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Summary. In this work we revisit the basic concepts, definitions of computational com-
plexity theory in membrane computing. The paper also discusses a novel methodology
to tackle the P versus NP problem in the context of the aforementioned theory. The
methodology is illustrated with a collection of frontiers of tractability for several classes
of P systems.

1 Introduction

At the end of 1998, the first foundations of a new computational paradigm, called
Membrane Computing, inspired by some basic biological features of living cells,
as well as in the cooperation of cells in tissues, organs and organisms, were in-
troduced by Gh. Păun [20]. The seminal paper was focused on the study of the
computational completeness (i.e. to be equivalent in power to Turing machines) of
the models, generically called membrane systems, considered: transition P systems,
P systems based on rewriting and splicing P systems. In particular, a transition P
system consists of a collection of unit processors, called membranes, hierarchically
structured by means of a rooted tree. These membranes delimit regions containing
multisets of objects which can evolve according with some prefixed rewriting rules,
being applied in a non-deterministic an maximally parallel way.

Aspects related to the computational efficiency (i.e. the ability to provide
polynomial-time solutions for computationally hard problems by making use of
an exponential workspace constructed in a natural way) were first analyzed in
1999 with the introduction of a new computing model, called P system with active
membranes [21]. These systems are non-cooperative (the left-hand side of any rule
consists of only one object) and their membranes play a relevant role in compu-
tations to the extent that new membranes can be created by division rules. The
membranes of these systems are supposed to have one of the three possible electri-
cal polarizations: positive, negative or neutral. In this context, an ad-hoc solution
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to the satisfiability problem (SAT) by means of such kind of P systems, was given.
Specifically, a P system with active membranes which makes use of simple object
evolution rules (only one object is produced for this kind of rules), dissolution
rules and division rules for elementary and non-elementary membranes, is associ-
ated with every instance ϕ of SAT. Thus, the syntactic structure of the formula
is “captured” by the description of the system and, furthermore, in this context
a P system can only process one instance of the problem. The provided solution
runs in linear time with respect to the input length of ϕ, that is, the maximum
of number of variables and number of clauses of the formula ϕ. In [33], a similar
ad-hoc solution to the SAT problem by means of P system with active membranes
but without dissolution rules which makes use of division rules only for elementary
membranes, was provided. In this situation, different instances of the SAT problem
having the same number of variables and the same and number of clauses, will be
processed by different membrane systems.

In order to define in a formal way what solving a decision problem means,
basic recognizer transition P systems (initially called decision P systems) were
defined [26]. In this context, the computational efficiency of this kind of membrane
systems was studied. With this respect, two interesting results were established [5]:

– Every deterministic Turing machine working in polynomial time can be simu-
lated in polynomial time by a family of basic recognizer transition P systems.

– If a decision problem is solvable in polynomial time by a family of basic rec-
ognizer transition P systems, then there exists a deterministic Turing machine
solving it in polynomial time.

Consequently, only problems in class P can be efficiently solved by basic recog-
nizer transition P systems. Then, in order to provide polynomial-time solutions
to computationally hard problems, it was necessary to consider new kinds of rules
able to increase the number of membranes during a computation. Specifically, the
membrane systems should have the ability of trading space for time by providing
an exponential workspace (expressed in terms of the number of objects and the
number of membranes) in polynomial (often, linear) time. In order to implement
this capability in models of Membrane Computing, different mechanisms have been
considered inspired by the cellular mitosis (division rules), autopoiesis (creation
rules) or membrane fission (separation rules), among others.

Let us recall that an abstract problem can be solved by using a single Turing
machine, that is, for every instance of the problem the Turing machine with input
that instance returns the correct answer. This is due to the fact that these machines
have an unlimited and unrestricted memory since its tape is infinite (consists on
infinite cells). Bearing in mind that the ingredients necessary to define a membrane
system are finite, an abstract problem should be solved, in general, by a numerable
family of membrane systems in such manner that each one of them is in charge of
processing all the instances with the same size. However, some decision problems
can be solved by means of a single membrane system.
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2 Preliminaries

The present work is developed within the framework of P systems with active
membranes. In order to make this paper self-contained, let us introduce next some
preliminary concepts which will be used in the sequel.

2.1 Languages and Multisets

An alphabet Γ is a non-empty set whose elements are called symbols. A string u
over Γ is a mapping from a natural number n ∈ N onto Γ , that is, a finite sequence
over Γ . A language over Γ is a set of strings over Γ .

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a
finite set. We denote by M(Γ ) the set of all multisets over Γ .

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1+m2, is the multiset (Γ, g), where g(x) = f1(x)+f2(x) for each
x ∈ Γ . The relative complement of m2 in m1, denoted by m1 \m2, is the multiset
(Γ, g), where g(x) = f1(x)− f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise.

2.2 Decision problems

Usually, complexity theory deals with decision problems. A decision problem, X,
is an ordered pair (IX , θX) such that IX is a language over a finite alphabet
(whose elements are called instances) and θX is a total Boolean function over
IX . A natural correspondence between decision problems and languages can be
established as follows. Given a decision problem X = (IX , θX), its associated
language is LX = {w ∈ IX | θX(w) = 1}. Conversely, given a language L,
over an alphabet Σ, its associated decision problem is XL = (IXL

, θXL
), where

IXL
= Σ∗, and θXL

= {(x, 1) | x ∈ L} ∪ {(x, 0) | x /∈ L}. In this context, the
solvability of decision problems is defined through the recognition of the languages
associated with them. Let M be a (decision) Turing machine (the result of any
halting computation of M is yes or no) with a working alphabet Γ and L is a
language over Γ . If M is a deterministic device, then we say that M recognizes or
decides L whenever, for any string u over Γ , if u ∈ L, then the answer of M on
input u is yes (that is, M accepts u), and the answer is no otherwise (that is, M
rejects u). If M is a non-deterministic device, then we say that M recognizes or
decides L if the following holds: u ∈ L if and only if there exists a computation of
M with input u such that the answer is yes, for any string u over Γ (we say that
M accepts u).

Throughout this paper, it is assumed that each abstract problem has an associ-
ated fixed reasonable encoding scheme that describes the instances of the problem
by means of strings over a finite alphabet. Following [3], instances should be en-
coded in a concise way, without irrelevant information, and where relevant numbers
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are represented in binary form (or any fixed base other than 1). The size |u| of an
instance u can be defined as the length of the string associated with it, in some
reasonable encoding scheme.

2.3 The Graph Reachability Problem and the Circuit Value Problem

A rooted tree is a connected, acyclic, undirected graph in which one of the vertices
(called the root of the tree) is distinguished from the others. Given a node x (dif-
ferent from the root) in a rooted tree, if the last edge on the (unique) path from
the root to node x is {x, y} (so x 6= y), then y is the parent of node x and x is a
child of node y. We denote it by y = p(x) and x ∈ ch(y). The root is the only node
in the tree with no parent. A node with no children is called a leaf of the rooted
tree (see [1] for details).

A decision problem, X, is a pair (IX , θX) such that IX is a language over a
finite alphabet (whose elements are called instances) and θX is a total Boolean
function (that is, a predicate) over IX . We denote by LX the set LX = {w ∈ IX |
θX(w) = 1}.

The REACHABILITY (or accessibility) problem is the following decision problem:
given a directed graph G = (V,E) with two specified vertices s and t, determine
whether or not there is a path from s to t.

There are algorithms solving this problem, for instance, search algorithms
based on breadth-first search or depth-first search. These algorithms determine
whether two vertices are connected in O(max(|V |, |E|)) time. Moreover, they ba-
sically need to store at most |V | items, so these algorithms use O(|V |) space. But
this quantity of space can be reduced to O(log2|V |) by using an algorithm that
could be called middle-first search (see [19] for details, pp. 149-150). In particular,
REACHABILITY ∈ P.

The CIRCUIT VALUE problem is the following decision problem: given a circuit
with no variable gates and where each input gate has an associated Boolean value,
determine whether or not the circuit evaluates to true.

It is well known that the circuit value problem is a P–complete problem (see
theorem 8.1 in [19] for details).

3 Recognizer Membrane Systems

The first foundations of a computational complexity theory in Membrane Comput-
ing were given in [26, 27]. In the seminal paper, the models defined are (cell-like) P
systems with output membrane but without input membrane. Any such P system
has only one initial configuration characterized by the initial multisets over the
working alphabet. In [26], P systems with input membrane wee introduced. These
systems have a distinguished membrane (the input membrane) and an input al-
phabet Σ (strictly contained in the working alphabet Γ ) in such manner that the
initial multisets of the system are multisets over Γ \ Σ. Any P system Π with
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input membrane has many different initial configurations, one for each multiset m
over Σ (the multiset m is added to the initial multiset associated with the input
membrane). In this case, the system Π with input multiset m is denoted by Π+m.

Bearing in mind that the solvability of decision problems is defined through
the recognition of languages, recognizer membrane systems are introduced in the
framework of Membrane Computing.

Definition 1. A recognizer membrane system is a membrane system (with or
without input membrane) such that: (a) the working alphabet Γ contains two dis-
tinguished elements yes and no; (b) in the case of a P system without input mem-
brane, the initial multisets are multisets over Γ , but in the case of a P system with
input membrane, the initial multisets are multisets over Γ \Σ, being Σ the input
alphabet of the system; (c) all computations halt; and (d) if C is a computation of
the system then either object yes or object no (but not both) must have been sent
to the output region of the system, and only at the last step of the computation.

For recognizer P systems, a computation C is said to be an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the output region associated with the corresponding halting configura-
tion of C.

Bearing in mind that every computation in a recognizer membrane system is
a halting computation, the left-hand side of any rule of the system must contains
at least one object.

These concepts are extended in a natural way to tissue-like P systems inspired
by cell inter-communication in tissues. Specifically, if Γ , Σ and E are the working
alphabet, the input alphabet and the alphabet of the environment, respectively,
then E ⊆ Γ \ Σ and the initial multisets of a tissue-like P system are multisets
over Γ \Σ.

4 Solving Decision Problems by Families of Membrane
Systems

The first results showing that membrane systems could solve computationally hard
problems in polynomial time were obtained using P systems without input mem-
brane [6, 21, 33]. This kind of solutions can be considered as special purpose solu-
tions: a specific P system is associated with each instance of the problem in such
manner that the syntax of the instance is part of the description of the P system.

4.1 Semi-uniform solutions

Next, following [26] the special purpose solutions is defined in a mathematical and
we will call it semi-uniform solutions.
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Definition 2. Let X = (IX , θX) be a decision problem and let R be a class of
recognizer membrane systems without input membrane. We say that X is solvable
in polynomial time and semi-uniform way by a family {Π(u) | u ∈ IX} of systems
from R, denoted by X ∈ PMC∗R, if the following holds:

• The family is polynomially uniform by Turing machines, that is, there exists a
deterministic Turing machine working in polynomial time which constructs the
system Π(u) from the instance u ∈ IX .

• The family is polynomially bounded; that is, there exists a natural number k ∈ N
such that for each instance u ∈ IX , every computation of Π(u) performs at
most |u|k steps.

• The family is sound with respect to X, that is, for each instance u ∈ IX , if
there exists an accepting computation of Π(u) then θX(u) = 1.

• The family is complete with respect to X, that is, for each instance u ∈ IX , if
θX(u) = 1 then every computation of Π(u) is an accepting computation.

According with the previous definition:

– We say that the family {Π(u) | u ∈ IX} provides a semi–uniform solution to
the problem X.

– For each instance u ∈ IX , the system Π(u) processes u. Besides, from the
soundness and completeness of the family with respect to the decision problem
X it follows that the system Π(u) is confluent, in the sense that all com-
putations must give the same answer: either all computations are accepting
computations or all computations are rejecting computations.

4.2 Uniform solutions

Next, a new kind of solutions to decision problems by means of families of recog-
nizer membrane systems is introduced. In this context, all instances of the problem
with the same size, via a given “reasonable encoding scheme”, are processed by
the same system to which an appropriate input is supplied.

Definition 3. Let X = (IX , θX) be a decision problem and let R be a class of
recognizer membrane systems with input membrane. We say that X is solvable in
polynomial time and uniform way by a family {Π(n) | n ∈ N} of systems from R,
denoted by X ∈ PMCR, if the following holds:

• The family is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from the number n ∈ N, expressed in unary.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that for each n ∈ N, the set s−1(n) is finite, and for each u ∈ IX , s(u) ∈ N
and cod(u) is an input multiset of the system Π(s(u)).

• The family is polynomially bounded with respect to (X, cod, s); that is, there
exists k ∈ N such that for each u ∈ IX , every computation of the system
Π(s(u)) + cod(u) performs at most |u|k steps.
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• The family is sound with respect to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u) then θX(u) = 1.

• The family is complete with respect to (X, cod, s), that is, for each u ∈ IX , if
θX(u) = 1 then every computation of Π(s(u)) + cod(u) is an accepting compu-
tation.

According with the previous definition:

– We say that the family {Π(n) | n ∈ N} provides a uniform solution to the
problem X and the ordered pair (cod, s) is a polynomial encoding from the
problem X to the family {Π(n) | n ∈ N}.

– For each instance u ∈ IX , the system Π(s(u)) processes u when the input
multiset cod(u) is supplied to the corresponding input membrane. Besides, the
system Π(s(u)) + cod(u) is confluent, in the sense that all computations must
give the same answer (either all computations are accepting computations or
all computations are rejecting computations).

As a direct consequence of working with recognizer membrane systems, these com-
plexity classes are closed under complement. Moreover, it is easy to prove that they
are closed under polynomial-time reductions [28].

Obviously, every uniform solution of a decision problem can be considered as a
semi–uniform solution using the same amount of computational resources. That is,
PMCR ⊆ PMC∗R, for any classR of recognizer P systems. It has been proved that
the concept uniformity solution is strictly weaker than semi-uniformity solution,
for some membrane systems [11].

5 Solving Decision Problems by a Single Membrane System

Definition 4. Let X = (IX , θX) be a decision problem where IX is a language
over a finite alphabet ΣX . Let R be a class of recognizer membrane systems with
input membrane. We say that problem X is solvable in polynomial time by a single
membrane system Π from R, free of resources, denoted by, X ∈ PMC1f

R , if the
following hold:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded with regard to X; that is, there exists

a polynomial p(r) such that for each instance u ∈ IX , every computation of the
system Π with input multiset u performs at most p(|u|) steps.

• The system Π is sound with regard to X; that is, for each instance u ∈ IX ,
if there exists an accepting computation of the system Π with input multiset u
then θX(u) = 1.

• The system Π is complete with regard to X; that is, for each instance u ∈ IX
such that θX(u) = 1, every computation of the system Π with input multiset u
is an accepting computation.

From the previous definition it is easy to prove that PMC1f
R ⊆ PMCR, for every

class R of recognizer membrane systems with input membrane.
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6 New Methodology to Tackle the P Versus NP Problem

Each computing model provides a mathematical definition of the informal idea
of solving abstract problems by means of a mechanical procedure (algorithm).
A computing model which is equivalent in power to Turing machines is called
universal.

An abstract problem is said to be tractable if it can be solved by a deterministic
Turing machine working in polynomial time (the upper bound of computational
resources is polynomial). The complexity class of tractable decision problems is
denoted by P. An abstract problem is said to be intractable if it cannot be solved
by a deterministic Turing machine working in polynomial time (the lower bound
of the computational resources is exponential).

A computing model with the ability to provide polynomial-time solutions to
intractable problems is called efficient. In a non-efficient computing model, only
tractable problems can be solved in polynomial time. It is widely believed that
P 6= NP and so NP-complete problems (the hardest problems in class NP)
are considered as presumably intractable problems. A computing model with the
ability to provide polynomial-time solutions to NP-complete problems is called
presumably efficient.

Given two computing models M1 and M2 we say that M1 is a submodel of
M2, denoted by M1 ⊆ M2, if each solution of a problem in M1 is also a solution
in M2, that is, M2 is an extension of M1 in the sense that M2 can be obtained
from M1 by adding some syntactic or semantic ingredients. If M1 is a non-efficient
computing model and M2 is a presumably efficient one such that M1 ⊆M2, then
the (syntactical or semantic) ingredients allowing to pass from M1 to M2 provide a
frontier between the efficiency and the presumed efficiency, that is, passing fromM1

to M2 amounts to passing from tractability to presumed intractability. Therefore,
it gives us a novel tool to tackle the P versus NP problem as follows:

– In order to show that P = NP, it is enough to find a polynomial-time solution
to one NP-complete problem in M2 and translate it to a polynomial-time
solution in M1, that is, the ingredients added to obtain M2 from M1 do not
play a relevant role in that solution.

– In order to show that P 6= NP, it is enough to find one NP-complete problem
that cannot be solved efficiently in M1, that is, that the ingredients added to
obtain M2 from M1 are crucial to obtain the presumed efficiency.

M1 M2

Non
efficiency

Presumed
efficiency

Fro
ntie

rs



Computational Complexity Theory in Membrane Computing 199

7 Tractability Frontiers in Membrane Computing

In this section, the methodology to tackle the P versus NP problem, previously
described, is applied to the membrane computing paradigm. Specifically, different
frontiers between the non efficiency and the presumed efficiency of membrane
systems are presented.

In the following, the state of art in terms of computational complexity classes
in Membrane Computing is presented in a graphic way. Tractability frontiers can
be observed by comparing the nodes of the graphics. Close nodes in the graphs
mean computing models relatively similar to each other, either by modifying the
length of their rules or by adding or removing some kind of rules.

7.1 P systems with active membranes

P systems with active membranes have a long tradition in computational com-
plexity theory, since they are the first model that was used to provide efficient
solutions to hard problems. Figure 1 summarizes most of the results known
so far about the power of a number of variants of active membrane mod-
els [21, 33, 27, 22, 23, 16, 25, 4].

The different variants of P systems with active membranes mentioned in the
figure are the following:NAM is the class of systems that do not use division rules;
DAM (resp. SAM) is the class of systems using division rules (resp. separation
rules); DAM0 refers to polarizationless P systems from DAM; and BAM stands
for polarizationless P systems using bi-stable catalysts.

More precisely, each node is associated to a complexity class PMCR for a
particular model of P systems, R, according to the following criterion: each “floor”
of this “tower” corresponds to a family of models (as it was just explained), and
the four nodes on each level correspond to the variants allowing or forbidding
dissolution (+d or −d, respectively) and allowing or forbidding division/separation
rules for non-elementary membranes (+ne or −ne, respectively).

It is interesting to focus on the frontiers of presumed efficiency, that is, edges
connecting a non-efficient node (P = PMCR) with an efficient or presumably
efficient node (having PSPACE or DP as a lower bound for PMCR).

7.2 P systems with symport/antiport rules

In this section we display the complexity classes associated with P systems using
only two types of rules: communication of symport/antiport type, and rules for
increasing the number of membranes (division or separation). It is customary (sim-
ilarly to the case of tissue-like P systems) to assume that there is an unbounded
number of available copies of symbols from the environment alphabet. Figure 2
shows the complexity class associated to each variant with respect to k, that in-
dicates the maximum length allowed for the communication rules [9, 14, 32, 10].



200 M. J. Pérez–Jiménez

(−d,−ne) (−d,+ne)

(+d,−ne) (+d,+ne)

NAM

(−d,−ne) (−d,+ne)

(+d,−ne) (+d,+ne)

DAM

(−d,−ne) (−d,+ne)

(+d,−ne) (+d,+ne)

SAM

(−d,−ne) (−d,+ne)

(+d,−ne) (+d,+ne)

BAM

(−d,−ne) (−d,+ne)

(+d,−ne) (+d,+ne)

DAM0

P = PMCR DP ⊆ PMCR

PSPACE ⊆ PMCR Unknown

Fig. 1. Borderlines of tractability in the framework of P systems with active membranes

The impact of removing the environment on the power of the corresponding class
of P systems is also analyzed [13, 8].
CDC stands for cell-like P systems using symport/antiport rules as well as

division rules; ĈDC is the variant of the previous model without environment.
Analogously, CSC and ĈSC refer to the case where separation rules are used instead
of division. Finally, CC and ĈC stand for the families of P systems using only
communication rules.

Note that if neither division nor communication rules are allowed, then the
model will never be efficient, irrespectively of the length of the rules, and both
with and without environment.

7.3 Tissue P systems with symport/antiport rules

Similar results have been obtained for tissue P systems with symport/antiport
rules (cell division/cell separation) and for cell-like P systems with sym-
port/antiport rules (cell division/cell separation). From this perspective, it seems
that the underlying structure (rooted tree versus directed graph) is not relevant.
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k

ĈDC(k)

CDC(k)

1 2 3 4 5 6 7 k

ĈSC(k)

CSC(k)

1 2 3 4 5 6 7

k

ĈC(k)

CC(k)

1 2 3 4 5 6 7

P = PMCR DP ⊆ PMCR

Fig. 2. Borderlines of tractability in the framework of P systems with symport/antiport
rules

This can be seen by comparing Figure 2 to Figure 3, where the bounds for
complexity classes associated to tissue-like P systems are displayed, again with
respect to the length of communication rules [2, 17, 30, 29, 24, 7].

Note that in this case the level of details goes one step further, since it includes
the analysis of systems where the type of communication rules is restricted to only
symport or only antiport. More precisely, T DC stands for tissue-like P systems

with division rules; T̂ DC is the variant of the previous model without environment.

Analogously, T SC and T̂ SC refer to the case where separation rules are used
instead of division. If the type of allowed communication rules is restricted to only
antiport (resp. only symport), then we can define the corresponding families of P

systems T DA and T SA (resp. T DS and T SS). Finally, T C and T̂ C stand for the
families of tissue-like P systems using only communication rules.

The types of frontiers of presumed efficiency that arise here include: (a) us-
ing only communication, or allowing also division or separation (for systems using
communication rules of length k ≥ 2 or k ≥ 3, respectively); (b) allowing environ-
ment or not (for systems using separation rules and communication rules of length
k ≥ 3); (c) choosing between division or separation rules (for systems without
environment); and (d) the length of communication rules (moving from k = 1 to
k ≥ 2 for systems using division, or moving from k ≤ 2 to k ≥ 3 for systems using
separation).
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k

T DS(k)

T DA(k)

T̂ DC(k)

T DC(k)

1 2 3 4 5 6 7 k

T SS(k)

T SA(k)

T̂ SC(k)

T SC(k)

1 2 3 4 5 6 7

k

T̂ C(k)

T C(k)

1 2 3 4 5 6 7

Unknown P = PMCR DP ⊆ PMCR

Fig. 3. Borderlines of tractability in the framework of tissue P systems with sym-
port/antiport rules

7.4 Tissue P systems with evolutional symport/antiport rules

In this section, we overview some of the most recent results obtained in the field of
computational complexity classes [31, 18, 15, 12]. More precisely, we study tissue
P systems using a modified version of symport/antiport rules, where objects on
two different regions may cooperate to trigger a rule, and the objects produced by
the rule might be placed in any (or both) of these regions.

Figure 4 illustrates the currently known bounds for the complexity classes as-
sociated with tissue P systems with evolutional symport/antiport rules, organizing
the results according to the total length of communication rules. T DEC(k) stands
for Tissue P systems with evolutional symport/antiport rules of length bounded

by k and division rules; T̂ DEC(k) is the subclass of the previous family where
the alphabet of the environment is empty; analogous definitions for T SEC(k) and

T̂ SEC(k), using separation rules instead of division.

k

T̂ DEC(k)

T DEC(k)

1 2 3 4 5 6 7 k

T̂ SEC(k)

T SEC(k)

1 2 3 4 5 6 7

Unknown P = PMCR DP ⊆ PMCR

Fig. 4. Borderlines of tractability in the framework of tissue P systems with evolutional
symport/antiport rules with respect to the length of the rules.

Since this type of rule seems very powerful, it is natural to try to minimize the
cooperation by restricting the length of the rules.
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More precisely, in Figure 5, the tractability and presumable efficiency of the
complexity classes associated to the corresponding variants of tissue P systems with
evolutional symport/antiport rules and division (or separation) rules is illustrated,
according to two parameters: length of the left-hand side, k1, and length of the
right-hand side, k2. Note that the environment does not play a relevant role with
respect to the power of these systems.

T DEC(k1, k2)/T̂ DEC(k1, k2) T SEC(k1, k2)/T̂ SEC(k1, k2)

k1

k2

1 2 3 4 5 6 7

1

2

3

4

5

6

7

k1

k2

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Unknown P = PMCR DP ⊆ PMCR

Fig. 5. Borderlines of tractability in the framework of tissue P systems with evolutional
symport/antiport rules with respect to the length of the left-hand side, k1, and length of
the right-hand side, k2.
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7. L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font,
L. Valencia-Cabrera. The Efficiency of Tissue P Systems with Cell Separation Relies
on the Environment. In E. Csuhaj-Varjú, M. Gheorghe, Gr. Rozenberg, A. Salo-
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Gh. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (eds.), Proceedings of the Fifteenth
Brainstorming Week on Membrane Computing, Sevilla, Spain, January 31 - February
3 2017. Fénix Editora. pp. 147–160.
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conjecture. In Gh. Păun, Gr. Rozenberg, A. Salomaa, C. Zandron (eds.) Membrane
Computing 2002. Lecture Notes in Computer Science, 2597 (2003), 388-399. A pre-
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27. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini: Complexity classes
in cellular computing with membranes. Natural Computing, 2, 3 (2003), 265–285.

28. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics, 11, 4 (2006), 423-434. A preliminary version in E. Csuhaj-Varj,
C. Kintala, D. Wotschke, Gy. Vaszil (eds.) Proceedings of the Fifth International
Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, Budapest,
Hungary, July 12-14, 2003, pp. 284-294.
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