is
present but the sign of the hump changes with the system
parameters. This behavior has been observed both in the
uniformly heated granular gas [16,18] and in active matter
models [53]. Also, more than one extremum has been reported
in the rough granular gas [54]. It must be stressed that all these
observations correspond to the nonlinear regime. In particular,
in the uniformly heated granular case, the extreme case ξ1 = 0

(i.e., no driving in the waiting time window) was considered
[16,18].

The emergence of these more complex Kovacs responses,
including the anomalous behavior, is not well understood on a
general basis. Although the existence of anomalous behavior
is supported by analytical calculations in specific systems, the
general physical reason behind it is not known. One of the
main objectives of this work is to shed light on this point by
considering the linear response limit in the uniformly heated
granular gas. To the best of our knowledge, the connection
between the behavior of the direct relaxation function and the
Kovacs hump has not been analyzed in the context of granular
gases. Here, we show that the anomalous behavior survives in
linear response and thus we can explain its emergence in terms
of the behaviour of the one-jump relaxation function. This is
done by bringing to bear recent results on the generalization
of the mathematical structure of the linear Kovacs hump to
athermal systems [38,53].

The organization of the paper is as follows. In Sec. II,
we put forward the evolution equations for the granular tem-
perature and the excess kurtosis, and we carry out their
linearization around the NESS in Sec. II A. The linear relax-
ation of the granular temperature to an instantaneous change
of the driving is considered in Sec. III for different values
of the inelasticity. The generalized FDR for a jump in the
driving is the subject of Sec. IV. Specifically, it is derived
in Sec. IV A and particularized for the relevant response
functions in Sec. IV B. Section V presents DSMC results
for the relaxation of the granular temperature and the excess
kurtosis—or, alternatively, the fourth moment of the velocity.
Next, Sec. VI is devoted to analyzing the Kovacs experiment.
Finally, conclusions and a brief discussion of perspectives for
future work are presented in Sec. VII.

II. EVOLUTION EQUATIONS

Let us analyze the dynamics of a granular gas of smooth
hard spheres [7]. This system comprises N hard particles
of mass m and diameter σ in dimension d , which undergo
inelastic collisions. In the binary collisions, the tangential
component of the relative velocity remains unaltered while
the normal component is reversed and shrunk by a factor α,
the normal restitution coefficient, 0 � α � 1. Apart from the
elastic limit α = 1, kinetic energy is lost in every collision
and the undriven system “cools,” in the sense that its granular
temperature—basically the average of the kinetic energy—
decreases monotonically in time.

We consider the uniformly heated granular gas, i.e., the
system described above is also submitted to a random forc-
ing that inputs energy into the system. This is modelled
as independent white noise forces F (p)

i (t ) acting over each
grain, 〈F (p)

i (t )〉 = 0 and 〈F (p)
i (t )F (q)

j (t ′)〉 = m2ξ 2δi jδpqδ(t −
t ′), i, j = 1, . . . , d , p, q = 1, . . . , N . As a consequence, the
system reaches a steady state in the long time limit, in which
the energy input by the thermostat cancels—in average—the
energy loss in collisions [9].

At the kinetic level of description, the dynamical evolution
of the system is governed by the Boltzmann-Fokker-Planck
equation for the velocity distribution function [9,10]. Because
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the granular gas is an intrinsically nonequilibrium system,
its velocity distribution function is non-Gaussian, even in the
steady state. The granular temperature T (t ) is defined as

d

2
T (t ) ≡

〈
1

2
mv2(t )

〉
. (1)

To measure the departure from the Maxwellian distribution,
the simplest approach is to consider the excess kurtosis a2,

a2 = d

d + 2

〈v4〉
〈v2〉2

− 1, (2)

which vanishes for the Gaussian case. In kinetic theory,
working with the pair (T, a2) is known as the first Sonine
approximation, because a2 is the first nonzero coefficient of
the expansion of the velocity distribution function in a series
of Sonine polynomials [9,11,15,55],

P1(v; t ) = vT (t )−dπ−d/2e−w2
[1 + a2(t )S2(w2)], (3)

where w is defined by

w = v

vT (t )
, v2

T (t ) = 2T (t )

m
= 2

d
〈v2(t )〉, (4)

and

S2(x) = 1

2
x2 − d + 2

2
x + d (d + 2)

8
. (5)

The evolution equations for the granular temperature and
the excess kurtosis are derived from the Boltzmann-Fokker-
Planck equation [9,12,13,15,16]. They are usually written in
terms of the collision rate ζ0, and the stationary values of the
granular temperature Ts and the excess kurtosis as

2,

Ts =
[

mξ 2

ζ0
(
1 + 3

16 as
2

)
]2/3

, ζ0 = 2nσ d−1(1 − α2)π
d−1

2√
md�(d/2)

,

(6a)

as
2 = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
. (6b)

By defining scaled—order of unity—variables as follows:

θ = T

Ts
, A2 = a2

as
2

, τ = ζ0
√

Ts

2
t . (7)

we get

dθ

dτ
= 2

[
1 − θ3/2 + 3

16
as

2(1 − A2θ
3/2)

]
, (8a)

θ
dA2

dτ
= 4[(θ3/2 − 1)A2 + B θ3/2(1 − A2)], (8b)

with the parameter [56]

B = 73 + 8d (7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2)
. (9)

A couple of comments on the evolution equations (8) are
appropriate. First, they are nonlinear, so in general it is not
possible to write down an analytical closed solution for them
[57]. Second, the parameters B and as

2 only depend on α and
d , being independent of the steady value of the temperature.
In fact, all the dependence on Ts has been incorporated into
the timescale τ introduced in Eq. (7).

It will be useful for our purposes to define the dimension-
less velocity

c = v

vs
T

, vs
T =

√
2Ts

m
, (10)

the second moment of which is directly related to the dimen-
sionless temperature,

〈c2〉 = 〈v2〉(
vs

T

)2 = d

2
θ, 〈c2〉s = d

2
. (11)

Equation (2) still holds with the change v → c, whereas the
fourth moment of c at the steady state is given by

〈c4〉s = d + 2

d
〈c2〉2

s

(
1 + as

2

) = d (d + 2)

4

(
1 + as

2

)
. (12)

A. Linearization around the steady state

In this paper, we are interested in the linear relaxation of
the granular gas to the steady state, in which the temperature
and the excess kurtosis are θs = 1 and As

2 = 1, as a conse-
quence of the scaling. Therefore, we write

θ = 1 + δθ, A2 = 1 + δA2, (13)

insert them into Eq. (8), and neglect nonlinearities. The fol-
lowing linear system is thus obtained:

d

dt
δz = M · δz, (14a)

δz ≡
(

δθ

δA2

)
, M ≡

(−3
(
1 + 3

16 as
2

) − 3
8 as

2
6 −4B

)
. (14b)

The matrix—or operator [58]—M does not depend on the
noise intensity ξ but only on the restitution coefficient α and
the dimension d . This is a consequence of the right-hand side
of the nonlinear system (8) being independent of Ts, as already
pointed out above.

In the following, we denote the elements of the matrix M
by Mi j , i.e.,

M11 = −3

(
1 + 3

16
as

2

)
, M12 = −3

8
as

2,

M21 = 6, M22 = −4B. (15)

The eigenvalues of the matrix M are both negative,

λ± = TrM ±
√

(TrM)2 − 4 det M
2

< 0, (16)

and the corresponding eigenvectors read

ζ+ =
(

M12

λ+ − M11

)
, ζ− =

(
M12

λ− − M11

)
. (17)

The explicit expression for the trace and the determinant of M
are

TrM = −4B − 3

(
1 + 3

16
as

2

)
< 0, (18a)

det M = 12B

(
1 + 3

16
as

2

)
+ 9

4
as

2 > 0. (18b)
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The general solution of the linear system is

δz(τ) = C+ζ+eλ+τ + C−ζ−eλ−τ, (19)

or, equivalently,(
δθ (τ)
δA2(τ)

)
= C+

(
M12

λ+− M11

)
eλ+τ + C−

(
M12

λ−− M11

)
eλ−τ. (20)

The constants C+ and C− are determined by the initial condi-
tions through the relation(

δθ (0)
δA2(0)

)
= δz(0) = C+ζ+ + C−ζ−. (21)

III. DIRECT RELAXATION AFTER A SINGLE JUMP
IN THE DRIVING

Let us consider an experiment in which the system is
initially at the steady state corresponding to some value of
the driving ξ + δξ . At the initial time, the intensity of the
driving is suddenly changed from ξ + δξ to ξ : subsequently,
the granular gas relaxes from its nonequilibrium steady state
(NESS) at ξ + δξ to the corresponding NESS at ξ .

The initial values of the scaled variables are

δθ (0) �= 0, δA2(0) = 0, (22)

because the steady value of the temperature depends on the
driving intensity, but that of the excess kurtosis does not.
Equation (21) predicts that both C+ and C− are proportional
to δθ (0) in this case, so we write

C± = δθ (0) C̃± (23)

and readily obtain

C̃+ = M11 − λ−
M12(λ+ − λ−)

, C̃− = λ+ − M11

M12(λ+ − λ−)
. (24)

Therefore, we have that

δz(τ)

δθ (0)
= C̃+ζ+eλ+τ + C̃−ζ−eλ−τ. (25)

In what follows, we denote the relaxation function for the
physical property Y by φY (τ), specifically

φY (τ) = δY (τ)

δθ (0)
. (26)

First, we analyze the relaxation of the granular temperature,
i.e.,

φθ (τ) ≡ δθ (τ)

δθ (0)
= a+eλ+τ + a−eλ−τ, (27)

with

a+ = M11 − λ−
λ+ − λ−

, a− = λ+ − M11

λ+ − λ−
. (28)

In Fig. 1, we show the two coefficients a+ and a− as
a function of the restitution coefficient α, for d = 2 and 3.
Both for the two- and the three-dimensional case, two distinct
properties are observed: (i) while a+ > 0 for all values of α,
a− changes sign at the critical value αc = 1/

√
2, specifically

sgn(a−) = sgn(α − αc), αc = 1/
√

2, (29)

FIG. 1. Coefficients a± as a function of the restitution coefficient
α. Both the three-dimensional (solid line) and the two-dimensional
(dashed line) cases are plotted. The coefficient a+ is always positive,
whereas a− changes sign at the critical value α = αc—as given by
Eq. (29). Note that |a−| is quite small throughout, with its least small
value at α = 0, and thus a+ = 1 − a− is always very close to unity.

and (ii) the ratio |a−/a+| 	 1 for all values of α, with its
larger value taking place at α = 0, for which it equals 0.0159
(0.0114) for d = 2 (d = 3). In principle, the change of sign
of a− at αc might bring about a nonmonotonic behavior of the
relaxation function, but this is not the case. In the long-time
limit, the relaxation is dominated by the largest eigenvalue λ+
and, therefore,

φθ (τ) ∼ a+eλ+τ > 0, (λ+ − λ−)τ � 1. (30)

To understand the above behavior of a±, we bring to bear
the smallness of as

2 and expand all quantities in powers of as
2.

In particular, the eigenvalues λ± are given by

λ+ = −3 − 9(1 + 4B)

16(4B − 3)
as

2 + O
((

as
2

)2)
, (31)

λ− = −4B + 9

4(4B − 3)
as

2 + O
((

as
2

)2)
. (32)

Note that 4B − 3 > 0 (λ+ > λ−). In turn, the corresponding
expansion for the coefficients a± is

a+ = 1 + 9

4(4B − 3)2
as

2 + O
((

as
2

)2)
, (33)

a− = − 9

4(4B − 3)2
as

2 + O
((

as
2

)2)
. (34)
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On the one hand, it is neatly observed that a− is propor-
tional to as

2, thus being rather small across the whole range
of inelasticities. Moreover, the change of sign of a− at αc is
clearly linked to the vanishing of as

2 thereat. On the other hand,
a+ = 1 + O(as

2) is very close to unity throughout, consistent
with the normalization condition a+ + a− = 1.

Additional information is given by the relaxation of the
excess kurtosis or, equivalently, of the fourth moment 〈c4〉.
Equation (25) implies

φA2 (τ) ≡ δA2(τ)

δθ (0)
= a+a−(λ+ − λ−)

M12
(eλ+τ − eλ−τ). (35)

The coefficient in front of the difference of exponentials can
also be expanded in powers of as

2, making use of Eqs. (15) and
(31)–(34), with the result

a+a−(λ+ − λ−)

M12
= 6

4B − 3
+ 27(5 + 4B)

8(4B − 3)3
as

2 + O
((

as
2

)2)
.

(36)
The dominant behavior 6/(4B − 3) is positive for all α: this
means that δA2(τ) has the same sign as δθ (0) for all times,
i.e., the same sign of δξ [59]. Note that, in our experiment, the
driving is instantaneously decreased from ξ + δξ to ξ at the
initial time: therefore, δξ > 0 and δA2(τ) > 0.

The relaxation function φ〈c4〉(τ ) can be written as a linear
combination of φθ and φA2 . Bringing to bear Eqs. (2), (10),
(27), and (35), one gets

δ〈c4〉 = d (d + 2)

2

[
1

2
as

2 δA2 + (
1 + as

2

)
δθ

]
(37)

for the deviation of 〈c4〉 from its steady-state value, given by
Eq. (12). The relaxation function thus reads

φ〈c4〉(τ) = d (d + 2)

2

[
1

2
as

2 φA2 (τ) + (
1 + as

2

)
φθ (τ)

]
. (38)

IV. GENERALIZED FDR FOR A JUMP IN THE DRIVING

The relaxation functions above can be related to certain
time correlations in the NESS of the granular gas by means
of a generalized FDR. In the following, we first derive a
generalized FDR for the relaxation of an arbitrary function
of the velocities, and afterwards we particularize it to get the
specific relations for the relaxation functions considered in the
previous section.

A. Derivation of the generalized FDR

Now we investigate the evolution of the granular gas, after
an instantaneous jump in the driving like the one considered
in the previous section. At the N-particle level, the fluid is
described by PN (�, t ), which is the (one-time) probability
density for finding the system with � = (v1, v2, . . . , vN ) at
time t .

For homogeneous situations—like those considered
throughout this paper, � is a Markov process described by
Kac’s equation [39,60], and for any function of the velocities

we can write

〈 f (�t )〉 =
∫

d�t f (�t )PN (�t , t )

=
∫

d�t

∫
d�0 f (�t )Tt (�t |�0)PN (�0, 0), (39)

where Tt (�t |�0) is the transition probability from �0 to �t in
a time interval t . Thus, we have

PN (�, t,�′, 0) = Tt (�|�′)PN (�′, 0) (40)

for the two-time probability density for finding the N-particle
granular gas with � = (v1, v2, . . . , vN ) at time t and with
�′ = (v′

1, v
′
2, . . . , v

′
N ) at time t = 0.

Now we consider that the initial distribution at t = 0 cor-
responds to the steady state for T (0) = Ts + δT (0),

PN (�0, 0)=Ps
N (�0) + δT (0)

∂Ps
N (�0)

∂Ts
. (41)

Inserting this equation into Eq. (39), one gets

δ〈 f (�t )〉 = δT (0)
∫

d�t

∫
d�0 f (�t )T (�t |�0)

∂Ps
N (�0)

∂Ts
,

(42)
in which we have defined, consistently with the notation we
employ throughout,

δ〈 f (�t )〉 ≡ 〈 f (�t )〉 − 〈 f (�)〉s (43)

for the deviation of the average value of f from its steady-state
value.

Equation (42) can be rewritten as

δ〈 f (�t )〉 = δT (0)

〈
f (�t )

∂ lnPs
N (�0)

∂Ts

〉
s

, (44)

from which the time correlation function

Cf (t ) ≡
〈

f (�t )
∂ lnPs

N (�0)

∂Ts

〉
s

=
∫

d�t

∫
d�0 f (�t )

∂ lnPs
N (�0)

∂Ts
T (�t |�0)Ps

N (�0) (45)

emerges. Therefore, we can also obtain the relaxation func-
tions by measuring correlations at the NESS, which is the
expression of the generalized FDR. The subindex s in 〈· · · 〉s

stresses that the average in the time correlation function is
done in the steady state, because

T (�t |�0)Ps
N (�0) = Ps

N (�t , t,�0, 0) (46)

is the two-time probability density at the steady state with
temperature Ts [61].

The difficulty of this approach is the necessity of knowing
the N-particle distribution Ps

N (�0): note that one deals with
the one-particle distribution function in the kinetic approach.
This difficulty is usually circumvented by introducing the
following factorization ansatz [4]:

Ps
N (�) =

N∏
i=1

P1(vi ), (47)

which is sometimes called “propagation of chaos” [39]. This
is more restrictive than the usual molecular chaos hypothesis
employed to derive the Boltzmann equation: therein, only
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the two-particle distribution is assumed to factorize. With the
assumption (47), Cf (t ) simplifies to

Cf (t ) =
N∑

i=1

Ci
f (t ), Ci

f (t ) ≡
〈

f (�t )
∂ lnPs

1 (vi0)

∂Ts

〉
s

, (48)

where Ps
1 is the stationary solution of the Boltzmann equation,

which is—at least approximately—known.

B. Response functions

Here, we derive the specific formulas relating the relax-
ation functions φθ and φ〈c4〉 to time correlations. To achieve
this goal, we need ∂Ts lnPs

N (�) and thus we use the propagation
of chaos assumption (47). Consistent with our approach, we
employ the one-particle velocity distribution function in the
first Sonine approximation. Particularizing (3) to the steady
state, we have

Ps
1 (v) = (

vs
T

)−d
e−c2[

1 + as
2S2(c2)

]
, (49)

where c is defined in Eq. (10). Taking into account that
∂c2/∂Ts = −c2/Ts, we get

∂lnP1(v)

∂Ts
= − d

2Ts
+ 1

Ts
c2 − 1

Ts
c2 as

2S′
2(c2)

1 + as
2S2(c2)

. (50)

By defining

g(x) = −d

2
+ x − x

as
2S′

2(x)

1 + as
2S2(x)

, (51)

we can write

∂ ln P1(v)

∂Ts
= 1

Ts
g(c2), Ci

f (t ) = 1

Ts

〈
f (�t ) g

(
c2

i0

)〉
s, (52)

and thus the response function is given by

δ〈 f (�t )〉 = δθ (0)
N∑

i=1

〈
f (�t ) g

(
c2

i0

)〉
s. (53)

Now we particularize the above general relation to the
specific cases in which we are interested. Note that the dimen-
sionless time τ is then used, instead of t . First, we consider the
following choice for the function f :

f (�τ) = 1

N

N∑
i=1

(
2

d
c2

i (τ) − 1

)
, 〈 f (�τ)〉 = δθ (τ). (54)

Making use of Eq. (53), we have for the relaxation function of
the granular temperature

φθ (τ) = R2(τ) ≡ 1

N

N∑
i=1

N∑
j=1

〈(
2

d
c2

i (τ) − 1

)
g
(
c2

j (0)
)
〉
s

. (55)

Second, we consider the relaxation of the fourth moment.
Therefore, now we choose f to be

f (�τ) = 1

N

N∑
i=1

(
c4

i (τ) − 〈c4〉s
)
, 〈 f (�τ)〉 = δ〈c4(τ)〉,

(56)

FIG. 2. Relaxation function of the granular temperature as a
function of the scaled time τ. Panels (a)–(c) display φθ (τ) for three
different values of the restitution coefficient, namely α = 0.3, 0.7,
and 0.9, respectively—symbols correspond to simulation results in
a system of 106 particles averaged over 10 runs, and lines to the
analytical prediction (27). The three simulation curves are plotted
together in panel (d), where it is clearly seen that they superimpose.
Therefore, the linear relaxation of the granular temperature to the
corresponding NESS is “universal” in the τ scale.

where 〈c4〉s is given by Eq. (12). Again, we employ (53) to
write

φ〈c4〉(τ) = R4(τ) ≡ 1

N

N∑
i=1

N∑
j=1

〈(
c4

i (τ) − 〈c4〉s
)
g
(
c2

j (0)
)〉

s.

(57)

V. NUMERICAL SIMULATIONS

Now we compare our analytical predictions for the relax-
ation function with numerical data obtained from the DSMC
numerical integration of the Boltzmann-Fokker-Planck equa-
tion. We have employed a system of N = 106 hard disks
(d = 2) of unit mass m = 1 and unit diameter σ = 1, with
the binary collision rule between particles i and j,

v′
i = vi − 1 + α

2
(σ̂ · vi j )σ̂, v′

j = v j + 1 + α

2
(σ̂ · vi j )σ̂.

(58)
Above, (vi, v j ) are the precollisional velocities, (v′

i, v
′
j ) are

the postcollisional ones, vi j ≡ vi − v j is the relative velocity,
and σ̂ is the unit vector pointing from the center of particle
j to the center of particle i at the collision. Moreover, in
order to simulate the stochastic thermostat, the hard disks
are submitted to random kicks every Nc = 500 collisions. In
the kick, each component of the velocity of every particle is
incremented by a random number extracted from a Gaussian
distribution of variance ξ 2�t , where �t is the time interval
corresponding to the number of collisions Nc.

A. Relaxation function of the temperature

In particular, we show the relaxation functions cor-
responding to α = 0.3 (<αc), α = 0.7 (� αc), and α =
0.9 (>αc)—see panels (a)–(c) of Fig. 2. The symbols
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FIG. 3. Relaxation rates λ± as a function of the restitution coeffi-
cient. Again, both d = 3 (solid line) and d = 2 (dashed) are plotted.
The largest rate λ+ is always close to −3 throughout. The smaller
rate λ− has a stronger dependence on α, diverging in the elastic limit
α → 1−.

represent simulation results from a NESS at (ξ + δξ )2 =
0.205 to the corresponding NESS at ξ 2 = 0.2, while the solid
lines represent our theoretical prediction (27). The agreement
is excellent, which comes as no surprise because the first
Sonine approximation is known to give a good description
of the granular gas dynamics—although the majority of the
studies have been done in the nonlinear regime [12,16,18].

In principle, Eq. (27) tells us that the relaxation of the gran-
ular temperature to the NESS is nonexponential. However, the
smallness of the coefficient a− throughout the whole α range
entails that, from a practical point of view, the relaxation is
very well fitted by a single exponential for all values of the
restitution coefficient. Moreover, the relaxation functions for
different values of α superimpose, when plotted as a function
of the scaled time τ [62]. This is neatly observed in panel (d)
of Fig. 2, where we have put together the simulation results
from the three previous panels. This stems from the weak
α-dependence of the eigenvalue λ+, which is close to −3 for
all values of α, as predicted by Eq. (31) and shown in panel (a)
of Fig. 3. Therein, it is observed that the maximum deviation
from −3 is of the order of 3% for the largest value of as

2—i.e.,
in the completely inelastic limit α = 0. For completeness, we
show λ− in panel (b) of the same figure.

Now we proceed to evaluate the relaxation function
of the temperature by using the FDR relation (55). The

correlation function on the right-hand side has been numer-
ically evaluated from the DSMC data, employing the system
with N = 104–106 hard disks and averaging over a long tra-
jectory of duration �τ = 400–6000, depending on the value
of α. We compare the numerics with Eq. (55) for φθ in Fig. 4.
On the one hand, we observe in the left panel that there
appears a discrepancy at the initial time. The value stemming
from the FDR relation deviates from unity in general: it is
larger (smaller) for α = 0.3 (α = 0.9), whereas it equals 1 for
α = 0.7 � αc. On the other hand, the right panel shows that
this discrepancy disappears if we normalize the correlation
function R2(τ) with its initial value, i.e., if we compare φθ (τ)
with R2(τ)/R2(0). Therefore, the correlation R2(τ) correctly
predicts the decay, R2(τ) = R2(0)φθ (τ), but not the initial
value.

In light of the above, it is worth asking the reason behind
the discrepancy for the initial time. The correlation function
includes both diagonal terms (i = j) and nondiagonal terms
(i �= j) in its double sum, thus we split it accordingly into

R2(0) = Rdia
2 (0) + Rndia

2 (0), (59a)

Rdia
2 (0) = 1

N

N∑
i=1

〈(
2

d
c2

i − 1

)
g
(
c2

i

)〉
s

=
〈(

2

d
c2

1 − 1

)
g
(
c2

1

)〉
s

, (59b)

Rndia
2 (0) = 1

N

N∑
i=1

∑
j �=i

〈(
2

d
c2

i − 1

)
g
(
c2

j

)〉
s

= (N − 1)

〈(
2

d
c2

1 − 1

)
g
(
c2

2

)〉
s

. (59c)

Note that the above one-time averages are done in the
NESS and are thus time-independent, so we have written
c(0) → c. Employing the factorization assumption (47) and
the first Sonine approximation (49) for Ps

1 , we obtain that

Rdia
2 (0) =

〈(
2

d
c2 − 1

)
g(c2)

〉
s

= 1, (60a)

Rndia
2 (0) = (N − 1)

〈(
2

d
c2 − 1

)〉
s

〈g(c2)〉s = 0. (60b)

We have also evaluated Rdia
2 (τ) and Rndia

2 (τ) from the
DSMC data. We have always got Rdia

2 (0) � 1, whereas in
general Rndia

2 (0) �= 0: the discrepancy at the initial time stems
from the nondiagonal terms. The physical reason behind this
is the O(N−1) correlations that are completely neglected when
writing Eq. (47). To account for this behavior, it is necessary
to consider the two-particle time correlations, which is outside
the scope of this work [63]. As shown in the right panel
of Fig. 4, Rdia

2 (τ) decays faster than the whole correlation
function R2(τ); the relaxation time of the latter approximately
doubles that of the former.

It must be remarked that the discrepancy between the re-
laxation function and the correlation is not a consequence of
the first Sonine approximation. One can easily incorporate the
contribution from higher cumulants into R2(τ), for instance
the following term that includes the sixth-cumulant a3 and the
third Sonine polynomial S3(x). The only change is that now
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FIG. 4. Check of the FDR for the relaxation function of the granular temperature. The left panel shows the correlation function R2(τ) for
three different values of the restitution coefficient α: from top to bottom, α = 0.3 (squares), 0.7 (circles), and 0.9 (triangles). Also shown is
the theoretical prediction for the direct relaxation function of the granular temperature φθ (τ) (line). As discussed in the text, the decay of φθ

is well described by R2, although the initial values do not exactly match. This is illustrated in the right panel, where we plot R2(τ)/R2(0)
for the specific case α = 0.3. Therein, R2(τ)/R2(0) is compared with both φθ (τ) (solid line) and the diagonal part of the correlation Rdia

2 (τ)
(dashed line). It is clearly observed that the diagonal part equals unity for τ = 0, but it decays faster than the whole correlation R2: roughly, its
relaxation time is divided by 2.

g(x) reads

g(x) = −d

2
+ x − x

as
2S′

2(x) + as
3S′

3(x)

1 + as
2S2(x) + a3S3(x)

. (61)

We have checked that the DSMC results for the correlation
function remain basically unaltered.

B. Relaxation function of the fourth moment

Simulation curves for the time evolution of A2 are com-
pared with the theoretical prediction (35) in Fig. 5. All curves
correspond to a system with restitution coefficient α = 0.3
and they have been averaged over 100 runs. Two experiments
in which the driving intensity is decreased from ξ + δξ to ξ

are considered. In both cases, we have that ξ 2 = 0.2, but with
two different values of the jump, (ξ + δξ )2 = 0.25 (squares)
and (ξ + δξ )2 = 0.35 (solid circles).

FIG. 5. Relaxation function of the scaled excess kurtosis A2 =
a2/as

2 as a function of τ for α = 0.3. In the simulations, the driving is
instantaneously changed from (ξ + δξ )2 = 0.25 (squares) and (ξ +
δξ )2 = 0.35 (solid circles) to ξ 2 = 0.2 at τ = 0. Despite the jumps
being quite large, the agreement with the theoretical prediction, as
given by Eq. (35) (line), is remarkably good.

Fluctuations in A2 are larger than those of the granular
temperature, and thus it is necessary to consider larger jumps
in the driving, roughly one order of magnitude larger than
those employed in Fig. 2. Still, linear response theory works
pretty well: for (ξ + δξ )2 = 0.25, δξ/ξ � 0.12 but the agree-
ment is almost perfect; for (ξ + δξ )2 = 0.35, �ξ/ξ � 0.3 and
the theory only slightly overestimates the relaxation function
φA2 (τ). For these larger jumps in the driving, we have also
looked into the relaxation of the granular temperature. This is
done in Fig. 6; the agreement between the simulation curves
and the linear response result is even better than that of the
excess kurtosis.

We have also checked the accuracy of the FDR relation
(57) for the relaxation function φ〈c4〉 of the fourth moment.
We have numerically computed the time correlation function
R4(τ) from the DSMC data; the values for the simulation
parameters are the same as for the temperature. In Fig. 7,

FIG. 6. Relaxation function of the granular temperature for the
same situation considered in Fig. 5. Note the logarithmic scale on
the vertical axis. Although the jumps in the driving are quite large—
relative size of 10–30 %—the linear response prediction (solid line)
fits perfectly well the simulation results (symbols). The coding for
the different lines is the same as in Fig. 5.
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FIG. 7. Check of the FDR relation for the relaxation function of
the fourth-moment. The squares represent the correlation function
R4(τ ) for α = 0.3, measured in DSMC simulations, while the solid
line is the theoretical prediction given by Eq. (38). The decay of φ〈c4〉
is well described by R4, although their initial values do not exactly
match. On the other hand, the diagonal part of the correlation Rdia

4 (τ)
(dashed line) correctly gives the initial value φ〈c4〉(0), but it decays
faster than the whole correlation R4.

for α = 0.3, the numerics (squares) is compared with the
theoretical prediction for φ〈c4〉, as given by Eq. (38) (solid
line). Similarly to the case of the temperature relaxation, the
correlation function R4(τ) correctly predicts the decay but not
the initial value of φ〈c4〉. Again, this discrepancy comes out
from the nondiagonal terms of the correlation function, as the
evaluation of the diagonal part Rdia

4 (τ) (dashed line) shows.

VI. THE KOVACS-LIKE EXPERIMENT WITH TWO JUMPS
IN THE DRIVING

In this section, we analyze a more complex experiment,
which was first done by Kovacs to investigate the glassy
response of polymers [40,41]. The main idea is the following:
first, the system under study is “aged” by following a certain
protocol. After this aging stage, the system has values of
its macroscopic variables equal to those in the steady state.
However, the macroscopic variables do not remain flat but
display a “hump.” This is the Kovacs effect, which tells us that
there are other, nonmacroscopic, variables that also have to be
taken into account to understand the relaxation properties of
the system.

Here, we describe the Kovacs-like experiment in terms of
the variables of our model [64]. Instead of letting the system
relax directly from the NESS for ξ + δξ to that for ξ , at t = 0
we suddenly change the driving intensity from ξ + δξ to a
lower driving ξ − δξ ′ < ξ . Then, the system starts to relax to
the NESS for ξ − δξ ′, at which Ts(ξ − δξ ′) = Ts(ξ ) − δT ′ <

Ts(ξ ). At some time—which we call henceforth the waiting
time τw—the instantaneous value of the granular temperature
T (τ) equals Ts(ξ ). At τ = τw, we suddenly change the driving
intensity from ξ − δξ ′ to ξ . This two-jump procedure in the
driving characterizes the Kovacs protocol.

A qualitative plot of the Kovacs protocol is shown in Fig. 8.
Specifically, we have considered the usual case in which δξ

and δξ ′ are both positive and therefore Ts + δT > Ts > Ts −

FIG. 8. Qualitative plot of the Kovacs protocol. The system
starts from a NESS with granular temperature T0 = Ts + δT , corre-
sponding to a driving ξ0 = ξ + δξ . In the waiting time window, the
driving is suddenly decreased to ξ1 = ξ − δξ ′ < ξ and the granular
temperature approaches the corresponding steady-state value T1 =
Ts − δT ′ < Ts. At the waiting time, the granular temperature equals
its steady value for the driving ξ . However, for longer times the
granular temperature does not remain flat: it displays a nonmonotonic
behavior, the Kovacs hump. The normal case is depicted, in which
the temperature displays a maximum, but anomalous behavior—a
minimum instead of a maximum—can also be observed. Note that
δT and δT ′ are defined in such a way that they are both positive.

δT ′—sometimes termed the cooling protocol. The Kovacs
effect is brought to the fore if T (τ) does not remain flat for
τ > τw, signaling that, actually, the system is not in the NESS
for the driving intensity ξ at τ = τw. If T (τ) − Ts > 0, the
Kovacs effect is normal—this is the situation that is always
found in molecular systems [40,41,47], and the one plotted in
the figure. If T (τ) − Ts < 0, the Kovacs effect is anomalous,
a possibility that has recently been reported in some athermal
systems [16,18,53].

In the following, we analyze the Kovacs hump in linear
response. Note that the theoretical approach presented here es-
sentially differs from that in Refs. [16,18], where the nonlinear
case—large jumps in the driving—was investigated. Therein,
a perturbative analysis in powers of a2,s made it possible to
derive an analytical expression for the Kovacs hump, but only
when the system freely cooled in the waiting time window
[65]. The linear response approach developed below, although
limited to small jumps in the driving, improves our under-
standing of the Kovacs effect by connecting the shape of the
hump with the properties of the direct relaxation function.

The evolution of the temperature for τ � τw directly fol-
lows from the general linear response scheme in Ref. [38].
Namely, it is given by

δT (τ) = (T0 − T1)[φθ (τ) − φθ (τw )φθ (τ − τw )], (62)

where φθ is the direct relaxation function (i.e., for the one
jump experiment), normalized in the sense that φθ (τ = 0) =
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FIG. 9. Kovacs hump for large inelasticity. Specifically, the resti-
tution coefficient is α = 0.3. The circles are simulation results
obtained with N = 106 particles averaged over 104 runs, while the
solid line is our theoretical prediction (67). The Kovacs response is
anomalous for this large inelasticity, α < αc.

1. Substitution of Eq. (27) into (62) results, after a little bit of
algebra, in

δθ (τ) = (δθ + δθ ′)a+a−(eλ+τw − eλ−τw )

× (
eλ+(τ−τw ) − eλ−(τ−τw )

)
, (63)

where we have employed the dimensionless temperature
jumps

δθ ≡ δT

Ts
= T0 − Ts

Ts
, δθ ′ ≡ δT ′

Ts
= Ts − T1

Ts
, (64)

such that T0 − T1 = Ts(δθ + δθ ′). The time evolution of δθ (τ)
is nonmonotonic: it is the amplitude a− of the second mode
of the direct relaxation function φθ that controls the sign of
the Kovacs response, since the remainder of the terms on
the right-hand side of Eq. (63) are positive-definite. Normal
behavior, i.e., δθ (τ) � 0, is obtained for a− > 0, i.e., for
α > αc—see Eq. (29) and Fig. 1. Anomalous behavior, i.e.,
δθ (τ) � 0, is obtained for a− < 0, i.e., for α < αc.

The above discussion entails that the anomalous Kovacs
response persists in the linear response regime, with its emer-
gence being controlled by the sign of the second mode of φθ .
Therefore, the anomalous Kovacs response is not a nonlinear
effect. In fact, the separation between normal and anomalous
behavior is similar to that found in the nonlinear regime
[16,18]: normal behavior is found for small inelasticity (α >

αc), whereas anomalous behavior comes about for large in-
elasticity (α < αc).

The linear response approximation makes it possible to
analyze the behavior of the system for τ � τw. Therein, the
system is relaxing towards the NESS corresponding to the
lowest temperature T1 = Ts − δT ′, and the excess kurtosis
evolves according to

δA2(τ) = δθ1(0)
a+a−(λ+ − λ−)

M12
(eλ+τ1 − eλ−τ1 ). (65)

This follows from Eq. (35) with the changes brought about
by the different steady temperature: the initial temperature
jump must be measured with respect to T1, i.e., δθ1(0) =
(T0 − T1)/T1, and τ1 is the scaled time in Eq. (7) with the sub-
stitution Ts → T1. Taking into account Eq. (64) and keeping

FIG. 10. Kovacs hump for small inelasticity. Specifically, the
restitution coefficient is α = 0.8. The response is normal in this case,
α > αc. The circles are simulation results obtained with N = 106

particles averaged over 5 × 104 runs, whereas the solid line is again
Eq. (67).

only linear terms in the deviations,

δA2(τ) = (δθ + δθ ′)
a+a−(λ+ − λ−)

M12
(eλ+τ − eλ−τ). (66)

Let us recall that δA2(τ) > 0 for all times. In what follows,
we compare simulation results from the DSMC numerical in-
tegration of the Boltzmann-Fokker-Planck equation with our
theoretical predictions. Specifically, we plot

Kθ (τ; τw ) ≡ δθ (τ)

δA2(τw )

= M12

λ+ − λ−

(
eλ+(τ−τw ) − eλ−(τ−τw )

)
, (67)

where we have made use of Eqs. (63) and (66), the latter
particularized for τ = τw. Since δA2(τw ) > 0, we have that
δθ and Kθ have the same sign. To implement the Kovacs
protocol, we have set the following values for the noise in-
tensity: ξ 2 = 0.2, (ξ + δξ )2 = 0.35, and (ξ − δξ )2 = 0.05.
Fluctuations make these larger jumps necessary to numeri-
cally observe the time evolution of the excess kurtosis, which
is the quantity bringing about the Kovacs effect. As discussed
in Sec. III and illustrated in Figs. 5 and 6, linear response still
holds in this situation [66].

The case α < αc, i.e., the large inelasticity regime, is
shown in Fig. 9. Consistently with our theoretical predictions,
the Kovacs response is anomalous, Kθ < 0, and the agree-
ment between simulations and theory is excellent. The small
inelasticity regime, α > αc, is illustrated in Fig. 10. Here,
the response is normal, Kθ > 0, and the amplitude of the
hump is roughly one order of magnitude smaller than that in
Fig. 9.

VII. DISCUSSION

We have investigated the relaxation of the granular tem-
perature T and the excess kurtosis a2—or, alternatively, of
the fourth-moment of the velocity—in the linear response
regime. This study has been carried out by employing two
different methods. First, in the direct route, we have linearized
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the evolution equations for small changes of the driving and
obtained the analytical solution thereof. Second, in the FDR
route, we have derived a generalized FDR, which relates the
relaxation functions after a small change in the driving with
certain time correlation functions in the NESS.

The theoretical predictions above have been checked
against DSMC results. In the simulations, we have considered
both the direct and the FDR routes. In the first, we have
found a perfect agreement between the simulations and the
theoretical predictions. In the second, the agreement is also
very good when the normalized relaxation function—equal to
unity for the initial time—is compared with the correspond-
ing normalized time correlation in the NESS. However, the
initial value of the time correlation does not match that of
the relaxation function, because two-body correlations have
a nonvanishing contribution. This is analogous to the situation
found in the study of the fluctuations of the total energy of the
uniformly heated granular gas [67].

The linear relaxation function of the granular temperature
in the simulations is almost perfectly fitted by a single expo-
nential, over the whole range of inelasticities. Interestingly,
this seems to rule out the possibility of memory effects, since
it is well known that nonexponential relaxation is a prerequi-
site for the appearance of aging and memory effects—a simple
example is the one-dimensional Ising model [20,23,24,50].
Nevertheless, the relaxation function is not exactly exponen-
tial: the relaxation has two modes, but the coefficient of the
second mode is much smaller than that of the first mode—
their ratio varying from 0 for α = 1 (the elastic limit) to
roughly 0.01 for α = 0 (the completely inelastic case). It is
this smallness that makes inferring the deviation from the
exponential behavior by looking only at the numerical data
problematic. This highlights the difficulty of ruling out the
possible emergence of memory effects by investigating only
simple, single-jump, relaxation experiments.

Despite its smallness, the nontrivial behavior of the coef-
ficient of the second mode as a function of the inelasticity
and, in particular, its changing sign at the critical value αc,
as shown in Fig. 1, have important physical consequences.

The most striking one is its bringing about the anomalous
Kovacs effect in linear response. In molecular systems, there
is a clear parallelism between the observed universal proper-
ties of the Kovacs hump in experiments—which are done in
the nonlinear regime—and the general properties that can be
rigorously proved in linear response. In particular, its normal
character—a well-defined sign that does not change with the
system parameters—stems from the equilibrium FDR that
ensures that the coefficients of all the modes in the direct
relaxation function are positive [47].

Extension of the above parallelism between the “empir-
ical” nonlinear results and the theoretical linear response
results to athermal systems—like granular fluids or granular
matter—suggests that it is precisely the change of sign of the
coefficient of the second mode that gives rise in general to the
anomalous Kovacs effect, not only for the granular gas that
we have considered here. This improves our understanding
of the emergence of the anomalous Kovacs effect in athermal
systems. Moreover, we have neatly shown that the anomalous
behavior survives in the linear regime; nonlinearities are not
necessary to bring it about.

A perspective for future work is the resolution of the dis-
crepancy between the initial values of the relaxation function
and the corresponding time correlation function that stems
from the generalized FDR. To accomplish this goal, it is
necessary to go beyond the completely factorized form (47)
of the N-particle distribution function, including at least two-
body correlations—but not only in the NESS, as was done
in Ref. [67], but also for a time-dependent situation. An-
other possible avenue for future development is the analysis
of linear response results in other, more complex, intrinsi-
cally nonequilibrium systems, such as the rough granular gas
[68–70] or active matter [71–76].
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