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Abstract—The paper provides a theorem for the characteriza-
tion of numerical stability of spline-type systems. These systems
are generated through shifted copies of a given atom over a time
lattice. Also, we reformulate the well known Gabor systems via
modulated spline-type systems and we apply the corresponding
numerical stability to these systems. The numerical stability is
tested for consistency against deformations.

Index terms: spline-type spaces, numerical stability, Gabor

systems.

I. INTRODUCTION

Time-frequency analysis and in particular the Gabor trans-

form as a special case of localized Fourier transform played a

major role in the modern development of signal processing [2],

[9], [22]. Gabor systems provide an efficient tool to represent

locally by a finite number of data the information of a signal

which is given a priori through uncountably many function

values. These systems had a wide impact in applications

ranging from wireless communications to image processing

[21], [23]. By reformulating Gabor systems as modulated

spline-type systems a speed boost to the computation of such

systems is achieved. But how stable is this reformulation

? And subsequently, are these systems consistent against

deformations that could appear in applications ? In this paper,

we give answers to the questions of numerical stability of such

systems.

The paper is structured in five chapters, including the

introduction and the conclusions. In the second chapter, we

introduce the notations and the mathematical preliminaries, the

third chapter gives the main stability result and in the forth

chapter the numerical experiments are performed using as case

study Gabor systems. Finally, conclusions are drawn.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

Locally compact (LC) groups are topological groups such

that every point has a compact neighborhood. If the group

is Abelian we will shortly say that it is a LCA group. The

left translation operator is defined as the operator acting on a

function or distribution f defined over the LC group G as

Lyf(x) := f(y−1x), y, x ∈ G.

The morphisms from G into the torus T are called characters

of the group. The set of characters of a LC group G form

together with function composition a LC group Ĝ called the

dual group.

If G is Abelian, the topological dual of Ĝ is isomorphic to

G; a characters x̂ ∈ Ĝ can be represented as x 7→ 〈x, x̂〉 for

x ∈ G and the element of x ∈ G as x̂ 7→ 〈x, x̂〉 , x̂ ∈ Ĝ. The

Fourier transform of a function in L1(G) is defined as

f̂(x̂) :=

∫

G

f(x)〈x, x̂〉dx x̂ ∈ Ĝ

while the convolution can be defined for the space K(G) of

compactly supported functions

f ∗ g :=

∫

G

f(x)Lxg(y)dx

and extended to the whole L1(G) as in the case of standard

real analysis. We will denote for a subgroup H the convolution

f ∗H g :=
∫
H
f(x)Lxg(y)dHx. We introduce spline-type (ST)

spaces as subspaces of translation invariant Banach spaces.

Definition 1. Given G a LC group, H a subgroup of G, and

Φ = {φi : G → C}Ri=1 a finite set of functions or distributions

in a translation invariant Banach space (B, ‖ · ‖B), the col-

lection of left shifts (Φ, H) := {Laφi : a ∈ H, i = 1, . . . , R}
is called spline-type system of generating set Φ and subgroup

H , while its closed span in B is called and spline-type space

generated by Φ and H , which will be indicated as S(Φ, H).

On vector valued functions f = (fi)
r
i=1 defined on H we

can apply the so called synthesis operator of the ST system

(Φ, H):

UΦ,Hf =

r∑

i=1

fi ∗H φi

In the representation of signals through a discrete set of

functions, central role have biorthogonal systems.

Definition 2. Given a Banach space B and it’s dual B∗, a

biorthogonal system in B × B∗ is a family (φi, φ
∗
i )i∈I such

that
〈
φi1 , φ

∗
i2

〉
= δi1,i2 .

A biorthogonal system is a projection basis in B0 ⊂ B if it is
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a basis for B0 and

P (f) :=
∑

i∈I

〈f, φ∗
i 〉φi ∀f ∈ X (1)

A family is a Riesz projection basis if

1) There is a solid Banach space of coefficients s.t. the

synthesis map is a well defined continuous bijection.

2) The synthesis operator has a bounded left inverse.

For ST spaces, we have characterized the boundedness from

below and the injectivity of the synthesis operator as linear

independence of the Fourier transforms of the atoms on the

orthogonal subgroup, see [17, Theorem 7]

H⊥ :=
{
x̂ ∈ Ĝ : ∀x ∈ H, 〈x, x̂〉 = 1

}

During the proof of the [17, Theorem 7] a biorthogonal

system to the ST system (Φ, H) is built.

To find the dual system means to invert the Gramian of the

given atoms, locally, on H⊥.

III. NUMERICAL STABILITY

In this section, we analyze the problem of numerical sta-

bility of the biorthogonal construction with the use of the

invertibility of the Gramian. Its entries are:

(G)i,j =
〈
φ̂i, φ̂j

〉

To analyze such a matrix, we need to define our concept of

numerical stability. This concept relies on both deformation

of the subgroup and the atoms. We are interested in shifts of

atoms in the Fourier domain, such that a continuous procedure

of optimization of the generating set to the given signal can

be established.

Shifts in frequency are multiplication by a character:

〈̂·, ŷ〉 f = Lŷ f̂ ŷ ∈ Ĝ

Because we want to establish the continuity of the inversion

of the Gramian G, for every ŷ = (ŷ1, . . . , ŷr) ∈ Ĝr, we define

the deformed Gramian as

(LŷG)i,j :=
〈
Lŷi

φ̂i, Lŷj
φ̂j

〉

We aim to control the Frobenius norm of the difference matrix

D := LŷG − G (2)

hence we need to find the proper neighbourhood U of 0̂ ∈ Ĝr

where to choose ŷ.

We can formulate the following theorem.

Theorem 1. Given a LCA group G and a generating set

Φ = {φ1, . . . , φr} of compactly supported distributions de-

fined over G, then for every ǫ > 0 there exists a vector of

shifts in the frequency domain such that the Frobenius norm

of the matrix D defined in (2) can be bounded as

||D||F < 2ǫr max
j=1,...,r

‖ φj ‖1 (3)

Proof. Because our atoms are compactly supported distribu-

tion, their Fourier transform are uniformly continuous:

∀ǫ > 0∃Ui s.t. ∀yi ∈ Ui

∣∣∣Lyi
φ̂i − φ̂i

∣∣∣ < ǫ

Choosing ŷ ∈
⊗

i=1,...,r Ui, we can control the entries of the

matrix D∣∣∣(D)i,j

∣∣∣ =
∣∣∣Lŷi

φ̂i · Lŷj
φ̂j − φ̂i · φ̂j

∣∣∣

=
∣∣∣Lŷi

φ̂i · Lŷj
φ̂j − Lŷi

φ̂i · φ̂j + Lŷi
φ̂i · φ̂j − φ̂i · φ̂j

∣∣∣

≤
∣∣∣Lŷi

φ̂iLŷj
φ̂j − Lŷi

φ̂i · φ̂j

∣∣∣+
∣∣∣Lŷi

φ̂i · φ̂j − φ̂i · φ̂j

∣∣∣

=
∣∣∣Lŷi

φ̂i

∣∣∣ ·
∣∣∣Lŷj

φ̂j − φ̂j

∣∣∣+
∣∣∣Lŷi

φ̂i − φ̂i

∣∣∣ ·
∣∣∣φ̂j

∣∣∣

< ǫ
(
‖ φ̂i ‖∞ + ‖ φ̂j ‖∞

)

≤ ǫ (‖ φi ‖1 + ‖ φj ‖1)

Since the matrix D is symmetric its 1 and ∞ norms coincide:

||D||
∞

= ||D||1 = maxj=1,...,r

r∑

i=1

∣∣∣Lŷi
φ̂i · Lŷj

φ̂j − φ̂i · φ̂j

∣∣∣

< maxj=1,...,r

r∑

i=1

ǫ (‖ φi ‖1 + ‖ φj ‖1)

= ǫ

(
r maxj=1,...,r ‖ φj ‖1 +

r∑

i=1

‖ φi ‖1

)

≤ 2ǫr maxj=1,...,r ‖ φj ‖1

Hence

||D||F ≤
√

||D||1 ||D||
∞

= ||D||
∞

< 2ǫr maxj=1,...,r ‖ φj ‖1

IV. CASE STUDY: GABOR SYSTEMS ON T

Time-frequency analysis is a branch of harmonic analysis

that aims to extract features of a signal (information theory)

or an operator (quantum physics) starting from the concept of

time-frequency shift.

A common tool to analyze the local frequency behavior of a

function is the continuous short time Fourier transform defined

over G× Ĝ as

Vφf(y, ŷ) := 〈f,MŷLyφ〉 =
〈
y, ŷ−1

〉
〈f, LyMŷφ〉

.

where Mŷ is the character multiplication operator,

interpreted as modulation operator, and the joint shift operator

MŷLy is noted as π(y, ŷ).

Traditional tools in time-frequency analysis are Gabor

systems, which are usually introduced under the following

notation [14].
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Definition 3. Given a function φ in some function space on

G and a lattice ∆ ∈ G× Ĝ, we define the Gabor system (or

Weyl-Heisenberg system) as the collection

N (φ,∆) = {π(λ)φ | λ ∈ ∆}

If the lattice is separable, i.e. ∆ = ∆t × ∆f being ∆t

and ∆f lattices respectively in G and Ĝ, we can consider a

Gabor system as a spline-type system generated by an infinite

generating set:

S({Mωg : ω ∈ ∆f},∆t) = spanN (g,∆)

The analysis and synthesis operators of a Gabor system build

the so called frame operator

Sf :=
∑

λ∈∆

〈f, π(λ)g〉π(λ)g

If the frame operator is invertible, due to the commutation

between frame operator and shifts, we obtain the key repro-

duction formula for Gabor frames: for any f ∈ spanN (g,∆)

f =
∑

λ∈∆

〈
f, π(λ)

(
S−1φ

)〉
π(λ)φ (4)

The function S−1g is called the canonical dual of the window

g.

In applications, sampled signals of finite length (L) are

analysed and therefore the standard process of sampling and

periodization is employed [20]. In this way, also the number of

shifts in time and frequency becomes finite. The redundancy

of a discrete system, not necessarily a ST or Gabor system, is

defined as the fraction of the number of used discrete function

over the length of the domain, #shifts
L

.

The built systems are placed in three categories:

• undersampled: #shifts
L

< 1

• critical case #shifts
L

= 1

• oversampled #shift
L

> 1

It is well known that undersampled Gabor systems are

not stable, while critical and oversampled case are usually

analysed for every choice of the window and lattice [6].

A. Numerical Experiments

The Gabor-like systems based on spline-type constructions

have been tested for the following 3 cases: oversampled

frames, undersampled systems and deformation of the gen-

erating set of a frame.

To test stability we have used two different types of atoms:

bump function and Gaussian function. Numerical tests show

that a spline-type reformulation of Gabor system works ef-

ficiently for both cases. This was easily foreseeable, since

convergence theorems for integrals hold over LC groups. This

will give the numerical scheme a really important feature:

the capability to select atoms better localized in the Fourier

domain than compactly supported distributions.

We will not discuss extensively in here about the approx-

imation error produced for oversampled Gabor frames, but

it is important to stress about this particular case because it

displays the only weakness of the multi-window spline-type

(MST) numerical scheme: the computation of the Gramian

and its inversion rely heavily on the fast Fourier transform,

this produces a loss linear in the length of the signal as shown

in Table I.

Table I: Approximation error: L = length of the signal,

a = uniform time-step, #c number of frequency-equispaced

windows

MST Gabor

L=675, a=27, #c=45 1.5733e-13 3.6865e-16

L=1080, a=36, #c=45 2.3081e-13 3.8005e-16

L=2160, a=45, #c=45 7.7652e-13 8.0959e-16

L=3780, a=32, #c=45 1.3103e-12 4.1540e-16

More important is to show that our result is a characteriza-

tion of stability: considering the unstable oversampled systems

built for signal of length L=9072, over the lattice having

constants gap_t=24, by 48 equispaced modulations of a bump

function having support of radius 7gap_t and we run the short

Matlab code:

fourier = fft(GG);

fourier_s = fourier(1:L/gap_t:end,:);

det(fourier_s’*fourier_s)

for the matrix GG containing the modulations, we obtain

ans = 0. As a consequence, the run of the spline-type

reformulation gives NaN results.

We have also performed tests on undersampled Gabor systems

for bandlimited signals. In the undersampled case standard

Gabor algorithm is highly numerically unstable, giving often

a NaN result. We show the result coming from a Gabor

system generated by a normalised Gaussian over the separable

lattice having parameters gap_t=27, gap_f=315 and applied

to signal of length L=3780.For signal having bandwidth of

radius 70, exactly the sampling rate, Gabor’s error display the

unstable nature of undersampled Gabor system, while MTS’s

error is always bounded (Figure 1). From our perspective,

problems arise from holes in the frequency domain[16]. Due

to the Wiener’s inversion theorem, the dual windows belong

to the same ideal of the original atoms (characterized by

their spectrum), hence they display the same localization in

frequency, as shown in Figure 2; the same does not occur

for different modulations of Gabor’s dual, which display the

unstable nature on the global inversion of the frame operator

as in (4).

Finally, we want to numerically explore the stability of our

method by testing the usefulness of the Theorem 1. The

traditional inversion of Gabor frame is not continuous under

the shift parameters [14]. That is the reason why we want to

explore the possibility to deform a separable lattice, once a

non-uniform reformulation is available.

After having deformed a given generating set substituting to

each element a modulated version φi → φi,m := 〈·, ŷ〉φ,

being ŷ uniformly randomly chosen in a neighbourhood of
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the unity, we have considered the related biorthogonal system

Ψm. The result is shown in Figure 4. It display the linear

dependence stated in Theorem 1 between the deformation and

ǫ.

To test the linear dependence between the deformation on

the number of atoms we have used a system of parameters

L=3780, gapt=21 and number of channel #chan=27, 28, 30,

35, 36, 42, 45 and magnitude of deformation ω = 5.

The thesis is validated as it appears in (3), since the norm

increase in a linear way, while the surprising fact is that the

error in the coefficients decrease with the number of atoms.

This outcomes is not yet explained, since Theorem 1 focus

on the Gramian rather than the coefficients. We think it is

connected to the approximation power of the ST space since

more windows, hence better localized information, are added.

This aspect will be explored in future works.

V. CONCLUSIONS

We proposed and we characterized in this paper stability

in relation with spline-types spaces and their approximation

properties. The stability analysis shows that spline-type sys-

tems can be deformed through frequency shifts while they still

display continuity for the inversion procedure. The method

was numerically tested on different Gabor-like constructions

obtained via a reformulation in multi-window spline-type

spaces with the outline of advantages.
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Figure 1: Approximation error of bandlimited signals: L=3780,
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