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On escort distributions, q-gaussians and Fisher
information

J.-F. Bercher

Laboratoire d’Informatique Gaspard Monge, Université Paris-Est, ESIEE,
5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France

Abstract. Escort distributions are a simple one parameter deformation of an original distribution
p. In Tsallis extended thermostatistics, the escort-averages, defined with respect to an escort dis-
tribution, have revealed useful in order to obtain analytical results and variational equations, with
in particular the equilibrium distributions obtained as maxima of Rényi-Tsallis entropy subject to
constraints in the form of a q-average. A central example is the q-gaussian, which is a generalization
of the standard gaussian distribution.

In this contribution, we show that escort distributions emerge naturally as a maximum entropy
trade-off between the distribution p(x) and the uniform distribution. This setting may typically
describe a phase transition between two states. But escort distributions also appear in the fields of
multifractal analysis, quantization and coding with interesting consequences. For the problem of
coding, we recall a source coding theorem by Campbell relating a generalized measure of length
to the Rényi-Tsallis entropy and exhibit the links with escort distributions together with pratical
implications.

That q-gaussians arise from the maximization of Rényi-Tsallis entropy subject to a q-variance
constraint is a known fact. We show here that the (squared) q-gaussian also appear as a minimum of
Fisher information subject to the same q-variance constraint.

Keywords: nonextensive theory, escort distributions, Rényi-Tsallis entropy, Fisher information
PACS: 02.50.Cw

INTRODUCTION

Escort distributions have been introduced in statistical physics for the characterization of

chaos and multifractals. These distributions P are a simple one parameter transformation

of an original distribution p according to

P(x) =
p(x)q

´

p(x)qdx
. (1)

The parameter q behaves as a microscope for exploring different regions of the measure

p: for q > 1, the more singular regions are amplified, while for q < 1 the less singular

regions are accentuated. This behavior is illustrated in Figure 1.

In Tsallis extended thermostatistics, the escort-averages, defined with respect to an

escort distribution, have revealed useful in order to obtain analytical results and varia-

tional equations, with in particular the equilibrium distributions obtained as maxima of

Rényi-Tsallis entropy subject to constraints in the form of a q-average. In applied fields,

Tsallis distributions (q-distributions) have encountered a large success because of their

remarkable agreement with experimental data, see [1], [2], [3], and references therein.
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Figure 1. Behavior of the mapping p(x)→ P(x) = p(x)q/
´

p(x)qdx. If U denotes the uniform distribu-

tion, it can be shown that I(U ||P)≥ I(U ||p) if q > 1with the reverse inequality if , where I(p||q) denotes

the Kullback-Leibler divergence from p to q.
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Figure 2. Examples of q-gaussian distributions with γ = 1 and σ2 = 1, for several values of q. In the

first case, q ≤ 1 , the distributions have compact support. In the second case where q ≥ 1, the distributions

have an infinite support and heavy tails. The limit case q = 1 is the standard gaussian distribution.

A central example is the q-gaussian distribution, which has the following probability

density function

f (x) =
1

Zq(β )

(

1− (1−q)βx2
)

γ
1−q

+
, q 6= 1 (2)

where γ and β are positive parameters, and where we use the notation (x)+=max{x,0} .
The partition function converges for q< 2γ+1, and the variance exists for q< 2γ/3+1.
Examples of q-gaussian distributions for different values of q are given on Figure 2, with

γ = 1 and with variance σ2 = 1.
In this contribution, we show that escort distributions (1) emerge naturally as a

maximum entropy trade-off between the distribution p(x) and the uniform distribution.

This setting may typically describe a phase transition between two states. Then, looking

for the distribution p with maximum entropy subject to a constraint on the mean energy

computed with respect to the escort distribution, we arrive at the q-gaussian (2).
But escort distributions also appear in other fields with interesting consequences.

In the problem of coding, we recall a source coding theorem by Campbell relating a

generalized measure of length to the Rényi-Tsallis entropy. We show that the associated

optimal codes can easily be obtained using considerations on escort-distributions and



that this provide an easy implementation procedure. We also show that these generalized

lengths are bounded below by the Rényi entropy.

That q-gaussians arise from the maximization of Rényi-Tsallis entropy subject to a q-

variance constraint is a known fact. We show here that the q-gaussian (with γ = 2) also

appears as a minimum of Fisher information subject to the same q-variance constraint,

and of course, that we recover the standard results in the limit q = 1.

ESCORT DISTRIBUTIONS

Escort as a model of displaced equilibrium

It has been noted that Tsallis’ extended thermodynamic seems appropriate in the

case of modified, perturbated, or displaced classical Boltzmann-Gibbs equilibrium. This

means that the original MaxEnt formulation “find the closest distribution to a reference

under a mean constraint” may be amended by introducing a new constraint that displaces

the equilibrium, as we discussed in a previous MaxEnt workshop [4]. The partial or dis-

placed equilibrium may be imagined as an equilibrium characterized by two references,

say r and q. Instead of selecting the nearest distribution to a reference under a mean con-

straint, we may look for a distribution p∗ simultaneously close to two distinct references:

such a distribution will be localized somewhere ‘between’ the two references r and q.

For instance, we may consider a global system composed of two subsystems character-

ized by two prior reference distributions. The global equilibrium is attained for some

intermediate distribution, and the observable may be, depending on the viewpoint or on

the experiment, either the mean under the distribution of the global system or under the

distribution of one subsystem. This can model a fragmentation process: a system Σ(A,B)
fragments into A, with distribution f , and B with distribution g, and the whole system

is viewed with distribution p∗ that is some intermediate between f and g. This can also

model a phase transition: a system leaves a state g toward f and presents an intermediate

distribution p∗. This intermediate distribution shall minimize its divergence to the initial

distribution g(x), but also be ‘not too far’ from the attractor distribution f (x). This can

be stated as I(p||g)− I(p|| f )≤ θ , or equivalently as I(p|| f )≤ θ ′, where I(p||q) denotes

the Kullback-Leibler divergence from a distribution p to another distribution q. Remark

that the first constraint can be interpreted as a constraint on the mean log-likelihood. The

problem can be written as follows:






minp I(p||g)
s.t. I(p||g)− I(p|| f )≤ θ

or I(p|| f )< θ ′,
(3)

where “s.t.” stands for “subject to”. The optimum distribution solution of these two

equivalent problems is

f ∗(x) =
f (x)qg(x)1−q

´

f (x)qg(x)1−qdx
, (4)

The solution of the minimization problem satisfies a Pythagorean equality: I(p||g) =
I(p|| f ∗)+ I( f ∗||g) for any distribution p such that θ = I(p||g)− I(p|| f ). It is interesting



to note that the solution (4) is nothing but a generalized version of the escort or zooming

distribution of nonextensive thermostatistics. Obviously, one recover (1) when g(x) is

the (improper) uniform measure. With the expression of the solution p∗(x), we obtain

that

I( f ∗||g) = qθ − log(

ˆ

f (x)qg(x)1−qdx) = qθ − (q−1)Iq( f ||g), (5)

where we have recognized the Rényi divergence with index q, Iq( f ||g) from f to g.

Suppose now that we get an additional constraint, in the form of an observable, given

as some expectation under p∗, the equilibrium distribution between f and g. Then, a new

question arises, that is the determination of the more general distribution f , compatible

with this constraint.

We may use a MaxEnt point of view that consists in further minimizing the Kullback-

Leibler information divergence I( f ∗||g), with respect to f . This finally amounts to the

minimization of the Rényi divergence in (5), Iq( f ||g) subject to the mean constraint. In

the case of a uniform distribution for g and a variance constraint we obtain the so-called

q-variance constraint

σ2
q =

´

x2 f (x)qdx
´

f (x)qdx
. (6)

Obsiously, the problem reduces to the maximization of Rényi-Tsallis entropy subject

to this q-variance constraint, whose solution is known to be the standard q-gaussian

distribution (2) with γ = 1.
Another possibility is to look for the less informative distribution in the Fisher sense,

subject to the same constraint. We will see that this also leads to a q-gaussian distribu-

tion.

Rényi entropy, escort distributions and multifractals

Tsallis was originally inspired by the multifractals for the proposal of a generalized

entropy. In this setting, one describes the properties of a singular measure in terms of

singularity spectrum and generalized dimensions. A standard construction is to imagines

that the support of the measure is covered with boxes of size l. Then if pi is the probabil-

ity in the i-th box, one puts pi(l)∼ l−αi , where αi is the singularity exponent. Similarly,

the number of boxes N(α) with an exponent α defines the singularity spectrum f (α)

with N(α) ∼ l− f (α). An alternative description is provided by the q-th ‘moments’ of

the measure Nq = ∑i pi(l)
q∼ l(q−1)Dq ∼ lτ(q), where Dq is the ‘Rényi dimension’ and

τ(q) is the correlation exponent. The important connection between the two descrip-

tions is that the pairs (α, f (α))and (q,τ(q)) are related by a Legendre transform [5], i.e.

f (α) =qα − τ(q) with α = dτ(q)/dq.

It is well known that MaxEnt problems, as well as the standard thermodynamics are

characterized by a beautiful Legendre structure. Thus, we readily see that the previous

Legendre transform can be given a maximum entropy interpretation, where f (α), the

singularity spectrum, is an entropy and τ(q) is the free energy. Here, the free energy

τ(q) has the form τ(q) = log∑i pi(l)
q = log∑i exp(q log pi(l)), and we may identify



τ(q) as τ(q) = log∑i exp(β Ei) with β = q the inverse temperature and Ei = log pi(l)
the energy (also called here the ‘bit-number’). This leads us to an easy thermodynamic

interpretation: exp(β Ei) is the Boltzmann factor which results from the maximization of

the entropy −∑i Pi log Pi subject to the mean constraint U = α = EP[Ei] = EP[log pi(l)].

The standard resolution of this problem [6, 7] leads us to the solution Pi =
p

q
i

∑i p
q
i

, which

is nothing else but the escort distribution of order q of {pi}. Obviously, we then obtain

that the singularity spectrum is the entropy of the escort, and the mean exponent is the

mean of the bit-number:

f (α) = ∑
i

Pi log Pi and α = EP[log pi(l)].

These relationships are the rationale basis for the method introduced in [8] for the direct

estimation of the singularity spectrum. In the latter paper, the escort distributions were

introduced as a simple operational tool. They were later named “escort distributions” in

the book by Beck [9].

Source coding

We also have an interesting connection with source coding, which was first reported

in [10]. The mains formulas and comparisons are given on Table 1.

In source coding, one considers a source that produces a set of symbols X =
{x1,x2, . . .xN} with probabilities pi. The aim of source coding is to map each symbol

xi to a codeword ci of length li expressed using the D letters of the alphabet. The Shan-

non source coding theorem (noiseless coding theorem) indicates that the expected length

L̄ of any uniquely decodable code is bounded below by the entropy of the source, H1(p).
It is well-known that Huffman coding yields a prefix code which minimizes the

expected length and approaches the optimum limit li = − logD pi for the individual

symbols. Other forms of lengths have also been considered, the first and fundamental

contribution being Campbell’s one [11]. In Shannon’s result, low probabilities yield very

long words. In order to penalize the apparition of such long codes, Campbell proposed a

different length measure, featuring an exponential account of the elementary lengths of

the codewords.

The remarkable result [11] is that just as Shannon entropy is the lower bound on the

average codeword length of an uniquely decodable code, the Rényi entropy of order q,

with q = 1/(β +1), is the lower bound on the exponentially weighted codeword length,

see line 2 of Table 1.

In order to increase the impact of the longer lengths with low probabilities, the Camp-

bell’s length uses an exponential of the length. A different approach to the problem can

be to modify the weigths in the linear combination, so as to raise the importance of the

terms with low probabilities. A simple way to achieve this is to deform, flatten, the orig-

inal probability distribution so as to scale down its features with highest probabilities

and raise the areas of lower probability. Of course, a very good candidate is the escort

distribution, which leads us to the ‘average length measure’ Mq = ∑
N
i=1 Pili. For the vir-

tual source with distribution P, the standard expected length is Mq, and the classical



Table 1. Source coding with generalized lengths, with Pi = p
q
i /∑i p

q
i and where log D

denotes the base D logarithm

length bound opt. length

Shannon L̄ = ∑i pili H1(p) li =− logD(pi)

Campbell Cβ = 1
β

logD ∑
N
i=1 piD

β li H1/(β+1)(p) li =− logD(Pi)

Gen. mean Mq = ∑
N
i=1 Pili H1(P) li =− logD(Pi)

Mixed Lq =
1

q−1
logD

[

∑
N
i=1

p
q
i

∑ j p
q
j

D(q−1)li

]

Hq(p) li =− logD(pi)

Shannon noiseless source coding theorem immediately applies, leading to Mq ≥ H1(P)
with equality for li = − logD Pi, which is nothing else but Campbell’s optimal lengths.

The simple relation li = − logD Pi for the minimization of Mq has an immediate appli-

cation for the computation of Campbell’s lengths: it suffices to feed a standard coding

algorithm, namely a Huffman coder, with the escort distribution P instead of the natural

distribution p.

Another measure of length, Table 1, line 4, can mix both a an exponential weight of

individual lengths li and an escort distribution. This length of order q is lower bounded

by the Rényi entropy of the same order. Interestingly, the optimum legths are nothing

but the optimal lengths in the Shannon coding theorem.

FISHER, ESCORT AND q-GAUSSIANS

Let f denote the probability density of a random variable X . Then the Fisher information

with respect to a translation parameter is defined as

I[ f ] =

ˆ

(

d ln f (x)

dx

)2

f (x)dx =

ˆ

(

d f (x)

dx

)2
1

f (x)
dx, (7)

where f (x) is supposed differentiable and both f (x) and its derivative f ′(x) are square

integrable on R.

The importance of the Fisher information as a measure of the information about a

parameter in a distribution is well known. It has intricate relationships with maximum

likelihood and has many implications in estimation theory, as exemplified by the Cramér-

Rao bound which provides a fundamental lower bound on the variance of an estimator.

It is used as a method of inference and understanding in statistical physics and biology,

as promoted by Frieden [12]. Information theoretic inequalities involving Fisher infor-

mation have attracted lot of attention for characterizing statistical systems through their

localization in information planes, e.g. the Fisher-Shannon information plane [13, 14]

or the Cramér-Rao information plane.

If we return to the problem of selecting the distribution f (x) with a given q-variance,

as indicated in subsection , we see that such distribution can be sought in a minimum

Fisher sense. Actually, there are at least two possibilities that makes sense: (i) find f (x)
with a given variance such that its escort has minimum Fisher information, or (ii) find a



minimum Fisher information f (x) such that its escort has a given variance, i.e. f (x) has a

given q-variance. Due to lack of space, we will only consider here the second variational

problem:










inf f I [ f ] ,

s.t. σ2
q =

´

x2 f (x)qdx
´

f (x)qdx
,

s.t. f (x)≥ 0,
´

f (x)dx = 1.

(8)

The solution to (i) can be simply deduced from the solution to (ii).

The main difficulty is that even though the Fisher information I[ f ] is a strictly convex

function, the set defined by the q-variance constraint is not convex and uniqueness

of a solution is not guaranteed. It is convenient to introduce a new parameter and

reformulate the awkward q-variance constraint into two simpler elementary constraints,

that is Nq =
´

f (x)qdx and Vq =
´

x2 f (x)qdx, with, of course, σ2
q = Vq/Nq. Then, we

can note that the initial problem is equivalent to the following two steps procedure:



















infNq











inf f I [ f ] ,

s.t. Nq =
´

f (x)qdx

and Vq = σ2
q Nq =

´

x2 f (x)qdx

s.t.
´

fNq
(x)dx = 1

. (9)

provided that the second problem is feasible with the parametric solution obtained in

the first step. For now, we only consider the first step. Again and as in (8), although the

objective functional I[ f ] is strictly convex, since the constraints sets are not convex then

the uniqueness of a minimum cannot be guaranteed. However, it is still possible to relax

the equality constraints into inequalities, e.g. Sign(q− 1)
(´

f (x)qdx−Nq

)

≤ 0 so that

the problem becomes a convex optimization problem, whose solution is known to be

unique. If the constraints are active at the solution, that is with equality, then we obtain

the solution of the initial problem using the (relaxed) convex formulation.

Let a and b denote the Lagrange multipliers associated with the inequality constraints.

These multipliers are necessarily nonnegative. Now, can check that with the following

candidate

f (x) = u(x)2 = α
2

1−q
(

1− (1−q)βx2
)

2
1−q (10)

satisfies the Euler-Lagrange equation associated with the relaxed problem, with a =

4Sign(q− 1)α2β
q

and b = −4Sign(q− 1)α2β 2(1−q)
q

. With β > 0, we check that these

Lagrange multipliers are simultaneously positive for q > 1, but do not have the same

sign for q < 1. This means that for q > 1, the q-gaussian (10) is a possible solution of

the relaxed problem.

With a, b positive the Lagrangian is a convex function of f and of f ′ (I[ f ] is a strictly

convex function of f and that this is also true pointwise). In that case, any singular

point corresponds to the global minimum [15, theorem 2.1]. Therefore, we obtain that

the q-gaussian solves the relaxed minimization problem. Finally, it always possible to

choose α so that the solution is normalized, then select β and adjust the parameter Nq

so that the inequality constraints are active at the solution, i.e. are verified with equality.

As a result, we finally obtain the global minimum f ∗ of the initial problem is obtained



with the q-gaussian (2) with γ = 2. This approach does not cover the case q < 1. In this

case, we also obtain that a q-gaussian, with compact support, is the minimizer of the

Fisher information, but the proof of the general case is more involved and omitted here.

A direct consequence of this result is a generalization of Cramér-Rao inequality which

readily follows from the inequality I[ f ]≥ I[ f ∗] for all f with a given q-variance.

CONCLUSIONS AND FURTHER WORK

In this contribution, we have underlined the apparition of escort distributions in several

domains. We have proposed a view of escort distributions as a trade-off between two dis-

tributions, in the context of displaced equilibriums or phase transition. When q varies,

the escort distribution defines a path between two distributions, that shall be character-

ized; e.g. the thermodynamic length which is defined as the flux of Fisher information

along the path. Associated with escort distributions, we recall that the q-gaussians are

Rény-Tsallis Maxent distributions. This characterization is completed by the fact that

q-gaussians are also minimum Fisher information distributions. Further work includes

the study of the interaction between (generalized) Fisher information and Rényi-Tsallis

entropy, as well as the study of the Fisher path, defined as the curve of minimum Fisher

distributions when q varies.
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