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Abstract. In this paper, a homotopy-based method is employed for the
recovery of speech recordings from missing or corrupted samples taken in
a noisy environment. The model for the acquisition device is a compressed
sensing scenario using Gabor frames. To recover an approximation of
the speech file, we used the basis pursuit denoising method with the
homotopy continuation algorithm. We tested the proposed method with
various speech recordings.
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1 Introduction

The reconstruction of an audio signal with missing sampled or clipped, is a clas-
sical problem in signal processing and it was largely discussed in the specialized
scientific literature, see [1-3].

In this paper, we report the experiments performed with a method inspired
from computational topology, namely the homotopy continuation method in
order to enhance the typical recovery of audio speech recordings based on ¢! —
minimization, [4-6].

To precisely formulate the problem, we consider the following non parametric
model with observations:

y=06s+ecRF

where s € RY is the speech signal to recover, e € R” is a noise vector, and
6 € RP*N models the acquisition device. This device is nowadays equipped
with the additional assumption of sparsity, which refers to the circumstance
that many natural signals can be expanded (using a suited dictionary ©) with
only few non zero coefficients. We assume a compressed sensing scenario where
the operator @ could be the realization of a random Gaussian, Bernoulli, or
partial Fourier matrix satisfying the restricted isometry property (RIP) [7]. But
given the special characteristics of nature signals as the speech recordings, which
usually consist of sets of distinct components as transients and harmonics with
orientation in time and frequency, we have used for the proposed method a Gabor
frame generated by the Alltop sequences as proposed in [8,9].
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2 Gabor Frames and the ¢! —minimization

Frames (g;);cr generalize the idea of a basis in a Hilbert space H and consist of
the indexed families such that the so-called frame operator S

Sf=Y (f 919 (1)
iel
is invertible. The main tool for time-frequency analysis is the Short-Time Fourier
Transform, defined for functions f,g € L*(R%) at A = (o, 8) € R?? by

thf()‘) = ng(aaﬁ) = <f7 MﬁTag> = <f’ W()\)g> (2)

where T, f(t) = f(t — ) is the translation (time shift) and Mgf(t) = e2™Ft f(t)
is the modulation (frequency shift). The operators m(\) := M3Ty, are called time-
frequency shifts and the set 4 = {\; A\ = (o, B) € R? x R?} is a lattice, [11].
The Gabor system G(g,A) = {m(\)g; A € A} over the lattice A consisting of
the translated and modulated versions of one atom g, is a frame for the space
L?(RY), if and only if there exist 0 < A < B < oo (frame bounds) with

AIIFIP <[ m(Ng)? < BILIP for everyf € L*(RY), 3)
AEA

We will use in the construction of Gabor frames the Alltop sequences as proposed
in [8].

To recover an approximation of the signal s, a standard method is the basis
pursuit denoising or ¢!-minimization [10]. This method is based on using the ¢!
norm as a sparsity enforcing penalty. That turns into an optimization problem
and allows us to recover the signal minimizing the expression:

) 1
Sp € C”“gmmseRN§||Z/—@5H2+P||3H1 (4)

where the ¢! norm is defined as [[s||; = >, |s4].

The parameter p should be set in accordance to the noise level |e]|.

In the case where there is no noise, e = 0, we let A — 01 and solve the basis
pursuit constrained optimization sg+ € argmines=y||s||-

In order to avoid technical difficulties, we could further assume that © is
such that s, is uniquely defined.

In the following, for some index set I C {1,..., N}, we denote by

O = (Gi)iel € RPXII‘

the sub-matrix obtained by extracting the columns 6; € R of © indexed by I.
The support of a vector is supp(z) = {i € {1,...,N} : z; #0}.
Using results from the convex analysis, we obtain that s, is a solution of (4)
if and only if
{ (C1) O35y — Orsp.1) = psign(s,.1),
(C2) 105y - Orsp)llae < p

where I = supp(s,) and J = I¢ is the complementary.
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3 The Homotopy-Continuation Algorithm and
Experiments

Topology helps to understand the different degrees of connectivity a geometric
object has. To deal with topological isomorphisms or homeomorphisms between
continuous geometric objects is a hard task and discretization strategies, such
as triangulations, are employed for reducing the computational complexity of
the topological interrogation. While homology considers the notion of hole in
linear algebra terms, the homotopy is dealing with the same issues in a purely
combinatorial terms. Therefore, homotopy computation is much more harder in
general than homology computation, but in combination with numerical meth-
ods it can be proven to be a useful tool for signal recovery but also in image
recognition.

The proposed homotopy-based method for speech recovery is gradually
deforming a trivial initialization of the speech vector into the original speech
vector through the process of path-tracking. The numerical homotopy proce-
dure is based on the fact that the objective function undergoes a homotopy
from the ¢2 to the ¢! optimization as the algorithm progresses. The homotopy
algorithm proceeds by computing iteratively the value s,.

We sum below the complete algorithm:

Homotopy-speech restoration algorithm

Input: y-noisy speech file,

O©-Gabor frame compressed semsing operator,
Initialization: Corr=0"xy, p=max(Corr), s,=0,
Isparsity = Supp(sp)

Output: s,-restored speech file, p,

Isparsity
Begin tteration

Compute the correlations Corr=0"x(y—6Oxs,);

Update direction dir =0 %O sign(Corr);

Compute J the complementary support of Igarsity

Compute minimum « for condition (C1) and (C2)

Update solution s,=s,+a*xdir;p=p— & LIparsity = supp(sp).
End Iteration

(¢* —minimization with homotopy deformation)

For the numerical experiments, we have used 5 speech data s of 2 to 5s,
recorded by a microphone and sampled at 16 kHz. All signals were normalized,
and after that the following noise level o = 0.05 * norm(© * s)/sqrt(P) was
applied. We used P = round(N/4) where N = size(s). The distorted measure-
ments where defined by the expression y = @ * s 4+ ¢ * randn(P,1) as in [5].
These measurements were the input for our algorithm.

In Fig. 1, we displayed 6 iterations of the algorithm to visualize the homotopic
progression towards the correct restoration. For clarity reasons, only the first
2000 samples of the speech signal are shown.
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Fig. 1. First 6 iterations of the homotopy algorithm (orginal in red, recovered in blue)
(Color figure online)

Even though the application of the algorithm provides a complete recovery
of the original speech recording, a drawback is the large number of iterations.
In our experiments, we managed to recover the 5 speech data, with a number
of iterations proportional with almost half the size of the signal, depending on
the distortion applied. In comparison with other ¢! —minimization methods like
the iterative shrinkage-thresholding, proximal gradient or augmented Lagrange
multiplier, the homotopy achieves the best accuracy, even though, as mentioned
before, in terms of speed, the homotopy takes longer time to converge when the
distortion is high. But since speech recognition is usually a sensitive issue, the
accuracy degree of the reconstruction made us confident in the utility of the
proposed algorithm.

4 Conclusions

In this report, we presented the results of speech restoration using the basis
pursuit algorithm in a sparse Gabor frames scenario, enhanced with a topology-
inspired procedure entitled the homotopy-continuation method. The method
allows a complete recovery of a speech recording with missing samples or clipped
but with a high computational cost given by a large number of iteration neces-
sary. Further parallelization of the algorithm are considered by the authors.
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trian Science Fund (FWF): project number P27516.
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