Trabajo de Fin de Grado Grado en Ingeniería Química

Ingeniería básica de una planta de producción de n-butanol a partir de etanol

Autor: Ángel Gómez Caro Tutor: Manuel Campoy Naranjo

> Dpto. Ingeniería Química y Ambiental Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2021

ii

Trabajo Fin de Grado en Ingeniería Química

Ingeniería básica de una planta de producción de n-butanol a partir de etanol

Autor:

Ángel Gómez Caro

Tutor:

Manuel Campoy Naranjo

Dpto. Ingeniería Química y Ambiental Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2021

A mis padres. A mi hermana. En primer lugar, querría agradecer principalmente este trabajo a mis padres, sin los cuales no podría haber tenido la oportunidad de llegar hasta aquí y los que le estaré agradecido toda la vida. A mi hermana, por ser el gran apoyo incondicional todos estos años y motivarme continuamente; y a mis abuelos, a los que están y a los que se fueron, los cuales siempre estuvieron orgullosos de su nieto y me apoyaron siempre.

Después, gracias a mis amigos de toda la vida y los que fui conociendo con el tiempo, especialmente a mis amigos David y Juan Daniel, que han sido un apoyo indispensable toda la vida y nunca han dejado que me rinda en el camino. Por supuesto, a mis compañeros de piso y a todos los amigos que hice en la universidad, los cuales me acompañaron en este trayecto durante estos años, apoyándonos los unos a los otros en las dificultades y celebrando los buenos momentos

Por último, agradecer a todos los profesores que me han enseñado tanto durante estos años, en especial a mi tutor Manuel Campoy Naranjo, por darme la oportunidad de realizar este proyecto, y por toda la ayuda que me ha ofrecido todo este tiempo.

Ángel Gómez Caro Sevilla, 2021 El presente proyecto tiene como objetivo la realización de una Ingeniería Básica de una planta producción de n-butanol vía deshidrogenación y condensación aldólica de etanol o proceso Guerbet catalítico, la cual presenta una capacidad 50.000 t anuales.

En primer lugar, se muestran las distintas especies relevantes del proceso, así como las aplicaciones principales del producto principal, un estudio de mercado de dicho producto y las distintas tecnologías existentes y emergentes para su obtención, desarrollando la utilizada en este proyecto.

Posteriormente, se desarrolla detalladamente el proceso diseñado incluyendo un diagrama de flujo, el cual describe el comportamiento de la planta. Asimismo, se elabora los balances de materia y energía y el dimensionamiento de los equipos principales de la planta, mostrando los flujos másicos y energéticos en cada línea del proceso, así como las condiciones de operación específicas de cada una de ellas y las dimensiones y parámetros principales de cada equipo, las cuales se muestran en las hojas de especificaciones.

Por último, se estiman las mediciones y el presupuesto de la inversión inicial de la planta, así como su coste de producción anual y adicionalmente se ha la realizado de una estimación inicial de la viabilidad económica de la planta.

The purpose of this project is to develop a basic engineering of a n-butanol production plant from dehydrogenation and aldol condensation of ethanol or catalytic Guerbet process, whose annual capacity is 50.000 t.

Firstly, the different relevant species of the process are shown, as well as the main applications of the main product, a market study of the product mentioned and the different existing and emerging technologies for producing it and developing the one used on this project.

Afterwards, the designed process is developed closely, which include a flow diagram that describes the performance of the plant. Additionally, the material and energy balances and the sizing of the main equipment of the plant are prepared, showing the mass and energy flows in each line of the process, as well as the specific operating conditions established and the dimensions and parameters of each equipment, which are shown in the specification sheets.

Finally, the measurements and the initial investment budget of the plant are estimated, as well as its annual production cost and a t study of the economic viability of the plant is carried out.

ÍNDICE

Agradecimientos	v
Resumen	vi
Abstract	vii
ÍNDICE	viii
ÍNDICE DE TABLAS	x
ÍNDICE DE FIGURAS	xi
1 Introducción	1
1.1. Objetivos y alcance	1
1.2. Propiedades del etanol y el butanol	1
1.3. Aplicaciones del butanol	3
1.4. Producción y estudio de mercado	4
1.5. Emplazamiento	5
1.6. Vías de producción	6
1.6.1. Ruta petroquímica	6
1.6.2. Ruta biológica	7
1.6.3. Ruta química	8
1.7. Termodinámica y cinética de la reacción	11
1.7.1. Reacción principal	11
1.7.2. Reacciones secundarias	14
2 Memoria descriptiva y justificativa	15
2.1. Introducción	15
2.2. Preparación para la reacción	15
2.3. Reactor	17
2.4. Separación	18
2.4.1. Separación de ligeros y pesados	18
2.4.2. Purificación de n-butanol	20
2.4.3. Separación y purificación de hidrógeno	21
2.4.4. Purificación de etanol	22
3 Memoria de cálculo	25
3.1. Introducción	25
3.2. Equipos de impulsión de fluidos	25
3.2.1. Bombas	26
3.2.2. Compresores	28
3.3. Equipos de transferencia de calor	30
3.4. Reactor	35
3.4.1. Diseño	35
3.4.2. Evaluación de resultados	38
3.5. Equipos de separación	43

3.5.2. Columnas de destilación454 Mediciones y Presupuesto484.1. Introducción484.2. Costes de inversión inicial de la planta484.2.1. Correlaciones de costes de los equipos484.2.2. Correlaciones y parámetros de los equipos.504.2.3. Mediciones y costes finales de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de las materias primas, mano de obra y utilities554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo de la coste anual de producción574.4. Anádisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	3.5.1. Tanque flash	43
4 Mediciones y Presupuesto484.1. Introducción484.2. Costes de inversión inicial de la planta484.2. Correlaciones de costes de los equipos484.2.1. Correlaciones y parámetros de los equipos.504.2.3. Mediciones y parámetros de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Anádisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo IV. Indiago de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	3.5.2. Columnas de destilación	45
4.1. Introducción484.2. Costes de inversión inicial de la planta484.2.1. Correlaciones de costes de los equipos484.2.2. Correlaciones y parámetros de los equipos.504.2.3. Mediciones y costes finales de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	4 Mediciones y Presupuesto	48
4.2. Costes de inversión inicial de la planta 48 4.2.1. Correlaciones de costes de los equipos 48 4.2.2. Correlaciones y parámetros de los equipos. 50 4.2.3. Mediciones y costes finales de los equipos 52 4.2.4. Cálculo de la inversión de la planta 54 4.3. Coste de producción de la planta 55 4.3. Coste de producción de la planta 55 4.3.1. Coste de las materias primas, mano de obra y utilities 55 4.3.2. Cálculo del coste anual de producción 57 4.4. Análisis inicial de la rentabilidad económica de la inversión 59 5 Hojas de especificaciones 61 6 Anexos 77 6.1. Anexo I. Balances de materia y condiciones de operación del proceso 77 6.2. Anexo II. Diagrama de flujo del proceso completo 81 6.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas 83 6.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción 85 7 Bibliografía 89	4.1. Introducción	48
4.2.1. Correlaciones de costes de los equipos484.2.2. Correlaciones y parámetros de los equipos.504.2.3. Mediciones y costes finales de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de producción de la planta554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción8578189	4.2. Costes de inversión inicial de la planta	48
4.2.2. Correlaciones y parámetros de los equipos.504.2.3. Mediciones y costes finales de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.2.1. Correlaciones de costes de los equipos	48
4.2.3. Mediciones y costes finales de los equipos524.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.2.2. Correlaciones y parámetros de los equipos.	50
4.2.4. Cálculo de la inversión de la planta544.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.2.3. Mediciones y costes finales de los equipos	52
4.3. Coste de producción de la planta554.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.2.4. Cálculo de la inversión de la planta	54
4.3.1. Coste de las materias primas, mano de obra y utilities554.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.3. Coste de producción de la planta	55
4.3.2. Cálculo del coste anual de producción574.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.3.1. Coste de las materias primas, mano de obra y utilities	55
4.4. Análisis inicial de la rentabilidad económica de la inversión595 Hojas de especificaciones616 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción89	4.3.2. Cálculo del coste anual de producción	57
5 Hojas de especificaciones616 Anexos776 Anexos I. Balances de materia y condiciones de operación del proceso776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción897 Bibliografía89	4.4. Análisis inicial de la rentabilidad económica de la inversión	59
6 Anexos776.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	5 Hojas de especificaciones	61
6.1. Anexo I. Balances de materia y condiciones de operación del proceso776.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	6 Anexos	77
6.2. Anexo II. Diagrama de flujo del proceso completo816.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	6.1. Anexo I. Balances de materia y condiciones de operación del proceso	77
6.3. Anexo III. Catálogo de bombas826.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	6.2. Anexo II. Diagrama de flujo del proceso completo	81
6.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas836.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	6.3. Anexo III. Catálogo de bombas	82
6.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción857 Bibliografía89	6.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas	83
7 Bibliografía 89	6.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción	85
	7 Bibliografía	89

ÍNDICE DE TABLAS

Tabla 1.1. Propiedades físico-químicas del etanol. [1]	2
Tabla 1.2. Propiedades físico-químicas del butanol. [2]	3
Tabla 1.3. Parámetros cinéticos de la reacción global. [8]	13
Tabla 1.4. Propiedades del catalizador. [8]	14
Tabla 2.1. Condiciones de operación. Corrientes de la etapa: Preparación para la reacción.	17
Tabla 2.2. Condiciones de operación. Corrientes de la etapa: Separación de ligeros y pesados.	19
Tabla 2.3. Condiciones de operación. Corrientes de la etapa: Purificación de n-butanol.	20
Tabla 2.4. Condiciones de operación. Corrientes de la etapa: Separación y purificación de H ₂ .	22
Tabla 2.5. Condiciones de operación. Corrientes de la etapa: Purificación de etanol.	24
Tabla 3.1. Características de los modelos de bombas.	28
Tabla 3.2. Dimensiones de los intercambiadores del proceso.	35
Tabla 3.3. Parámetros principales del reactor del proceso.	38
Tabla 3.4. Dimensiones del tanque flash.	45
Tabla 3.5. Dimensiones de las columnas de destilación.	47
Tabla 4.1. Parámetros de capacidad específicos de cada equipo. [24]	50
Tabla 4.2. Parámetros Ki específicos de cada equipo. [24]	50
Tabla 4.3. Parámetros Ci específicos de cada equipo. [24]	51
Tabla 4.4. Correlaciones de costes finales específicas de cada equipo.	51
Tabla 4.5. Parámetros B _i , F _{BM} y F _M específicos de cada equipo.	52
Tabla 4.6. Mediciones y costes finales de cada equipo.	53
Tabla 4.7. Cálculo del coste total de inversión de la planta por del método de Chilton. [24]	54
Tabla 4.8. Coste anual de las materias primas.	56
Tabla 4.9. Coste anual de los utilities. [24]	56
Tabla 4.10. Ingresos por ventas anuales de la planta.	60
Tabla 4.11. Flujos de caja asociados a la inversión de la planta.	60
Tabla 5.1. Balances de materia y condiciones de operación de las corrientes 1-10.	77
Tabla 5.2. Balances de materia y condiciones de operación de las corrientes 11-20.	78
Tabla 5.3. Balances de materia y condiciones de operación de las corrientes 21-30.	79
Tabla 5.4. Balances de materia y condiciones de operación de las corrientes 31-35.	80

ÍNDICE DE FIGURAS

Figura 1.1. Estructura del etanol.	2
Figura 1.2. Estructura del butanol.	2
Figura 1.3. Aplicaciones del butanol. [3]	4
Figura 1.4. Evolución del butanol a nivel mundial. [3]	5
Figura 1.5. Complejo industrial de Bioetanol Galicia S.A. en Galicia. [4].	6
Figura 1.6. Reacción de oxosíntesis. [5]	6
Figura 1.7. Reacción de síntesis Reppe. [5]	7
Figura 1.8. Reacción de fermentación ABE. [5]	8
Figura 1.9. Reacción de Guerbet. [6]	9
Figura 1.10. Mecanismo por vía indirecta de la reacción de Guerbet. [7]	9
Figura 1.11. Mecanismo por vía directa de la reacción de Guerbet. [7]	10
Figura 1.12 Mecanismo de reacción sobre catalizador de Hidroxiapatita. [8]	11
Figura 1.13. Mecanismo completo de reacción sobre catalizador de Hidroxiapatita. [8]	12
Figura 2.1. Diagrama de bloques del proceso.	15
Figura 2.2. Etapa de preparación para la reacción (PFD).	16
Figura 2.3. Etapa del reactor (PFD).	18
Figura 2.4. Etapa de Separación de ligeros y pesados (PFD).	19
Figura 2.5. Etapa de Purificación de n-butanol (PFD).	20
Figura 2.6. Etapa de Separación y purificación de hidrógeno (PFD).	21
Figura 2.7. Etapa de Purificación de etanol (PFD).	23
Figura 3.1. Diagrama de Mollier. Proceso isentrópico y real.	29
Figura 3.2. Configuraciones para los tubos de un intercambiador multitubular.	32
Figura 3.3. Perfil de Temperaturas en el reactor. Reactor adiabático.	39
Figura 3.4. Perfil de Temperaturas en el reactor. Reactor refrigerado.	40
Figura 3.5. Evolución de la selectividad en el reactor. Reactor adiabático.	41
Figura 3.6. Evolución de la selectividad en el reactor. Reactor refrigerado.	41
Figura 3.7. Perfil de Presiones en el reactor.	42
Figura 3.8. Evolución de las especies en el reactor.	43
Figura 5.1. Diagrama de flujo del proceso completo (PFD).	81
Figura 5.2. Catálogo de bombas SAER: Serie SIA-6. [26]	82
Figura 5.3. Intercambiadores de carcasa y tubos. Dimensiones y características de tubos. [16]	83
Figura 5.4. Diámetro de carcasa y número de tubos en distintas configuraciones. [16]	84
Figura 5.5. Parámetros de capacidad y exponentes de Williams específico de cada equipo. [24]	85
Figura 5.6. Factores de corrección de costes específicos de cada equipo. [24]	86
Figura 5.7. Factores de Chilton para el cálculo del coste total de inversión. [24]	87
Figura 5.8. Precios de los Utilities. [24]	87
Figura 5.9. Parámetros específicos de cada equipo para la estimación de operarios. [24]	88
Figura 5.10. Conceptos para el cálculo del coste total de producción de la planta. [24]	88

1.1. Objetivos y alcance

El objetivo de este proyecto es el diseño de una planta de producción de n-butanol a través de la deshidrogenación del etanol a acetaldehído y su posterior condensación aldólica para obtener una producción de 50.000 t anuales.

Para realizar dicho diseño, se ha realizado un análisis de los diferentes métodos de producción de nbutanol existentes para la elección del proceso más eficiente y un estudio de mercado sobre sus usos y el nivel de producción mundial para ajustar el diseño.

A continuación, se ha realizado un diagrama de bloques que define la estructura del proceso, a partir del cual se ha elaborado de un diagrama de flujo (PFD) que representa el proceso descrito, ya que se añade la descripción completa de las instalaciones y los flujos de materia y energía en toda la planta, excluyendo del alcance del proyecto la realización del P&ID y la definición de la instrumentación, el control y la red de tuberías de la planta.

Posteriormente, se ha realizado el dimensionamiento y/o diseño de todos los equipos de la instalación, a excepción de los equipos encargados de la separación de productos, para los cuales se ha realizado una estimación inicial. A partir de este diseño se han generado sus hojas de especificaciones.

Por último, para estimar la viabilidad del proyecto, se realiza un análisis económico de la planta, estimando el coste total de inversión para su implantación, el coste total de operación y un análisis de su viabilidad económica.

1.2. Propiedades del etanol y el butanol

El etanol, también denominado alcohol etílico y alcohol de grano, es un hidrocarburo de cadena simple de dos carbonos, donde uno de ellos se ha sustituido un átomo de hidrógeno por un grupo hidroxilo (-OH), dando como resultado un alcohol cuya fórmula molecular es C₂H₅OH, la cual se corresponde a la estructura molecular de la figura 1.1.

Figura 1.1. Estructura del etanol.

En condiciones atmosféricas, es líquido, transparente e incoloro y el principal ingrediente de bebidas alcohólicas como cerveza, vino o brandi. Debido a que puede disolverse fácilmente en el agua y otros compuestos orgánicos, el etanol también es un ingrediente de una variedad de productos, desde productos de cuidado personal y belleza, hasta pinturas, barnices y combustibles.

A continuación, en la tabla 1.1. se muestran las propiedades más relevantes de este compuesto. [1]

Propiedad	Etanol
Peso molecular (g/mol)	46,07
Densidad a 20 °C (kg/m ³)	789,4
Punto de fusión (°C)	-114,2
Punto de ebullición (°C)	78,4
Presión de vapor a 20°C (bar)	0,06049
Viscosidad a 20°C (cP)	1,16
Punto de inflamabilidad (°C)	13
Punto de autoignición (°C)	363
Temperatura crítica (°C)	241,6
Presión crítica (bar)	62,68

Tabla 1.1. Propiedades físico-químicas del etanol. [1]

El butanol, n-butanol o alcohol n-butílico, es un hidrocarburo simple con un grupo alcohol, al igual que el etanol, con la diferencia de que está compuesto por una cadena de cuatro carbonos, en el que el grupo hidroxilo se encuentra en el primer o último carbono de la cadena. Su fórmula molecular es C4H9OH, cuya estructura se muestra en la figura 1.2.

Figura 1.2. Estructura del butanol.

Es líquido, incoloro y de fuerte olor a vino. Se utiliza como disolvente de resinas y revestimientos, como fluido hidráulico, en la elaboración de detergentes y en la desnaturalización de alcohol etílico.

También se emplea como disolvente de pinturas, lacas, barnices, resinas naturales y sintéticas, gomas, aceites vegetales, tintes y alcaloides, así como sustancia intermedia en la fabricación de productos químicos y farmacéuticos, en industrias de cuero artificial, textiles, para gafas de seguridad, pastas de caucho, barnices de laca, impermeables, películas fotográficas y perfumes. [2]

En la tabla 1.2. se muestran las propiedades del butanol. [2]

Propiedad	Butanol
Peso molecular (g/mol)	74,12
Densidad a 20 °C (kg/m ³)	809,8
Punto de fusión (°C)	-89,5
Punto de ebullición (°C)	117,6
Presión de vapor a 20°C (bar)	0,0056
Viscosidad a 20°C (cP)	3
Punto de inflamabilidad (°C)	37
Punto de autoignición (°C)	343
Temperatura crítica (°C)	288,85
Presión crítica (bar)	45

Tabla 1.2. Propiedades físico-químicas del butanol. [2]

1.3. Aplicaciones del butanol

Como se ha comentado anteriormente, el butanol, en su forma n-butanol es un compuesto muy utilizado como disolvente, fluido hidráulico y elaboración de detergentes. También participa en la desnaturalización del alcohol etílico. Como disolvente es ampliamente utilizado con pinturas, lacas, barnices, resinas naturales y sintéticas, gomas, aceites vegetales, tintes y alcaloides.

Pese a todos los usos posibles, el más demandado es como producto intermedio para la fabricación de solventes y saborizantes. Aproximadamente del 70% al 85 % de las pinturas empleadas en la construcción están basadas en el butanol.

El iso-butanol, que es un derivado de la formación de n-butanol, es utilizado como disolvente, diluyente de pintura, componente de fluidos hidráulicos y frenos, y gran producto intermedio para la producción de plastificantes, pesticidas, saborizantes alimenticios o productos farmacológicos. También es capaz de ser usado como agente extractor para fosfatos de amoniaco. [3]

En la figura 1.3. se muestran sus usos en el mundo.

Figura 1.3. Aplicaciones del butanol. [3]

Actualmente, el butanol está adquiriendo relevancia como bio-combustible alternativo al bioetanol, biometanol y otros combustibles fósiles, ya que presenta muchas ventajas con respecto a estos en motores de combustión interna, siendo la más relevante la capacidad de combinarse con diésel, por lo que no es necesario la modificación de los sistemas combustión y a su vez produce una bajada considerable de formación de compuestos NOx en la combustión.

El mayor inconveniente en la actualidad referente a la producción de biobutanol es que es poco factible a nivel industrial, ya que su producción es entre 10 y 30 veces inferior que la de bioetanol. Otro inconveniente relevante es el mayor requerimiento de combustible, debido a que el butanol posee un calor de combustión mayor y un octanaje inferior al bioetanol, aunque similar a la gasolina, por lo que el aumento de flujo de combustible sería de un 10 - 40%. [3]

1.4. Producción y estudio de mercado

El mercado de n-butanol ha crecido significativamente durante los últimos años y se espera un aumento considerable de este crecimiento en los próximos años debido principalmente a la creciente demanda en la región Asia y el Pacífico, ya que es un compuesto químico con múltiples usos y está adquiriendo relevancia como combustible.

La demanda mundial de n-butanol ascendió a 3,70 Mt en 2012 con un valor de 6.400 M\$ y se prevé que se alcancen 5,2 millones de toneladas en 2022. La demanda global de este producto químico crece con una tasa anual del 4,6%, siendo Estados Unidos y Europa Oriental los principales exportadores, produciendo un 25,3% en el caso de EE.UU. y un 17,2% por parte de Europa, mientras que China se

ha convertido en el mayor consumidor de n-butanol en la actualidad, importando el 35,2% de la producción mundial. [3]

En la figura 1.4. se muestra la evolución de su consumo y producción a nivel mundial.

Figura 1.4. Evolución del butanol a nivel mundial. [3]

1.5. Emplazamiento

Se ha decidido ubicar la planta junto la planta Bioetanol Galicia S.A., en la provincia de A Coruña, en Galicia (figura 1.5.). Esta elección se debe principalmente, a la cercanía para importar la materia prima, el etanol.

Otro motivo por el cual se ha elegido este lugar, es por la proximidad con puertos marítimos para el transporte y descarga del producto.

Figura 1.5. Complejo industrial de Bioetanol Galicia S.A. en Galicia. [4].

1.6. Vías de producción

1.6.1. Ruta petroquímica

Dentro de esta ruta podemos diferenciar 2 grandes procesos:

 Síntesis Oxo: la mayoría del n-butanol se produce mediante este proceso, que se produce a partir de la hidroformilación de propeno, seguido de hidrogenación del butanal formado y así produciendo n-butanol. Se realiza en presencia de catalizadores de Co, Rh o Ru. Consiguiendo rendimientos hasta del 95 % hacia 1-butanol y 5 % hacia iso-butanol. La reacción descrita se muestra en la figura 1.6. [5]

Figura 1.6. Reacción de oxosíntesis. [5]

Síntesis Reppe: monóxido de carbono y agua reaccionan a presiones bajas en presencia de un catalizador (sales de amonio terciarias o híbridos de carbonilo de hierro polinuclear) produciendo la carbonilación del propeno (figura 1.7.). Se producen n-butano e iso-butanol con una ratio de 86:14. Este proceso no tuvo tanto éxito como la síntesis oxo con catalizador de Co, a pesar de del elevado ratio butanol/isobutanol y unas condiciones de reacción más suaves. [5]

Figura 1.7. Reacción de síntesis Reppe. [5]

1.6.2. Ruta biológica

La ruta biológica de producción de n-butanol es el denominado proceso ABE que es un proceso fermentativo bacteriano, empleado para la producción de acetona, n-butanol, isopropanol y etanol e hidrógeno en menor proporción, a partir de azúcares.

Es un proceso anaerobio realizado por microorganismos, en general bacterias destacando para este proceso las del género *Clostridium*.

La fermentación ABE transcurre en dos fases consecutivas. Durante la primera fase de crecimiento activo, denominada acidogénesis, la glucosa es metabolizada a través de la glucólisis para formar ácido pirúvico y acetil-CoA (con liberación de dióxido de carbono e hidrógeno), que se transforman en ácido butírico y acético.

En la segunda fase, que no es de crecimiento sino una fase estacionaria denominada solventogénesis, los ácidos son convertidos en una mezcla acetona-butanol-etanol (figura 1.8.). [5]

Figura 1.8. Reacción de fermentación ABE. [5]

1.6.3. Ruta química

Esta será la ruta elegida en este proyecto, ya que está en constante crecimiento y estudio, es la obtención de n-butanol usando el etanol como materia prima.

Debido a que los alcoholes presentan una gran estabilidad, se genera cierta dificultad en sus transformaciones, por lo que surge la necesidad del uso de catalizadores.

Este proceso se realiza a través de la "Reacción de Guerbet", en la que un alcohol se transforma catalíticamente en otro de cadena más larga, mediante procesos de deshidrogenación, el alcohol se transforma en un aldehído. Posteriormente, se produce la condensación aldólica de los aldehídos para formar un alcohol y compuestos intermedios y deshidratación e hidrogenación donde se forma los alcoholes de mayor cadena. Este proceso viene representado en la figura 1.9. [6]

Figura 1.9. Reacción de Guerbet. [6]

En el caso de la reacción de obtención de n-butanol a partir de etanol, la reacción queda representada en las expresiones 1.1 y 1.2.

$$CH_{3}CH_{2}OH \leftrightarrow CH_{3}CHO + H_{2}$$
(1.1)

$$CH_{3}CH_{2}OH + CH_{3}CHO + H2 \leftrightarrow C_{4}H_{9}OH + H_{2}O$$
(1.2)

De manera global, la reacción que tendría lugar sería la descrita en la expresión 1.3.

$$2CH_{3}CH_{2}OH \leftrightarrow CH_{3}CH_{2}CH_{2}CH_{2}OH + H_{2}O$$
(1.3)

De acuerdo a lo anterior, para esa reacción global, se han planteado dos posibles mecanismos generales de reacción ampliamente estudiados, que se deducen de las pruebas realizadas con los catalizadores y presentaran variaciones dependiendo de cuál de ellos se use: [7]

• <u>La vía indirecta</u>, en la que se contemplan muchas reacciones intermedias que se producen a partir de la formación de acetaldehído, la cual se muestra en la figura 1.10.

Figura 1.10. Mecanismo por vía indirecta de la reacción de Guerbet. [7]

• <u>La vía directa</u>, en la que el butanol se genera casi directamente del acetaldehído, del etanol y del hidrógeno, como se muestra en la figura 1.11.

Figura 1.11. Mecanismo por vía directa de la reacción de Guerbet. [7]

Este último mecanismo es el que se ha considerado idóneo para el proceso, debido a su simplicidad y fiabilidad, gracias al estudio de investigadores que obtuvieron datos experimentares concluyentes al modelo.

En este proceso también se forman muchos compuestos secundarios, como i-butanol, hexanol, octanol etc. Por esa razón, para llevar a cabo esta reacción, es indispensable el estudio de diversos catalizadores para mejorar el proceso y su viabilidad. Para esta reacción hay muchos tipos de catalizadores que son factibles, siendo los siguientes los más usados y eficientes:

• **Hidrotalcitas:** Están compuestas por mezclas de óxidos de Mg-Al, presentan ciertas ventajas sobre otros tipos, como mayor área superficial, amplia estabilidad estructural e importantes propiedades ácido-base. Se representan generalmente: [7]

[Mg6Al2(OH)16](CO3)· 4 H2O

• Hidroxiapatitas: Compuestos orgánicos que forman parte de los huesos, de ahí su amplio uso en tratamientos médicos como reconstrucciones óseas y prótesis dentales. Se ha demostrado su efectividad como catalizador mejorando la conversión y selectividad a butanol. Se definen de la siguiente forma: [7]

• **Compuestos de Rutenio:** de los cuales se están obteniendo muy buenos resultados en términos de conversión de etanol y de selectividad a butanol. Su fórmula general es: [7]

```
[RuCl(n<sup>6</sup>-p-cymene)]Cl
```

1.7. Termodinámica y cinética de la reacción

1.7.1. Reacción principal

El proceso de síntesis de n-butanol a partir de etanol está caracterizado por varias reacciones químicas que son las que componen el mecanismo de reacción en la que aparecen centros activos con compuestos inestables que desaparecen casi instantáneamente después de su formación, y de múltiples reacciones secundarias donde se forman una gran cantidad de alcoholes de cadena superior que tendemos en cuenta más adelante para el cálculo de la planta.

Se debe destacar que, el mecanismo descrito en la figura 1.12. es específico para el uso del catalizador de hidroxiapatita HAP: Ca₅(PO₄)₃(OH), el cual se ha elegido por su buena selectividad a n-butanol y el cual se caracterizará posteriormente.

Existen múltiples mecanismos para la formación de n-butanol sobre HAP, pero el que más refleja el comportamiento de la reacción de Guerbet es el siguiente (figura 1.12.): [8]

Figura 1.12 Mecanismo de reacción sobre catalizador de Hidroxiapatita. [8]

En este esquema se reflejan las reacciones que tienen lugar sobre la superficie del catalizador. En primer lugar, se muestra la adsorción de etanol en los centros activos ácidos que son los Ca-O, donde se produce la deshidrogenación del etanol a acetaldehído y se liberan por desorción.

A continuación, el etanol y el acetaldehído se adsorben en un centro activo básico PO_4^{-3} , donde se produce la condensación aldólica que implica la abstracción de un α -hidrógeno por un oxígeno básico para formar enolato. El enolato se añade al grupo carbonilo de otra molécula de acetaldehído y se deshidrata para formar crotonaldehído.

Por último, el crotonaldehido se hidrogena con etanol en un centro Ca-O formando n-butanol. Este mecanismo se muestra paso a paso en el esquema representado en la figura 1.13.

Figura 1.13. Mecanismo completo de reacción sobre catalizador de Hidroxiapatita. [8]

En definitiva, este mecanismo de reacción se puede resumir en dos reacciones serie-paralelo vistas anteriormente y que están definidas en las expresiones 1.1 y 1.2.

$$CH_{3}CH_{2}OH \leftrightarrow CH_{3}CHO + H_{2}$$
(1.1)

$$CH_{3}CH_{2}OH + CH_{3}CHO + H_{2} \leftrightarrow C_{4}H_{9}OH + H_{2}O$$
(1.2)

Donde la primera reflejaría la deshidrogenación del etanol a acetaldehído y la segunda desde la formación de enolato hasta la formación de n-butanol.

Utilizando un modelo de Langmuir-Hinshelwood, se puede derivar una expresión de velocidad para la formación de acetaldehído y n-butanol basándose en el mecanismo propuesto, las cuales se definen en las expresiones 1.3 y 1.4.

$$r_{Acet} = \frac{k_1 \cdot K_{Et,1} \cdot P_{Et}}{1 + K_{Et,1} \cdot P_{Et}}$$
(1.3)

La definida en la expresión 1.3 es la velocidad de reacción de acetaldehído, donde k_1 es una constante de velocidad con la abstracción del hidrógeno, $K_{Et,1}$ es la constante de equilibrio para la adsorción de etanol en los sitios de CaO y P_{Et} es la presión parcial de etanol en el reactor.

La formación de butanol no afecta la velocidad del acetaldehído, ya que el consumo de acetaldehído en la etapa de condensación aldólica se equilibra con la generación de acetaldehído en las reacciones de transferencia de hidrógeno posteriores. Por lo tanto, la velocidad de formación de n-butanol se expresa, tal y como se muestra en la expresión 1.4.

$$r_{ButOH} = \frac{k_2 \cdot K_{Acet,2} \cdot P_{Acet}}{1 + K_{Et,2} \cdot P_{Et}}$$
(1.4)

 P_{Acet} es la presión parcial de acetaldehído k_2 es la constante de velocidad para la formación de enolato y $K_{Acet,2}$ Y $K_{Et,2}$, son las constantes de equilibrio para la adsorción de acetaldehído y etanol en los centros PO₄⁻³. [8]

A partir de las velocidades obtenidas de las dos reacciones que componen la reacción global, se define la velocidad de consumo de etanol en cada reacción, que da como resultado las expresiones 1.5 y 1.6.

$$(-r_{EtOH})_1 = r_{Acet} \tag{1.5}$$

$$(-r_{EtOH})_2 = r_{ButOH} \tag{1.6}$$

Por lo que la velocidad de la reacción global será la suma de las velocidades de las 2 reacciones en las que participa, de donde se obtiene la expresión 1.8 y por consecuencia la 1.9.

$$(-r_{EtOH}) = (-r_{EtOH})_1 + (-r_{EtOH})_2$$
 (1.7)

$$(-r_{EtOH}) = \frac{k_1 \cdot K_{Et,1} \cdot P_{Et}}{1 + K_{Et,1} \cdot P_{Et}} + \frac{k_2 \cdot K_{Acet,2} \cdot P_{Acet}}{1 + K_{Et,2} \cdot P_{Et}}$$
(1.8)

A continuación, se muestra en la tabla 1.3. con todos los parámetros cinéticos que hacen falta para el desarrollo del proceso.

Parámetro	k1 (µmol/h∙m²)	K _{ET,1} (kPa ⁻¹)	k2·K _{Acet,2} (μmol/h·m ^{2·} kPa)	К _{ЕТ,2} (kPa ⁻¹)
<i>Ea</i> aparente o ΔH _{ads} (kcal/mol)	34 ± 2	-23 ± 2	1.8 ± 2.5	-27 ± 3
ln(A)	31 ± 2	-19 ± 2	8.7 ± 2.1	-24 ± 3

Tabla 1.3. Parámetros cinéticos de la reacción global. [8]

Como se mencionó al principio de este apartado, en la tabla 1.4. se muestran las propiedades del catalizador.

Catalizador	Ca ₅ (PO ₄) ₃ (OH)
Superficie Específica(m²/g)	81
Tamaño de partícula (mm)	10
Densidad (kg/m ³)	3160
Porosidad (ɛ)	0,5

Tabla 1.4. Propiedades del catalizador. [8]

Se eligió la hidroxiapatita de calcio $Ca_5(PO_4)_3(OH)$ macroporosa porque se ha demostrado su eficiencia en la deshidratación y deshidrogenación del etanol al tener centros ácidos y básicos y así consigue aumentar la selectividad de formación de n-butanol.

1.7.2. Reacciones secundarias

Como se mencionó en el apartado anterior, a la vez que las reacciones principales, ocurren numerosas reacciones secundarias, como la formación de alcoholes superiores, hidrocarburos y otros compuestos que al considerar su presencia en el proceso aumentarían la complejidad de diseño de nuestra planta, pero ya que la formación de la mayoría de estas especies forman menos del 1% de la corriente de producto del reactor, solo se consideraran los alcoholes superiores, que representan una parte significativa de dicha corriente y alguna de las especies de los hidrocarburos formados, que también presentan una cierta cantidad relevante en los productos.

Los alcoholes superiores que se forman son muy variados y de cadena mayor de 6 átomos de carbono, pero se forman, la mayoría, a partir del subproducto principal que es el hexanol, cuya formación se produce según la expresión 1.9. [6]

$$C_{2}H_{5}OH + C_{4}H_{9}OH \rightarrow C_{6}H_{13}OH + H_{2}O$$
 (1.9)

De los hidrocarburos formados, se considerará el de composición mayoritaria que es el butadieno, el cual se forma atendiendo a la expresión 1.10. [6]

$$C_2H_5OH + CH_3CHO \rightarrow C_4H_6 + 2H_2O$$
(1.10)

2.1. Introducción

En este capítulo se profundizará en el proceso de producción de n-butanol por deshidrogenación y condensación aldólica de etanol o por el proceso Guerbet, detallando cada entrada y/o salida de materia, cada equipo empleado, reacción que se produzca o cualquier elemento que actúe en el proceso.

Con el fin de representar de manera simplificada y para mayor comprensión del proceso, se ha realizado un diagrama de bloques de la planta diseñada, el cual se muestra en la figura 2.1.

Figura 2.1. Diagrama de bloques del proceso.

En el Anexo II se puede muestra el diagrama de flujo (PFD) de la planta, en el cual se encuentra el proceso totalmente detallado. A continuación, se van a desarrollar las distintas etapas del proceso.

2.2. Preparación para la reacción

La alimentación a la planta se compone en casi su totalidad de etanol, ya que es el único reactivo en la reacción principal y por hidrógeno, que es a la vez un subproducto de la primera etapa de reacción y

un reactivo de la etapa final, por lo que se añade una cantidad minoritaria de alimentación fresca para aumentar la selectividad de la reacción principal y no tienda a la formación de productos indeseados. Sin embargo, al aumentar la selectividad, disminuye la conversión de etanol, por lo que se ha añadido una cantidad en relación al etanol introducido para optimizar la reacción deseada, justificando esa relación en el capítulo posterior.

Las cantidades introducidas de alimentación fresca de reactivos son 14.823 kg/h de etanol y 4.973 kg/h de hidrógeno. Estas corrientes de alimentación fresca provienen del complejo industrial donde se ubica la planta, en el caso del etanol y el hidrogeno es transportado de industrias exteriores.

Éstos se mezclan con las corrientes de recirculación provenientes de las etapas de separación y purificación de hidrógeno y etanol no reaccionado, que se desarrollaran posteriormente. El hidrógeno fresco, que se encuentra a la presión necesaria para la reacción, que son 50 bar, se une al hidrogeno recirculado, el cual se considera puro, dado que la cantidad de indeseados que no se ha podido purgar en la etapa de purificación es ínfima, pero previamente se comprime en el compresor C-101 para alcanzar la misma presión. En el caso del etanol, las dos corrientes se mezclan, que, en el caso de la recirculada, se refrigera en el intercambiador E-108 con agua hasta los 20 °C, lo cual es necesario antes de mezclarla con la corriente fresca para que la temperatura de la corriente mezclada no aumente ya que presenta una cantidad ínfima de agua y una cantidad pequeña de acetaldehído, el cual presenta una temperatura de ebullición muy baja a presión de alimentación y hay que condensarlo antes de entre en el complejo de bombas P-101 que se compondrá de bombas en serie y paralelo para poder impulsar la corriente hasta 50 bar.

Posteriormente se mezclan los reactivos y se calientan en 2 etapas para alcanzar la temperatura a la que se va a alimentar el reactor fijada a 240°C. Primero se precalienta en el intercambiador E-101 aprovechando el calor de la corriente de la salida del reactor, ya que la reacción es muy exotérmica y posteriormente se introduce en el intercambiador E-102 que utiliza vapor de alta presión para poder alcanzar la temperatura de reacción.

Para mayor comprensión de la etapa explicada, se añade un fragmento del diagrama de flujo (PFD) asociado a dicha etapa, el cual se muestra en la figura 2.2.

Figura 2.2. Etapa de preparación para la reacción (PFD).

En la tabla 2.1 se muestran las condiciones de operación de las corrientes que participan en la etapa preparación para la reacción.

Corriente	Temperatura °C	Presión (bar)
1	20	1
2	20	1
3	20	50
4	20,96	50
5	113,7	50
6	240	50
7	246,1	49,75
16	260,8	50
17	20	50
18	253,1	50
35	20	1

Tabla 2.1. Condiciones de operación. Corrientes de la etapa: Preparación para la reacción.

2.3. Reactor

El reactor utilizado R-101, en el proceso es un reactor multitubular de lecho fijo, en el cual se introducen los reactivos y el catalizador por el interior de los tubos y se producen las reacciones descritas en el capítulo anterior.

El catalizador, sobre la superficie del cual, ocurren las reacciones principales y secundarias, disminuye su actividad en función del tiempo, es decir se desactiva siguiendo una ley de desactivación, la cual es desconocida por lo que se ha considerado que no se produce la desactivación, aun sabiendo que en la realidad ocurría lo contrario y habría que sustituir el catalizador cada cierto intervalo de tiempo.

A los tubos llega una corriente gaseosa compuesta mayoritariamente de etanol y en menor medida, hidrógeno, acetaldehído y una cantidad minoritaria de agua recirculada. A la salida, una corriente bifásica compuesta de etanol no reaccionado mayoritariamente, ya que la conversión de este proceso es muy baja, de n-butanol, hexanol y agua en cierta cantidad y en menor medida, butadieno, acetaldehído e hidrógeno. Esta corriente, como se comentó en el apartado anterior, se utiliza para precalentar la alimentación del reactor.

Se ha diseñado el reactor para que la caída de presión en los tubos y la carcasa sea ínfima e inferior a 0,25 bar y opere con la menor variación de temperatura posible, debido a que la reacción es exotérmica y a que el aumento de la temperatura afecta muy negativamente a la selectividad, por lo que se han refrigerado los tubos con agua saturada a 190 °C que pasa por la carcasa, la cual se encuentra 12,54 bar.

Teniendo en cuenta las condiciones de operación mencionadas y estableciendo una temperatura de alimentación de 240°C, una ratio constante de 0,1 H₂/C₂H₅OH, un perfil de temperaturas de 240-246,1°C y una presión prácticamente constante de 50 bar se consigue alcanzar una conversión media de 29,9% y una selectividad de 73,4%.

La elección de este modelo de reactor presenta unas ventajas con respecto a otros modelos como el aumento del área de transferencia de calor, conseguir un modelo de reacción simple en flujo pistón o su bajo coste de operación. También presenta desventajas, como una deficiente utilización del catalizador, complejidad de sustitución de éste y un alto coste fijo inicial. [9]

En la figura 2.3. se muestra el reactor junto con la corriente de entrada y salida.

Figura 2.3. Etapa del reactor (PFD).

2.4. Separación

En este apartado se van a desarrollar cada una de las etapas donde se produce la separación, purificación, recirculación, y purga de los distintos compuestos que participan en el proceso, los métodos y equipos utilizados para llevarlo a cabo y para alcanzar las condiciones deseadas.

2.4.1. Separación de ligeros y pesados

A la salida del reactor, hay que separar el n-butanol que es el producto deseado de los demás compuestos que salen con él. En primer lugar, se realiza la separación de los productos más ligeros de los pesados, es decir se van a separar el hidrógeno, etanol, acetaldehído, agua y butadieno del butanol y el hexanol mediante una columna de destilación, en concreto D-101. Se ha elegido este equipo para la separación, ya que es uno de los métodos más implantados y eficaces que hay en la industria, basándose en la volatilidad relativa entre los componentes que se quiere separar, la cual, al aumentar, aumenta la separación en la columna.

La columna que se ha elegido es una columna de platos, por su eficacia y precio de adquisición y operación.

Antes de introducir los productos en la columna, hay que adecuarlos para las condiciones de operación, que son 15 bar de presión y una temperatura que oscila entre los 165-210 °C. Para alcanzar estas condiciones, se enfría la corriente de salida del reactor hasta los 180°C, que será la temperatura de alimentación a la columna, aprovechando el calor para precalentar la corriente de alimentación en el E-101 y posteriormente para disminuir la presión, se utiliza una válvula de expansión V-101. En estas condiciones, se consigue que los pesados de la mezcla se vayan por la corriente de fondo y los ligeros por cabeza. El diagrama correspondiente a esta etapa se muestra en la figura 2.4. [11]

Figura 2.4. Etapa de Separación de ligeros y pesados (PFD).

En la tabla 2.2. se muestran las condiciones de operación de las corrientes que componen la etapa de separación de ligeros y pesados.

Corriente	Temperatura °C	Presión (bar)
7	246,1	49,75
8	180	15
9	165	15
19	210	1

Tabla 2.2. Condiciones de operación. Corrientes de la etapa: Separación de ligeros y pesados.

2.4.2. Purificación de n-butanol

Para la separación del hexanol y el butanol como corrientes prácticamente puras, se ha diseñado una segunda fase de destilación de la corriente de fondo procedente de D-101, que se compone de hexanol y butanol y una cantidad mínima de etanol y agua. Ésta se ha introducido en una segunda columna de platos D-102 para separar los dos componentes principales. Para ello, la columna opera a 1 bar de presión y a una temperatura de 115-150°C que, para conseguir esas condiciones, se ha dispuesto de una válvula de expansión V-102, y de un cooler E-103. Esta columna es muy efectiva ya que consigue la separación prácticamente completa y una corriente de n-butanol al 98,06% de pureza. En la figura 2.5. se muestra la etapa de purificación de butanol. [11]

Figura 2.5. Etapa de Purificación de n-butanol (PFD).

En la tabla 2.3. se muestran las condiciones de operación de las corrientes de la etapa de purificación.

Corriente	Temperatura °C	Presión (bar)
19	210	1
20	125	1
21	115	1
22	150	1

Tabla 2.3. Condiciones de operación. Corrientes de la etapa: Purificación de n-butanol.

2.4.3. Separación y purificación de hidrógeno

Tras la primera separación de productos, se procede a purgar parte de la corriente de cabeza procedente de la columna D-101 para evitar la acumulación de hidrógeno y acetaldehído en el proceso y así minimizar el tamaño de los equipos y la energía empleada para la operación de éstos. Tras el divisor de corrientes, se va a separar el hidrogeno y el butadieno del etanol, acetaldehído, agua y una ínfima cantidad de butanol en un tanque flash F-101, que consigue separar la corriente que lo alimenta en dos, un gas y otra líquida, en unas determinadas condiciones de operación, que en este caso son 80°C y 15 bar. Para ello se enfría la corriente de cabeza de la columna D-101 y se mantiene la misma presión, ya que los dos equipos operan a igual presión.

La corriente gaseosa del tanque flash rica en hidrógeno, y butadieno, aunque presenta algunas trazas de líquido que se han despreciado para simplificar el proceso. Ésta se introduce en una Pressure Swing Adsorption (PSA-101) que es un sistema usado en la separación de gases bajo presión y utilizando un material adsorbente, acorde a las características moleculares y la afinidad de esos gases con dicho material. Es un sistema ampliamente utilizado en la industria para la separación de gases ligeros como el H₂ y además consigue una separación prácticamente completa del 99,99%, por lo que es un sistema idóneo para la recuperación del hidrógeno. Esta PSA opera a 80°C y a 15 bar.

De la PSA salen dos corrientes, una de purga con prácticamente la totalidad de butadieno y una pequeña parte de hidrogeno, y la corriente purificada de hidrógeno que se comprime en el compresor C-101 se recircula y mezcla con la corriente fresca. Se muestra la etapa completa en la figura 2.6. [7]

Figura 2.6. Etapa de Separación y purificación de hidrógeno (PFD).

En la tabla 2.4. se muestran los datos de operación de las corrientes de la separación y purificación de hidrógeno.

Corriente	Temperatura °C	Presión (bar)
9	165	15
10	165	15
11	165	15
12	80	15
13	80	15
14	80	15
15	80	15
16	260,8	50
23	80	15

Tabla 2.4. Condiciones de operación. Corrientes de la etapa: Separación y purificación de H₂.

2.4.4. Purificación de etanol

La corriente de fondo procedente del tanque flash F-101, que es rica en etanol, agua y acetaldehído con una pequeña cantidad de butanol, se lleva a sistema de separación para separar el agua y el butanol del etanol y el acetaldehído, por lo que se lleva a un sistema de destilación extractiva debido a que el etanol y el agua forman un azeótropo por sus polaridades, así que no es posible separalos con una columna de destilación simple al igual que los demás compuestos de la planta.

La diferencia fundamental de la destilación extractiva es la presencia de un disolvente de separación, que generalmente es un compuesto no volátil con un alto punto de ebullición y miscible con la mezcla, que elimina el azeótropo aumentando la volatilidad relativa entre los dos compuestos que forman el azeótropo y así poder separarlos.

Para esta separación se va a utilizar como disolvente una mezcla al 60% de etilenglicol y 40% de glicerol, con una proporción de 0,8 disolvente/caudal Etanol para garantizar una buena separación.

La corriente de alimentación procedente del fondo del flash pasa por una válvula de expansión V-103, para disminuir su presión hasta 1 bar, que es la presión de operación de la columna y tiene que enfriarse hasta los 10°C antes de entrar en la columna de platos D-103 donde se produce la destilación extractiva, por lo que se introduce en un cooler E-105 donde se refrigera con agua.

También entra otra corriente con disolvente fresco mezclado con una corriente de disolvente recuperado posteriormente.

Una vez adecuado la corriente de etanol, entra en la columna D-103, la cual opera a una temperatura de 75-120 °C, ésta se separa en una corriente que sale por cabeza rica en etanol y acetaldehído con una pequeña cantidad de agua que no se hay podido separar y se mezcla con la corriente de etanol fresco que alimenta la planta y por fondo sale una mezcla de etilenglicol-glicerol-agua y una ínfima parte de butanol-etanol-acetaldehído.

Para recuperar el disolvente y volverlo a utilizar, la corriente de fondo se enfría hasta los 50 °C y se introduce en una columna de platos D-104 que opera a vacío a 0,2 bar y a una temperatura de entre 60 y 164 °C, garantizando una alta separación.

Por cabeza de la columna sale casi la totalidad del agua de la planta que va a tratamiento y parte del etanol, acetaldehído y butanol no recirculado anteriormente y por fondo sale todo el disolvente recuperado, el cual se purga una parte y la mayoría se recircula, enfriándose previamente en el cooler E-107 para adecuarlo a las condiciones de la columna de destilación extractiva y mezclarlo con la alimentación fresca del disolvente. [7]

Figura 2.7. Etapa de Purificación de etanol (PFD).

Las condiciones de operación de las corrientes de la etapa de purificación de etanol se muestran en la tabla 2.5.

Corriente	Temperatura °C	Presión (bar)
23	80	1
24	10	1
25	10	1
26	10	1
27	120	1
28	50	0,2
29	164	1
30	164	1
31	10	1
32	75	1
33	60	1
34	164	1
35	20	1

Tabla 2.5. Condiciones de operación. Corrientes de la etapa: Purificación de etanol.

3.1. Introducción

En este apartado se incluirán todos los cálculos referidos al balance de materia y energía de la planta diseñada, especificando todas las corrientes que intervienen en el proceso, las cuales están representadas en el PFD (Anexo II), así como las condiciones de operación de cada una de ellas y la realización del dimensionamiento de los equipos que intervienen en la planta.

En el Anexo I se pueden observar los resultados obtenidos tras la realización de los balances de materia y energía, en el cual se muestra el caudal, composición, presión y temperatura de dichas corrientes.

Para ello, se parte de la producción de n-butanol, fijada en 50.000 t/año, considerando que la planta opera 8.000 horas anuales y de datos obtenidos de estudios previos del proceso.

La realización de los balances de materia y energía, así como el dimensionamiento de los equipos se ha realizado a través del software *Engineering Equation Solver* (EES).

3.2. Equipos de impulsión de fluidos

En este proceso se emplean bombas y compresores para la impulsión de las corrientes de proceso, los cuales se procederá a su dimensionamiento en los subapartados posteriores.

Al estar fuera del alcance de este proyecto la implantación de las instalaciones, se desconocen las dimensiones de las tuberías y la diferencia de altura entre los tramos de aspiración e impulsión, así como los datos referidos a la pérdida de energía mecánica durante la circulación del fluido por las tuberías, las pérdidas asociadas a los accesorios en los tramos de tubería y la fricción del fluido con las paredes. Por lo tanto, al tratarse de un trabajo académico, y no conocer dichos datos, se despreciarán esos términos aun sabiendo que en la realidad modificarían los resultados obtenidos.

Asimismo, se debe añadir que la mayoría de los equipos dimensionados presentan una pérdida de carga ínfima y despreciable, por lo tanto, no se incluirán los cálculos de pérdida de carga en aquellos equipos en los que no hubiera una pérdida relevante, las cuales, si las hubiera, tendrán que ser compensadas por los equipos de impulsión.
3.2.1. Bombas

En primer lugar, se va a elegir el tipo de bombas utilizadas en el proceso, las cuales serán de tipo centrífugo, ya que presentan numerosas ventajas y son las más utilizadas en la industria. [12]

Las bombas son equipos que se definen por cinco parámetros fundamentales, que guardan relación entre sí.

Los parámetros son: el caudal volumétrico a impulsar, la altura que debe vencer la bomba, la potencia consumida que consume el equipo, el rendimiento energético del mismo y el NPSH (*Net Positive Suction Head*), los cuales se van a explicar a continuación.

En primer lugar, se va a definir el caudal volumétrico a impulsar, el cual se obtiene a partir de la ecuación 3.1, en función del caudal másico y la densidad promedia de las corrientes que son impulsada por la bomba, siendo obtenidos del balance de materia de la planta.

$$Q_{\nu} = \frac{\dot{m}}{\rho} \tag{3.1}$$

Siendo Q_{ν} es el caudal volumétrico de la corriente (m³/s), \dot{m} el caudal másico (kg/s) y ρ es la densidad promedia de la corriente (kg/m³).

Para calcular la altura que vence la bomba se utiliza la ecuación de Bernouilli, que se corresponde con la ecuación 3.2.

$$\frac{P_{int}}{\rho} + g \cdot z_{int} + \frac{u_{int}^2}{2} + \Delta H_B = \frac{P_{out}}{\rho} + g \cdot z_{out} + \frac{u_{out}^2}{2} + hf_L$$
(3.2)

Si se realizan las simplificaciones mencionadas anteriormente, la ecuación queda:

$$\Delta H_B = \frac{P_{out} - P_{int}}{\rho} + \frac{u_{out}^2 - u_{int}^2}{2}$$
(3.3)

Donde:

- ΔH_B es la altura que debe vencer la bomba, en m²/s², la cual dividirá entre la gravedad (9,8 m/s²) para expresarla en metros.
- *P*_{out} es la presión del fluido en la zona de impulsión, expresada en Pascales, la cual debe tener en cuenta la pérdida de carga producida en los equipos.
- *P_{int}* es la presión del fluido en la zona de aspiración (Pa).

- *u_{out}* es la velocidad del fluido en la zona de impulsión (m/s), suponiéndose una velocidad de 1 m/s.
- *u_{int}* es la velocidad del fluido en la zona de aspiración (m/s), que como viene de una línea se desconoce su valor, por lo que supondrá de 1 m/s. [12]

Para calcular la potencia consumida por la bomba, para ello, se debe calcular previamente la potencia que la bomba cede al fluido, la cual se obtiene a partir de la ecuación 3.4.

$$W_f = \rho \cdot g \cdot Q_v \cdot \Delta H_B \tag{3.4}$$

Donde W_f es la potencia cedida al fluido expresada en vatios (W) y en esta expresión ΔH_B esta expresada en metros (m).

Debido a las pérdidas de energía mecánica del equipo, es necesario calcular la potencia real de la bomba la cual se obtiene a partir de la ecuación 3.5.

$$W_B = \frac{W_f}{\eta} \tag{3.5}$$

Donde η es el rendimiento de la bomba, el cual es un parámetro característico de cada modelo de bomba y es proporcionado por el fabricante.

Para finalizar, se va a definir el NPSH, que mide la distancia a la que se encuentra el líquido de la cavitación, que puede ocasionarse en puntos del interior de la bomba en los que la presión cae por debajo de la presión de vapor del líquido y produce la formación y explosión repentina de burbujas de vapor, lo cual es muy dañino para estos equipos. [12]

El NPSH disponible es la altura mínima que se requiere para evitar la cavitación en la bomba. Por tanto, es relevante su calcular este parámetro para comprobar la distancia a la que se encuentra la bomba de cavitar, el cual sigue la expresión 3.6.

$$NPSH)_D = \frac{P_{int} - P_v}{\rho} \tag{3.6}$$

Donde P_{v} es la presión de vapor del fluido expresada en Pascales.

Una vez obtenido el NPSH disponible, se calcula el requerido, que es el que proporciona el fabricante, el cual tiene en cuenta las pérdidas que tiene el equipo y será el que se buscará en catálogos para la elección de la bomba. La relación de seguridad que se ha tomado se muestra en la ecuación 3.7. [12]

$$(3.7)$$
 $NPSH)_D \ge NPSH)_R \cdot 1,2$

Una vez calculados todos los parámetros se van a mostrar los modelos elegidos para el único complejo de bombas que hay en la planta, el cual se compone de 4 bombas iguales, 2 en serie y 2 en paralelo, cuyo modelo se ha obtenido de catálogo que está recogido en el Anexo III y sus principales parámetros están representados en la tabla 3.1.

Bomba	Caudal (m ³ /h)	Altura (m)	Potencia consumida (kW)	Modelo
P-101 A/B/C/D	23,98	316,36	20,8	SIA-6-24/40

Tabla 3.1. Características de los modelos de bombas.

3.2.2. Compresores

Al igual que las bombas, no se puede hacer un diseño real de un compresor, ya que, para ello se necesitaría conocer una serie de parámetros internos, como el diámetro del rodete, su velocidad de giro, el ángulo de los alabes, entre otros. Por consecuencia, se va a realizar un diseño bastante aproximado, calculando la potencia consumida por el compresor, basándose en un modelo de compresor adiabático, en función de la diferencia de entalpia y su eficiencia mecánica, tal y como se refleja en la ecuación 3.8. [13]

$$W_C = \frac{\dot{\mathbf{m}} \cdot (H_{out} - H_{int})}{\eta_m}$$
(3.8)

Siendo:

- W_C es la potencia que consume el compresor, en kW.
- m es el caudal másico de gas que entra al compresor, en kg/s.
- H_{out} es la entalpía del gas a la salida del compresor en kJ/kg.
- H_{int} es la entalpía del gas a la entrada del compresor en kJ/kg.
- η_m es la eficiencia mecánica del compresor, el cual se ha tomado un valor de 0,8.

Para definir la entalpía en un punto de operación se necesitan 2 variables intensivas, que en este caso serán la temperatura y la presión, ya que son datos conocidos a la entrada al compresor. El problema surge a la salida del compresor, ya que se desconoce la temperatura que alcanza el gas en el compresor adiabático, por lo que sustituirá esa magnitud por la entropía, bajo la suposición de proceso isentrópico y definiendo un parámetro conocido como la eficiencia isentrópica.

Posteriormente se calculará la temperatura y entalpia real a la salida, siguiendo el siguiente procedimiento:

- 1. Calcular la entalpia y entropía a la entrada del compresor en función a la temperatura y presión de entrada y se impone la condición de proceso isentrópico.
- 2. Se obtiene la temperatura de salida como proceso isentrópico, con la cual se obtendrá la entalpía isentrópica.
- 3. Para finalizar, usando el parámetro de eficiencia isentrópica, que indica la distancia que se encuentra el proceso de ser isentrópico, se obtiene la entalpia real y con ella la temperatura real a la salida del fluido, siguiendo la ecuación 3.9. [13]

$$\eta_{is} = \frac{(H_{out,is} - H_{int})}{(H_{out} - H_{int})}$$
(3.9)

Donde:

- η_{is} es la entalpía del fluido como compresión isentrópica un valor de 0,8.
- $H_{out,is}$ es la entalpía del fluido como compresión isentrópica (kJ/kg).

En la figura 3.1. se representa en un diagrama de Mollier, el proceso de forma isentrópica y real.

Figura 3.1. Diagrama de Mollier. Proceso isentrópico y real.

3.3. Equipos de transferencia de calor

Todos los equipos de intercambio de calor de este proceso son del intercambiador de carcasa y tubos, los cuales son ampliamente utilizados en la industria química y petroquímica por sus ventajas como maximizar la transferencia de calor, facilidad de limpieza, entre otras. Entre los equipos, nos encontraremos de varios tipos:

- Heaters, usando vapor de alta presión a 41 bar(a).
- Coolers, se abastecen de agua de refrigeración que opera en el rango de 5-15 °C.
- Heat exchangers, que utilizan corrientes de proceso a mayor temperatura. [14]

Para el dimensionamiento de estos equipos, hay que resolver principalmente el balance de energía, ya que el balance de materia es innecesario debido a que no existe mezcla de corrientes en el equipo.

En primer lugar, se especificarán las ecuaciones utilizadas para la resolución del balance de energía de estos intercambiadores y posteriormente se especificarán cuales se han utilizado para cada uno de ellos.

$$Q_{HX} = \dot{m}_f \cdot (H_{out,f} - H_{int,f}) \tag{3.10}$$

$$Q_{HX} = \dot{m}_c \cdot (H_{int,c} - H_{out,c}) \tag{3.11}$$

$$Q_{HX} = \dot{m}_{hps} \cdot \Delta H_{\nu,hps} \tag{3.12}$$

$$Q_{HX} = \dot{m}_{rw} \cdot Cp_{rw} \cdot \left(T_{out,rw} - T_{int,rw}\right)$$
(3.13)

Donde:

- Q_{HX} es el calor intercambiado entre el fluido frio y caliente en kW.
- *m* es el caudal másico alimentado al intercambiador en kg/s, en el cual se distingue: *f* en referencia a la corriente de fluido frio, *c* a la de fluido caliente, *hps* al vapor de alta presión (High Pressure Steam) y rw al agua de refrigeración (*Refrigerated water*).
- Cp_{rw} es el calor específico del fluido, en este caso referente al agua de refrigeración, siendo una propiedad específica de cada sustancia, en kJ/kg·K.
- *H*_{out} es la entalpia de la corriente a la salida del intercambiador, indicándose los subíndices *f* y *c* para el fluido frio o caliente.
- *H_{int}* es la entalpia de la corriente a la entrada del intercambiador, con las mismas referencias que la de salida.
- $\Delta H_{v,hps}$ es la entalpia de ebullición del vapor saturado a alta presión.

• $T_{out,rw}$ y $T_{int,rw}$ son las temperaturas de entrada y salida del agua de refrigeración, que se fijan en su rango de operación, en °C.

Para los heaters se han utilizado las ecuaciones 3.10 y 3.12 debido a que el vapor cambia de estado y en la corriente de proceso algunos de sus componentes también. En el caso de los coolers, las ecuaciones 3.10 y 3.13 ya que el agua de refrigeración no cambia de estado y para los heat exchangers, las ecuaciones 3.10 y 3.11, debido a que componentes de ambas corrientes cambian de estado.

Una vez resuelto el balance de energía, se ha calculado el área de transferencia de los intercambiadores por el método DTLM (*Diferencia de Temperatura Media Logarítmica*), el cual se define en la ecuación 3.14. [15]

$$Q_{HX} = A_{tr} \cdot U_{HX} \cdot F \cdot DTLM_{ceq}$$
(3.14)

Donde:

- A_{tr} es el área de transferencia de calor en el intercambiador, medido en m².
- U_{HX} es el coeficiente global de transferencia de calor en el intercambiador, en W/m²· K, el cual es obtenido a través de correlaciones y propiedades de los fluidos que intervienen.
- *F* es la eficiencia de transferencia de calor del intercambiador, cuyo valor debe oscilar entre 0,85 y 1, es adimensional. [13]
- *DTLM_{ceq}* es la diferencia de temperatura media logarítmica de los fluidos que intervienen en el proceso en contracorriente, en °C.

Para obtener el U_{HX} hay que tener en cuenta todas las resistencias del equipo, como la conducción del calor por las paredes, la cual se despreciará ya que es ínfima frente a las demás resistencias del equipo, como los coeficientes de película y los factores de ensuciamiento interior y exterior. Por consecuencia se ha definido U_{HX} en la ecuación 3.15.

$$U_{HX} = \frac{1}{\frac{d_{ext}}{h_i \cdot d_{int}} + F_{s,int} \cdot \frac{d_{ext}}{d_{int}} + F_{s,ext} + \frac{1}{h_e}}$$
(3.15)

Siendo:

- h_e y h_i los coficientes de película externo e interno de los fluidos caliente y frio, en W/m²·K.
- d_{ext} y d_{int} el diámetro externo e interno de los tubos del intercambiador, en m. Las medidas para ellos se han tomado de las normas TEMA. [16]

• $F_{s,ext}$ y $F_{s,int}$ son los factores de ensuciamiento de los fluidos, los cuales indican la pérdida de transferencia de calor debido al ensuciamiento por los fluidos. Este parámetro no es constante, es decir, es variante en el tiempo y es muy importante su estudio a la hora del diseño de los intercambiadores. Para no exceder la dificultad de diseño se tomarán valores de 0,0001 para el agua y 0,0002 m²· K/W para orgánicos, medidos en m²· K/W. [17]

Para calcular los coeficientes de película exterior e interior, hay que calcular y definir ciertos parámetros que dependen de las propiedades del fluido y de las condiciones de operación. El cálculo para ambos coeficientes se define en la ecuación 3.16.

$$h = \frac{Nu \cdot k}{d_{eq}} \tag{3.16}$$

Donde:

- k es la conductividad térmica del fluido, en W/m·K.
- d_{eq} es el diámetro equivalente usado, el cual se define como el diámetro interior para el fluido que circula por los tubos, mientras que para el fluido que circula por la carcasa, el diámetro depende de diversos parámetros, como la disposición de los tubos, el diámetro externo de estos y el pitch. [17]

En primer lugar, vamos a ver que existen 4 configuraciones típicas para los tubos de un intercambiador de carcasa y tubo, dependiendo de la disposición geométrica de los tubos y de la dirección del fluido que pasa por carcasa, como se muestra en la figura 3.2. [17]

Figura 3.2. Configuraciones para los tubos de un intercambiador multitubular.

La configuración escogida ha sido la triangular de 30°, que es la más utilizada en la industria química. Es una configuración ampliamente estudiada y se ha comprobado que para un mismo diámetro de carcasa y mismo paso entre tubos con esta configuración ofrecen 15% más de área que la configuración cuadrada. Asimismo, la triangular 60° es menos usado que la de 30° debido a que origina altas caídas de presión. [17]

Para esta configuración, el diámetro equivalente queda definido por la ecuación 3.17.

$$d_{eq} = 1,27 \cdot (pitch^2 - 0,785 \cdot d_{ext}^2)$$
(3.17)

Donde el *pitch* queda definido como la distancia entre los centros de los tubos en el intercambiador, el cual para la configuración triangular se recomienda que sea $1,25 \cdot d_{ext}$, que es el diámetro externo del tubo, ambos parámetros en m. [17]

 Nu es el número de Nusselt, adimensional, que se es calcula en función del número de Reynolds (Re), que índica el régimen en el que se encuentre el fluido, ya sea laminar o turbulento y del número de Prandtl (Pr), que indica la difusión del calor en comparación a la velocidad del fluido. A partir de estos números, se elige la correlación a la que mejor se adapte para calcular el número Nu, que será función del Re y Pr, los cuales están definidos en las ecuaciones 3.18 y 3.19. [17]

$$Re = \frac{\rho \cdot v \cdot d_{eq}}{\mu} \tag{3.18}$$

$$Pr = \frac{Cp \cdot \mu}{k} \tag{3.19}$$

Donde μ es la viscosidad del fluido en Kg/m·s, y v la velocidad de circulación (m/s) la cual se obtiene mediante la ecuación 3.20.

$$v = \frac{\dot{m}}{\rho \cdot A_{transv}} \tag{3.20}$$

El área transversal se obtendrá de diferentes expresiones dependiendo si se quiere calcular la del interior de los tubos o de la carcasa como se indican en las ecuaciones 3.21 y 3.22.

$$A_{transv,tubos} = \frac{N_{tubos}}{N_{pasos}} \cdot \frac{\pi \cdot d_{int}^2}{4}$$
(3.21)

$$A_{transv,carcasa} = \frac{(pitch - d_{ext}) \cdot d_{carc} \cdot l_{bf}}{pitch}$$
(3.22)

Donde:

- d_{carc} es el diámetro de la carcasa (m), calculado a partir de correlaciones, en función de número de tubos, la configuración que presente, entre otros parámetros.

- l_{bf} es la distancia entre baffles del intercambiador (m), tomándose como un 20% del diámetro de la carcasa. [18]

A continuación, se va a calcular la $DTLM_{ceq}$ el cual viene definido en la ecuación 3.23.

$$DTLM_{ceq} = \frac{(T_{int,c} - T_{out,f}) - (T_{out,c} - T_{int,f})}{ln\left(\frac{T_{int,c} - T_{out,f}}{T_{out,c} - T_{int,f}}\right)}$$
(3.23)

Donde:

- $T_{int,c}$ y $T_{int,f}$ son las temperaturas de entrada del fluido caliente y frio, en °C.
- $T_{out,c}$ y $T_{out,f}$ son las temperaturas de salida del fluido caliente y frio, en °C.

Una vez obtenido todos los parámetros anteriores y obtenido el área de transferencia, se procede a calcular el número de tubos del intercambiador, el cual está definido en la ecuación 3.24.

$$N_{tubos} = \frac{A_{tr}}{\pi \cdot L_t \cdot d_{ext}} \tag{3.24}$$

La longitud de los tubos (L_t) del intercambiador debe permanecer en el rango de 5-10 veces el diámetro de la carcasa, sin superar los 6 m. [15]

Finalmente, se ha comprobado la pérdida de carga, en los equipos, la cual se ha obtenido mediante la ecuación de Darcy que es ampliamente utilizada para comprobar la pérdida de carga en intercambiadores multitubulares. Se ha comprobado que la perdida de carga en todos los intercambiadores es ínfima y por tanto despreciable.

Terminado el diseño, se muestra en la tabla 3.2. todas las dimensiones de los intercambiadores, las cuales han sido normalizadas siguiendo las normas TEMA, que se muestran Anexo IV.

Intercambiador	Diámetro tubos (in)	Diámetro carcasa (in)	Número de tubos	Longitud (m)
E-101	³ ⁄ ₄ 10 BWG	37	346	2,899
E-102 A/B/C	³ ⁄4 10 BWG	37	322	3,07
E-103	¹ / ₂ 16 BWG	21 1⁄4	253	2,128
E-104 A/B	³ ⁄4 10 BWG	33	298	3,144
E-105 A/B/C	³ ⁄4 10 BWG	33	271	3,258
E-106 A/B	³ ⁄4 10 BWG	35	312	2,552
E-107 A/B	³ ⁄4 10 BWG	35	335	3,81
E-108	¹ / ₂ 16 BWG	23 1/4	352	4,614

|--|

3.4. Reactor

Este reactor es el equipo con mayor importancia en la planta, puesto que en su interior se producen las reacciones químicas por las que se obtiene el producto deseado.

Para el diseño, previamente se va a fijar las condiciones iniciales de operación del reactor, las cuales están basadas en ensayos empíricos previos realizados en laboratorio y en planta. Las condiciones elegidas son las mencionadas en el capítulo anterior, que son una temperatura de alimentación de 240°C, una presión de 50 bar y una ratio constante de alimentación al reactor de 0,1 mol H₂/1 mol C₂H₅OH con lo que se consigue alcanzar una conversión media de 29,9% y una selectividad de 73,4%. [7] [8]

Posteriormente se va a realizar el diseño del reactor, que corresponde al modelo de flujo pistón y finalmente se va a analizar la influencia de algunas variables de interés en el proceso, lo cual justificará las elecciones de algunos parámetros de diseño.

Los cálculos realizados para el diseño han sido obtenidos usando el software *EES*, así como la evaluación posterior del diseño.

Hay que tener en cuenta que tanto el diseño y el análisis posterior se han realizado bajo simplificaciones, ya que un diseño riguroso se excedería del alcance del proyecto y requeriría un software más complejo como *Aspen Plus*.

3.4.1. Diseño

Una vez definido las condiciones de operación de nuestro proceso, se va proceder a calcular la masa de catalizador necesaria para la producción deseada, la longitud de los tubos, el área de transferencia y el volumen de reactor necesario para llevar a cabo la reacción, los efectos térmicos derivados de ésta

y los asociados a la caída de presión. Todos los cálculos se harán simultáneamente ya que todos los efectos del reactor afectan a las dimensiones del reactor.

Inicialmente, la masa de catalizador por cada tubo del reactor multitubular se obtiene mediante la ecuación de diseño de modelo de flujo pistón, la cual se muestra en la ecuación 3.25. [9]

$$\frac{dF_i}{dW} = \sum_{J=1}^{N_R} v_{ij} \cdot (R'_j)$$
(3.25)

Donde:

- F_i es el caudal molar de cada componente *i* que circula por cada tubo, medido en kmol/h.
- W es la masa de catalizador en el interior de cada tubo del reactor, en kg.
- N_R es el número de reacciones totales que se producen en el reactor.
- v_{ij} es el coeficiente estequiométrico de cada componente *i* en cada reacción *j*.
- R_j es la velocidad observada o real de cada reacción j, en kmol/kgcat·h, la cual es función de la velocidad intrínseca (r_j) y del factor de efectividad global (η_j) , como se define en la ecuación 3.26.

$$(R_i') = \eta_j \cdot (r_i')$$
 (3.26)

Donde η_j depende de los efectos difusionales externo e interno, pero por simplicidad se tomará como 1, es decir, que la velocidad observada sea igual a la intrínseca.

Para calcular el volumen y la longitud de los tubos, se aplicará la relación que hay entre estas dos variables y la masa de catalizador, como se muestra en las ecuaciones 3.27 y 3.28. [9]

$$dV = \frac{dW}{(1 - \varepsilon_b)\rho_{cat}} \tag{3.27}$$

$$dL = \frac{dV}{A_t \cdot N_{tubos}} \tag{3.28}$$

Donde:

• ε_b es la porosidad del lecho.

- ρ_{cat} la densidad del catalizador, en kg cat/m³ cat.
- A_t es el área transversal de los tubos del reactor, en m².
- *N_{tubos}* es el número de tubos del reactor.

A continuación, para calcular los efectos térmicos producidos en el reactor y el efecto producido por la retirada de calor producida por el refrigerante, se obtiene realizando el balance de energía en el reactor, tal y como se define en la ecuación 3.29. [19]

$$\sum_{i=1}^{N_c} F_i \cdot Cp_i \cdot \frac{dT}{dW} = \sum_{j=1}^{N_R} \left(-\Delta H_{R,T} \right)_j \cdot \nu_{ij} \cdot (R_j') + U \cdot a' \cdot (T_r - T)$$
(3.29)

Donde:

- Cp_i es el calor específico de cada componente, en kJ/kg·°C.
- $\Delta H_{R,T}$ es la entalpía de cada reacción en cada temperatura a la que se encuentre el reactor (kJ/kmol).
- T es la temperatura del reactor, en °C.
- U es el coeficiente global de transferencia, en W/m²·K, el cual se calcula con las ecuaciones 3.15 a 3.22, ya son equipos similares y la configuración es la misma.
- a'es la superficie de transferencia de calor, medida en m²/kg cat.
- T_r es la temperatura del refrigerante, en °C.

Para calcular el área de transferencia, se utilizará la ecuación 3.24 y para las pérdidas de carga producidas en el reactor, se utilizala ecuación de Ergun, la cual se muestra en la ecuación 3.30. [19]

$$\frac{d(P/P_0)}{dW} = \left(\frac{G}{\rho_g \cdot P_0 \cdot d_p \cdot A_t \cdot (1-\varepsilon_b)\rho_{cat} \cdot \varepsilon_b^3} \cdot \frac{150 \cdot (1-\varepsilon_b) \cdot \mu}{d_p} + 1,75 \cdot G\right) \cdot \frac{T}{T_0} \cdot \frac{P_0}{P} \cdot \frac{F_T}{F_{T0}}$$
(3.30)

Donde:

- *P* es la presión en el reactor, en bar.
- P_0 es la presión a la entrada del reactor (bar).
- *G* es el caudal másico de gas por unidad de área de sección transversal, en kg/m² · s
- ρ_g es la densidad inicial del gas, en kg/m³.

- μ es la viscosidad del gas, en Kg/m·s.
- d_p es el diametro de particula de catalizador, en m.
- T_0 es la temperatura a la entrada del reactor, en K.
- F_T es el caudal molar en el reactor, en mol/s.
- F_{T0} es el caudal molar a la entrada del reactor, en mol/s.

Finalmente, se van a mostrar los resultados obtenidos, en los cuales se muestran los parámetros de interés del equipo diseñado y el número de ellos, el cual serán 5 reactores en paralelo debido al gran volumen requerido por consecuencia de la producción, conversión, selectividad y la cinética de la reacción, la cual es lenta y necesita mucho tiempo de residencia. Los datos se muestran en la tabla 3.3.

Reactor	R-101 A/B/C/D/E
Diámetro tubos (in)	2
Longitud (m)	5,65
Número de tubos	1967
Área de transferencia (m ²)	2218
Volumen (m ³)	22,53
Masa de catalizador/ud tubo (kg/tubo)	18,1
Temperatura de alimentación	240
Rango de temperaturas de operación (°C)	240-246,1
Presión a la entrada de los tubos (bar)	50
Pérdida de Carga (bar/m)	0,044
Refrigerante	Agua saturada
Temperatura del Refrigerante (°C)	190
Presión en la carcasa (bar)	12,54

Tabla 3.3. Parámetros principales del reactor del proceso.

3.4.2. Evaluación de resultados

En este apartado se van a justificar la elección de ciertos parámetros, la influencia de algunas variables de interés y para finalizar, se mostrará el desempeño del reactor.

En primer lugar, para las dimensiones del reactor, se ha tomado los tubos de 2 pulgadas, ya que se debe de cumplir, por lo general, que el diámetro de los tubos sea, como mínimo 8 veces mayor que el diámetro de partícula del catalizador para minimizar el flujo de caudal. La longitud de los tubos se ha elegido bajo el criterio de minimizar la caída de presión en los tubos y debido a que los tubos tienden

a deformarse por su propio peso a partir de cierta longitud. Así que es recomendable mantener un rango de longitudes que, por lo general suele ser de 2-10 m por lo que se determinado una longitud óptima de 5,65 m, para la cual, como se mostrará posteriormente la caída de presión es mínima. [20]

En segundo lugar, se va a mostrar la influencia de la temperatura en el reactor, la cual es una variable muy importante a controlar ya que la reacción es exotérmica y puede producir grandes aumentos de temperatura, con lo que provocaría efectos muy desfavorables para nuestra producción.

Se debe mencionar, que todos los efectos térmicos que se van a mostrar a continuación están representados en función de la longitud de los tubos del reactor, lo cual se obtiene imponiendo un diámetro de tubería constante.

En las figuras 3.3. y 3.4. se muestra los perfiles de temperatura en los tubos del reactor, en el caso de reactor adiabático y con refrigeración.

Figura 3.3. Perfil de Temperaturas en el reactor. Reactor adiabático.

Figura 3.4. Perfil de Temperaturas en el reactor. Reactor refrigerado.

Como se puede observar, en estos perfiles de temperatura, en el caso de que no sea retirado el calor producido por la reacción, produce un aumento desmesurado de la temperatura cuanto más va avanzando por la longitud de los tubos del reactor, lo cual es muy perjudicial para el reactor ya que daña el catalizador, se necesitan materiales muy resistentes y muy caros, la selectividad cae rápidamente, entre otros factores. Esto ocurre porque la velocidad de la reacción al principio es muy lenta y se transforma poco reactivo, pero a medida que aumenta la conversión y al ser exotérmica, la temperatura, la velocidad aumenta considerablemente y por consecuencia, la temperatura en el reactor.

Por el contrario, si se refrigera el reactor, se consigue controlar la temperatura y mantenerla en un rango óptimo de operación en cada punto del reactor, y reduciendo los costes de diseño y operación al mínimo. Para ello se han realizado varias simulaciones con el mismo refrigerante, el cual es agua saturada, a varias temperaturas y con dichas simulaciones se ha podido determinar la temperatura óptima del refrigerante en la carcasa, que consigue que el aumento de la temperatura en el reactor sea él optimo y como se mostrará posteriormente, mínimo.

A continuación, se va a mostrar en la figura 3.5. y 3.6. los efectos de la temperatura en la selectividad a n-butanol, la cual es una variable muy relevante para el diseño de la planta.

Figura 3.5. Evolución de la selectividad en el reactor. Reactor adiabático.

Figura 3.6. Evolución de la selectividad en el reactor. Reactor refrigerado.

Como se observa en las figuras anteriores, si el reactor fuera adiabático, la selectividad caería rápidamente y el proceso sería inviable, mientras que, si se refrigera cae levemente a la salida de éste y caería menos mientras más se refrigere, sin superar ciertos límites a los que la temperatura caería por debajo del umbral donde la reacción deja de producirse, apareciendo otras reacciones parásitas.

Una vez mostrados los efectos térmicos de la reacción y la influencia de ésta entre las distintas variables de interés del reactor, hay que definir la temperatura del refrigerante usado para conseguir mantener las condiciones deseadas.

Debido a la transferencia térmica de los componentes de la reacción y del calor de reacción que se produce se ha elegido agua saturada a 190°C, debido a su gran coeficiente de transferencia de calor, menor ensuciamiento y a que mantiene el reactor en el rango óptimo de temperatura.

Posteriormente, se ha comprobado la pérdida de carga en los tubos del reactor, la cual es ínfima e irrelevante para que afecte a la reacción. En la figura 3.7. se muestra el perfil de presiones en el reactor.

Figura 3.7. Perfil de Presiones en el reactor.

Como se observa, la caída de la presión es de 0,044 bar/m lo cual es favorable, ya que la caída de presión máxima admisible generalizada es de aproximadamente 0,1 bar/m. [19]

Finalmente, una vez hecho el análisis posterior al diseño, se deduce que se ha realizado un buen diseño del reactor. Así mismo, una vez justificado todas las condiciones de operación, se va a mostrar, en la figura 3.8. la evolución de todas las especies a lo largo del reactor, para visualizar el desempeño del reactor.

Figura 3.8. Evolución de las especies en el reactor.

3.5. Equipos de separación

En el presente proyecto, no forma parte de su alcance el diseño de los equipos de separación de sustancias, debido a la complejidad de diseño de estos. Sin embargo, se realizará una estimación preliminar de sus dimensiones, con el fin de calcular el coste de inversión de la instalación, a excepción del sistema PSA, que quedará completamente fuera del diseño.

3.5.1. Tanque flash

La destilación flash es un proceso ampliamente utilizado en la industria química, en el que una mezcla multicomponente en equilibrio termodinámico líquido-vapor, experimenta una disminución de la presión o un cambio en la temperatura de forma en que se vaporiza inmediatamente una de las fases produciéndose una separación instantánea, saliendo los componentes más volátiles por la fase gaseosa y los más pesados por la fase líquida. [21]

La destilación flash ocurre normalmente en un depósito o drum, que comúnmente se denomina tanque flash. La separación se rige por la ley de Raoult modificada, la cual se define en la ecuación 3.31. [21]

$$\hat{\phi}_i \cdot y_i \cdot P = \gamma_i \cdot x_i \cdot P_i^{sat}$$
(3.31)

Donde:

- $\hat{\phi}_i$ es el coeficiente de fugacidad de cada componente en la mezcla, el cual se ha tomado como un valor de 1 por simplicidad, es adimensional.
- x_i y y_i es la fracción molar que saldrá por la fase líquida y gas de cada componente, en caudal molar de componente *i*/caudal molar total.
- *P*es la presión del total del tanque, en bar.
- P_i^{sat} es la presión de saturación de cada componente en la mezcla a la temperatura del tanque, en bar.
- γ_i es el coeficiente de actividad de cada componente en la mezcla y al igual que el coeficiente de actividad se ha tomado como 1, es adimensional. [21]

Tras aplicar la ley de Raoult se observó una separación casi perfecta donde la totalidad del hidrogeno y butadieno salían por la corriente gaseosa con algunas trazas de líquido, la cual presentaba una composición molar menor al 0,1% de acetaldehído y etanol, por lo que, por simplicidad, se ha considerado una separación perfecta.

Una vez determinada la composición de salida, se procede a dimensionar el separador flash, usando unas ecuaciones empíricas de diseño, las cuales dependen de una serie de parámetros definidos a continuación. [22]

En primer lugar, se calcula el parámetro de flujo (FLV) que se define en la ecuación 3.32.

$$F_{LV} = \frac{F_L}{F_V} \cdot \sqrt{\frac{\rho_v}{\rho_l}}$$
(3.32)

Donde:

- F_L y F_V son los caudales másicos de la corriente líquida y gaseosa de salida del tanque, en kg/s.
- $\rho_l y \rho_v$ son las densidades de la corriente líquida y gaseosa de salida del tanque, en kg/m³. [22]

A continuación, se ha calculado la velocidad máxima permisible del vapor (Up), la cual se define en la ecuación 3.33. [22]

$$U_p = K_T \cdot \sqrt{\frac{\rho_v - \rho_l}{\rho_l}}$$
(3.33)

Donde K_T es una constante empírica que va ajustar el valor de la velocidad en función de la relación de caudales de líquido y vapor, como se define en la ecuación 3.34.

$$K_T = exp[-1,887 - 0,8145 \cdot ln(F_{LV}) - 0,1871 \cdot ln(F_{LV})^2 - 0,0145 ln(F_{LV})^3 - 0,00101 \cdot ln(F_{LV})^4]$$
(3.34)

Finalmente, se obtuvo el diámetro del tanque flash utilizando la ecuación 3.34, la altura atendiendo a que, para tanques verticales la relación estándar entre la altura y su diámetro se establece en un rango de 3-5 y el volumen del tanque que se aproxima al volumen de un cilindro como se observa en la ecuación 3.35.

$$D_T = \sqrt{\frac{4 \cdot F_v}{\pi \cdot U_p \cdot \rho_v}} \tag{3.35}$$

$$V_T = \pi \cdot H_T \cdot \frac{D_T^2}{4} \tag{3.36}$$

En la tabla 3.4. se muestran los principales parámetros de diseño y dimensiones del tanque flash.

Tanque flash	Velocidad del	Diámetro	Altura	Volumen del tanque
	vapor (m/s)	(m)	(m)	(m ³)
F-101	0,023	1,125	4,502	4,475

Tabla 3.4. Dimensiones del tanque flash.

3.5.2. Columnas de destilación

En primer lugar, cabe mencionar que las columnas de destilación es el equipo de separación más usado en la industria química, debido a su alta eficiencia. El modelo de columna elegido para las columnas de la planta es la columna de platos, la cual presenta múltiples ventajas, pero su diseño, al igual que los demás tipos de columna, es muy riguroso ya que habría que tener en cuenta la transferencia de materia y de calor en cada etapa, por lo que su diseño queda fuera del alcance de este proyecto como se ha mencionado anteriormente.

Para dar una aproximación de los parámetros de diseño y poder estimar la valoración económica del proceso, se va a hacer un cálculo aproximado del número de etapas reales de la columna, su diámetro, la altura y el volumen.

Es relevante mencionar que para hacer un diseño más verosímil sería necesario emplear un software complejo, como *Aspen Plus*.

En primer lugar, para estimar el número de etapas ideales o platos teóricos, usando la ecuación de Fenske, la cual se muestra en la ecuación 3.37. [23]

$$N_{min} = \frac{\log\left(\frac{x_D}{1-x_D}, \frac{1-x_B}{x_B}\right)}{\log(\alpha)}$$
(3.37)

Donde:

- N_{min} es el número mínimo de platos teóricos requeridos, incluido el hervidor.
- x_D y x_B son las composiciones molares del componente más volátil en la cabeza y en el fondo de la torre.
- α es la volatilidad relativa entre el componente más ligero en la cabeza y el más pesado en la torre.

Posteriormente, se ha calculado el número de platos reales, en los cuales se incluye el hervidor como se ha mencionado anteriormente. Para ello, se ha definido la eficiencia de la torre (η_D)con un valor del 75%. Por lo que el número de platos se define según la ecuación 3.38.

$$N_D = \frac{N_{min}}{\eta_D} \tag{3.38}$$

A continuación, se ha obtenido la altura de la torre, utilizando la ecuación 3.39, definiendo previamente la distancia entre platos L_D , la cual tomarse un valor de 0,5 metros para labores de mantenimiento.

$$H_D = N_D \cdot L_D \tag{3.39}$$

Para finalizar se estimará el diámetro de la columna con la ecuación 3.34 usada en el cálculo del diámetro del tanque flash, salvo que se tomará un valor típico de velocidad máxima permisible del vapor de 1,5 m/s. Y una vez obtenido el diámetro, se podrá calcular el volumen de la columna con la ecuación 3.36.

Hay que destacar, que en la columna D-103 se realiza una destilación extractiva, en la cual un disolvente de separación, elimina un azeótropo y aumenta la volatilidad relativa entre los compuestos que forman el azeótropo para poder separarlos, por lo que su cálculo será el menos fiable de todos, debido a su gran complejidad de diseño.

En la tabla 3.5 se muestran los principales parámetros de diseño de las columnas de destilación de la planta.

Columna	Número de etapas	Diámetro (m)	Altura (m)	Volumen de la columna (m ³)
D-101	32	0,646	16	5,24
D-102	23	0,56	11,5	2,832
D-103	36	0,628	18	5,578
D-104	28	0,40	14	1,763

Tabla 3.5. Dimensiones de las columnas de destilación.

4.1. Introducción

En este capítulo se estimará todos los costes asociados a nuestra planta de producción de n-butanol, los cuales se centrará en los costes asociados a la inversión inicial y a los costes de producción.

Para ello, se usarán los parámetros calculados del capítulo de Hoja de especificaciones y los valores de tablas y parámetros recogidos en el Anexo V.

Una vez calculados, se actualizarán todos los precios a la fecha actual, como a la moneda vigente, ya que los precios calculados se obtienen en dólares americanos.

Al finalizar todos los cálculos de los costes de la planta, se añadirá un apartado adicional para mostrar la viabilidad económica del proyecto.

4.2. Costes de inversión inicial de la planta

En este apartado se realizará la estimación del coste de inversión inicial de la planta para su posterior implantación, el cual conlleva el cálculo de los costes fijos, como el coste aproximado de cada equipo que compone la planta que será calculado en primer lugar, así como su instalación, tuberías, estructuras, redes eléctricas, instrumentación, construcción, ingeniería etc.

Para ello, se sigue un método típico en la ingeniería química para la estimación de costes, el cual será detallado posteriormente.

4.2.1.Correlaciones de costes de los equipos

Para estimar el coste base de los equipos se usarán distintas correlaciones, que dependerán de diversos parámetros. En primer lugar, se va a usar una correlación, en la cual se calcula el coste base de los equipos en función de su capacidad, la cual se define en la ecuación 4.1 [24]

$$log_{10}(C_{equipo_{a}}^{\circ}) = K_{1} + K_{2} \cdot log_{10}(A) + K_{3} \cdot (log_{10}(A))^{2}$$
(4.1)

Donde:

- $C_{equipo}_{a}^{\circ}$ es el coste base de un equipo de acero al carbono y con una presión de 1 bar manométrico de presión, a excepción de las bombas, para las cuales es igual a 10 bar.
- A es la capacidad o tamaño del equipo, el cual es propio de cada equipo.
- *K_i* son parámetros tabulados característicos de cada equipo, los cuales tienen validez en un cierto rango de valores.

En el caso de que los equipos operen fuera del rango de presiones, hay que aplicar un factor de corrección por presión (F_P), el cual influirá en los costes de los equipos. Este factor se define en la ecuación 4.2. [24]

$$log_{10}(F_P) = C_1 + C_2 \cdot log_{10}(P) + C_3 \cdot (log_{10}(P))^2$$
(4.2)

Donde:

- *P* es la presión de operación del equipo, en bar(g).
- C_i son parámetros característicos del equipo, que se muestran en la tabla 4.3.

Si los equipos se construyen con un material distinto al acero al carbono, hay que aplicar un factor corrector de material (F_m) característico de cada equipo. En nuestro caso, el factor corrector incrementará el coste de los equipos de la planta, ya que todos se fabrican con acero al inoxidable.

Hay equipos, que hay que aplicar otros factores de corrección adicionales, como es el caso de las columnas de platos, donde hay que aplicar un factor corrector de columna de platos (F_q), el cual es función del número de platos de la columna (N). Este factor se define en la ecuación 3.3. [24]

$$\log_{10} F_q = 0.4771 + 0.08516 \cdot \log_{10} N - 0.3473 \cdot (\log_{10} N)^2$$
(4.3)

Existen equipos cuya capacidad tiene un valor fuera del rango de aplicación de los parámetros K_i, por lo que se puede calcular el coste, siendo conocido la capacidad y el coste de un equipo similar. Esto se consigue aplicando el método de Williams, el cual se define en la ecuación 4.4. [24]

$$\frac{C_{equipo,a}}{C_{equipo,b}} = \left(\frac{A_a}{A_b}\right)^n \tag{4.4}$$

Donde n es un exponente de costes y su valor depende del tipo de equipo, oscilando en el rango 0,4-0,8, pero que se puede asumir un valor igual a 0,6.

4.2.2. Correlaciones y parámetros de los equipos.

En la tabla 4.1. se muestra cual es la capacidad característica de cada equipo. [24]

Equipo	Capacidad
Bombas	Potencia (kW)
Compresores	Potencia (kW)
Intercambiadores de calor y Reactores*	Área de transferencia (m ²)
Tanques flash	Volumen (m ³)
Columnas de platos	Diámetro (m)

Tabla 4.1. Parámetros de capacidad específicos de cada equipo. [24]

*El cálculo del coste del reactor se hará de la misma forma que un intercambiador de calor ya que los dos equipos son semejantes. Asimismo, añadir que el equipo será considerablemente más caro debido a la compra de catalizador, el cual será añadido en el precio del coste final del equipo.

En la tabla 4.2. se muestran los parámetros Ki específicos de cada equipo. [24]

Equipo	K ₁	K ₂	K3
Bombas	3,3892	0,0536	0,1538
Compresores	2,2891	1,3604	-0,1027
Intercambiadores de calor y Reactores	4,3247	-0,303	0,1634
Vasija vertical (Tanque flash)	3,4974	0,4485	0,1074
Columnas de platos	2,9949	0,4465	0,3961

Tabla 4.2. Parámetros Ki específicos de cada equipo. [24]

A continuación, se van a presentar los parámetros C_i de los equipos para poder calcular el factor de corrección por presión, los cuales se muestran en la tabla 4.3.

Algunos equipos no aparecen debido a que no necesitan corrección por presión, es decir el valor de sus parámetros C_i es 0.

Equipo	C ₁	C ₂	C ₃
Bombas	-0,3935	0,3957	-0,00226
Intercambiadores de calor y Reactores	-0,00164	-0,00627	0,0123

Tabla 4.3.	Parámetros	C _i específi	cos de cad	la equipo.	[24]
------------	------------	-------------------------	------------	------------	------

Posteriormente, una vez calculado el coste base con las ecuaciones anteriores, se va a proceder a calcular los costes finales de cada equipo mediante correlaciones específicas para cada equipo, como se muestra en la tabla 4.4.

Equipo	Correlación
Bombas, intercambiadores de calor, Reactores y Tanque flash	$C_{T,a} = C_{equipos}^{\circ} \cdot (B_1 + B_2 \cdot F_M \cdot F_p)$
Compresores	$C_{T,a} = C_{equipos}^{\circ} \cdot F_{BM}$
Columnas de platos	$C_{T,a} = C_{equipos}^{\circ} \cdot N \cdot F_M \cdot F_q$

Tabla 4.4. Correlaciones de costes finales específicas de cada equipo.

Donde B_i parámetros específicos de cada equipo, F_{BM} es un factor de corrección por el efecto del material, es decir es equivalente al F_M y N es el número de platos de la columna. Los parámetros B_i y F_{BM} se muestran en la tabla 4.5.

Equipo	B ₁	B ₂	F _{BM}	FM
Bombas	3,3892	0,0536	-	1,6
Compresores	-	-	5,8	-
Intercambiadores de calor y Reactores	1,63	1,66	-	2,68
Tanque flash	2,25	1,82	-	3,1
Columnas de platos	-	-	-	1,8

Tabla 4.5. Parámetros Bi, FBM y FM específicos de cada equipo.

4.2.3. Mediciones y costes finales de los equipos

En este apartado se van a mostrar las mediciones y costes finales específicos de cada equipo calculados con las correlaciones y parámetros mostrados anteriormente. Los resultados obtenidos se muestran en la tabla 4.6.

Equipo	Capacidad	Cantidad	Coste unitario (€/ud)	Coste Final (€)
P-101	20,8 kW	4	15.921,86	63.687,43
C-101	140,1 kW	1	268.412,21	268.412,21
E-101	60,02 m ²	1	107.881,50	107.881,50
E-102	59,17 m ²	3	107.455,91	322.367,73
E-103	21,48 m ²	1	83.763,32	83.763,32
E-104	56,05 m ²	2	103.177,55	206.355,11
E-105	52,83 m ²	3	99.937,26	299.811,77
E-106	47,66 m ²	2	97.369,67	194.739,35
E-107	76,4 m ²	2	111.066,45	222.132,90
E-108	64,8 m ²	1	105.700,42	105.700,42
R-101	2.218 m ²	5	819.010,99	4.095.054,94
F-101	4,475 m ³	1	20.657,15	20.657,15
D-101	0,646 m	1	27.086,51	27.086,51
D-102	0,56 m	1	25.296,89	25.296,89
D-103	0,628 m	1	26.933,89	26.933,89
D-104	0,40 m	1	24.254,67	24.254,67
	1		1	

Tabla 4.6. Mediciones y costes finales de cada equipo.

COSTE TOTAL DE LOS EQUIPOS (€)

6.094.135,77

4.2.4. Cálculo de la inversión de la planta

Una vez calculados los costes de los equipos, se procede a calcular el coste de inversión inicial de la planta, el cual se hará siguiendo el método de Chilton, en el cual permite calcular las diferentes partidas del presupuesto global de costes fijos a partir del coste total de adquisición de los equipos.

En la tabla 4.7. se muestran los costes correspondientes a cada ítem, al cual le corresponde un factor determinado dependiendo las características de la planta, que se han obtenido de las tablas correspondientes al Anexo V. Por último, se muestra el coste total directo (CDT) e indirecto (CIT) y la suma de ambos, los cuales forman el coste total de inversión inicial de la planta. [24]

Concepto	Ítem	Factor de Chilton (fi)	Coste (€)
1	Coste de equipos principales	1	6.094.135,77
2	Coste de equipos instalados	1,8	10.969.444,39
3	Coste de tuberías (planta con fluidos)	0,45	4.936.249,98
4	Coste de instrumentación (completa automatización)	0,125	1.371.180,55
5	Edifícios y preparación del terreno (planta interna)	0,8	8.775.555,51
6	Auxiliares (ampliación grande)	0,15	1.645.416,66
7	Líneas exteriores (unidad separada)	0,1	1.096.944,44
8	CDT (Coste directo total)	-	34.888.927,31
9	Ingeniería y construcción (complejidad complicada)	0,425	14.827.794,11
10	Contingencia y beneficio del contratista (Proceso sujeto a cambios)	0,25	8.722.231,83
11	Factor de tamaño (grande)	0,025	872.223,18
12	CIT (Coste indirecto total)	-	24.422.249,11
COSTE TOTAL DE INVERSIÓN59.311.176,42			

Tabla 4.7. Cálculo del coste total de inversión de la planta por del método de Chilton. [24]

Donde:

• El CDT es calculado como la suma de los conceptos 2 a 7.

- El CIT es calculado como la suma de los conceptos 9 a 11.
- El CTF es la suma de los conceptos 8 y 12.

El coste total de la inversión es algo inferior debido a varios factores como la falta de diseño de equipos necesarios para la producción, como el sistema PSA, el coste estimado de los equipos son inferiores a los reales debido a las simplificaciones tomadas en el diseño, especialmente en los equipos de separación, ya que su diseño real generaría un coste bastante mayor y deberán incluir los costes asociados a los equipos auxiliares de estos, como los hervidores y las bombas de reflujo en el caso de las columnas de destilación. También aumentaran el coste el cálculo de tuberías, que no ha incluido e incrementarán los costes de los sistemas de bombeo. No obstante, aunque los costes se eleven, el valor añadido del producto principal del proceso está en aumento y, por lo tanto, la inversión será factible.

4.3. Coste de producción de la planta

Una vez calculado el coste total de inversión inicial, se va a estimar el coste total anual de producción (CTP), el cual se define en la ecuación 4.5. [24]

$$CTP = CF + GG \tag{4.5}$$

Donde:

- CF se define como los costes de fabricación, los cuales se estiman como el 80-90% del CTP.
- GG son los gastos generales de la compañía, los cuales incluyen administración, actividad comercial, investigación y desarrollo, entre otros. Estos costes se estiman como el 10-20% del CTP. [24]

Para calcular los CF, GG y así el coste total de producción de la planta a utilizar un método de estimación que se asemeja al método de Chilton, es decir, se calcula a partir de diferentes conceptos.

4.3.1. Coste de las materias primas, mano de obra y utilities

En primer lugar, se va calcular el coste variable anual de las materias primas (CV), en €/año, el cual se define en la ecuación 4.6. [24]

$$CV_{consumible,i} = PC_i \cdot P_{consumible,i} \cdot FC$$
(4.6)

Donde:

- PC_i es la unidad de cálculo del consumible *i*, en kg/año.
- *P_{consumible,i}* es el precio del consumible *i*, en €/año.
- *FC* es el factor de capacidad, el cual se tomará el valor de 85%. [24]

A continuación, en la tabla 4.8. se van a mostrar las materias primas, con sus unidades de cálculo, precio y su coste variable anual.

Materia prima	PC (kg/año)	P (€/kg)	CV (€/año)
Etanol	118.248.000	0,489	57.823.272,0
Hidrógeno	39.788	9,616	382.601,41
Glicerol	14.189.227,2	0,71	10.074.351,31
Etilenglicol	14.350.584	0,624	8.954.764,42

Tabla 4.8. Coste anual de las materias primas. [27]

En el cálculo de las materias primas no se incluye el coste de sustitución del catalizador anual, ya que el comportamiento de su desactivación se desconoce, así que el precio de las materias primas sería una estimación por debajo del real.

En segundo lugar, se ha calculado el precio de los utilities o auxiliares que consume la planta, que son vapor de alta presión y agua de refrigeración, los cuales se muestran en la tabla 4.9. con sus respectivas unidades, precio y coste variable anual. [24]

Utilitie	PC (kg/año)	PC (GJ/año)	P (€/kg)	P (€/GJ)	CV (€/año)
Vapor de alta presión	90.921.600	-	0,014	-	1.081.957,04
Agua de refrigeración	-1	336.546	-	3,77	1.078.461,66

Para el agua de refrigeración, hay que calcular el consumo eléctrico asociado al sistema de bombeo de los equipos de refrigeración, en €/año, el cual se define en la ecuación 4.7. [24]

$$C_{electricidad} = 0,196 \cdot \dot{m}_{rw} \cdot P_{elect} \cdot t_{op} \cdot FC$$
(4.7)

Donde:

- \dot{m}_{rw} es el caudal de agua de refrigeración, en t/h.
- P_{elect} es el precio de la electricidad, el cual se ha tomado un valor de 0,051 \in /KW·h. [24]
- t_{op} es el tiempo de operación de la planta, el cual se estimó un promedio de 8000 h/año.

El coste del consumo eléctrico asociado al sistema de bombeo de los equipos de refrigeración es 68.282,01 €/año.

Por último, se va a estimar la mano de obra directa (M.O.D) necesaria para la planta, la cual sigue la ecuación 4.8. [24]

$$M.O.D = \sum (No_{p,i} \cdot Eq_i) \cdot Sal \cdot t_{op} \cdot FC$$
(4.8)

Donde:

- No_{p,i} es el número de operarios necesarios en cada equipo (Anexo V).
- Eq_i es el es el número de equipos *i* en la planta.
- Sal es el salario del operario o supervisor, el cual se estima un valor de 21,74 \notin h. [24]

A partir de la ecuación anterior, se deduce que el coste asociado a los operarios y/o supervisores asciende a 739.160 €/año.

4.3.2. Cálculo del coste anual de producción

Una vez calculado los costes anuales asociados a las materias primas, los utilities y la mano de obra, se va a calcular el coste anual de producción de la planta, a partir de los costes específicos de cada ítem, con su factor correspondiente, obtenidos de las tablas correspondientes (Anexo V) semejante al cálculo del coste de inversión.

Por último, se muestra en la tabla 4.10. los costes totales de producción directo (CPD) e indirecto (CPI), los cuales son semejantes a los costes de fabricación y los costes generales y la suma de ambos, que forman coste total de producción anual de la planta. [24]

Concepto	Ítem	Factor (fi)	Coste (€)
1	Materias primas	-	77.234.989,14
2	Utilities	-	2.228.700,71
3	Materiales auxiliares	1	4.448.338,23
4	Mantenimiento	0,075	4.448.338,23
5	Empaquetado y envío	-	-
6	Mano de obra directa (M.O.D)	-	739.160
7	Costes de laboratorio	0,1	73.916,0
8	Supervisión	0,2	147.832,0
9	Dirección en planta	0,5	369.580,0
10	Cargas de capital	0,15	8.896.676,46
11	Seguros	0,01	593.111,76
12	Impuestos locales	0,02	1.186.223,53
13	Royalties	0,01	593.111,76
-	CPD (Coste de producción directo)	-	100.959.977,83
14	Generales	0,6	2.669.002,94
15	Gastos de Administración	0,02	1.186.223,53
16	Impuestos	0,01	593.111,76
17	Seguros	0,01	593.111,76
18	Recuperación de capital	0,01098	651.236,72
-	CPI (Coste de producción indirecto)		5.692.686,71
COSTE TO	TAL DE PRODUCCIÓN		106.652.664,54

Tabla 4.10. Cálculo del coste total de producción anual de la planta. [24]

Los costes de producción obtenidos son razonables para una planta de esta capacidad de producción, no obstante por las mismas razones comentadas en el apartado anterior, los costes serán aún mayores, cuando se incrementen los valores de los equipos, por lo que aumentaran los costes de producción asociados a estos e incluso al mantenimiento de equipos auxiliares externos para la adecuación de los compuestos que participan en el proceso y los asociados a la mano de obra, los cuales aumentarán considerablemente debido a que se necesitarán más operarios de los estimados y por la fluctuación de los salarios.

4.4. Análisis inicial de la rentabilidad económica de la inversión

En este apartado, se va a realizar un análisis preliminar de la viabilidad económica de la inversión, aun teniendo en cuenta, que estas cifras difieren mucho de las reales, debido a las simplificaciones que se han tomado por excederse del contenido de este proyecto. No obstante, se va a estimar el beneficio que supondrá la inversión en esta planta calculando el valor actual neto (VAN) de la planta, el cual se define en la ecuación 4.9. [25]

$$VAN = -A + \sum_{i=1}^{N} \frac{CF_i}{(1+k)^i}$$
(4.8)

Donde:

- A es el coste de inversión de la planta en el año 0, el cual se obtuvo en el apartado 4.2.4.
- CF_i es el es el flujo de caja (*cash flow*) en el año *i*.
- k es la tasa de descuento, la cual se ha tomado un valor general del 10%. [25]
- N es la vida útil de la planta, la cual se ha estimado un valor de 25 años.

Los CF_i se obtienen siguiendo el procedimiento descrito a continuación.

- 1. Se suman todas las entradas de la empresa, en este caso son las ventas (IV) de n-butanol, hexanol y butadieno, cuyos valores se han calculado con la ecuación 4.6 y se muestran en la tabla 4.11.
- 2. Se suman todas las salidas de dinero, como los costes fijos y variables asociados a los costes de producción, junto a las amortizaciones de los equipos, el cual supondrá un valor del 10% de los equipos durante 10 años, ya que se utiliza la amortización lineal.
- 3. La diferencia entre los dos conceptos anteriores forma el Beneficio antes de Impuestos (BAI), al cual se le impondrá una tasa impositiva del 30% para obtener el Beneficio Neto (BN).
- 4. Para finalizar se suman el valor de las amortizaciones y todas las recuperaciones de dinero que hubiera, que en este caso no se considera ninguna adicional y se obtienen los flujos de caja, los cuales serán iguales para los años 1-10 y 11-25. [25]

Productos	PC (kg/año)	P (€/kg)	IV (€/año)
N-Butanol	50.000.000,0	2,13	106.650.000,0
Hexanol	14.336.000,0	0,80	11.454.464,0
Butadieno	1.312.800,0	0,12	1.312.800,12
INGRESOS DE VENTAS ANUALES119.417.264,12			119.417.264,12

Tabla 4.10. Ingresos por ventas anuales de la planta.

Finalmente, se va a mostrar los flujos de caja en la tabla 4.11. y posteriormente se presentará el VAN de la inversión obtenido.

Año	1-10	11-25
Entradas (€)	119.417.264,12	119.417.264,12
Costes fijos (€)	-	-
Costes producción (€)	106.652.664,54	106.652.664,54
Amortizaciones (€)	5.931.117,64	0
BAI (€)	6.833.481,94	12.764.599,58
BN (€)	4.783.437,35	8.935.219,70
Amortizaciones (€)	5.931.117,64	0
CFi(€)	10.714.555,00	8.935.219,70

Tabla 4.11. Flujos de caja asociados a la inversión de la planta.

Con los flujos de caja mostrados y la inversión inicial de 59.311.176,42 €, se obtiene un VAN de 74.837.576,10 €, el cual nos da una rentabilidad de la planta a largo plazo y observando los flujos de caja se observa que también a corto plazo, de lo cual concluimos que el diseño es viable económicamente y que podrá ser aún mayor si se tiene en cuenta que el precio del producto principal está en auge.

BOMBA P-101				
Proyecto: Planta de producción de n-butanol	Nomenclatura: P-101 A/B/C/D			
Número de línea: 2-3	Material: Acero inoxidable.			
Modelo: SIA-6-24/40	Cantidad: 4			
Descripción: Bomba centrífuga que impulsa l	a alimentación al reactor.			
DATOS DE OPERACIÓN				
Fluido	Mezcla de Etanol, agua y acetaldehído.			
Caudal másico (kg/h)	18.924			
Caudal volumétrico (m ³ /h)	23,976			
Densidad (kg/m ³)	789,4			
Viscosidad (kg/m·s)	0,002			
Temperatura de diseño (°C)	20			
Presión de aspiración (bar)	1/25			
Presión de impulsión (bar)	25/50			
Presión de diseño (bar)	-			
Presión de vapor (bar)	0,1078			
Altura desarrollada (m)	316,36			
Potencia consumida (kW)	20,8			
Rendimiento (%)	80			
NPSH requerido (m)	9,59/258			
Velocidad de giro (rpm)	2.900			
COMPRESOR C-101				
--	--	--	--	--
Proyecto: Planta de producción de n-butanol	Nomenclatura: C-101			
Número de línea: 14-16	Material: Acero inoxidable.			
Cantidad: 1	Descripción: Compresor centrífugo que impulsa la recirculación de hidrógeno			
DATOS DE O	OPERACIÓN			
Fluido	Hidrógeno			
Caudal másico (kg/h)	151			
Caudal volumétrico (m ³ /h)	147,75			
Densidad (kg/m ³)	1,022			
Presión de aspiración (bar)	15			
Presión de impulsión (bar)	50			
Temperatura de aspiración (°C)	80			
Temperatura de impulsión (°C)	260,8			
Potencia consumida (kW)	140,1			
Rendimiento isentrópico (%)	80%			
Rendimiento mecánico (%)	80%			

INTERCAMBIADOR DE CALOR E-101					
Proyecto: Planta de producción	Nomenclatur	a: E-101		Material: Acero	
de n-butanol	Némero de la		7 9	inoxidable.	
Numero de intea de tubos: 4-3			158: 7-0		
Descripción: Intercambiador para	i precalentar la a	alimentación	al reacto	r con la corriente de salida	
	DATOS DE C	DPERACIO	N		
DATOS DE OPERACION	TUB	OS		CARCASA	
Fluido	Mezcla bifá H2O, C2H4O	sica: H2, y C2H5OH	Mezcla bifásica: H2, H2O, C2H4O, C2H5OH, C4H9OH, C6H13OH y		
Disposición del fluido	Fríc	`		Caliente	
Coudel másico (Ira/h)	28.00))4		27.059	
Tauna masico (kg/n)	38.00)4		24(1	
Temperatura de entrada (°C)	20,9	6		246,1	
Temperatura de salida (°C)	113,	7	180		
Presión de entrada (bar)	50		49,75		
Pérdida de carga (bar)	-		-		
Velocidad del fluido (m/s)	0,46			1,08	
Densidad (kg/m ³)	788,85			806,42	
Calor específico (kJ/kg·K)	3,12			4,99	
DIME	INSIONES Y I	DATOS TÉI	RMICOS	5	
Coeficiente global (W/m ² · K)		352,4			
Calor intercambiado (MW)		3,053			
DTLM		145,3			
Área de transferencia (m ²)		60,02			
Configuración de los tubos		Triangular 30°			
Diámetro externo tubo (in)		3⁄4			
Diámetro de la carcasa (in)		37			
BWG	BWG		10		
Longitud (m)		2,899			
Número de tubos		346			

INTERCAMBIADOR DE CALOR E-102					
Proyecto: Planta de producción	Nomenclatura: E-102 A/B/C		B/C	Material: Acero	
de n-butanol				inoxidable.	
Número de línea de tubos: 5-6	Número de lí	nea de carca	asa: -	Cantidad: 3	
Descripción: Intercambiador para	a calentar la alin	nentación al	reactor ha	asta el punto de operación	
	DATOS DE O	OPERACIÓ	N		
DATOS DE OPERACIÓN	TUB	OS	CARCASA		
	Mezcla bifá	isica: H ₂ ,	Vap	oor de alta presión (hps)	
Fluido	H_2O, C_2H_4O	y C ₂ H ₅ OH			
Disposición del fluido	Frío)		Caliente	
Caudal másico (kg/h)	12.6	68		11.365,2	
Temperatura de entrada (°C)	113,	,7		254	
Temperatura de salida (°C)	240)		254	
Presión de entrada (bar)	50		41		
Pérdida de carga (bar)	-		-		
Velocidad del fluido (m/s)	0,15			0,715	
Densidad (kg/m ³)	784,	15		20,42	
Calor específico (kJ/kg· K)	4,53	3		-	
DIMENSIONES Y DATOS TÉRMICOS					
Coeficiente global (W/m ² · K)		548,79			
Calor intercambiado (MW)		1,784			
DTLM		58,8			
Área de transferencia (m ²)		59,17			
Configuración de los tubos		Triangular 30°			
Diámetro externo tubo (in)		3⁄4			
Diámetro de la carcasa (in)		37			
BWG		10			
Longitud (m)		3,07			
Número de tubos 322		322			

INTERCAMBIADOR DE CALOR E-103				
Proyecto: Planta de producción	Nomenclatura: E-103			Material: Acero
de n-butanol				inoxidable.
Numero de línea de tubos: 19- 20	Numero de li	nea de carcas	sa: -	Cantidad: 1
Descripción: Intercambiador para	enfriar la corri	ente que entra	en la pi	rificación de n-butanol
	DATOS DE O	OPERACIÓN	N	
DATOS DE OPERACIÓN	TUB	OS	CARCASA	
Fluido	Mezcla gaseosa: H ₂ O, C ₂ H ₅ OH, C ₄ H ₉ OH y C ₆ H ₁₃ OH		Agua de refrigeración (rw)	
Disposición del fluido	Calie	nte		Frio
Caudal másico (kg/h)	8.10)4		71.316
Temperatura de entrada (°C)	210)	5	
Temperatura de salida (°C)	125	5	15	
Presión de entrada (bar)	1		1	
Pérdida de carga (bar)	-		-	
Velocidad del fluido (m/s)	0,27			0,272
Densidad (kg/m ³)	816,2			1000
Calor específico (kJ/kg· K)	-		4,192	
DIMENSIONES Y DATOS TÉRMICOS				
Coeficiente global (W/m ² · K)		253,4		
Calor intercambiado (MW)		0,8296		
DTLM		154,5		
Área de transferencia (m ²)		21,48		
Configuración de los tubos		Triangular 30°		
Diámetro externo tubo (in)		1/2		
Diámetro de la carcasa (in)		21 1/4		
BWG		16		
Longitud (m)		2,128		
Número de tubos		253		

INTERCAMBIADOR DE CALOR E-104				
Proyecto: Planta de producción de n-butanol	Nomenclatur	a: E-104 A/B		Material: Acero inoxidable.
Número de línea de tubos: 10- 12	Número de lí	nea de carcas	sa: -	Cantidad: 2
Descripción: Intercambiador para	a enfriar la corri	ente que entra	en el ta	nque flash
	DATOS DE (OPERACIÓN	N	
DATOS DE OPERACIÓN	TUB	OS	CARCASA	
Fluido	Mezcla bifásica: H ₂ , H ₂ O, C ₂ H ₄ O, C ₂ H ₅ OH, C ₄ H ₉ OH v C ₄ H ₆		Agua de refrigeración (rw)	
Disposición del fluido	Calier	nte		Frio
Caudal másico (kg/h)	12.687	7,95		88.668
Temperatura de entrada (°C)	165		5	
Temperatura de salida (°C)	80		15	
Presión de entrada (bar)	15		1	
Pérdida de carga (bar)	-			-
Velocidad del fluido (m/s)	0,20			0,14
Densidad (kg/m ³)	648,9		1000	
Calor específico (kJ/kg· K)	3,44		4,192	
DIME	INSIONES Y I	DATOS TÉR	MICOS	5
Coeficiente global (W/m ² · K)		173,62		
Calor intercambiado (MW)		1,0315		
DTLM		108,2		
Área de transferencia (m ²)		56,05		
Configuración de los tubos		Triangular 30°		
Diámetro externo tubo (in)		3/4		
Diámetro de la carcasa (in)		33		
BWG		10		
Longitud (m)		3,144		
Número de tubos		298		

INTERCAMBIADOR DE CALOR E-105				
Proyecto: Planta de producción de n-butanol	Nomenclatur	a: E-105 A/B	B/C	Material: Acero inoxidable.
Número de línea de tubos: 23-	Número de lí	nea de carca	sa: -	Cantidad: 3
24				
Descripción: Intercambiador para	enfriar la corri	ente que entra	a en la pi	rificación de etanol
	DATOS DE O	DPERACIÓ	N	
DATOS DE OPERACIÓN	TUB	OS	CARCASA	
Fluido	Mezcla bifásica: H ₂ O, C ₂ H ₄ O, C ₂ H ₅ OH y C ₄ H ₉ OH		Agua de refrigeración (rw)	
Disposición del fluido	Calie	nte		Frio
Caudal másico (kg/h)	8.35	3		37.188
Temperatura de entrada (°C)	80		5	
Temperatura de salida (°C)	10		15	
Presión de entrada (bar)	1		1	
Pérdida de carga (bar)	-		-	
Velocidad del fluido (m/s)	0,12			0,06
Densidad (kg/m ³)	772,31			1000
Calor específico (kJ/kg· K)	2,60	6	4,192	
DIME	INSIONES Y I	DATOS TÉR	MICOS	5
Coeficiente global (W/m ² · K)		348,95		
Calor intercambiado (MW)		0,4327		
DTLM		23,39		
Área de transferencia (m ²)		52,83		
Configuración de los tubos		Triangular 30°		
Diámetro externo tubo (in)		3/4		
Diámetro de la carcasa (in)		33		
BWG		10		
Longitud (m)		3,258		
úmero de tubos 271		271		

INTERCAMBIADOR DE CALOR E-106					
Proyecto: Planta de producción	Nomenclatura: E-106 A/B		5	Material: Acero	
de n-butanol				inoxidable.	
Número de línea de tubos: 27-	Número de lí	nea de carca	sa: -	Cantidad: 2	
28 Descrinción: Intercambiador para	enfriar la corrie	ente que entre	en la re	cuperación de disolvente	
Descripcion. Intercambrador para					
DATOS DE ODEDACIÓN			. •	CADCASA	
DATOS DE OPERACION	IUBC	JS		CARCASA	
1 1	Mezcla bifás	ica: H_2O ,	Agı	ua de refrigeración (rw)	
Fluido	C_2H_4O, C_2	H_5OH			
		$2\Pi_6 O_2 $ y			
Disposición del fluido	Calier	nte		Frio	
Caudal másico (kg/h)	18.92	26		130.554	
Temperatura de entrada (°C)	120)		5	
Temperatura de salida (°C)	50			15	
Presión de entrada (bar)	1			1	
Pérdida de carga (bar)	-			-	
Velocidad del fluido (m/s)	0,18			0,185	
Densidad (kg/m ³)	1032			1000	
Calor específico (kJ/kg· K)	2,52	2		4,192	
DIME	INSIONES Y D	DATOS TÉR	MICOS		
Coeficiente global (W/m ² · K)		452,37			
Calor intercambiado (MW)		1,5185			
DTLM		70,81			
Área de transferencia (m ²)		47,66			
Configuración de los tubos		Triangular 30°			
Diámetro externo tubo (in)	Diámetro externo tubo (in)		3/4		
Diámetro de la carcasa (in)	sa (in) 35				
BWG		10			
Longitud (m)		2,552			
Número de tubos	e tubos 312				

INTERCAMBIADOR DE CALOR E-107					
Proyecto: Planta de producción	Nomenclatura: E-107 A/B		3	Material: Acero	
de n-butanol	Nićana da K			inoxidable.	
Numero de línea de tubos: 30- 31	Numero de li	nea de carca	isa: -	Cantidad: 2	
Descripción: Intercambiador para	a enfriar la corri	ente de recicl	o de disc	olvente.	
	DATOS DE O	DPERACIÓ	N		
DATOS DE OPERACIÓN	TUB	OS		CARCASA	
Fluido	Mezcla bifásica: H2O, C2H4O, C2H5OH, C4H9OH, C2H6O2 y C3H9O2		Agua de refrigeración (rw)		
Disposición del fluido	Calier	nte		Frio	
Caudal másico (kg/h)	16.137			139.266	
Temperatura de entrada (°C)	164			5	
Temperatura de salida (°C)	10			15	
Presión de entrada (bar)	1			1	
Pérdida de carga (bar)	-			-	
Velocidad del fluido (m/s)	0,133			0,196	
Densidad (kg/m ³)	1107,34			1000	
Calor específico (kJ/kg· K)	2,35	5		4,192	
DIME	CNSIONES Y I	DATOS TÉF	RMICOS	5	
Coeficiente global (W/m ² · K)		496,87			
Calor intercambiado (MW)		1,62			
DTLM		42,42			
Área de transferencia (m ²)		76,4			
Configuración de los tubos		Triangular 30°			
Diámetro externo tubo (in)		3/4			
Diámetro de la carcasa (in)		35			
BWG		10			
Longitud (m)		3,81			
Número de tubos		335			

INTERCAMBIADOR DE CALOR E-108				
Proyecto: Planta de producción	Nomenclatur	a: E-108		Material: Acero
Número de línea de tubos: 32-	Número de lí	nea de carcasa	•_	Cantidad: 1
35		nca uc carcasa.	• -	
Descripción: Intercambiador para	enfriar la corri	ente de reciclo d	le etar	iol.
	DATOS DE O	DPERACIÓN		
DATOS DE OPERACIÓN	TUB	OS	CARCASA	
Fluido	Mezcla bifás C2H4O y Q	sica: H2O, C2H5OH	Agua de refrigeración (rw)	
Disposición del fluido	Calier	nte		Frio
Caudal másico (kg/h)	23.00	57		104.688
Temperatura de entrada (°C)	75			5
Temperatura de salida (°C)	20		15	
Presión de entrada (bar)	1		1	
Pérdida de carga (bar)	-			-
Velocidad del fluido (m/s)	0,574			0,46
Densidad (kg/m ³)	786,48			1000
Calor específico (kJ/kg· K)	-			4,192
DIMENSIONES Y DATOS TÉRMICOS				
Coeficiente global (W/m ² · K)		579,63		
Calor intercambiado (MW)		1,218		
DTLM		32,46		
Área de transferencia (m ²)		64,8		
Configuración de los tubos		Triangular 30°		
Diámetro externo tubo (in)		1/2		
Diámetro de la carcasa (in)		23 1⁄4		
BWG		16		
Longitud (m)		4,614		
Número de tubos		352		

REACTOR R-101			
Proyecto: Planta de producción de n-butanol	Nomenclatura: R-101 A/B/C/D/E		
Número de línea: 6-7	Cantidad: 5		
Material: Acero inoxidable.	Descripción: Reactor multitubular de lecho fijo para la deshidrogenación y condensación aldólica de etanol		
DATOS D	E OPERACIÓN		
Caudal másico (kg/h)	7600,8		
Caudal molar (kmol/h)	180,282		
Presión a la entrada de los tubos (bar)	50		
Pérdida de carga (bar/m)	0,044		
Presión en la carcasa (bar)	9,478		
Temperatura de entrada (°C)	240		
Temperatura de salida (°C)	246,1		
Rango de temperaturas de operación (°C)	240-246,1		
DIMENSIONES	Y DATOS DE DISEÑO		
Diámetro de tubos (in)	2		
Longitud de tubos (m)	5,65		
Número de tubos	1967		
Area de transferencia (m ²)	2218		
Volumen (m ³)	22,53		
Masa de catalizador (kg/tubo)	18,1		
CATA	ALIZADOR		
Densidad (kg/m ³)	3.160		
Porosidad	0,5		
Superficie específica (m ² /g)	81		
Diámetro de las partículas (mm)	10		
REFR	IGERANTE		
Fluido refrigerante	Agua saturada		
Temperatura del refrigerante (°C)	190		
Coeficiente global de transferencia (W/m ² · K)	55,841		

TANQUE FLASH F-101				
Proyecto: Planta de producción de n-butanol	Nomenclatura: F-101			
Número de línea: 12,13 y 23	Cantidad: 1			
Material: Acero inoxidable.	Descripción: Tanque flash para la separación de volátiles.			
DIMEN	SIONES			
Posición	Vertical			
Diámetro (m)	1,125			
Altura del líquido (m)	4,502			
Volumen (m ³)	4,475			
Velocidad máxima del vapor (m/s)	0,023			
DATOS DE O	OPERACIÓN			
Corriente gas	H ₂ y C ₄ H ₆			
Corriente líquida	H ₂ O, C ₂ H ₄ O, C ₂ H ₅ OH y C ₄ H ₉ OH			
Caudal de gas (kg/h)	316,9			
Caudal de líquido (kg/h)	25.059			
Densidad del gas (kg/m ³)	14,83			
Densidad del líquido (kg/m ³)	756,6			
Temperatura de operación (°C)	80			
Presión de operación (bar)	15			

COLUMNA DE DESTILACIÓN D-101			
Proyecto: Planta de producción de n-butanol.	Nomenclatura: D-101		
Número de línea: 8, 9 y 19	Cantidad: 1		
Material: Acero inoxidable.	Descripción: Columna de destilación para la		
	separación de ligeros y pesados.		
DIMEN	SIONES		
Diámetro (m)	0,646		
Altura (m)	16		
Número de platos	32		
Plato de alimentación	-		
Volumen (m ³)	5,24		
Eficiencia (%)	75		
DATOS DE OPERACIÓN			
Caudal de alimentación (kg/h)	37.958		
Caudal de destilado (kg/h)	29.854		
Caudal de fondo (kg/h)	8.104		
Temperatura de alimentación (°C)	180		
Temperatura de operación (°C)	165-210		
Presión de operación (bar)	15		
Velocidad del gas (m/s)	1,5		
Potencia condensador (kW)	-		
Potencia hervidor-(kW)	-		

COLUMNA DE I	DESTILACIÓN D-102
Proyecto: Planta de producción de n-butanol.	Nomenclatura: D-102
Número de línea: 20, 21 y 22	Cantidad: 1
Material: Acero inoxidable.	Descripción: Columna de destilación para la
	purificación de n-butanol.
DIMEN	SIONES
Diámetro (m)	0,56
Altura (m)	11,5
Número de platos	23
Plato de alimentación	-
Volumen (m ³)	2,832
Eficiencia (%)	75
DATOS DE O	OPERACIÓN
Caudal de alimentación (kg/h)	8.104
Caudal de destilado (kg/h)	6.312
Caudal de fondo (kg/h)	1.792
Temperatura de alimentación (°C)	125
Temperatura de operación (°C)	115-150
Presión de operación (bar)	1
Velocidad del gas (m/s)	1,5
Potencia condensador (kW)	-
Potencia hervidor-(kW)	-

COLUMNA DE DESTILACIÓN D-103									
Proyecto: Planta de producción de n-butanol.	Nomenclatura: D-103								
Número de línea: 24,26, 27 y 32	Cantidad: 1								
Material: Acero inoxidable.	Descripción: Columna de destilación para la								
	purificación de etanol.								
DIMEN	SIONES								
Diámetro (m)	0,628								
Altura (m)	18								
Número de platos	36								
Plato de alimentación 1	-								
Plato de alimentación 2	-								
Volumen (m ³)	5,578								
Eficiencia (%)	75								
DATOS DE O	DPERACIÓN								
Caudal de alimentación 1 (kg/h)	25.059								
Caudal de alimentación 2 (kg/h)	35.860								
Caudal de destilado (kg/h)	23.067								
Caudal de fondo (kg/h)	37.852								
Temperatura de alimentación (°C)	10								
Temperatura de operación (°C)	75-120								
Presión de operación (bar)	1								
Velocidad del gas (m/s)	1,5								
Potencia condensador (kW)	-								
Potencia hervidor-(kW)	-								

COLUMNA DE I	DESTILACIÓN D-104
Proyecto: Planta de producción de n-butanol.	Nomenclatura: D-104
Número de línea: 28, 30 y 33	Cantidad: 1
Material: Acero inoxidable.	Descripción: Columna de destilación para la
	recuperación de disolvente.
DIMEN	SIONES
Diámetro (m)	0,40
Altura (m)	14
Número de platos	28
Plato de alimentación	-
Volumen (m ³)	1,763
Eficiencia (%)	75
DATOS DE O	OPERACIÓN
Caudal de alimentación (kg/h)	37.852
Caudal de destilado (kg/h)	1.992
Caudal de fondo (kg/h)	35.860
Temperatura de alimentación (°C)	50
Temperatura de operación (°C)	60-164
Presión de operación (bar)	0,2
Velocidad del gas (m/s)	1,5
Potencia condensador (kW)	-
Potencia hervidor-(kW)	-

6 ANEXOS

6.1. Anexo I. Balances de materia y condiciones de operación del proceso

Corriente	Unidad	1	2	3	4	5	6	7	8	9	10
Caudal másico	kg/h	14.781,0	37.848,0	37.848,0	38.004,0	38.004,0	38.004,0	37.958,0	37.958,0	29.854,0	25.375,9
Caudal molar	kmol/h	320,8	823,4	823,4	901,41	901,41	901,41	905,024	905,024	801,518	681,2903
Temperatura	°C	20	20	20	20,96	113,7	240	246,1	180	165	165
Presión	bar	1	1	50	50	50	50	49,75	15	15	15
Hidrógeno	kmol/h	-	-	-	78,01	78,01	78,01	89,75	89,75	89,75	76,2875
Butadieno	kmol/h	-	-	-	-	-	-	3,574	3,574	3,574	3,0379
Acetaldehído	kmol/h	-	43,34	43,34	43,34	43,34	43,34	51,51	51,51	51,51	43,7835
Etanol	kmol/h	320,8	780,1	780,1	780,1	780,1	780,1	546,8	546,8	545,7	463,845
Agua	kmol/h	-	0,009333	0,009333	0,009333	0,009333	0,009333	110,3	110,3	109,7	93,245
N-Butanol	kmol/h	-	-	-	-	-	-	85,6	85,6	1,284	1,0914
Hexanol	kmol/h	-	-	-	-	-	-	17,49	17,49	-	-
Glicerol	kmol/h	-	-	-	-	-	-	-	-	-	-
Etilenglicol	kmol/h	-	-	-	-	-	-	-	-	-	-

Tabla 5.1. Balances de materia y condiciones de operación de las corrientes 1-10.

Corriente	Unidad	11	12	13	14	15	16	17	18	19	20
Caudal másico	kg/h	4.478,1	25.375,9	316,90	151,0	165,9	151,0	4,97	156,02	8.104,0	8.104,0
Caudal molar	kmol/h	120,228	681,3	79,326	75,52	3,806	75,52	2,487	78,01	103,456	103,456
Temperatura	°C	165	80	80	80	80	260,8	20	253,1	210	125
Presión	bar	15	15	15	15	15	50	50	50	1	1
Hidrógeno	kmol/h	13,463	76,29	76,288	75,52	0,768	75,52	2,487	78,01	-	-
Butadieno	kmol/h	0,536	3,038	3,038	-	3,038	-	-	-	-	-
Acetaldehído	kmol/h	7,727	43,784	-	-	-	-	-	-	-	-
Etanol	kmol/h	81,855	463,845	-	-	-	-	-	-	1,094	1,094
Agua	kmol/h	16,455	93,245	-	-	-	-	-	-	0,551	0,551
N-Butanol	kmol/h	0,193	1,0914	-	-	-	-	-	-	84,32	84,32
Hexanol	kmol/h	-	-	-	-	-	-	-	-	17,49	17,49
Glicerol	kmol/h	-	-	-	-	-	-	-	-	-	-
Etilenglicol	kmol/h	-	-	-	-	-	-	-	-	-	-

Tabla 5.2. Balances de materia y condiciones de operación de las corrientes 11-20.78

Corriente	Unidad	21	22	23	24	25	26	27	28	29	30
Caudal másico	kg/h	6.312,0	1.792,0	25.059,0	25.059,0	3.586,0	35.860,0	37.852,00	37.852,00	35.860,0	32.274,0
Caudal molar	kmol/h	85,893	17,56	601,965	601,965	48,16	481,691	581,09	581,09	481,7	433,53
Temperatura	°C	115	150	80	10	10	10	120	50	164	164
Presión	bar	1	1	1	1	1	1	1	0,2	1	1
Hidrógeno	kmol/h	-	-	-	-	-	-	-	-	-	-
Butadieno	kmol/h	-	-	-	-	-	-	-	-	-	-
Acetaldehído	kmol/h		-	43,784	43,784	-	0,0004	0,438	0,438	0,0005	0,0004
Etanol	kmol/h	1,094	-	463,845	463,845	-	0,0042	4,639	4,639	0,005	0,0042
Agua	kmol/h	0,551	-	93,245	93,245	-	0,084	93,32	93,32	0,093	0,084
N-Butanol	kmol/h	84,23	0,09	1,092	1,092	-	0,002	1,093	1,093	0,0022	0,002
Hexanol	kmol/h	0,0175	17,473	-	-	-	-	-	-	-	-
Glicerol	kmol/h	-	-	-	-	19,26	192,6	192,6	192,6	192,6	173,34
Etilenglicol	kmol/h	-	-	-	-	28,9	289	289	289	289	260,1

Tabla 5.3. Balances de materia y condiciones de operación de las corrientes 21-30.

Corriente	Unidad	31	32	33	34	35
Caudal másico	kg/h	32.274,0	23.067,0	1.992,0	3.586,0	23.067,0
Caudal molar	kmol/h	433,5	502,65	99,39	48,170	502,65
Temperatura	°C	10	75	60	164	20
Presión	bar	1,0	1	1	1	1
Hidrógeno	kmol/h	-	-	-	-	-
Butadieno	kmol/h	-	-	-	-	-
Acetaldehído	kmol/h	0,0004	43,34	0,438	0,00005	43,34
Etanol	kmol/h	0,0042	459,3	4,635	0,0005	459,3
Agua	kmol/h	0,084	0,009	93,227	0,009	0,009
N-Butanol	kmol/h	0,002	-	1,091	0,0002	-
Hexanol	kmol/h	-	-	-	-	-
Glicerol	kmol/h	173,34	-	-	19,26	-
Etilenglicol	kmol/h	260,10	-	-	28,9	-

Tabla 5.4. Balances de materia y condiciones de operación de las corrientes 31-35.

6.2. Anexo II. Diagrama de flujo del proceso completo

Figura 5.1. Diagrama de flujo del proceso completo (PFD).

Тіро	kW	HP	Q [m³/h]	0	18,5	20	24	28	30,5	35
SIA-6-24/03	3	4		30	27	26	24	21	17	9
SIA-6-24/04	4	5,5		40	36	35	32	27	23	12
SIA-6-24/05	4	5,5		50	44	43	40	34	28	15
SIA-6-24/06	5,5	7,5		60	53	52	48	41	34	18
SIA-6-24/07	7,5	10		70	62	61	56	48	40	21
SIA-6-24/08	7,5	10		80	71	69	64	55	45	24
SIA-6-24/09	9,3	12,5		90	80	78	72	62	51	27
SIA-6-24/10	9,3	12,5		100	89	87	80	68	57	30
SIA-6-24/11	11	15		110	98	95	88	75	62	33
SIA-6-24/12	11	15		120	107	104	96	82	68	36
SIA-6-24/13	11	15		130	115	113	104	89	74	39
SIA-6-24/14	13	17,5		140	124	121	112	96	79	42
SIA-6-24/15	13	17,5		150	133	130	120	103	85	45
SIA-6-24/16	15	20		160	142	139	128	109	91	48
SIA-6-24/17	15	20		170	151	147	136	116	96	51
SIA-6-24/18	18,5	25		180	160	156	144	123	102	54
SIA-6-24/19	18,5	25		190	169	165	152	130	108	57
SIA-6-24/20	18,5	25		200	178	173	160	137	113	60
SIA-6-24/21	18,5	25		210	186	182	168	144	119	63
SIA-6-24/22	22	30	H [m]	220	195	191	176	150	125	66
SIA-6-24/23	22	30		230	204	199	184	157	130	69
SIA-6-24/24	22	30		240	213	208	192	164	136	72
SIA-6-24/25	22	30		250	222	217	200	171	142	75
SIA-6-24/26	26	35		260	231	225	208	178	147	78
SIA-6-24/27	26	35		270	240	234	216	185	153	81
SIA-6-24/28	26	35		280	249	243	224	191	159	84
SIA-6-24/29	26	35		290	258	251	232	198	164	87
SIA-6-24/30	30	40		300	266	260	240	205	170	89
SIA-6-24/31	30	40		310	275	269	248	212	176	92
SIA-6-24/32	30	40		320	284	277	256	219	181	95
SIA-6-24/33	30	40		330	293	286	264	226	187	98
SIA-6-24/34	30	40		340	302	295	272	232	193	101
SIA-6-24/35	37	50		350	311	303	280	239	198	104
SIA-6-24/36	37	50		360	320	312	288	246	204	107
SIA-6-24/37	37	50		370	329	321	296	253	210	110
SIA-6-24/38	37	50		380	337	329	304	260	215	113
SIA-6-24/39	37	50		390	346	338	312	267	221	116
SIA-6-24/40	37	50		400	355	347	320	273	227	119
SIA-6-24/41	37	50		410	364	355	328	280	232	122
SIA-6-24/42	37	50		420	373	364	336	287	238	125

6.3. Anexo III. Catálogo de bombas

Figura 5.2. Catálogo de bombas SAER: Serie SIA-6. [26]

	1	1								1			
O.D. of Tubing	E.W.G. Gauge	Thick- Derr Inches	Internal Area Sq. Inch	Sq. Ft. External Surface Per Foot Length	Sq. Ft. Internal Surface Per Foot Length	Weight Per Ft. Length Steel Lbs.*	I. D. Tubing Inches	Moment ol Inertia Inches ⁴	Section Modulus Inches ³	Radius of Cyration Inches	Constant C**	0. D. 1. D.	Metal Area (Transverse Metal Area) Sq. Inch
1/4 1/4 1/4	22 24 26	.028 .022 .018	.0295 .0333 .0360	.0655 .0655 .0655	.0508 .0529 .0560	.056 .054 .045	.194 .206 .214	.00012 .00011 .00009	.00098 .00083 .00071	.0792 .0810 .0024	46 52 56	1.289 1.214 1.168	.0195 .0159 .0131
3/8 3/8 3/8 3/8 3/8	16 20 22 24	.049 .035 .028 .022	.0603 - .0731 .0799 .0860	.0982 .0982 .0982 .0982	.0725 .0798 .0835 .0867	.171 .127 .104 .083	.277 .305 .319 .331	.00068 .00055 .00046 .00038	.0036 .0029 .0025 .0020	.1164 .1213 .1227 .1248	94 114 125 134	1.354 1.233 1.176 1.133	.0502 .0374 .0305 .0244
1/2 1/2 1/2 1/2	16 18 20 22	.065 .049 .035 .028	.1075 .1269 .1452 .1548	.1309 .1309 .1309 .1309	.0969 .1052 .1126 :1162	.302 .236 .174 .141	.370 .402 .430	.0022 .0018 .0014 .0012	.0086 .0072 .0056 .0046	.1556 .1606 .1649 .1671	168 198 227 241	1.351 1.244 1.163 1.126	.0888 .0694 .0511 .0415
5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8	12 13 14 15 16 19 20	.109 .095 .003 .072 .058 .058 .049 .042 .035	.1301 .1486 .1655 .1917 .1924 .2035 .2121 .2296 .2419	.1636 .1636 .1636 .1636 .1636 .1636 .1636 .1636 .1636	.1066 .1139 .1202 .1259 .1296 .1333 .1380 .1416 .1453	.602 .537 .479 .425 .368 .350 .303 .503 .262 .221	.407 .435 .459 .481 .495 .509 .527 .541 .555	.0061 .0057 .0053 .0049 .0045 .0045 .0042 .0037 .0033 .0028	.0197 .0183 .0170 .0156 .0145 .0134 .0134 .0118 .0105 .0091	.1864 .1903 .1978 .1971 .1993 .2016 .2043 .2068 .2089	203 232 258 283 300 317 340 358 377	1.536 1.437 1.362 1.299 1.263 1.228 1.186 1.155 1.126	.177 .158 .141 .125 .114 .103 .089 .077 .065
3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4	10 11 12 13 15 15 15 17 20	.154 .120 .035 .061 .072 .055 .058 .045 .035	1525 2043 .2243 .2463 .2675 .2684 .3019 .3157 .3339 .3652	.1963 .1963 .1963 .1963 .1963 .1963 .1963 .1963 .1963	.1262 .1335 .1393 .1466 .1529 .1507 .1623 .1600 .1707 .1780	.884 .809 .748 .666 .592 .520 .476 .428 .367 .269	.402 .510 .532 .560 .584 .606 .620 .620 .652 .680	.0129 .0122 .0116 .0000 .0009 .0083 .0076 .0067 .0050	.0344 .0326 .0309 .0285 .0285 .0238 .0238 .0231 .0203 .0134	.2229 .2267 .2299 .2340 .2376 .2410 .2433 .2455 .2455 .2455 .2455 .2455	285 319 347 384 418 450 471 492 521 567	1.556 1.471 1.410 1.339 1.284 1.238 1.210 1.183 1.150 1.103	.260 .238 .220 .196 .174 .153 .140 .126 .108 .079
7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8	10 11 13 14 16 18 20	.134 .120 .095 .063 .065 .049 .035	.2892 .3166 .3350 .3585 .3948 .4359 .4742 .5020	.2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291 .2291	.1589 .1662 .1720 .1793 .1856 .1950 .2034 .2107	1.061 .969 .891 .792 .704 .561 .432 .313	.607 .635 .657 .685 .709 .745 .777 .805	.0221 .0208 .0196 .0160 .0164 .0137 .0109 .0082	.0505 .0475 .0449 .0411 .0374 .0312 .0249 .0187	.2662 .2703 .2736 .2778 .2815 .2873 .2925 .2972	451 494 529 575 616 680 740 794	1.441 1.378 1.332 1.277 1.234 1.174 1.126 1.087	.312 .285 .262 .233 .207 .165 .127 .092
	8 10 13 13 15 15 15 20	.165 .134 .120 .095 .083 .072 .055 .045 .045	.3526 .4208 .4515 .4515 .5153 .5153 .5755 .5945 .6390 .6793	.2618 .2618 .2518 .2618 .2618 .2618 .2618 .2618 .2516 .2618 .2618	.1754 .1916 .1990 .2047 .2121 .2183 .2241 .2278 .2361 .2435	1.462 1.237 1.129 1.037 .918 .813 .714 .649 .496 .360	.670 .732 .760 .810 .634 .856 .870 .902 .930	.0392 .0350 .0327 .0307 .0260 .0253 .0227 .0210 .0166 .0124	.0784 .0700 .0654 .0559 .0507 .0455 .0419 .0332 .0247	.3009 .3098 .3140 .3174 .3217 .3255 .3291 .3314 .3366 .3414	550 656 708 749 804 852 898 927 997 1060	1.493 1.356 1.316 1.279 1.235 1.199 1.167 1.149 1.109 1.075.	.430 .364 .332 .305 .270 .219 .210 .191 .146 .105
1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4 1-1/4	7 10 11 12 13 14 10 20	.150 .165 .134 .120 .109 .085 .085 .065 .055	.6221 .6548 .7574 .8012 .0365 .8825 .9229 .9252 1.042 1.094	.3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272 .3272	.2330 .2409 .2571 .2544 .2702 .2775 .2838 .2932 .3016 .3069	2.057 1.921 1.598 1.448 1.329 1.173 1.033 .823 .629 .456	.890 .920 .982 1.010 1.032 1.060 1.084 1.120 1.152 1.150	.0890 .0647 .0741 .0688 .0642 .0579 .0521 .0426 .0334 .0247	.1425 .1355 .1186 .1000 .1027 .0926 .0833 .0682 .0534 .0395	.3836 .3880 .3974 .4018 .4052 .4097 .4136 .4196 .4250 .4250	970 1037 1182 1250 1305 1377 1440 1537 1626 1707	1.404 1.359 1.273 1.238 1.211 1.179 1.153 1.116 1.085 1.059	.605 .565 .470 .426 .391 .345 .304 .242 .185 .134
1-1/2 1-1/2 1-1/2 1-1/2	10 12 14 15	.134 .109 .083 .065	1.192 1.251 1.398 1.474	.3927 .3927 .3927 .3927	.3225 .3356 .3492 .3587	1.955 1.618 1.258 .996	1.232 1.282 1.334 1.370	.1354 .1159 .0931 .0756	.1806 .1546 .1241 .1008	4853 .4933 .5018 .5079	1860 2014 2181 2299	1.218 1.170 1.124 1.095	.575 .476 .370 .293
2	11	.120	2.433 2.573	.5236 .5236	.4608 .4739	2.410 1.934	1.760	.3144 .2506	.3144 .2586	.6660	3795 4014	1.136	.709 .569
2-1/2	9	.148	3.915	.6540	.5770	3,719	2.204	.7592	.6074	.8332	5951	1.134	1.094

6.4. Anexo IV. Intercambiadores de carcasa y tubo. Dimensiones y características de diseño normalizadas

Figura 5.3. Intercambiadores de carcasa y tubos. Dimensiones y características de tubos. [16]

37	35	33	31	29	27	25	231/4	211/4	191/4	171/4	151/4	131/4	12	10	8	I.D. of	Shell	(In.)	
1209 1127 965 699 595	1143 1007 805 633 545	1019 889 765 551 477	881 765 665 481 413	763 667 587 427 359	663 577 495 361 303	553 493 419 307 255	481 423 355 247 215	391 343 287 205 179	307 277 235 163 139	247 217 163 133 111	103 157. 139 103 83	135 117 101 73 65	105 91 85 57 45	60 57 53 33 33	33 33 33 15 17	14' on 14' 14' on 1' 2 14' on 1' 2 1' on 1'4' 1' on 1'4'		Tubes	One-Pass
1242 1088 946 685 584	1088 972 840 608 522	964 838 746 530 460	845 746 644 462 402	734 646 560 410 348	026 556 480 346 298	528 408 408 292 248	452 398 346 244 218	370 325 280 204 172	300 264 222 162 136	228 208 172 126 106	166 154 120 92 70	124 110 94 62 50	94 90 78 52 40	58 50 48 32 20	32 28 26 16 12	% on 1% % on 1 2 % on 1 2 1 on 1% 1 on 1%	Δ Δ Δ	Fixed	Two-
1125 1000 884 610 525	1008 882 778 532 464	882 772 688 460 406	768 674 586 396 350	648 566 506 340 304	558 454 436 284 256	460 406 362 234 214	398 336 304 192 180	304 270 242 154 134	234 212 188 120 100	180 158 142 84 76	134 108 100 58 58	94 72 72 42 38	64 60 52 26 22	34 25 30 8 12	8 12 XX XX	% on 1% % on 1 2 % on 1 2 1 on 1% 1 on 1%		U Tubes ³	Pass
1172 1024 880 638 534	1024 912 778 560 476	904 802 688 485 414	788 692 590 422 300	680 596 510 368 310	576 508 440 308 260	484 424 300 258 214	412 360 308 212 188	332 292 242 176 142	260 232 192 138 110	196 180 142 104 84	154 134 120 78 74	108 96 88 60 48	84 -72 72 44 40	48 44 48 24 24		1 on 14 1 on 14 1 on 14 1 on 14		Fired	Four
1092 968 852 584 500	976 852 748 508 440	852 744 660 444 384	740 648 560 376 336	622 542 482 322 286	534 462 414 260 238	438 386 342 218 198	378 318 295 178 100	286 254 226 142 122	218 198 174 110 90	166 146 130 74 66	122 98 90 50 50	84 64 04 30 32	50 52 44 20 10	28 20 24 XX XX	XX XX XX XX XX XX	% on 1% % on 1 % on 1 1 on 1% 1 on 1%		U Tubes"	-Pass
1106 964 818 585 484	964 852 224 514 430	844 744 634 442 308	732 640 536 382 318	632 548 460 338 203	532 404 394 274 220	440 388 324 226 184	372 322 206 1S2 154	294 258 212 150 116	230 202 158 112 88	174 156 116 82 66	116 104 78 56 44	80 65 54 34 XX	XX XX XX XX XX	XX XX XX XX XX	XX XX XX XX XX	% on 1% % on 1 2 % on 1 2 1 on 1% 1 on 1%		Tubes	SIx-
1058 940 820- 562 478	944 825 718 488 420	820 720 632 425 362	716 620 534 350 316	596 518 458 304 268	510 440 392 252 224	416 305 322 206 182	258 300 268 168 152	272 238 210 130 110	206 184 160 100 80	156 134 118 68 60	110 88 80 42 42	74 56 56 30 XX	XX XX XX XX XX XX	XX XX XX XX XX XX	XX XX XX XX XX XX	% on 1% % on 1 2 % on 1 2 1 on 1% 1 on 1%	- 	U Tubes ³	Pz 53
1040 902 760 542 435	902 798 602 465 383	790 694 576 400 334	082 588 490 342 280	576 496 414 298 230	484 422 352 240 192	398 344 285 190 150	332 280 228 154 128	258 224 174 120 94	108 170 132 90 74	140 124 94 66 XX	**************************************	XX XX XX XX XX	XX XX XX XX XX	XX XX XX XX XX XX	XX XX XX XX XX	34 on 1/1. 34 on 1 / 2 34 on 1 / 2 1 on 134 1 on 134		Fixed	Eight
1032 908 792 540 455	916 796 692 464 395	796 692 608 404 344	698 600 512 340 300	578 498 438 290 254	490 422 374 238 205	398 350 300 190 170	342 295 254 154 142	254 220 194 118 98	190 170 146 90 70	142 122 105 53 50	102 82 70 33 34	68 52 48 24 XX	XX XX XX XX XX	XX XX XX XX XX	XX XX XX XX XX	1 on 14 1 on 1 1 on 14 1 on 14		U Tubes ³	t-Pass
37	35	33	31	29	27	25	231/4	211/4	191/4	171/4	151/4	131/4	12	10	8	I.D. of She	ll (in.)	

Figura 5.4. Diámetro de carcasa y número de tubos en distintas configuraciones. [16]

6.5. Anexo V. Tablas utilizadas para el cálculo de coste de la instalación y coste de producción

Tabla 1 Ex	cponentes de Williams pa	Tabla 2 Exponentes de Williams				
Equipo	Capacidad (A _i)	Exponente (n)	para diversos pro	ceso		
Aspiradores	Caudal	0,87	Tipo de planta	Exponente		
Bombas	Caudal o potencia	0,52-0,76	Óvido do otilono	(n)		
Intercambiadores de calor	Área de intercambio	0,6	Etanol	0,79		
Colectores de polvo	Caudal	0,84	Etanor	0,0		
Compresores	Caudal	0,73	Estíreno	0,68		
Cristalizadores	Volumen	0,8-0,85	Butadieno	0,59		
Depósitos	Volumen	0,65	Coquización de petróleo	0,58		
Desintegradores mecánicos	Potencia y capacidad de producción	0,60-0,72	Formaldehido	0,58		
Sedimentadores	Superficie libre	0,30-0,72	Benceno	0,61		
Evaporadores	Área de intercambio	0,5-0,70	Ácido nítrico	0,56		
Filtros	Superficie de filtración	0,50-0,70				
Mezcladores	Volumen y potencia	0,35-0,7	Oxigeno	0,64		
Secadores	Superficie de carga	0,9	Acetileno	0,75		
Soplantes	Caudal	0,3-0,6	Metanol	0,83		
Tamizadoras	Superficie de tamizado	0,28-0,8	Sosa	0,35		
Torres	Diámetro	0,72-1,20	Amoniaco	0,74		
Transportadores y elevadores	Longitud o distancia	0,74-0,89	Etileno	0,58		

Figura 5.5. Parámetros de capacidad y exponentes de Williams específico de cada equipo. [24]

Tabla 4. Coste final del	Tabla 4. Coste final del equipo (corrección por P , T y materiales)								
Equipo	Correlación								
Intercambiadores de calor, Vasija y bomba	$\begin{split} \textbf{C}_{T,a} &= \textbf{C}_{equipos}^{o} \cdot \textbf{F}_{BM} = \textbf{C}_{equipos}^{o} \cdot \left(\textbf{B}_{1} + \textbf{B}_{2} \cdot \textbf{F}_{M} \cdot \textbf{F}_{p}\right) \text{ (Costes fabricación,} \\ & \text{preparación y envío)} \end{split}$								
Compresores y soplantes	$C_{T,a} = C_{equipos}^{o} \cdot F_{BM}$								
Evaporadores y vaporizadores	$C_{T,a} = C_{equipos}^{o} \cdot F_{BM} \cdot F_{P}$								
Ventiladores	$C_{T,a} = C_{equipos}^{o} \cdot F_{BM} \cdot F_{P}$								
Calderas y Hornos	$\begin{split} C_{T,a} &= C_{equipos}^{o} \cdot F_{BM} \cdot F_{P} \cdot F_{T} \\ F_{T} &= 1 + 0,00184 \cdot \Delta T - 0,00000335 (\Delta T)^{2} \\ \text{Donde: } F_{T} \text{ es el factor de sobrecalentamiento en calderas de vapor} \\ \Delta T &= \text{Sobrecalentamiento en } ^{\circ}\text{C} \end{split}$								
Turbinas	$C_{T,a} = C^{o}_{equipo \ s} \cdot F_{BM}$								
Columnas de plato y separadores de gotas	$\begin{split} C_{T,a} &= C_{equipo\ s}^{o}\cdot N\cdot F_{M}\cdot F_{q}\\ log_{10}F_{q} &= 0,4771 + 0,08516\cdot log_{10}N - 0,3473(log_{10}N)^{2}\ si\ N<20\\ F_{q} &= 1\ si\ N>20\\ Donde\ :\ N\ es\ el\ número\ de\ platos\\ F_{q}\ es\ un\ factor\ de\ corrección\ en\ C.\ plato \end{split}$								
Columnas de relleno	$C_{T,a} = C^{o}_{equipos} \cdot F_{BM}$								
Nota: Factores de corrección obtenidos a partir del	ANEXO I teniendo en cuenta el equipo								

 $c^o_{equipo\,s}$ Coste del equipo calculado mediante correlación o mediante la regla de Williams

F_{BM} es un factor de corrección que computa el efecto del material
F_M es un factor de corrección que depende del material de construcción
F_P es un factor de corrección que depende de la presión
Bi son parámetros característicos del equipo

Figura 5.6. Factores de corrección de costes específicos de cada equipo. [24]

Tabla 8. Factores de chilton							
Item	Concepto	Factor	Concepto	Item	Concepto	Factor	Concepto
1	Coste equipos principales	1	1	7	Líneas exteriores Unidad Integrada Unidad Separada Unidad Dispersa	0- 0,05 0,05-0,15 0,15-0,25	2 2 2
2	Coste equipos instalados	1,4 - 2,20	1	8	Coste Directo Total	Suma conceptos (2 a 7)	
3	Tuberías Planta sólidos Planta mixta Planta fluidos	0,07- 0,10 0,10- 0,30 0,30-0,60	2 2 2	9	Ingeniería y construcción Complejidad simple Complejidad complicada	0,20 - 0,35 0,35-0,50	8 8
4	Instrumentación Poca automatización Algo de automatización Completa automatización	0,02- 0,05 0,05- 0,10 0,10- 0,15	2 2 2	10	Contingencia y beneficio del contratista Proceso Completado Proceso sujeto a cambios Proceso especulativo	0,10-0,20 0,20-0,30 0,30-0,50	8 8 8
5	Edificios y preparación del terreno Planta existente Planta externa Mixta Interna	0 0,05- 0,20 0,20- 0,60 0,60- 1,00	2 2 2 2	11	Factor del tamaño Grande Pequeña Planta piloto	0-0,05 0,05-0,15 0,15-0,35	8 8 8
6	Auxiliares (potencia, vapor, agua) Ninguna extensión Pequeña ampliación Ampliación grande Nuevas extensión	0 0-0,05 0,05-0,25 0,25-1	2 2 2 2	12	Coste indirecto total	Suma cor (9 a 1	iceptos L1)
				CTF	Suma conceptos (8+12)		

Figura 5.7. Factores de Chilton para el cálculo del coste total de inversión. [24]

Tabla 10 Precios de items variables en una planta química					
Item	Precio (\$ ₂₀₀₇ /Unidad _{cálculo})	Item	Precio (\$ ₂₀₀₇ /Unidad _{cálculo})		
Combustible Carbón Fuel-oil Pet-Coke Gas Natural	1,07 \$/GJ 6 \$/GJ 0,20 \$/GJ 6 \$/GJ	Agua Procesos para Uso Alimentación caldera a 115ºC Consumo humano Desionizada	0,067 \$/1000 kg 2,45 \$/1000 kg 0,26 \$/1000 kg 1 \$/1000 kg		
Vapor saturado Vapor hp (41 barg, 254°C) Vapor mp (10 barg, 184°C) Vapor lp (5 barg, 160°C)	16,64 \$/1000 kg 8,22 \$/1000 kg 7,78 / 1000 kg	Agua de refrigeración (RW) de 5ºC a 15 ºC	4,43 \$/GJ		
Electricidad	0,06 \$/kW·h	Agua de enfriamiento (CW) de 30ºC a 45 ºC	14,8 \$/ 1000 kg		
Aire comprimido presurizado 6 bar 3,3 bar	0,49\$/100 Nm³ 0,35\$/100 Nm³	Agua residual A desecho peligroso A desecho no peligroso A tratamiento 1º (filtración) A tratamiento 2º (Filtración + lodos) A tratamiento 3º (Filtración + lodos+ trat. Químico)	200-2000 \$/1 t 36 \$/1 t 41 \$/1000 m ³ 43 \$/1000 m ³ 56 \$/1000 m ³		

Figura 5.8. Precios de los Utilities. [24]

Tabla 11 Estimación de número de operarios en función del equipamiento					
Equipo	Operario/unidad	Operario/unidad Equipo			
Bombas y compresores	0,1-0,2	Filtros a vacío	0,125 – 0,25		
Separador Centrífugo	0,25 – 0,5	Filtros	1		
Cristalizador mecánico	0,16	Intercambiadores de calor	0,1		
Secador rotativo	0,5	Torres (incluidos auxiliares)	0,2-0,5		
Spray dryer	1	Reactores tipo batch	1		
Evaporador	0,25	Reactores continuos	0,5		
Vasijas y tanques	0,2 - 0,5	Hornos	0,5		

Figura 5.9. Parámetros específicos de cada equipo para la estimación de operarios. [24]

Tabla 9 Items para calcular el coste total de producción de una planta química							
Item	Costes	Valores típicos	Item	Costes	Valores típicos		
1	Materias primas	Datos del diagrama del proceso	8	Supervisión	20 % MOD		
2	Electricidad, vapor, agua	Según diagrama de proceso (Tabla 10)	9	Dirección en planta	50 % MOD		
3	Materiales Auxiliares	100 % Gastos de mantenimiento	10	Cargas de capital	15 % CTF		
4	Mantenimiento	5- 10 % Capital fijo (CTF)	11	Seguros	1 % CTF		
5	Empaquetado y envío	Despreciable	12	Impuestos locales	2 % CTF		
6	Mano de obra directa (MOD)	Según estimaciones (Tabla 11)	13	Royalties	1 % CTF		
7	Costes de laboratorio	20 % MOD	Coste de producción directo (DPC)	Suma (1 a 13)			
Item	Costes	Valores típicos	Item	Costes	Valores típicos		
14	Generales	60% total de materiales auxiliares	17	Seguros	1% CTF		
15	G. Administración	2% CTF	18	Recuperación capital	1,098%CTF		
16	Impuestos	1% CTF	Coste de producción indirecto (CPI)	Suma (14 a 18)			

Figura 5.10. Conceptos para el cálculo del coste total de producción de la planta. [24]

[1] NIST Chemistry WebBook [en línea, 26/02/2021] https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Units=SI

[2] NIST Chemistry WebBook [en línea, 26/02/2021] https://webbook.nist.gov/cgi/cbook.cgi?Name=butanol&Units=SI

[3] DOW Chemical Company, 2013 <u>http://msdssearch.dow.com/Published</u> LiteratureDOWCOM/dh_08d7/0901b803808d7232.pdf?filepath=productsafety/pdfs/noreg/233-00247.pdf&fromPage=GetDoc

[4] GoogleMaps: <u>https://www.google.com/maps/place/Bioetanol+Galicia+SA/@43.1560523,-</u> 8.0255502,17z/data=!4m5!3m4!1s0xd2e40b44e2efb19:0xf2f6b8d670136366!8m2!3d43.1560523!4 <u>d-8.0233615</u>

[5] Javier Sanz Ferreruela (2016). *Análisis tecno-económico del proceso de producción de butanol a partir de biomasa lignocelulósica por vía termoquímica*. Trabajo de fin de grado para optar al título de ingeniero químico. Universidad Politécnica de Madrid. Páginas 8-11. http://oa.upm.es/40350/1/TFG JAVIER SANZ FERRERUELA.pdf

[6] Guillermo Ceba Alcón (2018). *Análisis técnico-económico de la producción de butanol a partir de bioetanol*. Trabajo de fin de grado para optar al título de ingeniero industrial. Escuela Técnica Superior de Ingenieria. Universidad de Sevilla. Páginas 5-6. http://bibing.us.es/proyectos/abreproy/5934/fichero/PFC-5934-CEBA.pdf

[7] Abengoa Bioenergía Nuevas Tecnologías, Sevilla (ES), 2019. Proceso de obtención de alcoholes superiores. (Patente US 10, 301, 241 B2). https://patentimages.storage.googleapis.com/e3/91/9e/1b702e0fde8225/US10301241.pdf

[8] Christopher R. Ho, Sankaranarayanapillai Shylesh and Alexis T. Bell. *Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite*. Department of Chemical and Biomolecular Engineering, University of California. *ACS Publications*, 58. Páginas 12.981–12.995.

[9] Manuel Campoy Naranjo. *Tema 1: Introducción a los reactores heterogéneos*. Apuntes de la asignatura Reactores Heterogéneos 4º GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[10] Air Liquide Engineering & Construction [en línea, 20/07/2021]

https://www.engineering-airliquide.com/es/purificacion-hidrogeno-por-adsorcion-por-oscilacion-presion-psa

[11] Propiedades térmicas de la materia [en línea, 18/07/2021]

http://imartinez.etsiae.upm.es/~isidoro/bk3/Appendices/Propiedades%20termicas%20de%20la%20 materia.pdf

[12] Luis Cañadas Serrano. *Impulsión de líquidos*. Apuntes de la asignatura Operaciones Básicas con Sólidos y Fluidos 3º GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla

[13] Ángel Luis Villanueva Perales. *Tema 5: Simulación y Optimización de equipos de intercambio de calor y energía mecánica*. Apuntes de la asignatura Simulación y Optimización de Procesos Químicos 4º GIQ. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla. Páginas 1-27.

[14] Benito Navarrete Rubia. *Tema 4: Diagramas de Proceso*. Apuntes de la asignatura Ingeniería de Procesos 3º GIQ. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla. Página 11.

[15] David Velázquez Alonso. *Tema 1: Intercambiadores de Calor*. Apuntes de la asignatura Tecnología Energética 3º GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[16] Rocío González Falcón y David Velázquez. *Tablas y gráficos*. Apuntes de la asignatura Tecnología Energética 3º GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[17] Coulson & Richardson's. *Chemical Engineering Desing. Volume 6. Fourth edition.* R.K. Sinnott (2005).

[18] Serth, Robert W.; Lestina, Thomas. *Process heat transfer: principles and applications*. Oxford, England. Waltham, Massachusetts: Academic Press; 2014.

[19] Manuel Campoy Naranjo. *Tema 4: Reactores catalíticos Solido-Fluido*. Apuntes de la asignatura Reactores Heterogéneos 4º GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[20] Robert H. Perry. Perry's Chemical Engineers' Handbook. 8ª edition, McGraw-Hilll.

[21] Luis Francisco Vilches Arenas. *Tema 6: Equilibrio de fases multicomponentes*. Apuntes de la asignatura Cinética y Termodinámica Química Aplicadas 2º GIQ. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[22] Phillip C. Wankat, Ingeniería de procesos de separación. (2ª edición), 2008.

[23] A. Narváez-García et al. *Método corto para la destilación discontinua multicomponente considerando una política de reflujo variable*. Revista Mexicana de Ingeniería Química. Vol. 12. No. 3 (2013).

[24] Esmeralda Portillo. Anexo I. *Parámetros de cálculo de adquisiciones de equipos mediante correlaciones*. Apuntes de la asignatura Ingeniería de Procesos 3º GIQ. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[25] María Eladia Gallego Martínez. *Bloque II. Inversiones y financiación*. Apuntes de la asignatura Organización y Gestión de empresas 4 GIQ-GITI. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

[26] Bombas Saer. Catálogo 2019.

[27] Independent Commodity Intelligence Services [en línea, 22/08/2021]

https://www.icis.com/explore/chemicals/channel-info-chemicals-a-z/