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Abstract. Nowadays, the weight of the generation of 
renewable energies has grown spectacularly with regard to 
other conventional energies. This is due to diverse factors: a 
bigger environmental concern (Kyoto protocol, white-book in 
EU, etc.), the raising prices of the traditional fuels, etc. On the 
other hand, wind power has experienced a bigger grown, among 
the renewable energies. That is why the development of an 
effective tool for the design and lay-out of wind farms has a 
special relevance. 
 
This paper present a mix of evolutionary algorithms to look for 
the optimum integral design of the wind park taking into 
account all the part involved: number of wind generators, the 
type and the height of the wind generators, its location, the 
number and location of substations, the best layout of low-
voltage and high-voltage lines among wind generators, 
substations and the existing transmission lines, etc. 
 
Due to problem complexity, and as a first approach, the global 
optimization problem has been splitted in two main (uncoupled) 
parts, first the wind generators lay out and then the network 
configuration. 
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1. Introduction 
 
The profitability of a wind farm installation investment 
depends on three main economical terms: initial 
investment, cost of operation and sale of the product (the 
generated electrical energy). In the case of a wind farm 
installation, these three economical investment 
components are difficult to evaluate, even simplifying the 
problem, because each term depends of a lot variables 
interrelated. Each type of wind generator has a different 
economic cost, but each one of them generates a different 
power. The individual wind turbine location affects the 
investment (foundations and interconnection), the 
interconnection, for example, affects the operation costs, 
and the wind generators lay-out to the potential electrical 
energy generation.  
 
The objective of this communication presents the 
development of a new tool for the optimum design of 

wind farms. The optimization criterion, as in any 
economical investment, is the investment in the wind 
farm installation. The investment must be as profitable as 
possible. 
 
Due to the complexity of the problem, and as a first 
approach, the global problem has been splitted in two 
main optimization sub-problems: 
 
• Optimum wind generators lay out.  
• Optimum wind farm network configuration.  
 
From the economic point of view, the first problem, the 
wind generator sitting, is the most significant, as it is 
responsible of most part of the investment and it more 
affects to the production [1-3]. The second problem is 
similar to the design of a new radial network [4-7]. Both 
problems have been analyzed by means of economic 
functions that allow comparing the different terms related 
to the wind farm design and operation from the park.  
 
After this introduction, the article has been structured in 
four parts. The following two sections introduce both 
sub-problems. A study case is analyzed in the following 
section and finally the main conclusions are summarized. 
 
2. A genetic-evolutive algorithm for wind 

turbine optimum sitting 
 
The objective function of the first problem is the 
maximization of the net present value (NPV). The NPV 
is used as an index to analyze and evaluate the 
profitability of the investment. This economic factor is 
usually used as an index that reveals if an investment is 
profitable or not. 
 
The fitness function (NPV) can take a value positive, 
negative or null, corresponding to a profitable, not 
profitable or indifferent solution, respectively. 
 

)(
)1(
)(

1
)(

),,( 1 xIC
i
xN

i
xN

tixNPV t
t −
+

++
+

= L

 
 
Where 

https://doi.org/10.24084/repqj05.354 645 RE&PQJ, Vol. 1, No.5, March 2007



IC: Initial capital investment 
Nk: Net cash flow at year k 
i: Discount rate (capital cost) 
x: State vector with the location and height of wind 
generators 
t: Number of years spanned by the investment 
 
The net cash flow at year (Nk) is the value of the energy 
generated by all the wind generators in the year k.  
 
The initial capital investment is worked out from the 
wind generators, the tower and the installation costs. 
 
Therefore, the maximization of the NPV means the 
minimization of the investment and the maximization of 
the net cash flows (to maximize the generation of 
energy). Both terms depends on the number and type of 
wind generators and their tower height and position.  
 
An evolutive algorithm is proposed to maximize the NPV 
function. Previously is necessary to calculate the energy 
generated in a year, taken into account the type and tower 
high of the generators, and the wind distribution at the 
wind farm allocation [8]. This problem is rather complex, 
non-linear and no derivable. So an evolutive algorithm 
seems to be very suitable to solve it. 
 
Genetic algorithms are robust algorithms that find the 
minimum or the maximum of a function [9-10]. These 
algorithms use multiple directions of search instead of the 
only one direction, and use to work with a codified 
structure of the variables instead of his real values. 
 
The genetic algorithms are basically a mechanism of 
search based on the species evolution. This evolution is 
based on the natural selection and survival of the 
individuals best adapted in relation to the fitness 
(objective) function. A genetic algorithm is an iterative 
process where the population is evolving and where all 
the individuals are possible solutions of the problem. The 
initial population can be settled heuristically or randomly. 
From this initial population the parents are selected. 
These parents, by means of crossings and mutation 
operations, give place to the following generation. The 
evolution used in this work is partially elitist because is 
always included the best individual of the previous 
population in the following generation. This way the 
population evolves towards the optimum solution of the 
problem.  
 
An evolutive algorithm (EA) has been used to solve the 
placement and features of the wind generators. Five types 
of crossover operators have been developed: simple 
crossover, average crossover, union crossover, mixed 
union crossover and interchange crossover. 
 
Once the crossovers have been done, the resulting 
solutions are mutated. When the population is confined in 
a local maximum, this operator leads to the creation of 
individuals out of this zone of local maximum looking 
for the global maximum. A regenerative algorithm is 
applied turning the unfeasible individual in feasible. 
 

Genetic algorithms are robust optimum search techniques 
that find the minimum or the maximum of a function 
based on principles inspired from the natural genetic and 
evolution mechanisms observed in the nature. These 
algorithms use multiple paths of search instead of single 
point, using encoded solutions to the problem (variable 
values or genotypes), instead of their real values. Their 
main principle is the maintenance of a set of encoded 
solutions (population) that evolves in time, guiding the 
population towards the optimum solution [11]. They are 
based on the continuous Darwinian improvement cycle of 
evaluation, selection and reproduction of the best 
individuals. The initial population can be settled 
heuristically or randomly [10]. Genetic reproduction is 
performed by means of a few basic genetic operators, 
mainly crossover and mutation, that recombine highly fit 
individuals (best solutions). Evaluation is performed by 
means of a specific objective (fitness) function that 
depends on each particular optimization problem and is 
the objective function of the genetic algorithm. Individual 
selection is performed according to a selection strategy 
that chooses parents with probability proportional to their 
relative worth (fitness) and explores the solution space 
looking for better and better solutions.  
 
As can be seen, genetic algorithms are, basically, 
mechanisms of search based on the species evolution. 
This evolution is based on the natural selection and 
survival of the best-adapted individuals, objectively 
evaluated with the fitness function.  
 
A. Codification 
 
An integer codification has been used to codify every 
possible solution of the problem. This integer 
codification has been made by means of a matrix 
formulation, where every column represents the 
characteristics of a wind generator, and every row 
represents: position of the wind generator in Cartesian 
coordinates (Xi,Yi), type of wind generator (Ti) and tower 
height (Hi) that constitute an individual solution. 
 
The type of wind generator will be codified with a 
number, which will be the index in the generator database 
that uses the algorithm as an input. The above-mentioned 
database will content all the necessary information of the 
wind generators that can be installed in the wind farm 
(i.e. maximum and minimum height of the towers, capital 
cost, curve power-wind speed). Therefore, these matrixes 
have a variable number of columns, depending on the 
number of generators required by the codified individual 
solution, as shown in Fig. 1. 
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Fig. 1. Codification of an individual. 
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A family is represented by a set of individuals. Each 
individual in a family is codified as a 4xkn integer matrix 
(Fig 2.), being kn the number of wind generators that 
constitute the individual solution (that could be variable 
k1, k2… kn). Note that it is possible to find out 
individuals within a family with different number of wind 
generators, being necessary to assure this variability 
during the evolution of the EA. For this purpose, specific 
operators for crossing and mutation have been developed. 
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Fig. 2. Codification of a family. 
 
B. Crossover operators 
 
The crossover operator is applied on two selected 
individuals, called parents. The selection method used is 
known as roulette wheel. With this selection technique, 
the probability for any individual to be selected is 
directly proportional to its fitness. Once two individuals 
are selected, they are penalized in order to have less 
probability of being selected again.  

Five types of crossover operators that are applied in a 
randomly way have been developed. These operators can 
be described as follows. 

Simple crossover. This simple operator interchanges parts 
of the parents to create the children. As the length of the 
individuals does not have to be equal, breaking points, 
inside the range of the smallest individual, have to be 
chosen, as can be seen in Fig. 3. 
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Fig. 3. Simple crossover. 
 
Average crossover. In this crossover operator, the parents 
are arithmetical averaged between them, so their 
chromosomes are not interchanged. In this case, it is not 
necessary to choose any breaking point.  
 
If the parents are different sized, then the children are 
averaged between the smallest parents with a part of the 
biggest. So, the size of the son will be the minor size of 
the parents, as can be seen in Fig. 4. 
 

 
Fig. 4 Average crossover. 

Union crossover. This operator joins the parents, so that 
the size of the son is equal to the sum of the parents' size. 
So, the union is a concatenation of the parents, as can be 
seen in Fig. 5. 

 
Fig. 5. Union crossover. 

 
Mixed union crossover. This operator is similar to the 
simple crossover. However, the breaking points are 
different for every parent. The difference is that the sizes 
of the sons are different from the parents, as can be seen 
in Fig. 6.  

 

 

 

 
Fig. 6. Mixed union crossover. 

 
Interchange crossover.  
The last crossing operator interchanges elements of the 
parents, applying a random mask. In this case, multiple 
breaking points are chosen. The mask is a matrix of zeros 
and ones, where ones indicate the elements to be 
interchanged and the size corresponds to the smallest 
parent one (Fig. 7). 

 

 

 
 

Fig. 7. Interchange crossover. 
 
 
C. Mutation operator 
 
Since during the evolution (from the initial population to 
the optimum solution) accomplished by the algorithm 
must lead the natural selection that crosses individuals 
over the randomness introduced by the mutation, the 
probability that the mutation operator acts on an 
individual must be small. Nevertheless, the mutation is an 
important instrument, because allows to create 

+ = 

H2
T2
Y2
X2

H2
T2
Y2
X2

H1
T1
Y1
X1

H1
T1
Y1
X1

H1a
T1a
Y1a
X1a

H1a
T1a
Y1a
X1a

H22H12
T22T12
Y22Y12
X22X12

H22H12
T22T12
Y22Y12
X22X12

H22H21
T22T21
Y22Y21
X22X21

H22H21
T22T21
Y22Y21
X22X21

H12H11
T12T11
Y12Y11
X12X11

H12H11
T12T11
Y12Y11
X12X11

H21H11
T21T11
Y21Y11
X21X11

H21H11
T21T11
Y21Y11
X21X11==++

H2
T2
Y2
X2

H2
T2
Y2
X2

H1
T1
Y1
X1

H1
T1
Y1
X1

+ =
H2H1
T2T1
Y2Y1
X2X1

H2H1
T2T1
Y2Y1
X2X1

https://doi.org/10.24084/repqj05.354 647 RE&PQJ, Vol. 1, No.5, March 2007



individuals different from the previous population. When 
the population is confined in a local maximum, this 
operator leads to the creation of individuals out of this 
zone of local atraction. This way the EA evolves towards 
the global maximum. 
 
When a mutation operator acts on an individual, some of 
it characteristics are modified. A mask selects the 
properties that are going to change, like in the 
interchange crossover. Every property (position, type of 
machine or height) can change around its original value 
randomly, but in a limited way (Fig. 8).  
 
As expected, after the operations of mutation or 
crossover, not valid solutions can be created. For 
example, a wind generator could be place out of the zone 
of study, or the tower height is incompatible with the 
type of machine, or several wind generators could be 
place at the same position, etc. In all these cases, a 
regenerative algorithm is applied turning the unfeasible 
individual into a feasible one. 
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Fig. 8. Mutation operator 
 
Finally, when the best individual does not change in a 
number of generations, the EA is stopped. 
 
3. A hybrid evolutive algorithm for wind 

farm optimum network design  
 
Taking as a starting point the previously existing high 
voltage lines and the location of the wind generation 
points, the algorithm must try to find, looking for the 
minimum cost, the optimum number and location of the 
substations, the best layout of the high-voltage lines 
between the substations and the existing lines, and the 
best layout of the low-voltage lines between the 
substations and the individual wind generation points. At 
the same time, the solution layouts must fulfil all the 
restrictions about prohibited areas affected with legal, 
safety, ecology or building limitations.  
 
The total cost considers three main terms, namely high-
voltage network cost, substation cost and low-voltage 
grid cost:  
 

CostLVCostSBCostHVCostTotal ++=  
 
The high and low voltage lines’ costs consider:  
 
• The connection costs at the beginning and at the end 

of the line (CA, CB). They are present in each section 
and their value depends on the line voltage.  

• The installation costs (CHVf, CLVf). They consider the 
material costs and the human resources costs. They 
mainly depend on the line length.  

• The variable costs (CHVv, CLVv). They consider the 
exploitation costs and mainly depend on the line 
length and the power flow. 

 
So, high and low voltage lines' costs can be expressed as: 
 

( )( )∑ ++=
LinesHV

llHVvHVfA LengthPCCCCostHV
 

( )( )∑ ++=
LinesLV

ilLVvLVfB LengthPCCCCostLV
 

The substation costs consider: 
 
• The building costs for the transformer substations 

(CCO). These costs are constants; however they are 
part of the optimisation problem because the number 
of substations is unknown.  

• The transformer LV bus costs (CSB). Each low-
voltage line is connected with a transformer LV bus.  

 
So, the substation cost can be expressed as: 
 

( )∑ +=
sb

COSBi CCBusCostSB
 

In order to solve this coupled problem, a hybrid method 
is proposed. This method calculates the location of the 
substations and the low voltage distribution sequentially. 
An evolutive algorithm calculates the low-voltage 
distribution grid and works with a numeric method that 
places the substations. 
 
A. Evolutive Algorithm 
 
A previously mentioned, genetic algorithms are robust 
algorithms that find the minimum or the maximum of a 
function [5,6]. These algorithms use multiple directions 
of search instead of the only one direction, and use to 
work with a codified structure of the variables instead of 
his real values. 
 

1) Codification  
 
An evolutionary algorithm is used to find the optimum 
layout of the low voltage lines. It uses the following 
codification: each every possible solution of the problem 
is represented by means of a vector, Ai, as shown in Fig. 
9. The size of Ai is 2np (twice the generation points). The 
first np elements are a permutation of the np wind 
generation points and the second np elements codify the 
connection points. The aij and aij+np elements of Ai are 
related and they represent the wind generators and its 
connection, respectively. When one of the second np 
elements is a positive number (aij+np > 0) means that the 
wind generator (aij) is connected to a substation. To 
indicate that the connection is to another point, a negative 
(aij+np < 0) number is used. 
 
To maintain the radial structure of the network, the 
connections between points are limited: each point only 
can be connected with a previous point of its 
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permutation. For example, for example ai j+np = -4 means 
that the point j of the permutation is connected with the 
fourth point of this permutation. ai j+np = 4 means that the 
point j of the permutation is connected with the 
substation 4. These conditions limit the values of ai j+np to 
the array :{ -j+1, -j+2, ..., -1, 1, 2, ..., ns}, when ns is the 
number of substations. An example of this codification is  
shown in Fig. 9. 
 
This codification system always generates a radial 
structure in the network, avoiding spending time in a later 
checking process. Besides, this codification does not 
consider neither the coordinates of the substations nor 
their connections to the high-voltage lines. The criterion 
is to have, at most, the same number of substation as 
existing lines, and the substation k is connected to the k 
line. This codification is enough to run the genetic 
algorithm to calculate the exact coordinates of the 
substations, as will be shown later.  

 
Fig. 9. Individual codification and crossover. 

 
 

2) Selection and crossing operators 
 
The crossover operator is applied on two selected 
individuals, namely parents. Genetic algorithms are 
basically a mechanism of search based on the species 
evolution. This evolution is based on selecting the 
individuals whose characteristics will be present in the 
next generation.  
 
The choice of the function that relates the cost of a 
solution with the probability of this selection is not 
trivial. In this paper the individuals are ordered by their 
goodness and each individual is crossed with the 
following individual. In this way, once the percentage of 
individuals to eliminate in a generation is fixed (tax of 
elimination), it is possible to know the individuals to 
cross. 
 
The crossover process is simple: a randomly generated 
number between the number of wind generators, np, and 
2np-1 is selected. This number is used as the start 

position to begin the interchange of digits inside the array 
of numbers that represent the solution. When the position 
is bigger than the number of wind generators the 
interchange will be out of the permutation area.  

This crossover procedure generates two "children" 
solutions. The first one is a copy of the first elements (up 
to the crossing position) of the first "parent" solution. The 
rest of elements are the last elements (from the crossing 
position to the end) of the second "parent" solution. The 
elements of the second "child" solution are the elements 
discarded in the first one. 

One example of this crossover procedure is showed in 
Fig. 9, where the randomly selected position is number 5. 
It is possible to see than the children have characteristics 
from the parents and one's own thanks to the crossing. 
Different rates of crossing, between 50 % and 100 %, 
have been used in the proposed algorithm, and the best 
results have been obtained with a tax next to 75 %. 
 

3) Mutation operator 
 
Once the crossovers have been done, the resulting 
solutions are mutated. Two random numbers are used to 
perform the mutations. The first set the individual to be 
mutated, while the second set the individual’s gene to be 
mutated. It is interesting to point that one of the copies of 
the best individual is not allowed to mutate. This is done 
in order to keep the best solution. 

The mutation operation is performed depending on the 
gene’s position: 

a) If the gene belongs to the ones that set the 
generation point (i.e., subjected to permutation), other 
random number lesser than np is generated and the 
mutation operation interchange the points placed at those 
positions. As an example, in Fig. 10 the gene to be 
mutated is number 3, so a random number, 1, must be 
generated.  

 
Fig. 10. Mutation operator. 

 

b) If the gene belongs to the group that set the 
connections of the wind generators, a guided mutation is 
performed. This way, certain favourable branches are 
given a higher probability. To do that, each possible 
mutation fitness is computed in an approximate way. 
 
The probability of the mutation operator acting on an 
individual is small as during the evolutive algorithm must 
dominate the natural selection (that crosses individuals) 
over the randomness (created by mutation). Nevertheless, 
the mutation is important since it allows create different 
individuals from the previous population. When the 
population is confined in a local maximum, this operator 
leads to the creation of individuals out of this local 
maximum. This way the evolutive algorithm evolves 
towards the global maximum. Finally, when the best 
individual does not change in a number of generations, 
the evolutive algorithm is stopped. 
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4) Repetition operator  
 
Due to the nature of the problem, branches can only be 
included from the farthest points to the nearest points. In 
consequence, the solution is very influenced by the 
codification of wind generators' position (the three first 
digits in the individual codification, Fig. 9-10). To avoid 
that situation, the best individual is copied changing the 
codification form. In the first solution, the points are 
ordered depending on the distance form the point to the 
nearest substation, starting from the first substation and 
finishing by the last. In the second solution, the points are 
ordered in the same way, but this time inverting the 
previous order. This way, each point has the same 
probability to change of substation. 
B. Substations placement 
 
To evaluate the cost associated to each solution it is 
required to set the optimal substations placement from 
the information generated by the genetic algorithm. The 
coordinates of the substation k, (x0k,y0k), are chosen in 
order to minimize the following cost, 
 
CHVv, CHVf: Fixed and variable costs related to HV 
CLVv, CLVf: Fixed and variable costs related to LV 
Pk: Power transformed by the substation 
Pj: Power injected at node j 

: Distance from the 
substation coordinates 
(x0k,y0k), to the HV line 
(akx + bky = ck). 

: Distance from 
substation to wind 
generator/node j.  

 
As can be seen, the whole LV route is not needed. Only 
the generators connected to the substation and its power 
are needed. It must be observed that the function cost 
includes the fixed and variable cost related to the HV line 
(from the HV line to the substation) and the cost related 
to the LV line (form substations to wind generators). The 
costs of every transformer substation bus are included in 
the main algorithm. The fixed costs related to the 
beginning and end of the HV and LV lines are not 
considered because they are constant and do not 
determine the substation placement. 
 
The process to compute the coordinates x0k and y0k, is not 
especially difficult but is very time consuming, especially 
when it must bee repeated a high number of times. So, 
this coordinates are only computed in the last generation 
of the genetic algorithm. Previously, an approximated 
value is considered. This approximation is based on the 
electric gravity centre, (xgc, ygc), defined as: 
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Pi: Power injected at node i 
CLVf: LV fixed costs related to the conductor path and 
poles 
CLVv: LV variable costs related to line power losses 

Taking into account the electric gravity centre, three 
possible substation placements are considered: 
 
a) The intersection point between the HV line and the 
perpendicular from the gravity centre, (xL,yL), as shown 
in Fig. 11a. 
b) The same gravity centre coordinate, (xgc,ygc),  as in 
Fig. 11.b. 
c) A point between both, (xI,yI), as in Fig. 11c. The 
position is calculated as a result of the following 
weighting between the HV and the LV costs. 
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Pi: Power injected at node i 
Nb: Number of branches 
CLVf: LV fixed costs related to the conductor path and 
poles 
CLVv: LV variable costs related to line power losses 
CHVf: HV fixed costs related to the conductor path and 
poles 
CHVv: HV variable costs related to line power losses 
 

Fig. 11. Substation placement. 

 
The placement with the minimum value of Zk is chosen. 
This computation is repeated for each active substation. 
When a main line is overloaded, exceeding its maximum 
transmission power flow, a penalty is added to the total 
cost. 
 
C. Forbidden zones 
 
The optimum configuration of the wind power 
distribution network could be limited due to the setting of 
certain "forbidden zones" were the presence of the grid is 
not allowed (i.e., physical obstacles in the path, presence 
of buildings or safety and other regulations). The 
treatment will be different depending on the voltage 
level. 
 
• A HV branch crossing through a forbidden zone. The 

connection between the origins to the target points is 
redesigned getting around the forbidden zone.  

• A LV branch crossing through a forbidden zone. The 
genetic algorithm set the probability of any branch 
that crosses a forbidden zone to null (in the initial 
solution generation and the mutations). This does not 
avoid the possibility that, after a crossing operation, 
one of those forbidden branches appears. So, the 
evaluation of the solutions must test the presence of 
this kind of violations. When the presence of one of 
these forbidden branches is detected, its cost is 
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doubled. Other constrains such as thermal limits and 
voltage drops are considered by penalties. 

 
4. Test case  
 
The case selected is a plane area with a main road as is 
shown in the Fig. 12 (red line). The cost considered for 
the main road are 50.000 € and a coefficient of 700 €/m 
for secondary roads. The distribution of the wind is as 
shown in Fig. 13. 
 
The shape parameter has been considered the same for all 
locations (K=5). 
 
Figure 14 shows a Weibull approximation of the wind 
speed histogram (frequency or percentage of time), 
measured at 50 m height. The scale and shape parameter 
are C = 14 m/s and K =5, respectively. 
 
The features of the considered wind turbine are shown in 
the Table I, including the wind speed-power 
characteristic. 
 

 
Fig. 12. Land selected for establisment of the Wind Farm. 

 
 

 
Fig. 13. Distribution of the wind. 

 
Figure 15 shows the best solution found and the cost of 
the Wind Farm without taken into account the cost of the 
conection network. 
 

 
Fig. 14. Weibull approximation of the wind speed histogram. 

 
Table I. Features of the machine considered. 

 
 

 
 

Fig. 15. Best solution for the wind turbine sitting problem. 
 
For the optimum network design, two HV evacuation 
lines are considered as is shown in the Fig. 16. 
 

 
Fig. 16. Generator points, main road and existing HV lines. 
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For this optimum case, the considered costs are: 
 
• The connection costs at the beginning and at the end 

of the line (CA, CB):  CA= 6000 €; CB= 6000 €. 
• The installation costs (CHVf, CLVf): CHVf= 60000 €; 

CLVf= 6000 €. 
• The variable costs (CHVv, CLVv):  CHVv = 6000 €/km; 

CLVv = 9000 €/km. 
• The substation costs: CSB = 240000 €. 
 

Table II. Distribution of the network cost. 
 

Section Start End Power 
(kW) 

Length 
(m) 

Total  
Cost 
(€) 

Variable 
Cost 
 (€) 

Fixed 
Coste 

(€) 
1 1 2 600 100 7140 540 6600 
2 2 3 1200 410 12930 4450 8470 
3 3 Sb1 3000 200 12600 5400 7200 
4 4 3 600 200 8280 1080 7200 
5 5 3 600 140 7610 760 6850 
6 LAT 2 Sb1 - 0 6000 0 6000 

 

 
 

Fig. 17. Optimum wind farm network design. 
 
Figure 17 shows the optimum network configuration 
found and Table II shows the cost components. 
 
5. Conclusion  
 
Although wind farm design is a well known problem its 
solution used to be heuristic, based on the designer 
experience. In this work the global optimization wind 
farm design problem has been splitted in two main 
(uncoupled) sub-problems. The first steep is the optimum 
wind turbine sitting and the second, the optimum wind 
farm network configuration. 
 
The first problem, selection and placement of the wind 
turbines, has been solved with an evolutive algorithm. 
This algorithm can set the layout of a wind farm with 
minimum investment and most efficient use of the wind 
resource. To reach this goal, the algorithm should be able 
of choosing, among the available wind turbines, the one 
that offer better performance with a smaller price for the 
available data wind. Three main cost components have 
been taken into account for every wind turbine. First, a 

fixed cost associated to the own machine. A second 
component related to the variable tower height (meters), 
and finally, the installation component, depending on the 
generator location.  
 
The second problem, the wind farm optimum network 
design, has been solved with a hybrid numerical – 
evolutive algorithm method. The numerical method 
designs the HV installation, while the LV is calculated 
with an evolutive algorithm.  
 
The proposed algorithms consider the fixed and variable 
costs associated to the solution, along with the problem 
constrains.  
 
As a result, a global two-steeped method has been 
developed which is able to profit the wind farm 
investment in an optimum form. 
 
Acknowledgement 
 
The authors would like to acknowledge the financial 
support provided by Spanish MCYT and Junta de 
Andalucía, under grants ENE2004-03342/CON, 
DPI2002-04416-C04-02  and ACC-1021-TIC-2002. 
 
References 
 
[1] N. Jenkins, "Electrical Design of Wind Farms", Proc. 

IEEE/NTUA Athens Power Tech Conference, Athens, 
Greece, pp. 990-994, Sep. 5-8, 1993. 

[2] N. Jenkins, "Engineering Wind Farms", Power 
Engineering Journal, pp. 53-60, April, 1993. 

[3] J. Castro Mora, J.M. Calero Barón, J.M. Riquelme Santos, 
M. Burgos Payán. "An evolutive algorithm for wind farm 
optimal design". Special Issue on Electrical Engineering of 
Neurocomputing NEUCOM-D-05-00328R2, Elsevier. 

[4] El-Khattam, W.; Bhattacharya, K.; Hegazy, Y.; Salama, 
M.M.A. "Optimal investment planning for distributed 
generation in a competitive electricity market", IEEE 
Transactions on Power Systems, Volume 19,  Issue 3,  
Aug. 2004, pp. 1674 – 1684. 

[5] El-Khattam, W.; Hegazy, Y.G.; Salama, M.M.A. "An 
integrated distributed generation optimization model for 
distribution system planning",  IEEE Transactions on 
Power Systems, Volume 20,  Issue 2,  May 2005, pp. 
1158–1165. 

[6] Ponnavaikko, M., Prakasa Rao, K.S., and Venkata, S.S.: 
"Distribution system planning through a quadratic mixed 
integer programming approach", IEEE Trans. Power 
Delivery, 1987, 2, (4), pp. 1157–1163. 

[7] Thompson, G.L., and Wall, D.L.: "A branch and bound 
model for choosing optimal substation locations", IEEE 
Trans. Power Apparatus and Systems, 1981, 100, (5), pp. 
2683–2688. 

[8] S. Heier, "Grid integration of wind energy conversion 
systems", John Wiley and Sons, 1998. 

[9] D.E. Goldberg, "Genetic algorithms in search, 
optimization and learning", Addisson-Wesley Pub. Co. 
Inc, 1989. 

[10] R. Spillman, "Genetic algorithms, nature´s way to search 
for the best". Dr. Dobb´s J 1993:26-30 

[11] J.J. Grefenstette, "Optimization of Control Parameters for 
Genetic Algorithms", IEEE  Trans. On Systems Man, And 
Cybernetics, vol. SMC-16, pp. 122-128, Jan./Feb. 1986. 

 

https://doi.org/10.24084/repqj05.354 652 RE&PQJ, Vol. 1, No.5, March 2007




